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Polynomial Growth in Holonomy Groups of Foliations

J. F. PLANTE and W. P. THURSTON

Introduction

A notion of growth in finitely generated groups has been introduced by Milnor
[8]. One type of growth considered there is called polynomial growth and it has
been conjectured that a finitely generated group has polynomial growth if, and
only if, it has a nilpotent subgroup of finite index. That groups which have a
nilpotent subgroup of finite index have polynomial growth has been shown by
Wolf [22] (see also Bass [1]). So far, the converse has been proved for solvable
groups (Milnor-Wolf [9, 22]) and for linear groups (Tits [21]). In the present note
we show that the conjecture is true for finitely generated groups of differentiable
germs. There are also related results about groups of homeomorphisms which
may be of independent interest. Our interest in groups of germs was motivated by
the study of holonomy groups of foliations and we give some applications in that
direction. It turns out, for example, that holonomy groups of codimension one,
transversely oriented foliations of class C* which have polynomial growth, must
actually be abelian. These results are applied in the last section to generalize a
result of Haefliger concerning analytic foliations of codimension one.

1. Polynomial Growth

This section reviews the notion of polynomial growth in discrete groups
introduced by Milnor [8]. For further background on this subject the reader is
also referred to [1], [9], and [22]. Since it will be necessary to allow for the
possibility of groups which are not finitely generated (in passing to subgroups),
our definition will be somewhat more general than that in [8].

Assume that G is a (discrete) group with metric d: G X G — [0, ©) which is
invariant under the action of G by left translation. The growth function of the
pair (G, d) is defined as follows: If t >0, y(t) is defined to be the cardinality of the
set {ge G| d(e, g)<t}, where e denotes the identity element of G. If y(¢) is finite
for every t we call y:R*— R™ the growth function of (G, d).

567



568 J. F. PLANTE AND W. P. THURSTON

DEFINITION. (G, d) has polynomial growth of degree k if there is a polyno-
mial p(x) of degree k such that y(t)<p(¢) for every t>0. For convenience we
extend the notion of polynomial to permit terms of the form ax’, where r=0 need
not be an integer.

Note that a group having polynomial growth must be countable. It is also clear
from this definition that every subgroup of a group with polynomial growth must
have polynomial growth of the same (and possibly, lower) degree.

Suppose G is generated by a set S. Let n,;: S — R™ be any function such that
for each reR", n7'(0, r] is finite. Now for ge G we define a function n(g) as the
minimum of Z:=1 ni(s;) where sy, 55, ..., s is a sequence of generators such that

i—1 57" =g It is clear that n(gh)<n(g)+n(h); hence the formula

d(g, h)=n(g™'h)

defines a metric on G. With such a metric, y(¢t) is finite for each t.

If S$= G, every left-invariant metric is obtained by this construction. If S is
finite, then G has polynomial growth for some metric iff it has polynomial growth
for the metric defined above with n;=1. If S is infinite, on the other hand, it is
obvious we can prescribe n; so that y(t) exceeds any given function, for all ¢t> 1.
The interest, however, is in finding n, such that the growth rate of vy is low. In this
regard we have

1.1. PROPOSITION. For every ¢ >0, a countable group G has a metric with
polynomial growth of degree d + ¢ if every finitely generated subgroup has a metric
with polynomial growth of degree d.

Proof. Let S={sy, s, ...} be a generating set; let G; be the subgroup gener-
ated by s, s,,...,s. Inductively, we will construct a function n; so that the
growth v;(t) of G; satisfies

vi()<1+(1-2H%"".

This is clear when i =0 and G; is the trivial group. Suppose n; has been so chosen
for i=k. Let n] be defined on sy, ..., sk+1 by

ni(s)=nys) if i<k

ni(sk+1) = 1.

By hypothesis, the growth function <., of this group is dominated by some
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polynomial P of degree d. Then, there is some constant C=0 such that

Vi ()< P()<27® V. (t+ )%=

Let ny(sk+1)=C+1, and vy, be the associated growth function. For t<C+1,
Yi+1(t) = v (t). For t= C+1, the set of elements of G,.,; which have at least one
Si+1 in their minimal representation has cardinality <y}, (t—C)=<2 *+Dd+e
while those without s..; in the representation have cardinality =+, (f)=<
1+(1-27%)t%"*. Combining, we have y.,,(t)<1+(1—2"C*D)pd*e

Note that this gives a necessary and sufficient condition for G to have a metric
of polynomial growth in terms of its finitely generated subgroups.

