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Comment. Math. Helvetici 39(51) 547-565 Birkhâuser Verlag, Basel

Familien komplexer Raume mit streng
pseudokonvexer spezieller Faser

OSWALD RlEMENSCHNEIDER

Einleitung

In [8] wurde das folgende Résultat bewiesen, das ein nûtzliches Hilfsmittel zur
Untersuchung von Deformationen rationaler Singularitâten darstellt (vgl. z.B. [1],
[3], [4], [9]):

SATZ 0. Es sei tt:Z-+ S eine regulâre Famille komplexer Mannigfaltigkeiten
mit regulârer Basis S. Die Faser Zo iiber einem festen Punkt soeS sei Auflôsung
einer raiionalen Singularitât (X, x0). Dann lâjit sich tt faserweise zu einer
Déformation TT.Z-* S von (X, x0) /n-~1(s0) zusammenblasen (nach evtl. Verkleinerung
von S).

Da sich jedoch die Voraussetzung der Regularitât von S bei den Anwen-
dungen als hinderlich erwies, werden wir in dieser Arbeit einen Beweis fur
beliebiges S nachtragen. Wir haben dazu die beiden Hauptschritte des Beweises
als eigenstândige Aussagen herauspràpariert, zumal sie nicht von der Rationalitât
der Singularitât (X, x0) abhângen und deswegen auch zur Untersuchung
nichtrationaler Singularitâten herangezogen werden kônen. Wir beweteen in
Abschnitt 1:

SATZ 1. Es sei tt:Z-+ S eine holomorphe Abbildung komplexer Râume mit
streng pseudokonvexer spezieller Faser X 7r~l(s0), soeS fest. Dann gibt es zu jeder
kompakten Menge KczX offene Mengen U^Z, VcS mit KcU, soe V, tt(U)c:
V, s.d. tt | U: 17-* V eine l-konvexe holomorphe Abbildung ist.

In Abschnitt 2 zeigen wir, daB unter gewissen Voraussetzungen Plattheit beim
Zusammenblasen 1-konvexer holomorpher Abbildungen erhalten bleibt (zur
Définition 1-konvexer holomorpher Abbildungen und zur Existenz ihrer Reduk-
tion vgl. die Abschnitte 1 und 2 und die dort angegebene Literatur). Es gilt:

SATZ 2. Es sei

s
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548 OSWALD RIEMENSCHNEIDER

das kanonische Reduktionsdiagramm einer l-konvexen holomorphen Abbildung
7T. 9 sei eine kohârente analytische Garbe auf Z, die entlang einer Faser
Zo=/n-~1(so) plaît ùber S sei. Ferner sei eine der beiden folgenden Bedingungen
erfùllt (3FS bezeichnet die analytische Einschrânkung von &amp; auf die Faser Zs):

(i) H\Z
(ii) dimc Hl(Zs, gFs) konstant in einer Umgebung von s0 und S reduziert in s0.

Die Bildgarbe a^SF ist dann ir-platt entlang der Faser Zo= tt&quot;1^).

Zum Beweis von Satz 2 ist es notwendig, einen der Halbstetigkeitssâtze aus [7]
zu verallgemeinern (Lemma 1).

Im Abschnitt 3 wenden wir die Sâtze 1 und 2 auf Deformationen analytischer
Singularitâten an. Zunâchst vervollstândigen wir ein Résultat aus [10]: Ist tt : Z —»

S eine platte 1-konvexe Déformation der streng pseudokonvexen Mannigfaltig-
keit X=tt~1(s0) mit reduziertem S und dim H1(Zs,Czs) const., so ist in dem

Reduktionsdiagramm

tt eine platte Déformation von Z0 tt 1(s0) und X Zo ist der Remmert-
Quotient von X (Satz 3). Hieraus folgt sofort Satz 0 beî beliebigem Grundraum S

(Satz 4). Satz 5 liefert eine partielle Umkehrung von Satz 3, mit deren Hilfe fur
bestimmte 1-konvexe Deformationen tt:Z-*S von X maximale Teilfamilien
Z | Sa -» Sa, Sa c^ S, gefunden werden kônnen, die sich simultan zu
Deformationen von X zusammenblasen lassen (Satz 6). Dièses Ergebnis wird sodann

bei der Konstruktion simultaner Auflôsungen isolierter Singularitâten verwendet.
SchlieBlich beweisen wir einen Satz von Huikeshoven [4] ûbèr Brieskorns

Auflôsung der versellen Déformation eines rationalen Doppelpunktes in einer
schârferen Fassung.

