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Bemerkungen iiber zwei Beweise von Herrn A. Ostrowski

BriaN B. MURPHY

In [1] wurde folgender Entwicklungssatz bewiesen.

SATZ. Es sei A =(a;) eine quadratische Matrix n-ter Ordnung. Dann ist A,
das algebraische Komplement von a;; in der Entwicklung von |A|, gleich

Y (—ap)(~aw) - - (~am;) D™

wobei y=(ijkl --- m) einen beliebigen Zyklus von der symmetrischen Gruppe
St...ny darstellt, und DY die koaxiale Unterdeterminante von A, welche die
Reihen und Kolonnen i, j, k, I,..., m nicht enthdlt, ist."

Dieser Satz erlaubt eine neue Formulierung vom Beweis von Satz IX und einen
neuen Beweis von Satz X von Herrn A. Ostrowski ([2], s204, 207). Dieses
geschieht in den folgenden Paragraphen.

SATZ IX. Sei A eine Determinante vom Typus

;. —Q12 *°° TU1n
—Q1 Qo ' —Q2y

A=
—Qup1 —Qp Qnn

wo sdamtliche a,, =0 und simtliche koaxiale Unterdeterminanten, ebenso wie die
Determinante A, selbst nicht negativ sind. Ist dann eines der Diagonalelemente
a,, =0, so verschwindet A und zugleich verschwindet jeder der n! Terme in der
Entwicklung der Determinante A.

O Fiir die genauere Symbolik verweisen wir auf [1].
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Beweis. Da die Behauptung fiir n=1 trivial ist, diirfen wir beim Beweis
annehmen, dass der Satz fiir kleinere Werte von n bereits bewiesen ist.

Unbeschadet der Allgemeinheit kénnen wir annehmec, dass a;; =0 ist. Ent-
wicklung der Determinante nach der ersten Reihe ergibt

A=apAn—apAn— " —aiAp

wobei das erste Glied rechts verschwindet. Nach Anwendung des Entwick-
lungssatzes bekommen wir

— {v} {v}
A=—a; Z Q240 * * * A1 D Ve -—amz QnicQlip * * * a1 DY,
Y Y

In dieser Darstellung ist jeder Term auf der rechten Seite nicht positiv,
wihrend A selbst nicht negativ ist. Daher miissen sowohl A, als auch die
einzelnen Terme rechts, verschwinden.

Es sei | die Linge des Zyklus y. Dann ist das algebraische Komplement von
D™ eine koaxiale Unterdeterminante von A von der Ordnung L Im Falle [=n,
ist D=1 und daher muss der entsprechende Vorfaktor in der obigen Entwick-
lung verschwinden, da sonst A =0 unmoglich wire. Im Falle I<n ist das
erwahnte Komplement eine koaxiale Unterdeterminante von A von einer ord-
nung <n, mit «;; auf der Hauptdiagonale. Der Satz IX darf also auf diese
Unterdeterminante angewandt werden. Daraus schliesst man wieder, dass der
Vorfaktor von D™ verschwindet. Damit ist der Satz IX vollig bewiesen.

Im niachsten Satz bedeutet E die Einheitsmatrix n-ter Ordnung, und
‘eigentliche M-matrix’ eine Matrix mit positiven Diagonalelementen, positiver
Determinante, nicht negativen Hauptminoren, und lauter nicht positiven Elemen-
ten ausserhalb der Hauptdiagonale.

SATZ X. Es sei A eine reelle (n X n)-Matrix mit der Eigenschaft, dass sowohl
A" als auch (A+AE)™ fiir alle hinreichend grossen A lauter nicht negative
Elemente hat. Dann ist A eine eigentliche M-matrix.

Beweis. Nach dem Hilfssatz H von Herrn Ostrowski [2, s206], geniigt es zu
beweisen, dass alle Elemente von A ausserhalb der Hauptdiagonale <O sind. Das
ist der eigentliche Zweck der folgenden Uberlegungen.

Es sei Ao mindestens so gross, dass |A +AE| und alle koaxialen Unterdeter-
minanten von A + AE positiv fiir A = A, sind. Um zu zeigen, z.B., dass a1, <0 ist,
beachte man, dass das algebraische Komplement von a3, in |A + AE| nicht negativ
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sein kann. Anwendung vom Entwicklungssatz auf die Matrix A + AE ergibt®
(A+AE); =—a;, D"+ 0("7?)

wobei der erste Term rechts O(A""?) ist. Diese Gleichung liefert fiir A — o
—a, D=0

woraus a;,<0 folgt, weil D" #>0 fiir A=A, ist. Damit ist der Satz X auch
bewiesen.

LITERATURVERZEICHNIS

[1] MurpHY, B.: Expansion of (n —1)-Rowed Subdeterminants. Math. Z. 147 (1976) 205.
[2] OsTtrOWSKI, A.: Determinanten mit iiberwiegender Hauptdiagonale und die absolute Konvergenz
von linearen Iterationsprozessen. Commentarii math. Helvet. 30 (1956) 175-210.

Corporate Research Unit

Mail Code 1804

Blue Cross Blue Shield of Michigan
600 East Lafayette

Detroit, Mich. 48226

US.A.

Eingegangen den 28. Mai 1976

2 Diese Formel folgt auch wenn man den Kofaktor (A +AE);; nach der i-ten Reihe entwickelt.
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