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Familien komplexer Riume mit streng
pseudokonvexer spezieller Faser

OswALD RIEMENSCHNEIDER

Einleitung

In [8] wurde das folgende Resultat bewiesen, das ein niitzliches Hilfsmittel zur
Untersuchung von Deformationen rationaler Singularititen darstellt (vgl. z.B. [1],

[3], [4], [9D):

SATZ 0. Es sei #:Z — S eine reguldre Familie komplexer Mannigfaltigkeiten
mit reguldrer Basis S. Die Faser Z, iiber einem festen Punkt so€ S sei Auflosung
einer rationalen Singularitdt (X, xo). Dann ldft sich 7 faserweise zu einer Defor-
mation w:Z — S von (X, xo) = 7 '(so) zusammenblasen (nach evtl. Verkleinerung
von S).

Da sich jedoch die Voraussetzung der Regularitit von S bei den Anwen-
dungen als hinderlich erwies, werden wir in dieser Arbeit einen Beweis fiir
beliebiges S nachtragen. Wir haben dazu die beiden Hauptschritte des Beweises
als eigenstdndige Aussagen herausprapariert, zumal sie nicht von der Rationalitit
der Singularitdt (X, xo,) abhdngen und deswegen auch zur Untersuchung

nichtrationaler Singularititen herangezogen werden konen. Wir beweisen in
Abschnitt 1:

SATZ 1. Es sei w:Z — S eine holomorphe Abbildung komplexer Rdume mit
streng pseudokonvexer spezieller Faser X = w~'(so), so€ S fest. Dann gibt es zu jeder
kompakten Menge K = X offene Mengen Uc Z, V= S mit K< U, soe V, w(U) <
V, s.d. w|U:U—> V eine 1-konvexe holomorphe Abbildung ist.

In Abschnitt 2 zeigen wir, daB unter gewissen Voraussetzungen Plattheit beim
Zusammenblasen 1-konvexer holomorpher Abbildungen erhalten bleibt (zur
Definition 1-konvexer holomorpher Abbildungen und zur Existenz ihrer Reduk-
tion vgl. die Abschnitte 1 und 2 und die dort angegebene Literatur). Es gilt:

SATZ 2. Es sei
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das kanonische Reduktionsdiagramm einer 1-konvexen holomorphen Abbildung
7. F sei eine kohdrente analytische Garbe auf Z, die entlang einer Faser
Zo=7""(so) platt iiber S sei. Ferner sei eine der beiden folgenden Bedingungen
erfiillt (¥, bezeichnet die analytische Einschrinkung von % auf die Faser Z,):

() H'(Zo,%:)=0
(ii) dim¢ H'(Z,, &) konstant in einer Umgebung von s, und S reduziert in s,.

Die Bildgarbe 3% ist dann m-platt entlang der Faser Zo= m~"(so).

Zum Beweis von Satz 2 ist es notwendig, einen der Halbstetigkeitssdtze aus [7]
zu verallgemeinern (Lemma 1).

Im Abschnitt 3 wenden wir die Siatze 1 und 2 auf Deformationen analytischer
Singularititen an. Zunéchst vervollstindigen wir ein Resultat aus [10]: Ist 7 : Z—
S eine platte 1-konvexe Deformation der streng pseudokonvexen Mannigfaltig-
keit X = 7 1(so) mit reduziertem S und dim H(Z, 0z )= const., so ist in dem
Reduktionsdiagramm

7257

N/

m eine platte Deformation von Zo=m '(s¢) und X=2Z, ist der Remmert-
Quotient von X (Satz 3). Hieraus folgt sofort Satz 0 bei beliebigem Grundraum S
(Satz 4). Satz 5 liefert eine partielle Umkehrung von Satz 3, mit deren Hilfe fiir
bestimmte 1-konvexe Deformationen #:Z—> S von X maximale Teilfamilien
Z | Sa—> S, S, S, gefunden werden konnen, die sich simultan zu Defor-
mationen von X zusammenblasen lassen (Satz 6). Dieses Ergebnis wird sodann
bei der Konstruktion simultaner Auflosungen isolierter Singularititen verwendet.
SchlieBlich beweisen wir einen Satz von Huikeshoven [4] iiber Brieskorns
Auflésung der versellen Deformation eines rationalen Doppelpunktes in einer
schirferen Fassung.

1. Beweis von Satz 1

Wir erinnern zunichst an die Definition streng pseudokonvexer komplexer
Réume und 1-konvexer holomorpher Abbildungen. Die auftretenden komplexen
Réume sind nicht notwendig reduziert.
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DEF. 1. Eine holomorphe Abbildung 7 :Z — S heit 1-konvex, wenn es eine
C”-Funktion ¢:Z — R und eine Konstante cx€R gibt, s.d. folgendes gilt:

(1) ¢ |{z€Z:@(z)>cy4} ist streng plurisubharmonisch,
(ii) fiir jedes ceR ist die Abbildung

t|{zeZ:p(z)<c}
eigentlich.