1. Beweis von Satz 1

Wir erinnern zunâchst an die Définition streng pseudokonvexer komplexer
Râume und 1-konvexer holomorpher Abbildungen. Die auftretenden komplexen
Râume sind nicht notwendig reduziert.
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DEF. 1. Eine holomorphe Abbildung tt:Z-&gt; S heiBt l-konvex, wenn es eine
C°°-Funktion &lt;p:Z-&gt;R und eine Konstante c*€R gibt, s.d. folgendes gilt:

(i) &lt;p
| {z € Z : ç(z) &gt; c#} ist streng plurisubharmonisch,

(ii) fiir jedes c e R ist die Abbildung

eigentlich.

Man nennt dann &lt;p eine Ausschôpfungsfunktion mit Konvexitàtsschranke c*.
Ein komplexer Raum X heiBt streng pseudokonvex, wenn die Abbildung von

X auf den reduzierten einpunktigen Raum l-konvex ist.

Liegt eine 1-konvexe holomorphe Abbildung tt:Z—&gt;S mit
Ausschôpfungsfunktion cp vor, so schreiben wir abkùrzend fur aile a,kRU {±00} mit a &lt; b:

Zba {zeZ:a&lt;&lt;p(z)&lt;b}

Zb _ yb y** _ y

Wir kônnen nun mit dem Beweis von Satz 1 beginnen. DaX= tt&quot;1^) streng
pseudokonvex ist, besitzt X eine Ausschôpfungsfunktion &lt;p mit Konvexitàtsschranke

c*. Mithin gibt es ein ceR mit KcXc, wobei wir ohne Einschràn-
kung c &gt; c* voraussetzen kônnen.

Wir werden U sogar so konstruieren, dafi UC\X XC gilt.
Wâhle réelle Konstanten ai,..., a5, bu b2 mit c* ai &lt; • • • &lt; a5 &lt; c &lt; b2 &lt; &amp;i-

Nun gibt es zu jedem Punkt xeX eine Umgebung l/x&lt;= Z von x, eine Umgebung
Vxc:S von s0 und eine abgeschlossene holomorphe Einbettung jx : U^Ux x Vx,

s.d. tt([/x)c Vx und mit ttx tt | Ux das kanonische Diagramm

kommutiert, wobei pr2 die Projektion auf den zweiten Faktor bezeichnet. Da nach

Voraussetzung Xbl kompakt ist, genûgen endlich viele Punkte xh j 1,..., t, s.d.
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die UXf9 j 1,..., t, die Menge Xbl ûberdecken. Setze

V0=n Vv l/o=Û ^/(Vo).

Dann ist Uo eine offene Menge in Z mit L/onX=&gt;Xbl, es gilt tt(U0)&lt;^ Vo, und t/0
besitzt abzâhlbare Topologie, wenn die Ux hinreichend klein gewâhlt wurden.

Da Xba\il/onX und &lt;p dort streng plurisubharmonisch ist, gibt es nach

Richberg [6] eine offene Menge t/i in Z mit t/i €= U, l/i H X Xba\ und eine

streng plurisubharmonische Funktion $i : l/i -&gt; R mit &lt;$i | [/x H X &lt;p. Wegen
XbaimXb\ und X^iX^iX51 findet man weitere offene Mengen U2, l/3, l/4 in Z
mit

u3mu4mu0, i/lnx=xû«, i 3,4.

Setze &lt;p | XÛ4 beliebig zu einer C°°-Funktion &lt;p4 auf l/4 fort. Ist dann {Si, ô4} eine

Teilung der 1 bzgl. der Ûberdeckung {l/i, U4} von Wt= L/iU l/4, so ist

eine C°°-Funktion auf Wi mit

und

ist streng plurisubharmonisch. Setze schlieBlich noch W2= U2U U3; es gilt dann

w2mwu w2nx=xb\
Nach diesen Vorbereitungen fûhren wir den Beweis von Satz 1 in drei

Schritten.

BEHAUPTUNG 1. Es existiert eine Umgebung Vi= Vi(so)c Vo, s.d.

{zeW1n&lt;rr-\Vl):&lt;p(z)&gt;a5}czW1\Û4.

