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Knots in the 4-sphere

C. McA. Gorpon?

1. Introduction

For convenience we work in the PL category. A knot of $" ' in S"*' is a
locally flat submanifold of S"*' homeomorphic to S"~'. The closure of the
complement of a regular neighbourhood of a knot is its exterior. Two knots are
equivalent if there is a homeomorphism of S"*' taking one to the other.
Equivalent knots therefore have homeomorphic exteriors. As far as the converse
is concerned, it is known that for n =3 there are at most two inequivalent knots
with a given exterior [6], [2], [10], [11], [15]. Recently, Cappell and Shaneson
have shown that for n =4, 5, inequivalent knots with homeomorphic exteriors do
exist [4]. Their examples are certain knots whose exteriors fibre over S' with fibre
T"-open disc, where T" is the n-dimensional torus (compare [3]). Since this
approach uses the generalized Poincaré conjecture, however, in the case n =3 it
only yields knots in homotopy 4-spheres.

In the present paper, we use twist-spun knots to prove

THEOREM 1.1. There exist inequivalent knots K1, K, ..., KT, K3,... of §?
in S*, such that K; and K¥ have homeomorphic exteriors (i=1,2,...).

In the course of the proof, we show that removing a regular neighbourhood of
a twist-spun knot in S* and sewing it back differently always gives S* (Theorem
3.1). In particular, this answers a question of Zeeman [18, p. 494, problem 1], and
enables us to give some new counterexamples to the 4-dimensional Smith
conjecture [5], [9], [14].

2. Notation etc.

B", D" will both denote n-balls, with centre O, S" the n-sphere, and R"
Euclidean n-space.

) Supported by a Science Research Council Postdoctoral Research Fellowship.
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586 C. McA. GORDON

We will use the notation K =(S™*', ") for a knot of $” ' in $"*'. S""! then
has a regular neighbourhood S" 'xD?c §"*' (with S"™' corresponding to
S""!x 0), and X, the exterior of K, is $"*'—S" !xint D2 In this way X is
identified with S""'x S'.

So let K=(S"*', $"™1) have exterior X, and let (M, $"') be a knot of "' in
an (n+ 1)-manifold M, whose exterior is homeomorphic to X. Then

(M, S )=(S""'xD*U,X, S""'x 0),

where y:S"7'xS8'—S$"'xS' is some ‘gluing’ homeomorphism. Clearly
(M, S™") depends (up to equivalence, i.e. homeomorphism of pairs) only on the
pseudo-isotopy class of .

Now it is known [6], [2], [10], [11], [15] that for n =3, two homeomorphisms
of " 'x S' are pseudo-isotopic if and only if they are homotopic. The group of
pseudo-isotopy classes is thus isomorphic to Z,XZ,XZ,, where the first two
factors correspond to orientation-reversal of S"”' and S' respectively, and the
third is generated by 7, defined by

7(x, 0) =(p(6)(x), 9),

where p(0) is rotation of S”~' about its polar $"~> through the angle 6.
Since generators of the first two factors extend to homeomorphisms of
(S""'x D? S"'x 0), it follows that (M, S"™') is equivalent to either K or

K*=(S""'xD?U.,X, $"'x 0).

Moreover, K and K* are equivalent if and only if there is a homeomorphism of X
which on aX restricts to e, where the pseudo-isotopy class of € belongs to the
first Z, X Z,.

We write 3(K) for $"7'x D*>U,X; it is a homotopy (n + 1)-sphere.

b
The following convention will be useful in §3. Given (j d) € SL,(Z), we can

define a homeomorphism (orientation-preserving) of S'x S' by
(0, ¢)—>(ab + bo, c0 +do).

Regard the first S' as aD? and the second as 9B> Then, for example,

1 b
homeomorphisms corresponding to matrices of the form ( 0 1) extend to D*X
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dB? by defining
((r, 8), §)—>((r, 6+ bo), ¢),

where (r, ) denotes polar co-ordinates in D?. Similarly matrices of the form

c 1 —1 0
homeomorphisms D*x B> — D?x3B?, and so on. In §3 we shall frequently be
dealing with homeomorphisms of ExdD?xdB?, E x D>XdB?, etc., where E is
some space, and we shall say that such a homeomorphism corresponds to a matrix
A € SL,(Z) if it is of the form id X h,, where id denotes the identity on E, and hu

is the appropriate extension (by polar co-ordinates) of the homeomorphism of
dD?*x 3B? given by A.