Man nennt dann ¢ eine Ausschopfungsfunktion mit Konvexitdtsschranke c.
Ein komplexer Raum X heiBt streng pseudokonvex, wenn die Abbildung von
X auf den reduzierten einpunktigen Raum 1-konvex ist.

Liegt eine 1-konvexe holomorphe Abbildung #:Z— S mit Ausschop-
fungsfunktion ¢ vor, so schreiben wir abkiirzend fiir alle a, b€ RU {£} mit a < b:

Zt={zeZ:a<¢p(z)<b}
zt.=2z" Z7=2Z,
w’=w|{zeZ:p(z)<b}.

Wir kénnen nun mit dem Beweis von Satz 1 beginnen. Da X = 77 (so) streng
pseudokonvex ist, besitzt X eine Ausschopfungsfunktion ¢ mit Konvexitits-
schranke cx. Mithin gibt es ein ce R mit K < X°, wobei wir ohne Einschrin-
kung ¢ > c4 voraussetzen kénnen.

Wir werden U sogar so konstruieren, daff UN X = X° gilt.

Waihle reelle Konstanten aq,...,ds, by, bo mit cy=a; <+ <as<c<b,<b;.
Nun gibt es zu jedem Punkt x € X eine Umgebung U, = Z von x, eine Umgebung
V.= S von s, und eine abgeschlossene holomorphe Einbettung j,: U, U, X V,,
s.d. m(U,)< V, und mit m, = 7 | U, das kanonische Diagramm

jx
U U XV,

A

X

kommutiert, wobei pr, die Projektion auf den zweiten Faktor bezeichnet. Da nach
Voraussetzung X" kompakt ist, genligen endlich viele Punkte x;, j=1,...,¢ s.d.
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die U,, j=1,...,t die Menge x®: iiberdecken. Setze

t t
Vo= Vi, U=U 75 (Vo)

i=1 i=1

Dann ist U, eine offene Menge in Z mit UpN X 35{"’_1, es gilt w(Up) < Vo, und U,
besitzt abzidhlbare Topologie, wenn die U, hinreichend klein gewidhlt wurden.

Da X2 €@U,NX und ¢ dort streng plurisubharmonisch ist, gibt es nach
Richberg [6] eine offene Menge U, in Z mit U;€ U, U;N X =X2 und eine
streng plurisubharmonische Funktion ¢;:U; = R mit ¢;| U;N X =¢. Wegen
X* € X% und X*€ X*€ X" findet man weitere offene Mengen U,, Us, U, in Z
mit

Uz@ Ul, U2HX=X2§,

U3@ U4@ Uo, UiﬂX=X“‘, i=3,4.

Setze ¢ | X* beliebig zu einer C”-Funktion ¢, auf U, fort. Ist dann {8;, 8,} eine
Teilung der 1 bzgl. der Uberdeckung {U;, Us} von W;=U; U Uy, so ist

D=8+ 644
eine C”-Funktion auf W; mit

@l W10X=(p |Xb1,
und

‘Dl W\U, =, | U \U,
ist streng plurisubharmonisch. Setze schlieBlich noch W, = U, U Us; es gilt dann
W, E W], W,NX= sz.

Nach diesen Vorbereitungen fithren wir den Beweis von Satz 1 in drei
Schritten.

BEHAUPTUNG 1. Es existiert eine Umgebung V= V;(so) < Vo, s.d.
{ze Win 7~ (Vy):d(2) > as}= Wi\ U..

Denn angenommen, dies wire nicht der Fall. Dann gibt es zu jedem V=
V(so)< Vo ein z € Wy N~ 1(V,) N Us mit ¢(z) > as. Man findet somit eine unend-
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liche Folge zje W;N U, mit @(z;)>as und lim 7(z;)=so. Da U, kompakt ist,
kann man ohne Einschrinkung annehmen, daB die Folge (z;) gegen ein Element
zo€ U, konvergiert. Also ist zo€ UsN X < X%, d.h. zoe W, und &(zo) = ¢(z0) <
as. Dies ist aber ein Widerspruch zu ¢(z;) > as fiir alle j.

BEHAUPTUNG 2. Es existiert eine Umgebung V = V(so) = V4, s.d. die Abbil-
dungen

wd=7r|{ze WoN 7 Y(V):d(z)<d}, d<c,
eigentlich sind.