Denn angenommen, dies wâre nicht der Fall. Dann gibt es zu jedem V
V(s0) c Vo ein z € Wt D ir-1( Vi) H Û4 mit #(z) &gt; a5. Man findet somit eine unend-
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liche Folge ZjeWiC\Û4 mit &lt;P(z,)&gt;a5 und lim tKz,) s0. Da 04 kompakt ist,
kann man ohne Einschrânkung annehmen, daB die Folge (z;) gegen ein Elément
zoe t/4 konvergiert. Also ist zoe L74nXc=Xa5, d.h. zoe Wx und &lt;f&gt;(zo) &lt;p(zo)&lt;

a5. Dies ist aber ein Widerspruch zu &lt;P(z})&gt;a5 fur aile j.

BEHAUPTUNG 2. Es existiert eine Umgebung V= V(so)cz Vu s.d. die Abbil-
dungen

eigentlich sind.

Denn angenommen, dies wâre nicht der Fall. Dann gibt es zu beliebigem
V- V(s0) ein Kompaktum Kc V und ein d^c, s.d. L (ù)d)~~1(K) nicht kompakt

ist. Wâhle dann eine Folge (z}) in L, die keine in L konvergente Teilfolge
besitzt. Da W2 kompakt ist, existiert jedoch eine Teilfolge, die in W2 konvergiert.
Der Grenzwert z0 besitzt dann die folgenden Eigenschaften:

Lâ8t man nun V immer kleiner werden, so erhâlt man auf dièse Weise eine Folge
(zOj) mit

&lt;J&gt;(zOj)^c, zOj€dW2, lim Tr(zoj) s0.

Da dW2 kompakt ist, kann man ohne Einschrânkung annehmen, daB dièse Folge

gegen ein Elément z00edW2 konvergiert. Fur dièses gilt dann

andererseits aber

und damit &lt;p(z00) (p(z00)-b2&gt;c. Widerspruch!

BEHAUPTUNG 3. Man wâhle V wie in Behauptung 2 und
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Dann ist tt:1/-»V eine l-konvexe holomorphe Abbildung mit Ausschôp-
fungsfunktion

und Konvexitâtsschranke a* (c-a5)~1.

Denn $ ist eine C°°-Funktion auf U, die dort streng plurisubharmonisch ist,
wo dies auch fur &lt;p zutrifft, nach Behauptung 1 also auf {ze l/:&lt;J&gt;(z)&gt;a5}

{ze l/:^(z) &gt;&lt;**}. Ist weiter aeR und KcV kompakt, so ist

¦ïzeUH ir~\K) : &lt;P(z) ^ c --1, a &gt; 0.
a)

Da die rechts stehende Menge nach Behauptung 2 kompakt ist, ist

eigentlich fur aile a e R.—Damit ist Satz 1 vollstândig bewiesen.

Bemerkung. Die Définition einer 1-konvexen holomorphen Abbildung tt
schlieBt nicht aus, da8 einzelne oder sogar aile Fasern der Abbildung kompakt
sein kônnen und damit nicht streng pseudokonvex im eigentlichen Sinne sind.
Setzt man jedoch voraus, da8 tt platt und eine Faser tt&quot;1^) nicht kompakt ist, so
sind auch aile hinreichend nahe bei /7r~1(s0) liegenden Fasern nicht kompakt. Nur
unter dieser Voraussetzung liefert Satz 1 die Existenz einer &quot;schônen&quot; Familie
mit streng pseudokonvexen Fasern.

2. Beweis von Satz 2

Es sei im folgenden tt:Z-&gt;S eine l-konvexe holomorphe Abbildung mit
Ausschôpfungsfunktion 9, es sei soeS, und &amp; sei eine kohârente analytische
Garbe auf Z, die 7r-platt entlang Z0 7r&quot;1(s0) sei. Da uns nur lokale Aussagen
bzgl. 50 interessieren, kônnen wir annehmen, da6 S klein ist. Da weiter Plattheit
eine offene Eigenschaft ist, tt | Zc eine l-konvexe holomorphe Abbildung ist fur
aile c&gt;c* und die Restriktionsabbildungen
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bijektiv sind fur aile q ^ 1 und aile c&gt;c%, kônnen wir auBerdem voraussetzen,
da8 9 in jedem Punkt von Z platt uber S ist.