1 0
( ) define homeomorphisms of 9D>Xx B?, those of the form ( a 1)

3. Twist-spun Knots

If K is a knot of $"7? in S", and k an integer, then k-twist-spinning [18]
produces a knot K of $"7! in $"*'. In particular, K© is just the classical spin
of K [1].

Recalling from §2 the definition of 3(K), the main result of this section is

THEOREM 3.1.° Let K be a knot of S* in S, and let K be the k-twist-spin of
K, where k is any integer. Then 3(K®)=S§*.

Remarks. (1) Zeeman was motivated in [18] by Mazur’s candidate for a
counterexample to the 4-dimensional Poincaré conjecture [12], and in particular
showed that this candidate was S* after all. Now there is a choice of tubular
neighbourhood involved in Mazur’s construction (see [12] and [18, p. 473]), and
Zeeman [18, Question 4, p. 493] raises the question of what happens if a different
choice is made. Theorem 3.1 shows that the result is still S*.

(2) Theorem 3.1 will follow from Propositions 3.2 and 3.3, whose proofs are
valid in the smooth category as well as the PL, and apply explicitly (as this
involves no extra effort) to knots K of S" 2 in S™ for all n. It therefore follows
that in fact 3(K™) is always diffeomorphic to $"*".

(3) Theorem 3.1 enables us to sharpen some of the results of [9] (and hence,
indirectly, [5]) on the 4-dimensional Smith conjecture. Shifting dimension by one
for consistency with the notation in [9], let K be a knot of $" in $"7* and K

! Added in proof. P. Pao has since given an alternative proof of this result, based on an
examination of the natural S*-action on 3(K™) (to appear).
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its k-twist-spin. Then the argument in [9, §4], with an appropriate modification of
[9, §4, Remark (2)], implies that K** admits a strong Z,,-action which embeds in
an S'-action (see [9] for definitions) for all m such that (m, k)=1. (This
observation, incidentally, gives a proof of [9, Theorem 3] which avoids spinning.)
Since we now know that K®* is a knot in S” even when n =4, the restriction
n=5 in[9, Theorem 3] can be replaced by n =4. In particular, we have examples
of knots in $* which are the fixed-point sets of particularly nice transformations of
even period (see also [14] and [9, §3]).

(4) It is worth noting that the proof of Theorem 3.1 does not use Zeeman’s
fibration theorem on twist-spun knots [18, Main Theorem] (although this will be
used crucially in §4).

We prove Theorem 3.1 by induction on k:

PROPOSITION 3.2 3(K®)=3(K**").

Proof. Let K=(S"S""?) be a knot, n=3, with tubular neighbourhood
S"2x D*c S™. Write S"? as the union of its two hemispheres E. U E_, iden-
tified along their common boundary dE.. Consider the ball-pair associated with K

(B", E,)=(S", S" %) —(int E_xint D?,int E_X O).
Then

3(B", E.)=98(E-x D? E_xO).

Given ke€Z, let

f:3(E-x D*)x3B*— 3(E_x D*)x B>

be the restriction of the homeomorphism of E_Xx D?xdB? corresponding (as in
§2) to the matrix ((1) ’;) Note that f restricts to the identity on dE. X O X9B?.
The k-twist-spin of K is then (see [18, p. 485]) defined by

K(k) — (Sn+l, Sn—l) - a(Bn’ E+) X B2 Uf(Bn, E+) xaB2.

S" '=3E, x B2ZUE, XdB?
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has tubular neighbourhood
N=08E.xD?*xB*U;E, x D*x9B?>

where f'=f|3E.x D*>xaB>. Clearly f' extends to a homeomorphism e of E, X

1 k
D?x9B?, namely that corresponding to ( 0 1). Then id U e induces an explicit

homeomorphisrh from
S" 'xD*=9E.x D*XB*UE, x D*x 3 B>

to N.
Let X be the exterior of K, so

X=S8"-S"?xint D>= B" - E, Xint D?,
and
8X =(E.UE_)xaD>.
Then the exterior of K™, which is $"*'—int N, is given by
X*'=E_x38D?*xB*U,X X3B>
where g=f| E_xaD*XaB>. Also
30X =9N=9E.xoD*>x B*U,E,.xdD**xdB*
where g'= g |dE.Xx3dD?x3B>. The restriction of idUe to dE.X3dD*X B*U E, X
dD?*x 3B? defines the appropriate homeomorphism from $" ' xaD? to aX™.