Example. Every finitely generated subgroup of the rationals, Q is infinite
cyclic, hence has polynomial growth of degree one. Hence Q has metrics of
polynomial growth; in particular the function n,(1/n) = n! defines a metric with
quadratic growth. On the other hand, it is easy to verify that Q can have no metric
with linear growth. (The same is true for any non-finitely generated subgroup of

Q)

Wolf [22] has shown that a finitely generated group which has a nilpotent
subgroup of finite index has polynomial growth. On the other hand, it is
reasonable to conjecture that a group having polynomial growth must have a
nilpotent subgroup of finite index. This conjecture has been proved for finitely
generated solvable groups by Wolf-Milnor [22, 9]. It has also been proved by Tits
[21] for finitely generated subgroups of GL(n,R). In Section 3 we give some
extensions of this last result.

2. Polynomial Growth Versus Polycyclic

A group G is said to be polycyclic if there is a finite descending chain of
subgroups

G:GID...Dsz{e}

such that each subgroup is normal in the preceding one and the corresponding
quotient groups are all cyclic. We refer the reader to [22] for a discussion of other

conditions on G which are equivalent to polycyclic. The following result is proved
in [22].
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2.1. THEOREM. A polycyclic group G has polynomial growth if and only if it
has a nilpotent subgroup of finite index.

The purpose of this section is to show that in certain cases a group having
polynomial growth must be polycyclic. We assume that our group G has a fixed
left invariant metric.

2.2. THEOREM. Let G be a group having polynomial growth and suppose that
Hom (H; R)# 0 for every non-trivial finitely generated subgroup H of G. Then
Hom (G; R) # 0.

The proof of (2.2) will follow soon. It should be noted that R may be replaced
by Q in the statement of (2.2).
If G is countable, it can be written as an increasing union

G=U G, Gic Gin
i=1

of finitely generated subgroups. The vector space Hom (G;R) is just
lim

«—{Hom (G;; R)} where the homomorphism
Hom (G;; R) = Hom (G;; R), i>j

is defined by restriction.
We need a lemma which relates polynomial growth to a chain condition.

2.3. LEMMA. Suppose that G has polynomial growth of degree k and that
Hocch' i3 'CHnCG

is a finite sequence of subgroups such that for each i (1=<i=n) there is a non-zero
homomorphism f;: H; — R such that H;_, < ker f,. Then n=<k.

Proof. Let a; € H; —ker f.. The words of the form afi* - - - ab" represent distinct
elements of G. This means that the growth function of G dominates a polynomial
of degree n with the coefficient of x" being positive. Hence, we must have n < k.

Proof of (2.2). Let G be an increasing union of finitely generated groups G;
and let V; denote the finite dimensional real vector space Hom (G;; R). When i <
let V;; be the subspace of V; consisting of homomorphisms which extend to G;. If
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j<k then V, <V, Define

W= V.

=i

Note that W;=0 if and only if V;;=0 for j sufficiently large. We claim that for i
sufficiently large W;# 0. Suppose this is not the case, i.e., there exist arbitrarily
large i such that W;=0. W;=0 means that V;=0 for j sufficiently large. In
particular, we may choose j>1 such that W;=0. Thus, we have a non-zero
homomorphism f:G; — R such that G;ckerf. By repeating this process we
would obtain an infinite increasing chain contradicting (2.3). This proves the
claim.

For k>i the restriction Vi;— V;; is surjective for every j=k. Hence, the
restriction W, — W, is also surjective. Since the W, are non-zero for i sufficiently

large, this shows that the inverse limit is non-zero and completes the proof of
(2.2).

2.4. COROLLARY. If G has a polynomial growth (with respect to some
invariant metric) and every finitely generated subgroup of G admits a non-zero
real-valued homomorphism then G is solvable. If G is also finitely generated then G
is polycyclic.