Setzt man ohne Einschrânkung S als Steinsch voraus, so gelten die folgenden
Aussagen (vgl. [5], [11]):

1. Z ist holomorph-konvex.
2. Ist Z=Q(Z) der Remmert-Quotient von Z (i.e. der bis auf Isomorphie

eindeutig bestimmte Steinsche Raum Z, fur den es eine eigentliche
holomorphe Abbildung cr : Z -» Z mit 6Z (r*OZ, gibt), und ist É
U S€s És die Vereinigung aller maximalen kompakten analytischen Mengen
És in den streng pseudokonvexen Fasern Zs, se S, so ist a\Z\É:
Z\É-+ Z\E, E or(É), biholomorph. Insbesondere ist cr eine eigentliche
Modifikation, wenn tt platt entlang Zo, Zo nicht kompakt und S hin-
reichend klein ist.

3. Die Abbildung tt faktorisiert eindeutig ùber cr; d.h. es existiert eine

eindeutig bestimmte holomorphe Abbildung tt : Z —&gt; S, s.d. das Diagramm

kommutiert. (Dies ist das kanonische Reduktionsdiagramm aus Satz 2).
4. Die Abbildung tt ist Steinsch (d.h. Urbilder offener Steinscher Mengen sind

Steinsch), und tt \ E ist endlich. Insbesondere ist dann RqTTi$ fur aile q ^ 1

wegen

kohârent.

Es sei nun L ein Steinsches Kompaktum in S mit soeL (vgl. hierzu und dem

Folgenden [7], §2). Dann gibt es fur aile Oc* ein Steinsches Kompaktum KcZ
mit ZoflEcX, TT^iVj^K, und einen nach oben beschrânkten Komplex platter

A=F(L,©S)-Moduln

s.d. folgendes gilt:

i) Hq{C)
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ii) Ist se S und ms das zu s gehôrende maximale Idéal von A, so gilt

Hq(C &lt;8&gt;A (A/m,)) Hq({z e Zs : &lt;p(z)^ c}, £,),

Da wegen der Kohârenz von RqTT*$F die Moduln Hq(C) fur q ^ 1 endlich sind,
kônnen wir sogar ohne Einschrânkung voraussetzen, daB aile Cq frei und fur
q ^ 1 endlich sind.

Mit diesen Vorbereitungen ist es môglich, die folgende Verallgemeinerung von
Theorem (3.1.II) aus [7] zu beweisen.

LEMMA 1. Es seirr: Z -» S eine l-konvexe holomorphe Abbildung, und 9 sei

eine ir-platte kohârente analytische Garbe auf Z. Gilt fur eine natùrliche Zahl q ^ 1

oder

ii) dimc Hq(Zs, $FS) const, und S ist reduziert in s0,

dann ist RqTÏ#&amp; lokal frei nahe s0 (und im Falle i) sogar Null). Bezeichnet m(s)
die maximale Idealgarbe des Punktes se S, so sind auBerdem die kanonischen

Abbildungen

fur k q, max (q — 1,1) nahe s0 bijektiv, und im Falle q 1 ist

surjektiv fur aile c &gt; c#.

Beweis. Der Fall ii) ist Theorem (3.1.II) zusammen mit dem Zusatz (3.8) aus

[7] und der Bemerkung auf p. 94 aus [10]. Es genûgt also, den Fall i) zu
behandeln. Wegen [7] Theorem (3.1.1) kônnen wir annehmen, daB Hq(Zs, &amp;s) 0
fur aile se S. Wir betrachten dann den Komplex C&quot; an der Stelle q:

Fur den ersten Teil der Aussage genûgt der Nachweis, daB Hq Hq(C) 0 ist,
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denn dann gilt fur aile seL:

(Rq**&amp;);=m, Rq**®)k (Hqm, y=o

(hierbei bezeichnet A die entsprechenden Komplettierungen), und damit

Fur den zweiten Teil genùgt der Nachweis, daB

Z2+1 cokerÔq

ein platter A-Modul ist. Denn aus den exakten Sequenzen

0 -» im Ôq -» Cq+1 -* Zq+1 -* 0

folgt dann auch die Plattheit von Z% und dies impliziert gemâB [7], Satz (2.3.d)
die Bijektivitât der kanonischen Abbildungen

tkM:Hk(C)®M-+ Hk(C®M), k q, q-1

fur beliebige A-Moduln M. Mit M- A/ms, seL, folgt dann die zweite Behaup-
tung.