Denn angenommen, dies ware nicht der Fall. Dann gibt es zu beliebigem
V = V(so) ein Kompaktum K<V und ein d=<c, s.d. L =(0?)"'(K) nicht kom-
pakt ist. Wihle dann eine Folge (z;) in L, die keine in L konvergente Teilfolge

besitzt. Da W, kompakt ist, existiert jedoch eine Teilfolge, die in W, konvergiert.
Der Grenzwert z, besitzt dann die folgenden Eigenschaften:

D(zo)<d, z0e Wo\Wo=0W,, m(zo0)e K.

L4Bt man nun V immer kleiner werden, so erhilt man auf diese Weise eine Folge
(zo;) mit

@(Zo;) =g, Z0; € 8W2, lim ’)T(Z()j) = So.

Da 8 W, kompakt ist, kann man ohne Einschrinkung annehmen, da3 diese Folge
gegen ein Element zqo€ dW, konvergiert. Fiir dieses gilt dann

®(zo0) <S¢,
andererseits aber
200 €OWL,NX =0X"2c {xe X:¢(x)=by}
und damit ¢(2q0) = @(200) = b2 > c. Widerspruch!
BEHAUPTUNG 3. Man wdihle V wie in Behauptung 2 und

U={ze W,N7 Y(V):d(2)<c}.
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Dann ist w:U— V eine 1-konvexe holomorphe Abbildung mit Ausschop-
fungsfunktion

y=(c—d)"'
und Konvexititsschranke as= (c —as) .

Denn ¢ ist eine C”-Funktion auf U, die dort streng plurisubharmonisch ist,
wo dies auch fiir ¢ zutrifft, nach Behauptung 1 also auf {ze U:®(z)>as}=
{ze U:y(z)> ax}. Ist weiter aeR und K < V kompakt, so ist

¢, a<O0

Eelna(Krp(z)=a}= {ze Uﬂw_l(K):®(z)<c—%}, a>0.

Da die rechts stehende Menge nach Behauptung 2 kompakt ist, ist
7 =n|{zeU:¢(z)<a}

eigentlich fiir alle a e R.—Damit ist Satz 1 vollstindig bewiesen.

Bemerkung. Die Definition einer 1-konvexen holomorphen Abbildung =
schlieBt nicht aus, daB einzelne oder sogar alle Fasern der Abbildung kompakt
sein konnen und damit nicht streng pseudokonvex im eigentlichen Sinne sind.
Setzt man jedoch voraus, daB 7 platt und eine Faser 7~ '(so) nicht kompakt ist, so
sind auch alle hinreichend nahe bei 7~ '(s,) liegenden Fasern nicht kompakt. Nur
unter dieser Voraussetzung liefert Satz 1 die Existenz einer “‘schonen” Familie
mit streng pseudokonvexen Fasern.

2. Beweis von Satz 2

Es sei im folgenden #:Z — S eine 1-konvexe holomorphe Abbildung mit
Ausschc‘ipfm}gsfunktion ¢, es sei 5o€ S, und F sei eine kohirente analytische
Garbe auf Z, die #-platt entlang Z,= 7 '(so) sei. Da uns nur lokale Aussagen
bzgl. s, interessieren, konnen wir annehmen, daB S klein ist. Da weiter Plattheit
eine offene Eigenschaft ist, 7 | Z° eine 1-konvexe holomorphe Abbildung ist fiir
alle ¢>cx und die Restriktionsabbildungen

HY(Z,%,) > HY(Z; %)
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bijektiv sind fiir alle =1 und alle ¢ > cx, konnen wir auBerdem voraussetzen,
daB & in jedem Punkt von Z platt iiber S ist.

Setzt man ohne Einschrinkung S als Steinsch voraus, so gelten die folgenden
Aussagen (vgl. [5], [11]):

1. Z ist holomorph-konvex.

2. Ist Z= Q(Z) der Remmert-Quotient von Z (i.e. der bis auf Isomorphie
eindeutig bestimmte Steinsche Raum Z, fiir den es eine eigentliche
holomorphe Abbildung o:Z— Z mit 0z =0x0Z, gibt), und ist E=

U,es E; die Vereinigung aller maximalen kompakten analytischen Mengen
E, in den streng pseudokonvexen Fasern Z,, sc€S, so ist G!Z\E
Z\E — Z\E, E = o(E), biholomorph. Insbesondere ist o eine eigentliche
Modifikation, wenn 7 platt entlang Zo, Zo nicht kompakt und S hin-
reichend klein ist.

3. Die Abbildung # faktorisiert eindeutig iber o; d.h. es existiert eine
eindeutig bestimmte holomorphe Abbildung 7 :Z — §, s.d. das Diagramm

Z-Zs

N/

kommutiert. (Dies ist das kanonische Reduktionsdiagramm aus Satz 2).

