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Knots in the 4-sphere

C. McA. Gordon(1)

1. Introduction

For convenience we work in the PL category. A knot of Sn~x in Sn+1 is a

locally fiât submanifold of Sn+1 homeomorphic to Sn~\ The closure of the

complément of a regular neighbourhood of a knot is its exterior. Two knots are
équivalent if there is a homeomorphism of Sn+1 taking one to the other.
Equivalent knots therefore hâve homeomorphic exteriors. As far as the converse
is concernée!, it is known that for n ^ 3 there are at most two inequivalent knots
with a given exterior [6], [2], [10], [11], [15]. Recently, Cappell and Shaneson
hâve shown that for n 4, 5, inequivalent knots with homeomorphic exteriors do
exist [4]. Their examples are certain knots whose exteriors fibre over S1 with fibre
Tn-open dise, where Tn is the n-dimensional torus (compare [3]). Since this

approach uses the generalized Poincaré conjecture, however, in the case n 3 it
only yields knots in homotopy 4-spheres.

In the présent paper, we use twist-spun knots to prove

THEOREM 1.1. There exist inequivalent knots Ku K2,..., Kf, Kf,... of S2

in S4, such that X, and K? hâve homeomorphic exteriors (î 1, 2,...).

In the course of the proof, we show that removing a regular neighbourhood of
a twist-spun knot in S4 and sewing it back differently always gives S4 (Theorem
3.1). In particular, this answers a question of Zeeman [18, p. 494, problem 1], and

enables us to give some new counterexamples to the 4-dimensional Smith

conjecture [5], [9], [14].

2. Notation etc.

Bn, Dn will both dénote n-balls, with centre O, Sn the n-sphere, and Rn
Euclidean n-space.

(1)Supported by a Science Research Council Postdoctoral Research Fellowship
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586 C. McA. GORDON

We will use the notation K (Sn+1, S&quot;&quot;1) for a knot of S&quot;&quot;1 in Sn+\ S&quot;&quot;1 then
has a regular neighbourhood Sn~1xD2&lt;^Sn*1 (with S&quot;&quot;1 corresponding to
SnlxO), and X, the exterior of K, is Sn+1-Sn~1xintD2. In this way dX is

identified with Sn~lxS\
So let K (Sn+1, S&quot;&quot;1) hâve exterior X, and let (M, S&quot;&quot;1) be a knot of S&quot;&quot;1 in

an (n + l)-manifold M, whose exterior is homeomorphic to X. Then

(M, S&quot;&quot;1) (S&quot;&quot;1 x D2 UTX, S&quot;&quot;1 x O),

where y : Sn-1 x S1 -» S&quot;1&quot;1 x S1 is some &apos;gluing&apos; homeomorphism. Clearly
(M, S&quot;&quot;1) dépends (up to équivalence, i.e. homeomorphism of pairs) only on the

pseudo-isotopy class of 7.
Now it is known [6], [2], [10], [11], [15] that for n^3, two homeomorphisms

of Sn~1xS1 are pseudo-isotopic if and only if they are homotopic. The group of
pseudo-isotopy classes is thus isomorphic to Z2xZ2xZ2, where the first two
factors correspond to orientation-reversal of S*&quot;1 and S1 respectively, and the
third is generated by t, defined by

where p(6) is rotation of S&quot;&quot;1 about its polar Sn~3 through the angle 6.

Since generators of the first two factors extend to homeomorphisms of
(Sn~1xD2, S^xO), it follows that (M, Sn-1) is équivalent to either K or

K* (Sn&quot;x x D2 UTX, S&quot;&quot;1 x O).

Moreover, K and K* are équivalent if and only if there is a homeomorphism of X
which on dX restricts to er, where the pseudo-isotopy class of e belongs to the
first Z2xZ2.

We write X(K) for Sn~1xD2UTX; it is a homotopy (n-hl)-sphere.

The following convention will be useful in §3. Given je SL2(Z), we can

define a homeomorphism (orientation-preserving) of S1xS1 by

(6, &lt;t&gt;)

Regard the first S1 as dD2, and the second as dJ32. Then, for example,

homeomorphisms corresponding to matrices of the form I I extend to D x
\0 1/
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dB2 by defining

where (r, 0) dénotes polar co-ordinates in D2. Similarly matrices of the form

j define homeomorphisms of dD2xB2, those of the form f

homeomorphisms BD2xB2-^ D2xdB2, and so on. In §3 we shall frequently be
dealing with homeomorphisms of ExdD2xdB2, ExD2xdB2, etc., where E is
some space, and we shall say that such a homeomorphism corresponds to a matrix
A g SL2(Z) if it is of the form id x hA, where id dénotes the identity on E, and hA
is the appropriate extension (by polar co-ordinates) of the homeomorphism of
dD2xdB2 given by A.