Es sei nun m c: A ein beliebiges maximales Idéal. Wir lokalisieren den

Komplex C zu

/*\ /-q-1 r«q
m

i^q + 1
V / ^-^ m ^-^ m *-&quot;m

und erhalten durch Tensorieren mit Am/mAm:

Die letzte Sequenz ist aber exakt, da es ein seL gibt m ms, so daB nach

Voraussetzung

HqXCJmCm) Hq(C/mC) Hq(Zs, 9M) 0.

Da die Moduln Clm frei und fur 1^1 endlich sind, folgt hieraus nach einem
bekannten Lemma der kommutativen Algebra die Exaktheit von (*), und
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coker 8^ ist direkter Summand von C+1, also frei. Wegen der Rechtsexaktheit
des Tensorproduktes ist coker 8*,= (coker ôq)m=(Zf1)m. Damit ist Z?+1 platt
und Hq Hq(C) 0, q.e.d.

Wir kommen nun zum Beweis von Satz 2. Die Abbildung a ist auBerhalb É

biholomorph. Wir brauchen daher nur Punkte zoeZonE zu betrachten. Wâhle
Steinsche Kompakta L&lt;^S und K^Z wie zu Beginn dièses Abschnittes. Es

genûgt zu zeigen, daB M F(K, &lt;j*&amp;) ein platter A =F(L, Os)-Modul ist; denn
bezeichnet m bzw. n das zu s0 bzw. z0 in A bzw. B F(K, €z) gehôrende
maximale Idéal, so folgt daraus die Plattheit von

uber (^(AJ*
und damit die Plattheit von (cr*8F)Zo uber ÛStSo- Da a eigentlich und K Steinsch ist,
folgt aber

lim
KczU

U Steinsch

lim
K&lt;=U

U Steinsch

und damit M H0 H°(C), wobei C der oben beschriebene Komplex platter
A-Moduln ist. Da 3F die Voraussetzungen von Lemma 1 fur q 1 erfûllt, ist

Zl coker 8°

ein platter A-Modul (dies folgt im Fall i) aus dem Beweis von Lemma 1 und im
Fall ii) aus [7], (3.6)). Aus den exakten Sequenzen

0-» ker 5°-» C°-&gt; im S0-* 0

O im 8&quot;1-» ker S0-» H0-» 0

folgt dann die Plattheit von H°. q.e.d.

3. Anwendungen

Wir ziehen sofort eine Folgerung aus Satz 2:
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SATZ 3. Es sei

das Reduktionsdiagramm einer platten 1-konvexen holomorphen Abbildung à. Es
gelte fiir einen festen Punkt soeS:

i) H1(Zo,Ozo) 0

oder

ii) dimc H1 (Zs,Ozs) konstant nahe s0 und S reduziert in s0.

Dann ist tt (nach evtl Verkleinerung von S bzgl. s0) eine platte holomorphe
Abbildung mit dem Remmert-Quotienten Q(Z0) als spezieller Faser Zo.

Beweis. Lemma 1, angewendet auf die tt-platte Garbe @z, liefert die
Surjektivitàt der Restriktionsabbildung

Nach [10] Satz 1 impliziert dies die Gleichung Zo= Q(Z0). Die Plattheit von ir
folgt unmittelbar aus Satz 2 wegen 0z a*0z. q.e.d.

Die Bedeutung von Satz 3 fur die Deformationstheorie analytischer
Singularitâten liegt in Folgendem : Ist (X, x0) eine normale isolierte analytische
Singularitât und ist tt : Z —» S eine (wegen Satz 1 ohne Einschrânkung 1-konvexe)
Déformation einer Auflôsung X von X mit einer der Eigenschaften i) oder ii), so
liefert das Reduktionsdiagramm eine Déformation tt : Z —&gt; S von X ûber S.

Da die Herleitung von Satz 0 bei beliebigem Grundraum S mit Hilfe der Sâtze
1 und 3 ohne Schwierigkeiten wie in [8] geschehen kann, begnùgen wir uns mit
der Formulierung und ûberlassen die Einzelheiten des Beweises dem Léser.