4. Die Abbildung = ist Steinsch (d.h. Urbilder offener Steinscher Mengen sind
Steinsch), und = | E ist endlich. Insbesondere ist dann R 4% fiir alle g=1
wegen

Rq'ﬁ'*g = ’n’*(R qo.*g;), TquU*g; cE, q= 1,

koharent.

Es sei nun L ein Steinsches Kompaktum in S mit sp€ L (vgl. hierzu und dem
Folgenden [7], §2). Dann gibt es fiir alle ¢ > cx ein Steinsches Kompaktum K = Z
mit ZoN E < K, 7 (L) > K, und einen nach oben beschrinkten Komplex platter

A =T'(L, 0g)-Moduln
C:v—s0 2 025002
s.d. folgendes gilt:
i) HI(C)=H'K, %), K=0"(K), q=0
=I'(L, R7x%), q=1.
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ii) Ist s€ S und m, das zu s gehdrende maximale Ideal von A, so gilt

HY(C ®, (Alm,))=H'({ze Z,:p(z)<c}, %), q=0,
=HYZ,%,), q=>1.
Da wegen der Kohirenz von R% 4% die Moduln H(C) fiir q=1 endlich sind,
konnen wir sogar ohne Einschrinkung voraussetzen, daB alle C? frei und fiir
q =1 endlich sind.

Mit diesen Vorbereitungen ist es moglich, die folgende Verallgemeinerung von
Theorem (3.1.II) aus [7] zu beweisen.

LEMMA 1. Es sei 7: Z — S eine 1-konvexe holomorphe Abbildung, und % sei
eine ir-platte kohdrente analytische Garbe auf Z. Gilt fiir eine natiirliche Zahl q =1

i) HY(Zo, %,)=0
oder
ii) dime HY(Z,, %,) = const, und S ist reduziert in so,

dann ist Rty lokal frei nahe sy (und im Falle i) sogar Null). Bezeichnet m(s)
die maximale Idealgarbe des Punktes s€ S, so sind auBerdem die kanonischen
Abbildungen

ty: (R 7xF/m(s)R*74F), > H(Z,, F,,)
fiir k =q, max (q—1, 1) nahe s, bijektiv, und im Falle q=1 ist
r (Eo, F)->T (Eo, Fs)

surjektiv fiir alle ¢ > cx.

Beweis. Der Fall ii) ist Theorem (3.1.II) zusammen mit dem Zusatz (3.8) aus
[7] und der Bemerkung auf p. 94 aus [10]. Es geniigt also, den Fall i) zu
behandeln. Wegen [7] Theorem (3.1.I) kénnen wir annehmen, da8 H UZ, F)=0
fiir alle s e S. Wir betrachten dann den Komplex C™ an der Stelle q:

CQ“‘I Sa 1> Cq 54% Cq+1

Fiir den ersten Teil der Aussage geniigt der Nachweis, da H? = HY(C') =0 ist,
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denn dann gilt fiir alle se L:
(R 4F); =I(L, R%5F)s, = (H2,) =0

(hierbei bezeichnet " die entsprechenden Komplettierungen), und damit
R%F | L =0.

Fir den zweiten Teil geniigt der Nachweis, daB
Z3*!' = coker 84

ein platter A-Modul ist. Denn aus den exakten Sequenzen

0—»imé?—> CI"' - Z9*"1 50

0=H'> Z!->imé*—0

folgt dann auch die Plattheit von ZI, und dies impliziert gemaB [7], Satz (2.3.d)
die Bijektivitdt der kanonischen Abbildungen

tm: H(C)®M — H(C®M), k=q  q-1

fiir beliebige A-Moduln M. Mit M = A/m,, s€ L, folgt dann die zweite Behaup-
tung.

Es sei nun mc A ein beliebiges maximales Ideal. Wir lokalisieren den
Komplex C" zu

&a- ]

1
(*) €' —s CE—> CE,

und erhalten durch Tensorieren mit A,,/mA,.:
C& 'Y mCL ' - Ci/mCL — CL mCE,

Die letzte Sequenz ist aber exakt, da es ein se L gibt m=m, so daB nach
Voraussetzung

HY(C,/mC,)= HYC'|mC)= H(Z, %,) = 0.

Da die Moduln C', frei und fiir /=1 endlich sind, folgt hieraus nach einem
bekannten Lemma der kommutativen Algebra die Exaktheit von (*), und
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coker 83 ist direkter Summand von C4"', also frei. Wegen der Rechtsexaktheit
des Tensorproduktes ist coker 8% = (coker ), =(Z""),.. Damit ist Z2"' platt
und H*=HYC)=0, q.e.d.