Now the homeomorphism + (see §2) of S 'x9D*=9E. X
dD*x BZUE, x3dD*x8B? may be taken to be AUw, where A, v both corr-

1 0
espond to the matrix ( 1). Hence

1
3(K¥)=8s""xD*uU,Xx®
can be expressed as the union of four pieces

(AUB)U,un(CUD) (1)
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where

A =9E.xD?*xB?,
B=E,xD?*x93B?,
C=E_x3D?*xB?,
D= Xxa3B?,

and
A =(e| E+x3aD*xaB?v.

We now come to the main step in the proof, which exploits the symmetry of
this situation, as follows. Rearranging the decomposition (1), let

P=AU,C, and Q=BU,'D. (2)
First look at Q. Let

u:E+><a_D2sz—->E+><D2><aBz

1 1
be the homeomorphism given by (_ ] O)’ and let u'=u | E,x3dD?xdB?. Write

h for the composition A'u’. Then u~" U id induces a homeomorphism from Q to

E.x3D*x B*>U, X xdB?

. (1 kY1 0\ 1 1\ (1 k+1
and h corresponds to the matrix (0 1)(1 1)(_1 0)—(0 1 ) (u was

chosen so as to achieve this).
Now consider P. Let

v:E_X3dD*xB*— E_x D*x4B?
w:9dE. X D?*x B®>— 9E.x D*x B?

- 1
be the homeomorphisms given by (1 (1)) and (_(1) O) respectively. Let v'=

v|dE.XxaD*x B? and w'=w |dE.xD*xaB>. Since v'Aw’ is just the identity,
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w™'Uv induces a homeomorphism from P to
dE.xD*x B*UE_Xx D*x B>,
Writing
B*=E_x D*x9B>
and
C*=E,xyD?*x B?
(compare B, C above), we have thus established homeomorphisms
P=AUB* and Q=C*uU,D. 3)
Referring back to (1) and (2), it follows that 3(K™) can be expressed as
(AUB*U, . (C*U,D) (4)

where u, p' are certain homeomorphisms.of dE.X38D?x B? and E_X3D?x B>
respectively. Following through the homeomorphisms we have applied to the

1 1\ 0 1
various pieces of (1), we see that p corresponds to (__1 0) (_1 0)=

. 1 k+
(_i (1)), and u' (as it must do for consistency) to the product (0 1 1)

(1 9)
-1 1)
We now note that the decomposition (4) differs from (1) only in that E. and

10
E_have been interchanged, A (corresponding to ( 1 1)) has been replaced by u

(corresponding to (_i (1))), and, elsewhere, k has been replaced by k +1. In the

definition of twist-spinning, however, we could equally well have used the
ball-pair

(B", E_)=(S", S"?)—(int E, Xint D?,int E, X O)

instead of (B", E.), since the two ball-pairs (E+xD?* E.X0O)<(S", S"?) are
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ambient isotopic. Hence (4) is also a decomposition of

S"'xD*U,- XV

where X**? is the exterior of K**. But 7 and ™! are isotopic (since 7,(SO,) =
Z,), and hence

(k) ~ @n—1 2 (k+1) _ g (pr(k+1)
S(K¥)=8"""'xD*U,X (K™

as required.

To complete the proof of Theorem 3.1, it remains only to show that the
induction starts. One way of doing this would be to start at k =1, using Zeeman’s
result [18, Corollary 2] that KV is always the unknot. Zeeman’s theorem can be
avoided, however, by starting at k=0. For K© is just the spin of K, and
therefore by [6, §22] (see also [3]), its exterior X© admits a homeomorphism
which restricts to  on 3X”. Hence 3(K©@)=S* (indeed K®* is equivalent to
K®). Since.a proof can easily be given in terms of our present notation, we
include one for completeness.

PROPOSITION 3.3 (Gluck). 7:9X¥— X extends to a homeomorphism of
X,

Proof. (Compare [3, Theorem 8].) Using the notation introduced in the proof
of Proposition 3.2,

XP=FE_ x9D?>xB?*U X Xx94B?