SATZ 4. Es sei tt:Z-+ S eine platte Familie komplexer Râume. Die Faser Zo
iiber einem festen Punkt soe S sei Auflôsung einer rationalen Singularitât (X, x0).
Dann làjit sich tt (nach evtl Verkleinerung von S) faserweise zu einer Déformation
it:Z-&gt; S von tt&quot;1^) (X, x0) zusammenblasen, und die Nachbarfasern Zs, se S,

besitzen hôchstens rationale Singularitâten in der Nâhe von x0.
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Wir zeigen jetzt in Ergânzung zu Satz 3, daB in gewissen 1-konvexen Defor-
mationen ir:Z-* S von X eine maximale Teilfamilie Za —» Sa mit reduziertem
Sa&lt;^S enthalten ist, deren Reduktionsdiagramm zu einer (platten) Déformation
ira : Za -&gt; Sa von X fûhrt. Dazu benôtigen wir die folgende partielle Umkehrung
von Satz 3:

SATZ 5. Es sei tt;Z-*S eine platte 1-konvexe holomorphe Abbildung mit
Reduktionsdiagramm

fur die folgendes gilt:

i) Q(ZS) Zs fur aile se S,

ii) dimc H2(ZS, ©z.) lokal konstant auf S.

Dann ist auch dimc H1 (Zs,Ûz,) lokal konstant auf S.

Beweis. Durch Liften des Reduktionsdiagramms auf die Normalisierung von
S, anschlieBendes Einschrânken auf 1-dimensionale reduzierte Unterràume und
émeutes Liften auf die Normalisierung reduziert sich der Beweis auf den Fall
einer (regulâren) Riemannschen Flâche S. Es sei dann soeS und L&lt;^S ein
Steinsches Kompaktum mit soeL und dimc H2(ZS, #z,) const. auf L. Wir be-
trachten wie oben den Komplex C von platten A T(L, 0s)-Moduln bzgl. 9 Cz-

Fur beliebiges s € L hat man eine exakte Sequenz

(*) 0 -* Hq(C)® A/ms — H\C® A/m.) -&gt; Tort(Hq+1(C), A/m.) -» 0,

q ** 0 (vgl. [7]). Nach Voraussetzung und Konstruktion des Komplexes C ist die

Abbildung

H°(C)-*H°(C&apos;®A/m.)

surjektiv ([10], Satz 1), und infolgedessen

Torf(H\C), A/m.) 0, s e L.
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Also ist H1^) ein platter A-Modul, und damit (da H\C) als endlicher
A-Modul insbesondere projektiv ist)

lokal konstant auf L. Wegen dim H2(ZS,0^,) const. fur seL ist dann nach
Lemma 1, ii) die Abbildung tl bijektiv fur aile s e L. Also ist dim Hl(Zs, 0%,) lokal
konstant auf L. q.e.d.

Wir sind nun in der Lage, das folgende Résultat zu beweisen, das eine wichtige
Rolle bei der Konstruktion simultaner Auflôsungen von isolierten Singularitâten
spielt:

SATZ 6. Es sei tt\Z-*S eine 1-konvexe Déformation von X=&apos;7r~1(s0) mit
dimc H2(Zs,0z,) const. Dann gibt es einen (bzgl. Inklusion) maximalen redu-
zierten analytischen Unterraumkeim Sa von S in s0, s.d. im Reduktionsdiagramm

Za Z\Sa-^-+Za

der 1-konvexen Abbildung ira :Za -&gt; Sa die Abbildung ira eine platte Déformation
von ir~1(so)=0(X) ist

Beweis. Es sei T ein reduzierter Unterraumkeim von S durch s0, tct:Zt
Z\T-*T, und im Reduktionsdiagramm

~ °v
ZT &gt;ZT

/
sei ZT,So der Remmert-Quotient von ZT,So X. Da X regulâr ist, ist ZT,So normal,
und da weiter ttt als platt vorausgesetzt ist, sind auch aile Nachbarfasern ZT,t, t

hinreichend nahe bei s0, normal. Die Abbildungen &lt;rT,t&apos;ZT,t-* ZT,t sind eigentlich
und biholomorph auBerhalb Ét; folglich gilt Q(ZT,t) ZT,t fur aile dièse t Da
nach Voraussetzung dimH2(ZT,(,C^rt) const. ist, kann man Satz 5 anwenden

und erhâlt lokal um s0:

e S :dimH1(Zs,©z,) d0: dim \



560 OSWALD RIEMENSCHNEIDER

Wir setzen fur die redits stehende Menge Sa und brauchen nur noch zu zeigen,
daB sie analytisch in der Nâhe von s0 ist. Denn dann erfùllt die Familie
fia : Za Z | Sa —» Sa, wobei Sa mit der reduzierten Struktur versehen ist, die

Voraussetzungen von Satz 3, und somit ist ira : Za —&gt; Sa eine platte Déformation
von Tr^iso) Q(X).