Proof. Using (2.2) construct inductively a chain of subgroups

G= GO = G1 e
and corresponding non-zero homomorphisms f; € Hom (G;; R) such that G;,;=
ker f.. By (2.3) the chain must reach the trivial subgroup after a finite number of
steps which implies that G is solvable. If G is also finitely generated then it must
be polycyclic by a result of Milnor [9].

Note. The example (G = Q) following Proposition 1.1 shows that G need not
be finitely generated—in which case it cannot be polycyclic.

3. Groups of Diffeomorphisms and their Germs

Denote by 4"(R", 0) the groups of germs of C" (r>1) diffecomorphisms of R"
which fix the origin.

3.1. THEOREM. If G=9 (R",0), r=1, is a finitely generated group having



572 J. F. PLANTE AND W. P. THURSTON

polynomial growth then G has a nilpotent subgroup of finite index. If we also
assume n=1, then G is polycyclic.

Proof. Let
D:9¢"(R",0)— GL(n,R)

be the homomorphism which takes a germ to its derivative at the origin. Thus,
Go= G Nker D is a normal subgroup of G and the quotient G/G, is isomorphic
to a subgroup of GL(n, R). By the generalized Reeb Stability Theorem [19] every
finitely generated subgroup of G, has a non-zero real-valued homomorphism.
From (2.4) it follows that G, is solvable. By Tits [21] the quotient group G/G,
must have a nilpotent subgroup of finite index since it has polynomial growth and
is isomorphic to a subgroup of GL(n,R). This means that G has a solvable
subgroup of finite index and this subgroup is finitely generated (cf. page 90 of [6]).
Since this solvable subgroup has polynomial growth it has a nilpotent subgroup of
finite index. Since this nilpotent group has finite index in G the first statement of
(3.1) is proved. When n=1, G/G, is abelian and, hence, G is solvable and,
therefore, polycyclic. This completes the proof of (3.1).

Remark. (3.1) may be thought of as an extension of Tits’ result that a finitely
generated group of linear isomorphisms of R" having polynomial growth must
have a nilpotent subgroup of finite index. Any linear group has a corresponding
group of germs which uniquely determines the linear group.

The following is a related result about groups of diffeomorphisms with
compact support.

3.2. PROPOSITION. Let G be a group of C' (r=1) diffecomorphisms with
compact support of an open manifold M. If G has polynomial growth then it is
solvable. If G is also finitely generated then it is polycyclic and has a nilpotent
subgroup of finite index.

Proof. We show that every finitely generated subgroup of G has a non-zero
real-valued homomorphism. If a subgroup H of G is generated by g, ..., g, let

U ={xeM| g(x)#x}.

Let x, be a boundary point of the set U;U- - - U U,. Since the derivative of g; at
X, is the identity (i=1,..., n) the generalized Reeb Stability Theorem yields a
non-zero element of Hom (H; R). (3.2) now follows from (2.4).
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4. Groups of Homeomorphisms of One Dimensional Manifolds

Denote by Homeo (R) and Homeo (S') the groups of homeomorphisms of R
and S', respectively.

4.1. PROPOSITION. If G <Homeo (R) is a group having polynomial growth
then G is solvable. If G is also finitely generated then G is polycyclic and has a
nilpotent subgroup of finite index.

Proof. Let Go< G be the subgroup (of index at most 2) consisting of orienta-
tion preserving homeomorphisms. It suffices to show that Gy is polycyclic. Let H
be a non-trivial finitely generated subgroup of Go. Choose a point x € R which is
moved by some element of H and let a, bR be, respectively, the inf and sup of
the set {h(x)| he H}. Since H has polynomial growth and the interval (a, b) is
homeomorphic to R, the fact that Hom (H; R) # 0 follows from (5.5) of [15]. Now
(2.4) implies that G, and, hence, G are solvable and polycyclic if finitely
generated.

4.2. COROLLARY. If G <Homeo (S') is a group having polynomial growth
then G is solvable. If G is also finitely generated then G is polycyclic and has a
nilpotent subgroup of finite index.