(identified along E_xaD?*Xx9B?), and  is given by A U v. Since A extends in the
obvious way to E_xdD?x B?, it remains only to extend v compatibly to X x dB>.
But projection $">xdD?*— dD? extends to p: X — dD? (see [18, Lemma 2]; if
n=3, then the trivialization of the tubular neighbourhood $" 72X D? has to be
chosen correctly). The homeomorphism of X X9B? defined by

(x, )= (x, p(x)+ &)

is then an extension of v, which agrees with the extension of A on E_ X oD*x B>

4. The Main Theorem

Let M be a (closed) n-manifold (n=3), B" <« M an n-ball with centre O, and
let My =M —int B". Consider M X §*, taking (O, 0) as base-point, and identify M,
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S' with Mx0, OxS! respectively. Let &, 7 be as in §2, and write &, 7 for the
homeomorphisms of B" x S' which naturally extend ¢, .

In the following proposition, fyx denotes the homomorphism induced on
w1 (M x §') = (M) X 7,(S"). The basic philosophy behind its proof is the same as
that of [4].

PROPOSITION 4.1. If the universal cover of M is R", then there is no map
f:MxS8'—> MxS" such that

(i) f(B"xSY<B"XxS' and f(MyxS")c Myx S?,
(i) f|B"xS'=é&F
(iii) fx is an isomorphism,
(iv) fa(m(M)) < m(M).

Proof. By (ii), (iii) and (iv), f« induces isomorphisms fx|m(S"):m(S")—
m(S) and fy|m(M): 7(M)— m(M). Hence pulling back, via f, the cover
R"xS' of MxS' associated with the subgroup ,(S'), we get a proper lift
f:R"xS'— R"xS' of f, such that, if B R" is an n-ball covering B",
fIBixS'=¢&x.

Let p=MxS'—> M be projection, and let g:MxS'—> MxS' be hXid,
where h: M — M is defined by h(x)= pf(x, 0). Then g similarly lifts to a proper
map §=hXid:R"xS'— R"xS", such that g | BL.xS" is just &.

By composing f (if necessary) with id X (orientation-reversal of S'), we may
assume that £ involves at most an orientation-reversal of B". Then fx | 7,(S") is
the identity, and so fx= gx: m (M X S")— 7 (M xS"). Since Mx S is a K(, 1),
a standard obstruction theory argument shows that f=grel (O, 0). Hence f< g,
where £ denotes proper homotopy. Note also that (by (i)) f and § take
(R"—int B})x S to itself.

Now any proper map a:R"XS'— R"x S' induces a map a®:S" x §'— S" x
S' by taking the one-point compactification at each level of the map R" xS —
R"x S' given by

(x, 6) = (p'a(x, 6), 6),

where p’ is projection R" xS’ — R". Moreover a £ B implies a°= B°.

Doing this with f and §, we get f¢, §°:8"xS"— 8" x S' such that if we write
S™ as the union of its two hemispheres B U B", then f° and g° take B1x S' to
B1x S, f°| B1xS'=£7 and g° | B1 X S" = &. By coning at each level B2 X §, it is
easy to define homotopies (rel B:x S*) which show that f°=g¢'r’ (where &', 7'
correspond to &, 7, but one dimension higher), wheteas §°=¢’. This contradicts
f£ & and so completes the proof.
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PROPOSITION 4.2. Let K be a knot of S"7% in S", and k an odd integer. If
the universal cover of the k-fold branched cyclic cover of K is R", then the knots
K®, K®* are inequivalent.

Proof. Recalling §2, the knots K, K™* will be equivalent if and only if
some er:9X® —9X"* extends to a homeomorphism ¢:X® —» X% If
P X5 — X is the m-fold cyclic cover of X, then any map X® — X® lifts
to a map X% — X%. Hence if K* and K®* are equivalent, we have a
homeomorphism ¢,, of X\ (the lift of ¢) such that, identifying aX'% with
S""'x S in the obvious way, ¢, | IX%¥ =er™

