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Bemerkungen ùber zwei Beweise von Herrn A. Ostrowski

Brian B. Murphy

In [1] wurde folgender Entwicklungssatz bewiesen.

SATZ. Es sei A (al]) eine quadratische Matrix n-ter Ordnung. Dann ist Al},
das algebraische Komplement von at] in der Entwicklung von \A\, gleich

(-am,)Dw

wobei y (ijkl---m) einen beliebigen Zyklus von der symmetrischen Gruppe
S{i,2, ,n&gt; darstellt, und D{y} die koaxiale Unterdeterminante von A, welche die
Reihen und Kolonnen i, /, fc, /,..., m nichî enthâlt, ist}1}

Dieser Satz erlaubt eine neue Formulierung vom Beweis von Satz IX und einen
neuen Beweis von Satz X von Herrn A. Ostrowski ([2], s204, 207). Dièses

geschieht in den folgenden Paragraphen.

SATZ IX. Sei A eine Déterminante vom Typus

A

«11 «12 &quot; * * &quot;&quot;&quot;«In

&quot;«21 «22 &quot; * &apos; ~«2n

-«ni ~«n2 * &apos; &apos; (*nn

wo sàmtliche a^^O und sàmtliche koaxiale Unterdeterminanten, ebenso wie die
Déterminante A, selbst nicht negativ sind. Ist dann eines der Diagonalelemente

avv 0, so verschwindet A und zugleich verschwindet jeder der n\ Terme in der

Entwicklung der Déterminante A.

(1) Fur die genauere Symbolik verweisen wir auf [1].
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Beweis. Da die Behauptung fur n 1 trivial ist, dùrfen wir beim Beweis
annehmen, dass der Satz fur kleinere Werte von n bereits bewiesen ist.

Unbeschadet der Allgemeinheit kônnen wir annehmec, dass ati 0 ist. Ent-
wicklung der Déterminante nach der ersten Reihe ergibt

A anAii- a12Ai2 «inAln,

wobei das erste Glied rechts verschwindet. Nach Anwendung des Entwick-
lungssatzes bekommen wir

A -a12 X a2kaki • • • amlD{y) aln £ ankakl • • • amiD{7}.
y y

In dieser Darstellung ist jeder Term auf der rechten Seite nicht positiv,
wâhrend A selbst nicht negativ ist. Daher mûssen sowohl A, als auch die
einzelnen Terme rechts, verschwinden.

Es sei / die Lange des Zyklus y. Dann ist das algebraische Komplement von
D{y} eine koaxiale Unterdeterminante von A von der Ordnung L Im Falle / n,
ist D{y} 1 und daher muss der entsprechende Vorfaktor in der obigen Entwick-
lung verschwinden, da sonst A 0 unmôglich wâre. Im Falle l&lt;n ist das

erwâhnte Komplement eine koaxiale Unterdeterminante von A von einer
ordnung &lt;n, mit an auf der Hauptdiagonale. Der Satz IX darf also auf dièse

Unterdeterminante angewandt werden. Daraus schliesst man wieder, dass der
Vorfaktor von D{y} verschwindet. Damit ist der Satz IX vôllig bewiesen.

Im nâchsten Satz bedeutet E die Einheitsmatrix n-ter Ordnung, und

&apos;eigentliche M-matrix&apos; eine Matrix mit positiven Diagonalelementen, positiver
Déterminante, nicht negativen Hauptminoren, und lauter nicht positiven Elemen-
ten ausserhalb der Hauptdiagonale.

SATZ X. Es sei A eine réelle (n x n)-Matrix mit der Eigenschaft, dass sowohl
A&quot;&quot;1 als auch (A + AE)&quot;1 fur aile hinreichend grossen A lauter nicht négative
Elemente hat. Dann ist A eine eigentliche M-matrix.

Beweis. Nach dem Hilfssatz H von Herrn Ostrowski [2, s206], genûgt es zu

beweisen, dass aile Elemente von A ausserhalb der Hauptdiagonale ^0 sind. Das

ist der eigentliche Zweck der folgenden Ûberlegungen.
Es sei Ao mindestens so gross, dass |A + AjE| und aile koaxialen Unterdeter-

minanten von A + AE positiv fur A s* Ao sind. Um zu zeigen, z.B., dass ai2^0 ist,

beachte man, dass das algebraische Komplement von a2t in |A + AE| nicht negativ
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sein kann. Anwendung vom Entwicklungssatz auf die Matrix A + \E ergibt(2)

(A + ÀE)2fl -a12D{1&apos;2} + O(An~3)

wobei der erste Term redits O(Àn~2) ist. Dièse Gleichung liefert fur A -»oo

woraus ai2^0 folgt, weil D{12}&gt;0 fur A^A0 ist. Damit ist der Satz X auch
bewiesen.
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2 Dièse Formel folgt auch wenn man den Kofaktor (A + \E)hi nach der i-ten Reihe entwickelt.
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