Nach Siu [12] ist So {s e S : dim HX(ZS, ©zs) ^ d0} eine analytische Menge in S.

Da aufgrund der Halbstetigkeitssâtze fur 1-konvexe holomorphe Abbildungen

dim H\Zs,€z,)^ d0

fur aile s nahe bei s0 gelten muB, stimmen die Mengenkeime von So und Sa in s0

ûberein. q.e.d.

Im folgenden sei X (X, x0) eine normale isolierte analytische Singularitàt,
und a : X -&gt; X sei eine ein fur allemal fest gewâhlte Auflôsung von X. Ferner sei

7r:Z-» S eine Déformation von tt~1(s0) X, soeS, ûber dem reduzierten Basis-

raum S.

DEF. 2. Ein kommutatives Diagramm holomorpher Abbildungen

heiBt simultané Auflôsung von tt (mit spezieller Faser X), wenn folgendes gilt:

i) &amp; ist eigentlich und surjektiv und e ist endlich und surjektiv mit e~1(s0)

{toi
ii) tt ist eine Déformation von fi 1(r0) X ûber dem reduzierten Basisraum

T.

iii) Fur aile teT ist ât â | Zt : Zt -» Zs, s e(0» eine Auflôsung der

Singularitâten von Zs. Es gilt 6% cr.

Ist T S und e id, so sprechen wir von einer simultanen Auflôsung ohne

Basiswechsel

Wegen Satz 1 kônnen wir stets annehmen, daB in einem simultanen
Auflôsungsdiagramm fi 1-konvex und tt Steinsch ist. Ferner kônnen wir S und T
als Steinsch und damit Z als Steinsch und Z als holomorph-konvex voraussetzen.
Dann gilt
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LEMMA 2. Q(Z) ZxsT, falls dimc H2(Zt, €Zt) const.

Beweis. Ohne Einschrânkung sei S T, e id. Es genùgt dann nachzuweisen,
da8

(*) dimc H\Zt,Ûzt) const.

Hieraus folgt nâmlich nach Satz 3, daB in dem kommutativen Diagramm

rr&apos; eine Déformation von O(X) X ist. Da Q(Z) der Remmert-Quotient von Z,
Z Steinsch und â eigentlich und surjektiv ist, existiert eine holomorphe Abbil-
dung r : Q(Z) —» Z, die das obère Dreieck kommutativ macht. Da r | X id ist,
muB r biholomorph sein (bei hinreichend kleinem Z).

Uni (*) zu beweisen, gehen wir zur Normalisierung v:f^&gt;T ùber und setzen
Z ZxTf, Z&apos; ZxTf. Z&apos; ist als Totalraum einer Déformation des normalen
Raumes X ûber der normalen Basis T normal. Hieraus folgt, daB die kanonische

Abbildung à\Z^&gt; Z&apos; der Remmert-Quotient von Z ist. Wegen Définition 2, iii)
gilt ferner

Z&apos;t Zv(t)=Q(Zv(t))

fur aile t g f. Also sind die Voraussetzungen von Satz 5 erfùllt, so daB

dim H\Zt, Ûzt) const., t e f,

was sofort (*) nach sich zieht. q.e.d.

Wir setzen jetzt noch zusàtzlich voraus:

2. Es existiert eine Déformation ir:Z-+T von 7f~1(^o) X, die versell ist

bzgl. Deformationen des Keimes von X entlang der exzeptionellen Menge
É
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Dann liefert Satz 6 einen reduzierten Unterraum Ta c T (nach Verkleinerung
von T) und ein Reduktionsdiagramm

7 7 I T
&apos;¦&quot;-&apos;ut ^-^ I -*¦ &lt;x

td

in welchem TTfa eine Déformation von X ûber Ta ist.

SATZ 7. Das obige Diagramm ist versell bzgl. Deformationen von X ûber

reduzierten Basen zusammen mit einer simultanen Auflôsung (ohne Basiswechsel
und spezieller Faser X).