3. Twist-spun Knots

If K is a knot of Sn~2 in Sn, and fc an integer, then k-twist-spinning [18]
produces a knot K(k) of S&quot;&quot;1 in Sn+1. In particular, K(o) is just the classical spin
of K [1].

Recalling from §2 the définition of X(K), the main resuit of this section is

THEOREM 3.1.(1) LetKbe a knotofS1 in S3, and letK(k) be the k-twist-spin of
K, where k is any integer. Then 2(K(k)) S4.

Remarks. (1) Zeeman was motivated in [18] by Mazur&apos;s candidate for a

counterexample to the 4-dimensional Poincaré conjecture [12], and in particular
showed that this candidate was S4 after ail. Now there is a choice of tubular
neighbourhood involved in Mazur&apos;s construction (see [12] and [18, p. 473]), and
Zeeman [18, Question 4, p. 493] raises the question of what happens if a différent
choice is made. Theorem 3.1 shows that the resuit is still S4.

(2) Theorem 3.1 will follow from Propositions 3.2 and 3.3, whose proofs are
valid in the smooth category as well as the PL, and apply explicitly (as this
involves no extra effort) to knots K of Sn~2 in Sn for ail n. It therefore follows
that in fact X(Kik)) is always diffeomorphic to Sn+1.

(3) Theorem 3.1 enables us to sharpen some of the results of [9] (and hence,
indirectly, [5]) on the 4-dimensional Smith conjecture. Shifting dimension by one
for consistency with the notation in [9], let K be a knot of Sn~3 in S*1&quot;1 and Kik)

in proof. P. Pao has since given an alternative proof of this resuit, based on an
examination of the natural S^action on X(K{k)) (to appear).
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its fc-twist-spin. Then the argument in [9, §4], with an appropriate modification of
[9, §4, Remark (2)], implies that K(k)* admits a strong Zm-action which embeds in
an S^action (see [9] for définitions) for ail m such that (m, fc) l. (This
observation, incidentally, gives a proof of [9, Theorem 3] which avoids spinning.)
Since we now know that X(k)* is a knot in Sn even when n 4, the restriction
n &gt; 5 in [9, Theorem 3] can be replaced by n ^4. In particular, we hâve examples
of knots in S4 which are the fixed-point sets of particularly nice transformations of
even period (see also [14] and [9, §3]).

(4) It is worth noting that the proof of Theorem 3.1 does not use Zeeman&apos;s

fibration theorem on twist-spun knots [18, Main Theorem] (although this will be
used crucially in §4).

We prove Theorem 3.1 by induction on fc:

PROPOSITION 3.2

Proof. Let K (SnSn~2) be a knot, n&gt;3, with tubular neighbourhood
Sn~2xD2^Sn. Write Sn~2 as the union of its two hémisphères E+UE_, iden-
tified along their common boundary d£±. Consider the bail-pair associated with K

(Bn, E+) (Sn, Sn&quot;2)- (int E_ x int D2, int E_ x O).

Then

d(Bn, E+) d(E-XD2, E-XO).

Given k e Z, let

f:d(E-XD2)xdB2 -&gt; a(E_ x D2)xdB2

be the restriction of the homeomorphism of E-XD2xdB2 corresponding (as in

(1
fc\

I. Note that / restricts to the identity on 3E±xOxdB2.

The k-twist-spin of K is then (see [18, p. 485]) defined by
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has tubular neighbourhood

N dE±xD2xB2UfE+xD2xaB2

where /&apos; f\dE±xD2xdB2. Clearly /&apos; extends to a homeomorphism e of E+x

(1
k\

Then idUe induces an explicit

homeomorphism from

SnlxD2 dE±xD2xB2UE+xD2xdB2

to N.
Let X be the exterior of K, so

and

dX=(E+UE-)xdD2.