Wir kommen nun zum Beweis von Satz 2. Die Abbildung o ist auBerhalb E
biholomorph. Wir brauchen daher nur Punkte zo€ ZoN E zu betrachten. Wahle
Steinsche Kompakta L<S und K< Z wie zu Beginn dieses Abschnittes. Es
geniigt zu zeigen, daB M =I'(K, o4x%) ein platter A =I(L,0s)-Modul ist; denn
bezeichnet m bzw. n das zu sy bzw. z, in A bzw. B=I(K,0z) gehorende
maximale Ideal, so folgt daraus die Plattheit von

(0xF)z=(M,)" iber Oss=(An)

und damit die Plattheit von (ox%),, iiber Os, . Da o eigentlich und K Steinsch ist,
folgt aber

M:‘-F(K, 0'*95)= 11_1;_)1’1 F(U, 0'*9;)

KcU
U Steinsch

= lim I'(e™'(U), % =I(c""(K),%)

KcU
U Steinsch

=I'(K, %)

und damit M= H°=H°(C’), wobei C der oben beschriebene Komplex platter
A-Moduln ist. Da % die Voraussetzungen von Lemma 1 fiir g =1 erfiillt, ist

Z!=coker 8°

ein platter A-Modul (dies folgt im Fall i) aus dem Beweis von Lemma 1 und im
Fall ii) aus [7], (3.6)). Aus den exakten Sequenzen

0—»imé°->C'—-2Z!->0
0—>kerd°—>C°->imé°—0

0=imé '—>ker6°—> H’°—>0

folgt dann die Plattheit von H®. q.e.d.

3. Anwendungen

Wir ziehen sofort eine Folgerung aus Satz 2:
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SATZ 3. Es sei
Z-2>27

N/

das Reduktionsdiagramm einer platten 1-konvexen holomorphen Abbildung . Es
gelte fiir einen festen Punkt so€ S:

i) H'(Zo,03)=0
oder
ii) dime H'(Z,, 0z,) konstant nahe sy und S reduziert in s,.

Dann ist w (nach evtl. Verkleinerung von S bzgl. s,) eine platte holomorphe
Abbildung mit dem Remmert-Quotienten Q(Z,) als spezieller Faser Z,.

Beweis. Lemma 1, angewendet auf die #-platte Garbe O3, liefert die
Surjektivitdt der Restriktionsabbildung

F(EO, 02) - F(E~O9 020)'

Nach [10] Satz 1 impliziert dies die Gleichung Z,= Q(Z,). Die Plattheit von
folgt unmittelbar aus Satz 2 wegen 0z =04x0;. q.e.d.

Die Bedeutung von Satz 3 fiir die Deformationstheorie analytischer
Singularititen liegt in Folgendem:Ist (X, x,) eine normale isolierte analytische
Singularitiit und ist #:Z — S eine (wegen Satz 1 ohne Einschrankung 1-konvexe)
Deformation einer Auflésung X von X mit einer der Eigenschaften i) oder ii), so
liefert das Reduktionsdiagramm eine Deformation 7:Z — S von X iiber S.

Da die Herleitung von Satz 0 bei beliebigem Grundraum S mit Hilfe der Sitze
1 und 3 ohne Schwierigkeiten wie in [8] geschehen kann, begniigen wir uns mit
der Formulierung und iiberlassen die Einzelheiten des Beweises dem Leser.

SATZ 4. Es sei 7:Z — S eine platte Familie komplexer Riume. Die Faser Z,
iber einem festen Punkt so€ S sei Auflosung einer rationalen Singularitit (X, x,).
Dann ldft sich i (nach evtl. Verkleinerung von S) faserweise zu einer Deformation
m:Z— S von 7w '(so) = (X, xo) zusammenblasen, und die Nachbarfasern Z,, s € S,
besitzen héchstens rationale Singularititen in der Nihe von x,.
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Wir zeigen jetzt in Erganzung zu Satz 3, daB in gewissen 1-konvexen Defor-
mationen #:Z — S von X eine maximale Teilfamilie Z, — S, mit reduziertem
S. < S enthalten ist, deren Reduktionsdiagramm zu einer (platten) Deformation
Ta:Za — S, von X fiihrt. Dazu bendtigen wir die folgende partielle Umkehrung
von Satz 3:

SATZ 5. Es sei 7:Z—> S eine platte 1-konvexe holomorphe Abbildung mit
Reduktionsdiagramm

fiir die folgendes gilt:

i) Q(Z,)=Z, fiir alle s€ S,
ii) dime HX(Z,, 0z,) lokal konstant auf S.

Dann ist auch dime H'(Z,, 03,) lokal konstant auf S.