Beweis. Es sei Zi —&gt; Si eine Déformation von X mit reduzierter Basis Si und
simultaner Auflôsung

Si

mit X als spezieller Faser von #1. Nach Lemma 2 gilt Zi O(Zi), und auBerdem
ist Zi&gt;s Q(Zi,s) fur aile se Si nach Voraussetzung. Deshalb kann man Satz 5

anwenden und erhâlt

dim H\Zlt9% GzJ d0 dim H\

Weiter existiert ein kartesisches Diagramm

mit bis zur ersten Ordnung eindeutig bestimmtem (p. Wegen Ta

{f€T:dimH1(Zt,Ozt) do} gilt (p(Si)cTa. Da aile Basisrâume reduziert sind,
faktorisiert &lt;p ùber die Inklusion T(f-*T, und es ergibt sich

Zi Za xTaSi,

woraus Zi O(Z0= Q(Za) xTaSi Ztt xTaSi folgt. q.e.d.
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Bezeichnet tt : Z —» S die verselle Déformation von X, so existiert ein weiteres
kartesisches Diagramm

1
Ta-1-* S.

Aus [1] folgt, daB e im Falle dimX 2, X minimale Auflôsung von X eine
endliche holomorphe Abbildung ist. Ist X sogar rational, so ist wegen Satz 4

Ta T und e bildet T surjektiv auf eine irreduzible Komponente von S ab ([!]).

FRAGE 1. Ist e stets endlich?

Wenn dies der Fall ist, so kann man Sa e(Ta) mit der reduzierten Struktur
versehen, und man erhâlt mit ira tt | ir&apos;^Sa), Za tt&quot;^*») ein simultanés

Auflôsungsdiagramm

der Déformation 7ra von X.

FRAGE 2. Ist das obige Diagramm versell bzgl. Deformationen von X ùber
reduzierten Basen zusammen mit einer simultanen Auflôsung (mit Basiswechsel

und spezieller Faser X)?

Mit Hilfe von Lemma 2 und Satz 7 kann man sich leicht klarmachen, daB die
Frage 2 mit ja zu beantworten ist, falls man folgende Aussage beweisen kônnte:
Sind TTt :Zt -* Sh i 0, 1, 2, Deformationen einer isolierten Singularitât X, ist tt0
versell, sind Si und S2 reduziert, und gibt es eine holomorphe Abbildung
&lt;po:Si-»So und eine endliche surjektive Abbildung &lt;pr. Si-&gt;S2 mit ZoX^Si^
Zi^Z2sXs2Su so existiert eine holomorphe Abbildung (p2:S2-»S0 mit Z2

und &lt;p2°&lt;pi &lt;po-
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In [2] konstruierte Brieskorn fur die verselle Déformation tt:Z-+ S eines

rationalen Doppelpunktes X eine simultané Auflôsung

Z&gt;Z
1 i-

in der s sogar eine Galois-Ûberlagerung ist. Huikeshoven [4] zeigte:

1. Dièses Diagramm ist versell bzgl. auflôsbarer Deformationen von X.
2. tt ist versell bzgl. Deformationen der minimalen Auflôsung X von X ûber

regulâren Basisrâumen.

Ersetzt man in Huikeshovens Beweis von 2 das Zitat [8], Theorem 2 durch
Satz 4 der vorliegenden Arbeit, so erhàlt man die Aussage 2 auch fur
Deformationen mit reduzierter Basis. Also stimmt unsere Konstruktion in diesem Fall
mit der Brieskornschen iiberein.

Zum SchluB wollen wir noch zwei Beispiele angeben.

1. Es sei Xn&gt;q die zweidimensionale normale Singularitât mit dem dualen

Graphen

—b\ -bz -br-i ~br

wobei n/q b\ — l/bï— • • • — \J¥r. In diesem Fall ist T=Ta regulâr von der
Dimension Xp=i (bp-l). Die Déformation Za-*Sa ist die in [9]
konstruierte &quot;spezielle Familie.&quot; Ferner ergibt eine einfache Analyse der in [9]
angegebenen Gleichungen, da8 e : T —» Sa eine Galois-Ûberlagerung ist,
deren Gruppe das direkte Produkt derjenigen Weyl-Gruppen ist, die zu
den maximalen Konfigurationen von Kurven mit Selbstschnittzahl -2
gehôren.

2. Es sei Xb eine einfach elliptische Singularitât mit dem dualen Graphen

(o elliptische Kurve, b^l). Dann ist T regulâr von der Dimension fc + 1

und Ta ist regulâr von der Dimension 1. In den Fâllen ft l, 2, 3 ist
Ta-^&gt; S eine abgeschlossene Einbettung und S ist regulâr von der Dimension

11-b. Insbesondere ist Sa keine irreduzible Komponente von S.
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