Then the exterior of Kik\ which is Sn+1-intN, is given by

X(k) E_xaD2xfî2UgXxdB2

where g /| E_xdD2xaB2. Also

dXik) dN dE± x dD2 x B2 Ug&apos; E+ x ôD2 x dB2

where g&apos; g | d£± x aD2 x dB2. The restriction of id U e to dE± x dD2 x B2 U E+ x
dD2xdB2 defines the appropriate homeomorphism from Sn~xxdD2 to dX(k\

Now the homeomorphism r (see §2) of Sn~1xaD2 dE±x
dD2xB2UE+xdD2xdB2 may be taken to be ÀUi&gt;, where A, i&gt; both corr-

/l 0\
espond to the matrix I I. Hence

can be expressed as the union of four pièces

(AUB)UXUx&apos;(CUgD) (1)
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where

A=dE±xD2xB2y
B E+xD2xdB2,

,2

and

k&apos; (e\E+xdD2xdB2)v.

We now corne to the main step in the proof, which exploits the symmetry of
this situation, as follows. Rearranging the décomposition (1), let

P AUAC, and Q BUAD. (2)

First look at Q. Let

u:E+xdD2xB2-*E+xD2xdB2

be the homeomorphism given by 1, and let u&apos;= u | E+xdD2xdB2. Write

h for the composition AV. Then m&quot;1 U id induces a homeomorphism from Q to

E+xdD2xB2UhXxdB2

^ /l fc\/l 0\( 1 1\ /l k + l\
and h corresponds to the matnx ^ J^ 1^_1 oj==^o j J (M was

chosen so as to achieve this).
Now consider P. Let

w:dE±xD2xB2-»dE±xD2xB2

be the homeomorphisms given by 1 and 1 respectively. Let v&apos;

v\dE±xdD2xB2 and w&apos;= w |dE±xD2xaB2. Since i/Àw&apos; is just the identity,
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w&quot;1 U v induces a homeomorphism from P to

dEdtxD2xB2\JE-XD2xdB2.

Writing

and

C* E+xdD2xB2

(compare B, C above), we hâve thus established homeomorphisms

P AUB*, and Q C*UHD. (3)

Referring back to (1) and (2), it follows that X(K(k)) can be expressed as

(AUB*)LW(C*UhD) (4)

where /ll, jll&apos; are certain homeomorphisms,of BE±xdD2xB2 and E-XdD2xdB2
respectively. Following through the homeomorphisms we hâve applied to the

various pièces of (1), we see that jjl corresponds to J

/ 1 0\ J (1 k + l\
I I, and fx (as it must do for consistency) to the product I I

We now note that the décomposition (4) differs from (1) only in that E+ and

E- hâve been interchanged, À (corresponding to J) has been replaced by jli

(corresponding to I J), and, elsewhere, fc has been replaced by k -h 1. In the

définition of twist-spinning, however, we could equally well hâve used the

bail-pair

(Bn, £_) (Sn, Sn~2)- (int E+ xint D2, int E+ x O)

instead of (Bn,£+), since the two bail-pairs {E±xD2,E±xO)c:(Sn, Sn~2) are
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ambient isotopic. Hence (4) is also a décomposition of

where X(k+1) is the exterior of X(k+1). But t and r&quot;1 are isotopic (since 7Ti(SOn)

Z2), and hence

as required.
To complète the proof of Theorem 3.1, it remains only to show that the

induction starts. One way of doing this would be to start at fc 1, using Zeeman&apos;s

resuit [18, Corollary 2] that K(1) is always the unknot. Zeeman&apos;s theorem can be

avoided, however, by starting at k 0. For K(o) is just the spin of K, and

therefore by [6, §22] (see also [3]), its exterior X(0) admits a homeomorphism
which restricts to r on dX{0\ Hence 2(K(0)) S4 (indeed K(o)* is équivalent to
X(o)). Since a proof can easily be given in terms of our présent notation, we
include one for completeness.

PROPOSITION 3.3 (Gluck), r : dXm -? ôX(0) extends to a homeomorphism of
X(o).

Proof. (Compare [3, Theorem 8].) Using the notation introduced in the proof
of Proposition 3.2,

X(0) E-XdD2xB2UXxdB2

(identified along E-XdD2xdB2), and t is given by À U v. Since À extends in the
obvious way to E-XdD2xB2, it remains only to extend v compatibly to XxdB2.
But projection Sn~2xdD2^&gt; dD2 extends to p:X-*dD2 (see [18, Lemma 2]; if
n 3, then the trivialization of the tubular neighbourhood Sn~2xD2 has to be
chosen correctly). The homeomorphism of XxdB2 defined by

is then an extension of v, which agrées with the extension of À on E- x BD2 x dB2.

4. The Main Theorem

Let M be a (closed) n-manifold (n^3), J3nc M an n-ball with centre O, and

let Mo M-int Bn. Consider MxS1, taking (0,0) as base-point, and identify M,



Knots in the 4-sphere 593

S1 with MxO, OxS1 respectively. Let e, r be as in §2, and write ë, f for the
homeomorphisms of BnxS1 which naturally extend e, t.