Proof. Let Go<= G be the subgroup consisting of orientation preserving
homeomorphisms. Since G, has polynomial growth it preserves a Borel measure
w on S' such that w(S")=1. In [14] it is shown that the rotation number of g e G,
is w([x, g(x)) where [x, y) denotes the half open interval going from x to y in the
positive direction (according to the orientation of S'). Furthermore, it is also
shown in [14] that the rotation number map

p:Go—[0,1)mod 1

is a homomorphism. The image p(Go) is abelian and every element of the
subgroup ker p fixes every point x in the support of u. By cutting the circle at
such an x the action of ker p on S' may be thought of as an action on an interval.
Thus, by (4.1), ker p and, hence, G are solvable. If G is finitely generated it is
polycyclic.

It turns out that somewhat more can be said if the homeomorphisms in
question are of class C2. This will be based on a result of N. Kopell which is
proved in [5] and may be stated as follows.
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4.3. THEOREM. Suppose f, g:[a, b)— [a,®) are C* diffeomorphisms (not
necessarily onto but f(a) = a = g(a)) such that the following conditions are satisfied:

i) f(x)<x for all xe(a, b)
ii) g(x)=x for some x €(a, b)
iii) f(g(x))=g(f(x)) for all x€[a, b).
Then g(x)=x for all x€[a, b).

We will also need the following observation of Moussu [10]. We say that a
group G acts without fixed points on (a, b) if g(x)=x for some ge G and x € (a, b)
implies that g(x)=x for all x € (a, b). We say that G acts essentially on (a, b) if
g(x)=x for all x €(a, b) implies that g is the identity element of G.

4.4. LEMMA. If a group G acts essentially and without fixed points on an open
interval (a, b) then G is (torsion free) abelian.

Proof. Let x €(a, b) and define a partial ordering on G as follows:
f<g if f(x)<g(x).

Since G acts on (a, b) essentially and without fixed points this definition is
independent of xe€(a, b) and gives an Archimedean total ordering of G. By a
theorem of Holder (cf. [2] page 226) G is isomorphic to a subgroup of R and is
therefore abelian.

4.5. THEOREM. If G is a nilpotent group of diffeomorphisms of [0, ®) of class
C? then G is (torsion free) abelian.

Proof. If the restriction of G to (0, ®) acts without fixed points then we are
done by (4.4). Otherwise, let f be a non-trivial element of Z(G) (center of G) and
let a<b=wx be such that f(a)=a, f(b)=>b (if b<x) and f has no fixed points
between a and b. By taking an inverse, if necessary, assume that f(x) <x for x in
(a, b). If ge G we claim that either g is the identity on [a, b) or g(x) # x for every
x in (a, b). Suppose g(x) = x for some x in (a, b). Since f and g commute, f"(x) is
fixed by g for every integer n and, hence, so is lim, .. f"(x) = a. It now follows
from (4.3) that g is the identity on [a, b). A similar argument (reversing the roles
of f and g) shows that, in either of the above cases, g(a)=a and g(b)=>b (if
b <»). Let K; denote the closure of the set

{xe[0,) | f(x)#x forsome feZ(G)}.
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(4.4) and the claim proved above imply that G commutes on K;. Z(G) acts
trivially on the complement of K; so we can think of G/Z(G) as acting on this
complement. If G/Z(G) acts trivially we are done. Otherwise, since G/Z(G) is
nilpotent, we repeat the above argument to find a closed set K, > K; (K, # K;)
such that G commutes on K, and Z(G/Z(G)) acts trivially on the complement of
K. Since G is nilpotent this process can be repeated only a finite number of times
and we eventually obtain a closed set K, such that G commutes on K, and acts
trivially on its complement. Thus, G is abelian and the proof of (4.5) is complete.

4.6. COROLLARY. If G is a group of C? diffeomorphisms of [0, ©) which has
polynomial growth then G is (torsion free) abelian.

Proof. Passing to a subgroup we may assume that G is finitely generated.
Since R is homeomorphic to (0, »), (4.1) implies that G has a nilpotent subgroup
Gy of finite index. By (4.5) G, is abelian. From the proof of (4.5) we see that
there is a closed set C such that every element of G, fixes every point in C and
that on each maximal open interval in the complement of C, G, acts without fixed
points. Since each element of G has a power in Gy, it is clear that every element
of G fixes every point of C. Let (a,b) be a maximal open interval in the
complement of C and restrict the action of G to the interval (a, b). Suppose ge G
and x €(a, b) are such that g(x)=x and let k be an integer such that g* € Go.
Since g“(x)=x and G, acts without fixed points g* and, hence, g must be the
identity on (a, b). Hence, G itself acts without fixed points on (a, b). Doing this
for every maximal open interval in the complement of C we conclude that G is
abelian.