Let M be the k-fold branched cyclic cover of K, B"< M an equivariant
n-ball, Mo= M —int B", and h: My, — M, the restriction of the canonical covering
transformation of M. Then the Main Theorem of [18] implies that X’ = M, X I/ h,
that is, MoXI with Mox0 and MyX1 identified via h. Since h*=id, there is
therefore a homeomorphism ¢ : X{’ — Myx S'. Taking m =k in the previous
paragraph then gives a homeomorphism, Y@y, of MyX S*, which restricts to
Y'(er™)¢'™" on M, X S', where ¢'= ¢ |3X{. If k is odd, ¢'(er*)¢'" is pseudo-
isotopic to e (see §2). Hence we get a homeomorphism f, of Myx S’ such that
fo|dMox S' = e7. Extending f, to M x S' finally gives a map f which clearly
satisfies all the hypotheses of Proposition 4.1, except possibly (iv). With the
natural choice for ¢, however, (py ™ ) takes i (Mo)< 71 (MoX S') isomorphi-
cally onto the (fibre) subgroup m(Mo)< 7 (X®), which (since X*® is a knot
exterior) is precisely the commutator subgroup of (X®). Since ¢ is the lift of a
map X — X, it follows that (Ydity ™ a(m1(Mo)) < m1(Mo), and so fx(m(M)) <
™ 1(M)

Since the universal cover of M is R" by hypothesis, this contradicts Proposi-
tion 4.1. Hence K® and K®* are inequivalent.

Proof of Theorem 1.1. After Theorem 3.1 and Proposition 4.2, it suffices to
find infinitely many knots of the form K®, with k odd and K a knot of S' in §>
whose k-fold branched cyclic cover has universal cover R>.

An easy class of knots to handle are the twist-spun torus knots. So let K, be
the torus knot of type p, g, with p, ¢>1 and coprime, and let M) be its k-fold
branched cyclic cover, k>1. Then M{) is a Seifert fibre space, whose invariants
can be computed, using [13, §9]. In particular, it may be readily shown that the
universal cover of MY, is R> except in the cases

(k,{p, a)=(2,{2,q}), (2,{3,4}), (2,{3,5)}),
(3,{2,3), (B,{2,5h, 4,{2,3}),
and (5, {2,3}).

(These have S> as universal cover.)
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Thus there are infinitely many suitable K\, distinguished (for example) by
their commutator subgroups ;(M.).

Remarks. (1) One can use other knots besides the torus knots. It can be
shown, for example, that the k-fold branched cyclic cover (k > 1) of any doubled
(non-trivial) knot [17] is always irreducible and sufficiently large (no doubt ad hoc
arguments could be found to establish this for other classes of knots), and hence
by [16, Theorem 8.1] has universal cover R>. The k-twist-spins of these (with k
odd and >1) will therefore also do.

(2) We can summarize our present knowledge about the status of the twist-
spun torus knots K, with regard to the property of being determined by their
exterior, as follows:

K is determined by its exterior if k =0 ([6], [3], Proposition 3.3), k =1 ([18,
Corollary 2]), or k =2 and p(say) =2 (for MY, is the lens space L(q, 1), which can
be spun in the sense of [6, §17]).

K$ is not determined by its exterior if k is odd and >1, and
(k, {p, q}) # (3,12, 3]), (3,{2, 5D, or (5,12, 3.

We do not know what happens in the other cases. We venture to suggest,
however, that a refinement of the present argument, together with a good
understanding of the action of the fundamental group of MY on its universal
cover, might enable one to prove that K is also not determined by its exterior if
k is even (provided it is not one of the exceptions listed in the proof of Theorem
1.1 above). !

The remaining cases K&, K$3, K53, K&, K$), K pose problems of a
different kind. (We might mention in passing that the last three form a rather
interesting triple. Their complements fibre over S' with fibre punctured
dodecadedral space [18], each has group GXZ, where G is the binary
dodecahedral group of order 120 [18], [7], but no two complements are homotopy
equivalent [8].) Since K% has a certain historical significance [18], we recall
specifically:

QUESTION (Zeeman [18, p. 494, problem 2]). Is the S-twist-spun trefoil
determined by its exterior?

(3) The examples of Cappell and Shaneson [4] have exteriors which fibre over
S' with fibre Tj= n-torus-open disc, and their proof uses special properties of
this fibre. The proofs of Propositions 4.1 and 4.2, however, show that the
situation is simplified if the bundles have finite (odd order) bundle group. (It is not

! Added in proof. On the contrary, R. A. Litherland has shown (unpublished) that for any
K=(S",8"2), n=3, K? and K®* are always equivalent.
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hard to show that this can never be achieved with T as fibre, if n=3.) In view of
Proposition 4.2, and the apparent difficulty in showing that suitable examples as in
[4] exist for all n, we therefore conclude with:

QUESTION. Can a branched cyclic cover of a knot of "™ in S" ever be a
K(m, 1), if n=4?
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