Beweis. Durch Liften des Reduktionsdiagramms auf die Normalisierung von
S, anschlieBendes Einschrinken auf 1-dimensionale reduzierte Unterrdume und
erneutes Liften auf die Normalisierung reduziert sich der Beweis auf den Fall
einer (reguldren) Riemannschen Fliche S. Es sei dann so€S und L< S ein
Steinsches Kompaktum mit so€ L und dimc H%(Z,, 0, ) =const. auf L. Wir be-
trachten wie oben den Komplex C von platten A = I'(L, Os)-Moduln bzgl. ¥ = 0.
Fiir beliebiges s € L hat man eine exakte Sequenz

t9q

*) 0— HY(C)® A/m; —> HY(C ® A/m,) = Tor{(H"**(C’), A/m,) = 0,

q =0 (vgl. [7]). Nach Voraussetzung und Konstruktion des Komplexes C’ ist die
Abbildung

H%(C)— H(C'® A/m,)
surjektiv ([10], Satz 1), und infolgedessen

Torf(H(C), A/m,)=0, selL.
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Also ist H'(C) ein platter A-Modul, und damit (da H'(C’) als endlicher
A-Modul insbesondere projektiv ist)

cg H'(C),, =dim H'(C)® A/m,

lokal konstant auf L. Wegen dim H2(Z~s, 0 )=const. fiir se L ist dann nach
Lemma 1, ii) die Abbildung ¢} bijektiv fiir alle s € L. Also ist dim H'(Z,, 03,) lokal
konstant auf L. q.e.d.

Wir sind nun in der Lage, das folgende Resultat zu beweisen, das eine wichtige
Rolle bei der Konstruktion simultaner Aufiésungen von isolierten Singularititen
spielt:

SATZ 6. Es sei w:Z — S eine 1-konvexe Deformation von X =7 '(so) mit
dimc H*(Z,, 03,) =const. Dann gibt es einen (bzgl. Inklusion) maximalen redu-
zierten analytischen Unterraumkeim S, von S in s, s.d. im Reduktionsdiagramm

i~ o~ Uﬂ
Zo=2 | S.— Z,
Fq = 1’rlZ¢ M

Sa

der 1-konvexen Abbzldung Fo:Za— S, die Abblldung 7, eine platte Deformation
von 7, (s0) = Q(X) ist.

Beweis. Es sei T ein reduzierter Unterraumkeim von S durch so, #r:Zr=
Z|T—- T, und im Reduktionsdiagramm

Or

ZT—‘9 ZT

A

T

sei Zr,, der Remmert-Quotient von Zr,,,= X. Da X reguldr ist, ist Zr,,, normal,
und da weiter 7 als platt vorausgesetzt ist, sind auch alle Nachbarfasern Zr,, ¢
hinreichend nahe bei sy, normal. Die Abbildungen o r,: Zr,— Zr, sind eigentlich
und biholomorph auBerhalb E,; folglich gilt Q(Zr,) = Zr, fiir alle diese t. Da
nach Voraussetzung dim HZ(ZT,,, 0z,,)=const. ist, kann man Satz 5 anwenden
und erhalt lokal um sq:

Tc{seS:dim H\(Z,, 02) = do:=dim H'(X, Ox)}.
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Wir setzen fiir die rechts stehende Menge S, und brauchen nur noch zu zeigen,
daB sie analytisch in der Nidhe von s, ist. Denn dann erfiillt die Familie
fro:Za=2 [ S. — S,, wobei S, mit der reduzierten Struktur versehen ist, die
Voraussetzungen von Satz 3, und somit ist 7, : Z, — S, eine platte Deformation
von . (s0) = Q(X).

Nach Siu [12] ist So={s € S:dim H'(Z,, 03, = do} eine analytische Menge in S.
Da aufgrund der Halbstetigkeitssatze fiir 1-konvexe holomorphe Abbildungen

dim H'(Z,,03,)<d,

fiir alle s nahe bei s, gelten muB}, stimmen die Mengenkeime von Sp und S, in so
iberein. q.e.d.

Im folgenden sei X =(X, xo) eine normale isolierte analytische Singularitit,
und o : X — X sei eine ein fiir allemal fest gewahlte Auflosung von X. Ferner sei
m:Z — S eine Deformation von 7 '(so) = X, so€ S, iiber dem reduzierten Basis-
raum S.

DEF. 2. Ein kommutatives Diagramm holomorpher Abbildungen

T"_"_.,Z

T—=>S

heiBt simultane Auflosung von m (mit spezieller Faser X), wenn folgendes gilt:

i) & ist eigentlich und surjektiv und ¢ ist endlich und surjektiv mit £ (so) =
{to}.
ii) # ist eine Deformation von # (f,) = X iiber dem reduzierten Basisraum
T.
iii) Fiir alle teT ist o,=¢ I Z:Z,—>Z, s=¢(t), eine Auflosung der
Singularitiaten von Z,. Es gilt ¢,,= 0.