4.7. COROLLARY. If G is a finitely generated group of C* diffeomorphisms of
S' which has polynomial growth then G has an abelian subgroup of finite index.

Proof. Without loss of generality, we may suppose that g contains only
orientation preserving diffeomorphisms. As in the proof of (4.2) we consider the
rotation number homomorphism p. The image of p must either be finite or dense.
If the image of p is dense then some element of G has irrational rotation number
and by Denjoy’s theorem is conjugate to an irrational rotation. This implies that
the support of the G-invariant Borel measure must be all of S'. In this case, [14]
((4.2) or proof of (2.3)) implies that G is conjugate to a group of rotations and is
abelian. On the other hand, if the image of p is finite then ker p has finite index in
G and every element of ker p fixes some x € S*. Thus, ker p can be identified with
a group of C? orientation preserving diffcomorphisms of [0, ). Now ker p is
abelian by (4.6) and the proof of (4.7) is complete.
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Remarks. The differentiability assumption in (4.6) is crucial. A C° counter-
example (which can be made C' using an unpublished construction of D. Pixton)
may be constructed as follows. Let ¢ :[0, 1] — [0, 1] be a C” diffeomorphism such
that ¢(0)=0, ¢(1)=1, ¢ has infinite order contact with the identity at 0 and 1,
and ¢(x)>x for x€(0, 1). Now define a C* orientation preserving diffeomorph-
ism f:R— R by

P(x—[x])+[x] if [x]=0 mod 4
f(x)=4x if [x]=1 or 3 mod4
g (x=[xD+[x] if [x]=2 mod 4

Define g:R— R by g(x)=x+2. The group G generated by f and g has
polynomial growth but is not abelian (it is isomorphic to the fundamental group of
the Klein bottle). If we identify R with (0, ) we can realize G as a group of
homeomorphisms of [0, «).

The arguments in the proof of (4.6) show that a group of orientation
preserving C? diffeomorphisms of a closed interval which has polynomial growth
must be abelian. The above example shows that this assertion is false for open
intervals.

5. Groups of Germs in Dimension One

In this section we establish results analogous to those of the previous section
for groups of germs. Let 4’ denote the group of germs of C" (r =0) diffeomorph-
isms of [0, ©) which fix 0. Let £’ denote the pseudogroup consisting of local C’
diffeomorphisms which are defined in a neighborhood of 0. There is a natural map
Z, — 4. which takes a local diffeomorphism to its germ at 0. If ' &£, is a
subpseudogroup which goes to a group G <%/, via the above map then I is called
a realization of the group of germs G. It is clear that any group of germs has many
realizations but we will be interested in having certain properties of the group G
carry over to the pseudogroup I'. If the group G has polynomial growth, for
example, we would like to be able to make a similar statement about I'. If G is
finitely presented then this can be done. Suppose that G is generated by
81,..., 8 and that G is determined by finitely many relations Ry,..., R,
involving the g’s. For each g we choose a representative f;e .. For each
relation R; we restrict the domains of the f;’s so that the relation R; holds (for
those xe€[0,>) for which it makes sense) with g;’s replaced by f’s. Restrict
fi,...,f. so that they satisfy each of the relations R;, j=1,..., m. These
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restricted f;’s generate a pseudogroup I' and if G has polynomial growth then it is
clear that each orbit of I' has polynomial growth (in the obvious sense [15]).

5.1. PROPOSITION. If G <% is a finitely generated nilpotent group then G is
free abelian.

Proof. In this situation it is clear that G has no torsion and, hence, by results
of Mal’cev [7], G is the fundamental group of a compact nilmanifold. Since such a
manifold can be triangulated, G must be finitely presented. From the discussion
above there is a finitely generated realization I'< 3 of G such that each orbit of
I' has polynomial growth. By (5.1) and (5.4) of [15] there are two possibilities:

i) There is an x >0 which is fixed by every element of I', or

ii) There exists fe I" such that the restriction of f to some interval of the form
[0, &) has no fixed points other than 0. (We will say in this case that the
germ of f at 0 is fixed point free.)

