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Klassen von Moduln ùber Dedekind-Ringen und
Satz von Stein-Serre

von Martin Huber

Einleitung

1. Es sei R ein kommutativer Ring (kein Kôrper) und A ein beliebiger
R-Modul. Wir untersuchen die folgende Frage: Wie weit kann aus Eigenschaften
des dualen Moduls HomR (A, R) und des von ihm &quot;abgeleiteten&quot; Moduls
ExtR (A, R) auf entsprechende Eigenschaften von A geschlossen werden? Im Fall
R Z (ganze Zahlen) kennt man die Spezialfâlle:

(1) Ist Homz (A, Z) 0 und Extz (A, Z) 0, so ist auch A 0, und
(2) Mit Homz (A, Z) und Extz (A, Z) ist auch A endlich erzeugt (siehe [1]).

Prâziser formuliert lautet unsere Frage: Welche Klassen C von R-Moduln
besitzen die &quot;Hom-Ext-Eigenscho/t&apos;&apos;: dass mit HomR (A, R) und ExtR (A, R)
auch A zu C gehôrt? Dabei wollen wir nur Klassen C betrachten, welche

bezûglich Untermoduln und Erweiterungen abgeschlossen sind (wir nennen sie

SE -abgeschlossen).
Fur Dedekind-Ringe K kônnen wir dièse Frage weitgehend beantworten. Wir

zeigen zunâchst, dass im Falle ExtR (Q, R) ¥=¦ 0 jede SE-abgeschlossene Klasse

von endlich erzeugten R-Moduln die Hom-Ext-Eigenschaft besitzt; dabei be-
zeichnet Q den Quotientenkôrper von R. Genauer gilt

SATZ A (Theorem 2.1). Fur einen Dedekind-Ring R sind folgende Aussagen
àquivalent:

(a) ExtR(Q,R)#0.
(b) Aus HomR (A, R) 0 und ExtR (A, R) 0 folgt stets A 0.

(c) Sind HomR (A, R) und ExtR (A, R) endlich erzeugt, so ist auch A endlich

erzeugt
(d) Jede SE-abgeschlossene Klasse von endlich erzeugten R-Moduln besitzt die

Hom-Ext-Eigenschaft.
(e) Jeder R-Modul A von abzâhlbarem Rang mit ExtR (A, R) 0 ist projektiv.
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528 MARTIN HUBER

Es gilt ExtR (Q, R) 0 genau fur diejenigen Dedekind-Ringe R, welche

vollstàndig sind (in der i?-Topologie); solche sind von selbst (vollstândige) dis-
krete Bewertungsringe. Die durch Satz A charakterisierten Ringe sind also die

nicht-vollstândigen Dedekind-Ringe. Im Fall der abelschen Gruppen sind (a)-(e)
erfûllt; die Aussage (e) ist dann bekannt als &quot;Satz von Stein-Serre&quot; [2, Theorem
III. 6.1].

2. Bei der Suche nach weiteren Klassen mit der Hom-Ext-Eigenschaft haben
die Mâchtigkeitsbetrachtungen, welche im Fall der abelschen Gruppen zum
Beweis des Satzes von Stein-Serre fûhren, den Weg gewiesen. Fur einen nicht-
vollstândigen Dedekind-Ring R und fur eine beliebige Kardinalzahl X« ^ \R\ wird
die Klasse C(Ka) aller R-Moduln mit Mâchtigkeit &lt;Xa untersucht (dabei ist |jR|

die Mâchtigkeit von R). Dies fûhrt zum zweiten Hauptresultat der Arbeit:

SATZ B (Theorem 3.3). Es sei R ein beliebiger nicht-vollstàndiger Dedekind-
Ring und X« eine Kardinalzahl mit der Eigenschaft

(*) Fur jede Kardinalzahl c ist mit 2e ^Ka auch |J*|c^Ka.
Dann besitzt jeder R-Modul A mit |HomR (A, K)|^Xa und |ExtR (A, JR)|^Xa
ein Erzeugendensystem S mit 2|s|*sNa.

Die Bedingung (*) ist fur jede Kardinalzahl Ka ^ 2|R| erfûllt. Damit erhalten wir

(KOROLLAR 3.4). Ist R ein nicht-vollstàndiger Dedekind-Ring, so gilt fur
jeden R-Modul A die Abschâtzung

2|R| |HomR (A, R)\ |ExtR (A, R)\.