Ist T=S und € =id, so sprechen wir von einer simultanen Auflésung ohne
Basiswechsel.

Wegen Satz 1 koOnnen wir stets annehmen, daB in einem simultanen
Auflosungsdiagramm 7 1-konvex und = Steinsch ist. Ferner konnen wir S und T
als Steinsch und damit Z als Steinsch und Z als holomorph-konvex voraussetzen.
Dann gilt
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LEMMA 2. Q(Z)=ZXsT, falls dim¢ H*(Z, 03) = const.

Beweis. Ohne Einschriankung sei S = T, € = id. Es geniigt dann nachzuweisen,
daf3

(*) dime¢ H'(Z, 03,) = const.

Hieraus folgt ndmlich nach Satz 3, daB in dem kommutativen Diagramm

7' eine Deformation von Q(X)= X ist. Da Q(Z) der Remmert-Quotient von Z,
Z Steinsch und ¢ eigentlich und surjektiv ist, existiert eine holomorphe Abbil-
dung T:Q(Z)— Z, die das obere Dreieck kommutativ macht. Da 1 | X =id ist,
mufl 7 biholomorph sein (bei hinreichend kleinem Z).

Um (*) zu beweisen, gehen wir zur Normalisierung v: T — T iiber und setzen
Z=27 XTT, Z’=ZXTT. Z' ist als Totalraum einer Deformation des normalen
Raumes X iiber der normalen Basis T normal. Hieraus folgt, daB die kanonische
Abbildung é:Z — Z' der Remmert-Quotient von Z ist. Wegen Definition 2, iii)
gilt ferner

Zi=Z,0=Q(Z,)=Q(Z)

fiir alle te T. Also sind die Voraussetzungen von Satz S erfiillt, so daB

A

dim H'(Z, 03) = const., teT,
was sofort (*) nach sich zieht. q.e.d.

Wir setzen jetzt noch zusitzlich voraus:

1. H¥(X, 0x)=0. )
2. Es existiert eine Deformation #:Z— T von 7 '(t) = X, die versell ist

bzgl. Deformationen des Keimes von X entlang der exzeptionellen Menge
E~0 = G'_I(XO).
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Dann liefert Satz 6 einen reduzierten Unterraum T, < T (nach Verkleinerung
von T) und ein Reduktionsdiagramm

z'a=JZ| T.— Z.,
Ta id Ta

in welchem 7/, eine Deformation von X iber T, ist.

SATZ 7. Das obige Diagramm ist versell bzgl. Deformationen von X iiber
reduzierten Basen zusammen mit einer simultanen Auflosung (ohne Basiswechsel
und spezieller Faser X).

Beweis. Es sei Z; — S; eine Deformation von X mit reduzierter Basis S; und

simultaner Auflosung

Z~1“"“’Z1

XA

S1

mit X als spezieller Faser von ;. Nach Lemma 2 gilt Z, = Q(Z,), und auBerdem
ist Z, = Q(Z,,) fiir alle s€ S; nach Voraussetzung. Deshalb kann man Satz 5
anwenden und erhilt

dim H'(Z, ., 03, ) = do=dim H'(X, 0x).

Weiter existiert ein kartesisches Diagramm
Tl T
Sl """f"'" T

mit bis zur ersten Ordnung eindeutig bestimmtem ¢. Wegen T,=
{te T:dim H'(Z,,03)=do} gilt ¢(S;)< T,. Da alle Basisriume reduziert sind,
faktorisiert ¢ iiber die Inklusion T, T, und es ergibt sich

21 = Za X1,81,

woraus Z; = Q(Z,)= Q(Z,) X1, 81=Z, X1,S; folgt. q.e.d.
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Bezeichnet 7:Z — S die verselle Deformation von X, so existiert ein weiteres
kartesisches Diagramm

€
a .

l

Aus [1] folgt, daB ¢ im Falle dim X =2, X minimale Aufldsung von X eine
endliche holomorphe Abbildung ist. Ist X sogar rational, so ist wegen Satz 4
T, = T und ¢ bildet T surjektiv auf eine irreduzible Komponente von S ab ([1]).

FRAGE 1. Ist ¢ stets endlich?

Wenn dies der Fall ist, so kann man S, = €(T,) mit der reduzierten Struktur
versehen, und man erhilt mit m,=w|7"'(S,), Z,=m'(S,) ein simultanes
Auflésungsdiagramm

der Deformation =, von X.

FRAGE 2. Ist das obige Diagramm versell bzgl. Deformationen von X iiber
reduzierten Basen zusammen mit einer simultanen Aufldsung (mit Basiswechsel
und spezieller Faser X)?