In the following proposition, /# dénotes the homomorphism induced on
7Ti(Mx S1) tti(M) x ttiCS1). The basic philosophy behind its proof is the same as

that of [4].

PROPOSITION 4.1. If the universal cover of M is JRn, then there is no map
f:MxS1-»MxS1 such that

(i) f(BnxS1)czBnxS1 and/(Mox S1) c Mox S1,

(ii) /iB^S^êf
(iii) /* is an isomorphism,
(iv)

Proof. By (ii), (iii) and (iv), /# induces isomorphisms /# | 7Ti(S1):7Ti(S1)^&gt;

TTiiS1) and /# | tti(M) : tti(M)—? 7Ti(M). Hence pulling back, via /, the cover
RnxS1 of MxS1 associated with the subgroup tt^S1), we get a proper lift
f:RnxS1-+RnxS1 of /, such that, if B+cRn is an n-ball covering Bn,

Let p MxSl-^&gt;M be projection, and let g:MxS1-+MxS1 be fixid,
where h :M-» M is defined by h(x) pf(x, 0). Then g similarly lifts to a proper
map g h x id : Rn x S1 -+ Rn x S\ such that g | B!^x S1 is just ê.

By composing / (if necessary) with id x (orientation-reversal of S1), we may
assume that ë involves at most an orientation-reversal of Bn. Then /# | tti(S1) is

the identity, and so /*= g^TTitMxS1)-» ir^MxS1). Since MxS1 is a K(ir, 1),

a standard obstruction theory argument shows that /—grel(0,0). Hence f^g,
where ^ dénotes proper homotopy. Note also that (by (i)) / and g take
(Rn - int B+) x S1 to itself.

Now any proper map a : Rn x S1 -&gt; Rn x S1 induces a map ac : Sn x S1 -&gt; Sn x
S1 by taking the one-point compactification at each level of the map Rn x S1 -*&gt;

RnxS1 givenby

(x,0)i-+(p&apos;a(x90)90),

where p&apos; is projection Rn x S1 -» Rn. Moreover a « |3 implies ac » ^c.

Doing this with / and g, we get f\ gc:SnxS1^SnxS1 such that if we write
Sn as the union of its two hémisphères B^UB&quot;, then fc and gc take BlxS1 to

Bi x S1, fc | B+ x S1 êf, and gc | B+ x S1 ë. By coning at each level Bl x S, it is

easy to define homotopies (relB+xS1) which show that /c=^eV&apos; (where e&apos;, t&apos;

correspond to e, t, but one dimension higher), whefeas gc^e&apos;. This contradicts
/=S g, and so complètes the proof.
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PROPOSITION 4.2. Let K be a knot of Sn&apos;2 in Sn, and k an odd integer. If
the universal cover of the k-fold branched cyclic cover of K is Rn, then the knots
Kik\ K(k)* are inequivalent.

Proof. Recalling §2, the knots Kik\ K(k)* will be équivalent if and only if
some £T:dX(k)-*BX(k) extends to a homeomorphism &lt;t&gt; : X(k) -? X(k\ If
pm:X{k)-*X{k) is the m-fold cyclic cover of Xik\ then any map X(k)-&gt; X(k) lifts
to a map X^-^X^. Hence if Kik) and K(k)* are équivalent, we hâve a

homeomorphism &lt;j&gt;m of X(r^) (the lift of &lt;£) such that, identifying dX^ with
Sn&quot;1 x S1 in the obvious way, &lt;t&gt;m | dX^ erm.

Let M be the k-fold branched cyclic cover of K, Bn&lt;^M an equivariant
n-bail, Mo M—int B n, and h : M0 -» Mo the restriction of the canonical covering
transformation of M. Then the Main Theorem of [18] implies that X(k) Mox I/h,
that is, Moxj with Mox0 and Moxl identified via h. Since hk id, there is