Fur die Klassen C(Ka) erhâlt man insbesondere:

SATZ C (Theorem 3.5). Ist R ein nicht-vollstândiger Dedekind-Ring, so

besitzt die Klasse C(Xa) fur jede Kardinalzahl Xa ^2|R| die Hom-Ext-Eigenschaft.

3. Im vierten Paragraphen wird R stets als abzâhlbarer Dedekind-Ring
vorausgesetzt. Solche Ringe sind nicht-vollstândig und haben den Vorteil, dass die

Bedingung (*) fur jede unendliche Kardinalzahl erfûllt ist. Aus Satz B folgt damit

SATZ D (Theorem 4.1). Ist R ein abzâhlbarer Dedekind-Ring, so besitzt jeder
R-Modul A ein Erzeugendensystem S mit
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Im Hinblick auf unsere Fragestellung interessieren vor allem die beiden
folgenden Korollare:

SATZ E (Theorem 4.2). Ist R ein abzàhlbarer Dedekind-Ring, so besitzt die
Klasse C(XO) fur jede unendliche Kardinalzahl Ka die Hom-Ext-Eigenschaft.

SATZ F (Theorem 4.3). Ist R ein abzàhlbarer Dedekind-Ring, so besitzt jede
SE-abgeschlossene Unterklasse von C(2X°) die Hom-Ext-Eigenschaft

Als bemerkenswertes Nebenprodukt erhalten wir eine Aussage ûber R-Moduln,
welche âquivalent ist zur Négation der speziellen Kontinuumshypothese 2N° Xi:

(KOROLLAR 4.4). Folgende Aussagen sind âquivalent:
(i) 2X°&gt; Xi
(ii) Jeder R-Modul A mit |HomR (A, R)|^Ki und |ExtR (A, R)|^Ki ist end-

lich erzeugt.

Wir wissen nicht, ob die Klasse aller Torsionsmoduln fur einen abzâhlbaren

Dedekind-Ring R die Hom-Ext-Eigenschaft besitzt. Immerhin kônnen wir
zeigen, dass die &quot;Torsionsklassen&quot; T(2Xl) aller Torsionsmoduln mit Mâchtigkeit
&lt;2Xl und T(P) aller Torsionsmoduln mit verschwindender P-Primâr-Kom-
ponente (fur ein Primideal P) dièse Eigenschaft haben (siehe Abschnitt 4.4).

Es sei noch bemerkt, dass sich die Resultate dieser Arbeit auf K-projektive
Komplexe anwenden lassen. Neben Beziehungen zwischen Homologie- und
Cohomologiemoduln mit Koeffizienten in R erhâlt man auch Kriterien fur das

Verschwinden von Homologie- und Cohomologiemoduln mit Koeffizienten in
R/Pk und Q. Die ausfûhrliche Formulierung findet sich in der vorlàufigen Fassung [3]
der vorliegenden Arbeit.

4. Satz A ist nur teilweise neu; die Aequivalenz der Aussagen (a), (b) und (e)
steht schon bei Nunke [9]. Unser Beweis des &quot;Satzes von Stein-Serre&quot; ist aber
vom dort angegebenen verschieden (vgl. 2.3 unserer Arbeit). Hingegen sind die
Sâtze B, C, D, E und F neu—auch im Fall der abelschen Gruppen, mit Ausnahme
eines Spezialfalls von Satz D, welcher in [10, Theorem 9] enthalten ist.

Unser Vorgehen beim Beweis von Satz B, der die Grundlage fur die Sâtze C,
D, E und F bildet, kann kurz so skizziert werden: Zunâchst zeigen wir, dass

HomR (A, O) derselben Màchtigkeitsschranke unterliegt wie HomR (A, R) und
ExtR (A, R); hiefûr wird die Vektorraumstruktur des Moduls A/PA (fur ein
Primideal P) herangezogen. Die weiteren wesentlichen Beweisschritte sind die
Auswahl des Erzeugendensystems S und das &quot;Abzâhlen&quot; der jR-