Mit Hilfe von Lemma 2 und Satz 7 kann man sich leicht klarmachen, daB} die
Frage 2 mit ja zu beantworten ist, falls man folgende Aussage beweisen kénnte:
Sind m;: Z; > S, i=0, 1, 2, Deformationen einer isolierten Singularitdt X, ist
versell, sind S; und S, reduziert, und gibt es eine holomorphe Abbildung
©0:S; — So und eine endliche surjektive Abbildung ¢;:S;— S; mit Zyxg S, =
Z,=27,%Xs,81, so existiert eine holomorphe Abbildung ¢,:S,— So mit Z,=
Zo XSo Sz und @2°@P1 = Po-
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In [2] konstruierte Brieskorn fiir die verselle Deformation w:Z — S eines
rationalen Doppelpunktes X eine simultane Auflosung

Z—>Z
’IA“—E——>S,

in der & sogar eine Galois-Uberlagerung ist. Huikeshoven [4] zeigte:

1. Dieses Diagramm ist versell bzgl. auflosbarer Deformationen von X.
2. ar ist versell bzgl. Deformationen der minimalen Aufldsung X von X iiber
reguldren Basisrdumen.

Ersetzt man in Huikeshovens Beweis von 2 das Zitat [8], Theorem 2 durch
Satz 4 der vorliegenden Arbeit, so erhidlt man die Aussage 2 auch fiir Defor-
mationen mit reduzierter Basis. Also stimmt unsere Konstruktion in diesem Fall
mit der Brieskornschen iiberein.

Zum SchluB wollen wir noch zwei Beispiele angeben.

1. Es sei X, , die zweidimensionale normale Singularitdit mit dem dualen

Graphen

~by ~b2 ~by_1 ~b, .

o— oo ° o=P,(C),

wobei n/q =b;—1/b,—- - -—1/b,. In diesem Fall ist T = T, regulir von der

Dimension ),-;(b,—1). Die Deformation Z, — S, ist die in [9] kon-
struierte ‘“‘spezielle Familie.”” Ferner ergibt eine einfache Analyse der in [9]
angegebenen Gleichungen, daB ¢:T— S, eine Galois-Uberlagerung ist,
deren Gruppe das direkte Produkt derjenigen Weyl-Gruppen ist, die zu
den maximalen Konfigurationen von Kurven mit Selbstschnittzahl —2
gehoren.

2. Es sei X, eine einfach elliptische Singularitdt mit dem dualen Graphen

-b
O

(o=elliptische Kurve, b=1). Dann ist T reguldar von der Dimension b+1
und T, ist regulir von der Dimension 1. In den Fillen b=1, 2, 3 ist
T, — S eine abgeschlossene Einbettung und S ist reguldr von der Dimen-
sion 11-b. Insbesondere ist S, keine irreduzible Komponente von S.



Familien komplexer Ridume 565

LITERATUR

[1] M. ArTIN, Algebraic construction of Brieskorn’s resolutions. J. of Algebra 29, (1974), 330-348.
[2] E. BRIESKORN, Singular elements of semi-simple algebraic groups. Actes Congrés intern. Math.
Nice 1970. Tome II, 279-284.
[3] D. M. Burns and J. WaHL, Local contributions to global deformations of surfaces. Inventiones
math. 26, (1974), 67-88.
[4] F. HUIKESHOVEN, On the versal resolutions of deformations of rational double points. Inventiones
math. 20, (1973), 15-33.
[S] K. KNORR, und M. SCHNEIDER, Relativexzeptionelle analytische Mengen. Math. Ann. 193, (1971),
238-254.
[6] R. RICHBERG, Stetige streng pseudokonvexe Funktionen. Math. Ann. 175, (1968), 257-286.
[7] O. RIEMENSCHNEIDER, Halbstetigkeitssdtze fiir 1-konvexe holomorphe Abbildungen. Math. Ann.
192, (1971), 216-226.
[8] ——, Deformations of rational singularities and their resolutions. Proc. of the Conf. on Complex
Analysis at Rice University 1972. Rice Univ. Studies 59, (1973), 119-130.
[9] ——, Deformationen von Quotientensingularititen (nach zyklischen Gruppen). Math. Ann. 209,
(1974), 211-248.
[10] ——, Bemerkungen zur Deformationstheorie nichtrationaler Singularitdten. Manuscripta math. 14,
(1974), 91-99.
[11] Y.-T. Swu, The 1-convex generalization of Grauert’s direct image theorem. Math. Ann. 190,
(1971), 203-214.
[12] ——, Dimensions of sheaf cohomology groups under holomorphic deformation. Math. Ann. 192,
(1971), 203-215.

Oswald Riemenschneider
Math. Seminar der Univ.
D-2000 Hamburg 13
BundesstraBBe 55

Eingegangen den 25. Januar/5. November 1975






	Familien komplexer Räume mit streng pseudokonvexer spezieller Faser