In case i), I' restricts to an action of G on the interval [0, x) and, hence, G is
abelian by (4.5). In case ii) we claim that every element of G is fixed point free. If
fo€e I’ corresponds to a non-trivial element in the center of G then by (4.3) the
germ of fo at 0 is fixed point free. The same argument now shows that every
element of G other than the identity is fixed point free. Finally, the argument
used in the proof of (4.4) shows that G is abelian and (5.1) is proved.

5.2. THEOREM. If a subgroup G <4% has polynomial growth then G is a
torsion free abelian group.

Proof. By passing to a subgroup we may assume that G is finitely generated.
(3.1) implies that G has a nilpotent subgroup G, of finite index which by (5.1)
must be abelian. Furthermore, there is a realization of G, which satisfies i) or ii)
above. Since every element of G has a power in G, we conclude that either G is
realized by an action on an interval of the form [0, x), x >0 or G is a fixed point
free group of germs. In either case G is abelian and the proof of (5.2) is complete.

The following is immediate from (5.2).

5.3. COROLLARY. If Gc9'(R,0), r=2, is a group of orientation preserving
germs which has polynomial growth then G is a torsion free abelian group.

We conclude this section with some observations about analytic germs which
will be used in Section 7. Let 4%(R, 0) denote the germs of orientation preserving
analytic diffeomorphisms of R which fix zero. Such a germ is determined by its
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Taylor series. Suppose f is a local diffeomorphism represented by a power series
of the form

f(x)=x + aix* +higher order terms.

If ax#0 then we say that the germ of f at zero has order k. Define a map
8.1 92(R, 0) > R by

log(l4+a,) if k=1
8 (f) = & '

ax if k>1.

5.4. LEMMA. If G<%3(R, 0) is a group of germs such that every element of G
other than the identity has order =k then the restriction of 8, to G is a homomorph-
ism. If every element other than the identity has order k then this homomorphism is
injective.

The proof of (5.4) is straight forward and may be obtained either by substitu-
tion of power series or by use of Leibnitz’ rule. The second statement of (5.4)
follows from the first.

5.5. LEMMA. If two germs in 4%(R,0) commute and neither is the identity
then both germs have the same order.

Proof. Suppose the commuting germs are represented by

f(x) = x + a,x* + higher order terms

g(x) = x + bx' + higher order terms

where a.# 0, b;#0. Substituting to get power series for fg and gf and equating
coefficients of x“*/~! we conclude that k =}, i.e., the germs of f and g have the
same order.

6. Holonomy Groups of Foliations

Let M be a smooth manifold and & a C”" (r=1) foliation of M of codimension
k. We begin by recalling briefly the notion of holonomy groups. If L is a leaf of &
we choose an embedding of R* in M which is transverse to % and such that the
origin in R is sent to a point of L which we take as the basepoint. A based loop
in L determines, by sliding along leaves near L, a local diffeomorphism of R* at
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the origin. If y denotes a lc;op we denote by h(vy) the germ of the corresponding
local diffeomorphism. It turns out that h(y) depends only on the homotopy class
[y]e mi(L) and that the map [y]— h(y) determines a homomorphism (or anti-
homomorphism depending on conventions) from (L) to ¢’ (R, 0). The image of
h is called the holonomy group of the leaf L and will be denoted by H(L). H(L)
depends on the original embedding of R* in M but its isomorphism class does not.
The next two results are immediate from (3.1) and (5.3).

6.1. PROPOSITION. If L is a leaf of a C" foliation (r=1) of codimension k
such that H(L) is finitely generated and has polynomial growth then H(L) has a
nilpotent subgroup of finite index. If, further, k =1 then H(L) is polycyclic.

6.2. PROPOSITION. If L is a leaf of a transversely oriented codimension one
C’ foliation (r=2) and H(L) has polynomial growth then H(L) is a torsion free
abelian group.

Remark. The hypothesis regarding H(L) in (6.1) or (6.2) holds, for exampie,
if m,(L) is a finitely generated group having polynomial growth.

The following result gives a case in which the structure of holonomy groups is
related to the fundamental group of the manifold M. We say that a codimension
one foliation & of M has a null transversal if there is a loop in M which is
everywhere transverse to % and which is freely homotopic to zero.