therefore a homeomorphism ^:X(kk)-» MqXS1. Taking m k in the previous
paragraph then gives a homeomorphism, ^k^1, of MoXS1, which restricts to
ilft(eTk)ilff~1 on dMoXS1, where &lt;/r&apos;= t/r | dX(kk). If k is odd, ^&apos;(e^W1 is pseudo-
isotopic to er (see §2). Hence we get a homeomorphism f0 of MoxSl such that
fo\dMoxS1 eT. Extending f0 to MxS1 finally gives a map / which clearly
satisfies ail the hypothèses of Proposition 4.1, except possibly (iv). With the
natural choice for ^, however, (pk^&quot;1)* takes 7Ti(M0)&lt;= tt^MoXS1) isomorphi-
cally onto the (fibre) subgroup tti(M0) c &lt;n-1(X(k)), which (since X(k) is a knot
exterior) is precisely the commutator subgroup of 7Ti(X(k)). Since &lt;f&gt;k is the lift of a

map X(k)-&gt; X(k), it follows that (Hk^hi^iiMo)) cz tti(M0), and so f^(

Since the universal cover of M is Rn by hypothesis, this contradicts Proposition

4.1. Hence K(k) and K(k)* are inequivalent.

Proof of Theorem 1.1. After Theorem 3.1 and Proposition 4.2, it suffices to
find infinitely many knots of the form Kik\ with k odd and K a knot of S1 in S3

whose k-fold branched cyclic cover has universal cover R3.

An easy class of knots to handle are the twist-spun torus knots. So let KPtq be
the torus knot of type p, q, with p, q &gt; 1 and coprime, and let Mf^ be its k-fold
branched cyclic cover, fc&gt;l. Then M^q is a Seifert fibre space, whose invariants
can be computed, using [13, §9]. In particular, it may be readily shown that the
universal cover of Mik^ is R3 except in the cases

(k,{p,q}) (2,{2,q}), (2, {3,4}), (2, {3,5}),
(3, {2,3}), (3, {2,5}), (4, {2,3}),
and (5, {2,3}).

(Thèse hâve S3 as universal cover.)
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Thus there are infinitely many suitable K^, distinguished (for example) by
their commutator subgroups 7ri(Mp^).

Remarks. (1) One can use other knots besides the torus knots. It can be
shown, for example, that the k-fold branched cyclic cover (k &gt; 1) of any doubled
(non-trivial) knot [17] is always irreducible and sufficiently large (no doubt ad hoc

arguments could be found to establish this for other classes of knots), and hence

by [16, Theorem 8.1] has universal cover R3. The fc-twist-spins of thèse (with k
odd and &gt;1) will therefore also do.

(2) We can summarize our présent knowledge about the status of the twist-
spun torus knots K(pkq, with regard to the property of being determined by their
exterior, as follows:

Xp^ is determined by its exterior if k 0 ([6], [3], Proposition 3.3), k 1 ([18,
Corollary 2]), or k 2 and p(say) 2 (for Mf?q is the lens space L(q, 1), which can
be spun in the sensé of [6, §17]).

K(p^ is not determined by its exterior if k is odd and &gt;1, and

(k, {p, q}) * (3, {2, 3}), (3, {2, 5}), or (5, {2, 3}).
We do not know what happens in the other cases. We venture to suggest,

however, that a refinement of the présent argument, together with a good
understanding of the action of the fundamental group of Mp^ on its universal

cover, might enable one to prove that Kp^ is also not determined by its exterior if
k is even (provided it is not one of the exceptions listed in the proof of Theorem
1.1 above).(1)

The remaining cases Kgi, K% K$, K$, K?j, K(2% pose problems of a

différent kind. (We might mention in passing that the last three form a rather
interesting triple. Their compléments fibre over S1 with fibre punctured
dodecadedral space [18], each has group GxZ, where G is the binary
dodecahedral group of order 120 [18], [7], but no two compléments are homotopy
équivalent [8].) Since Kffl has a certain historical significance [18], we recall

specifically:

QUESTION (Zeeman [18, p. 494, problem 2]). Is the 5-twist-spun trefoil
determined by its exteriorl

(3) The examples of Cappell and Shaneson [4] hâve exteriors which fibre over
S1 with fibre T£= n-torus-open dise, and their proof uses spécial properties of
this fibre. The proofs of Propositions 4.1 and 4.2, however, show that the
situation is simplified if the bundles hâve finite (odd order) bundle group. (It is not

1 Added in proof. On the contrary, R. A. Litherland has shown (unpublished) that for any
K (Sn,Sn~2), nâ:3, K(2) and Ki2)* are always équivalent.
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hard to show that this can never be achieved with Tq as fibre, if n ^ 3.) In view of
Proposition 4.2, and the apparent difficulty in showing that suitable examples as in
[4] exist for ail n, we therefore conclude with:

QUESTION. Can a branched cyclic cover of a knot of Sn~2 in Sn ever be a
K(ir,l)9 f/n&gt;4?
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