6.3. PROPOSITION. Let ¥ be a transversely oriented codimension one
foliation of class C* of a manifold M. If (M) has polynomial growth and % has
no null transversals then the holonomy group of every leaf is abelian.

Proof. Let L be a leaf of ¥ and assume that 7r;(L) is finitely generated. By
(6.2) it is sufficient to show that H(L) has polynomial growth. Let xo€ L be the
basepoint, i:L — M the inclusion map, and iy the induced homomorphism
between fundamental groups. iy induces a homomorphism

m(L) _ ig(m(L)

H(L)= kerh  igkerh)’

We claim that this homomorphism is injective. If not then there is a based loop ¥y
such that h[y]# 0 but ix[y]=0. Since h[y]#O0, v is freely homotopic to a loop of
the form a * B where a is a path in a single leaf of & and B is a path transverse to
. On the other hand, by a standard argument, a * B is freely homotopic to a
closed curve transverse to %. If iy[y]=0 then we would have a null transversal
and contradict the hypothesis of (6.3). Thus, H(L) has polynomial growth and
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must be abelian. If 7,(L) is not finitely generated then we replace m;(L) by an
arbitrary finitely generated subgroup in the above argument. The corresponding
subgroups of H(L) are all abelian and, hence, so is H(L). This proves (6.3).

Remark. The hypothesis in (6.3) concerning null transversals arises naturally.
For example, it is satisfied if # comes from a locally free Lie group action [12] or
if & is real analytic [3, 4].

7. Analytic Foliations of Codimension One

Let M be a compact C” manifold. It is known [20] that if M has Euler
characteristic zero then M admits a C” foliation of codimension one. On the
other hand, Haefliger [3, 4] proved that if M has a real analytic codimension one
foliation then the fundamental group of M is infinite. In particular, if (M) is
finite M does not have such a foliation. Other examples of manifolds not
admitting analytic codimension one foliations have been given by Novikov [11],
Thurston [18], and Goodman. In each case the examples are 3-dimensional and
are’ obtained as a by-product of a compact leaf theorem. Analytic foliations are
interesting because they tend to have nice geometric properties, which are also
common to foliations that arise in nature. Almost nothing is known about analytic
foliations except in codimension one. In this section we give an extension of
Haefliger’s result about codimension one analytic foliations on n-manifolds.

7.1. THEOREM. Let M be a compact manifold such that =,(M) has polyno-
mial growth. If M admits a transversely oriented real analytic foliation of codimen-
sion one then H'(M, R) #0.

7.2. COROLLARY. If M is compact, m;(M) has polynomial growth, and
H'(M,R)=0 then M does not admit a transversely oriented analytic foliation of
codimension one. If H'(M; Z,) is also zero, M does not admit any analytic
codimension one foliation.

The proof of (7.1) will require the following preliminary result.

7.3. LEMMA. Let M be a compact manifold with boundary (possibly empty)
and letL,, ..., L, be disjoint compact connected submanifolds of codimension one,
each of which separates a connected component of M. Let V4, ..., V, be connected
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manifolds with boundary such that

p q
M-\ L;= U interior V..

i=1 i=1

Let &;,e H'(V; R) and if L, < V; denote by @y the restriction of ®; to L. Assume
that §;#0 (i=1,..., q) and that @, and Dy are linearly dependent if L, = V,NV,.
Then there is a non-zero class ® € H'(M;R) whose restriction to each V, is a
multiple (not always zero) of &,

Proof. If q=1 then p=0 and the assertion is obvious. Assume that (7.3) is
known for q—1. We suppose that V;,..., V, are ordered so that V;N V #J.
From the induction hypothesis we have a non-zero class @, H'(UZ] V;;R).
Since the restriction of @, to V; is a multiple of &, there exist a and b, not both
zero, such that (ad,, b®P,) has image zero in the Mayer-Vietoris sequence

q—1
H'(M;R)— H‘( U Vi R)EBH‘(V,,; R)— H'(V;N V;R).
i=1

Choosing ® € H'(M;R) to have image (a®,, b®,) completes the proof of (7.3).

Proof of (7.1). Suppose that M has an analytic transversely oriented foliation
# of codimension one. By [3,4], % has no null transversals. Since m;(M) has
polynomial growth, standard arguments [15] imply that every leaf of % has
polynomial growth. If % has no compact leaves then (7.1) follows from (6.4) of
[15]. On the other hand, in [3, 4] it is shown that either every leaf of ¥ is compact,
in which case M fibers over S and H'(M; R) #0, or ¥ has finitely many compact
leaves L,,...,L, If some leaf L; does not separate M, then it is dual to a
non-zero element of H'(M; R), since it has a trivial normal bundle. Thus, we may
assume that & has a finite (positive) number of compact leaves, each of which
separates M. If we remove the compact leaves we are left with finitely many
connected components. Let L be one of the compact leaves and let V. and V_ be
the connected components on either side of L (with + and — determined by the
orientation transverse to %). The foliations determined by restricting & to V., and
V_ admit non-zero invariant measures in the sense of [15] since every leaf of &
has polynomial growth. Pick such measures for V, and V_ and let &, €
HY(V.;R) and &_c H 1(V_,l!) be the corresponding cohomology classes. Since
the inclusions V,<c V,, V_c V_ are homotopy equlvalences we may think of &,
and @_ as cohomology classes for V. and V_, respectlvely Let i,:L—> V,,
i_:L— V_ be inclusion maps. We claim that the classes i @, and i*®_ are
linearly dependent in H'(L; R). This follows immediately if either of them is zero
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so we assume that they are both non-zero. (This amounts to assuming that the
support sets for both invariant measures are asymptotic to L.) Take coordinates
for a neighborhood of L in V. which is diffeomorphic to L X[0, 1) and such that
the foliation induced from & is transverse to the [0, 1) factor. The F-invariant
measure on V" induces a measure on (0, 1) which is invariant under the action of
the holonomy group H(L). (Note that we do not need to distinguish the
holonomy group on each side of L since & is analytic.) The cohomology class
i*®, is represented (up to sign) by the composition

m(L) = H(L)—>R

where 7 is the “translation number” homomorphism defined in (5.3) of [15].
Since H(L) is abelian by (6.3), it follows from (4.3) and the definition of 7 that 7
is injective. By (5.4) and (5.5) the map &, : H(L) — R is injective for some k=1.
(Here we are thinking of H(L) as a group of germs.) The group H(L) has an
ordering determined by germ (f) <germ (g) if f(x) < g(x) for all sufficiently small
x>0. Note that the homomorphisms 8, and —7 are both order preserving. This
implies that one is a constant multiple of the other. Hence, i*®, is represented by
a multiple of the composition

(L)~ H(L)—> R.

The same argument shows that this is also the case for i*@_, thus proving that
i¥®, and i*&_ are linearly dependent. (7.1) now follows from (7.3).

Remarks and Examples. 1) For the case dim M = 3, (7.1) has been proved by
S. Goodman.

2) In the proof of (7.1) we have used only the properties

a) that when the holonomy around a compact leaf is non-trivial, it is
non-trivial in some r-jet, and
b) that there are no null transversals.

3) If I' is a wuniform discrete subgroup of SL(2,R) such that
H'(SL(2,R)/T'; R)=0 (as in [19], for example) then SL(2, R)/I" has an oriented
analytic foliation of codimension one so the hypothesis that 7;(M) has polynomial
growth cannot be dropped.

4) Let N be a bundle over the Klein bottle with fiber [0, 1] which is twisted to
make N orientable. If two copies of N are appropriately attached along their
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boundary tori ([15]) the resulting compact 3-manifold M satisfies the hypotheses
of (7.2). N has an obvious foliation of codimension one by compact leaves (one
Klein bottle, the rest tori) which is not transversely orientable. Attaching as above
we conclude that the transverse orientability assumption cannot be dropped. (The
resulting foliation of M actually has a “bundle-like metric”’ and the statements of
(14.1) of [17] and (1.5) of [13] should be modified to require transverse orienta-
bility.) Note that =;(M) is infinite; in fact, the universal covering space of M is R’
and every element of 7r;(M) has infinite order.

5) Examples in higher dimensions of manifolds not admitting C* transversely
oriented foliations may be obtained by noting that the hypotheses of Corollary 7.2
depend only on m;(M).
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