Homomorphismen von A in Q/R mithilfe des Systems S.
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Dass wir R als Dedekind-Ring annehmen, hat folgende Grande: Wir verwen-
den wesentlich, dass Q/R ein injektiver R-Modul ist und die Eigenschaft besitzt,
dass fur jeden R-Modul A#0 auch HomR (A, QAR)#0 ist. Die Injektivitàt von
Q/R bewirkt u.a., dass der Funktor ExtR (-, JR) rechtsexakt ist. Ferner benùtzen
wir Struktursâtze fur R-Torsionsmoduln, welche darauf beruhen, dass die Idéale
eines Dedekind-Rings invertierbar sind (vgl. 1.1). Einige Resultate gelten auch
fur allgemeinere kommutative Ringe, die an anderer Stelle diskutiert werden
sollen.

Die vorliegende Arbeit ist ein ûberarbeiteter Auszug aus meiner Dissertation.*

Herrn Professor Beno Eckmann môchte ich meinen herzlichsten Dank
ausdriicken; sein Interesse und seine Erfahrung haben sehr viel zur Ver-
wirklichung dieser Arbeit beigetragen. Daneben habe ich auch von den Herren
Prof. Urs Stammbach und Peter Neumann wertvolle Anregungen erhalten, fur die

ich an dieser Stelle ebenfalls danken môchte.

1. Moduln iiber Dedekind-Ringen

Dieser Paragraph hat vorbereitenden Charakter. Die Beweise fur die in 1.1

zusammengestellten Aussagen sind in [13], [11] und [6] zu finden. Die Abschnitte
1.2 und 1.3 handeln von den Funktoren HomR und ®R. Es werden Hilfssâtze

hergeleitet, die auf die Fragestellung unserer Arbeit zugeschnitten sind.

1.1. Es sei R ein Integritâtsbereich mit Quotientenkôrper Q. Ist I#0 ein
Idéal von R, so ist {qeQ\qI^R} ein jR-Modul, der mit J&quot;1 bezeichnet wird. Gilt
I~XI R, so heisst I invertierbar. Ein Dedekind-Ring ist ein Integritâtsbereich mit
der Eigenschaft, dass jedes Idéal It* 0 invertierbar ist. Invertierbare Idéale sind
endlich erzeugt, also sind Dedekind-Ringe Noethersch. Dièse besitzen ferner die

Eigenschaft, dass jedes Primideal P^O maximal ist.

Ist P ein Primideal eines Integritâtsbereiches R, so bilden die Elemente der
Form ris, reR, seR-P, einen Unterring von Q, der mit RP bezeichnet wird.
Der Ring RP ist lokal mit maximalem Idéal PRP; man nennt RP die P-
Lokalisierung von jR. Ein Hauptidealbereich mit genau einem Primideal P#0
heisst diskreter Bewertungsring. Ist R ein Dedekind-Ring, so ist fur jedes
Primideal P#0 die P-Lokalisierung RP ein diskreter Bewertungsring.

Ein Idéal I# 0 ist genau dann invertierbar, wenn es als R-Modul projektiv ist;
Dedekind-Ringe kônnen also charakterisiert werden als diejenigen
Integritâtsbereiche, fur welche jedes Idéal projektiv ist.

KETH Zurich, Dezember 1975; vervielfàltigt in [3].
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Von nun an sei R immer ein Dedekind-Ring mit Quotientenkôrper
Der Torsionsuntermodul eines R-Moduls A werde mit tA beziechnet. Unter der
Ordnung eines Eléments aeA verstehen wir das Idéal O(a) {reR \ ra 0}. Die
P-(Primâr-)Komponente tPA (fur ein Primideal JVO) des jR-Moduls A besteht
aus denjenigen Elementen von A, deren Ordnung eine Potenz von P ist. Gilt
tpA A, so heisst A ein P-Primârmodul Man nennt einen Modul A beschrànkt,
falls es ein reR, rï 0, gibt, derart dass rA 0 ist. Fur R-Torsionsmoduln gelten
folgende Struktursâtze:

(1.1a) Jeder Torsionsmodul ist die direkte Summe seiner P-Komponenten (wo P

die Menge aller Primideale durchlâuft).
(1.1b) Jeder P-Primàrmodul besitzt eine RP-Modulstruktur, welche die

gegebene R-Struktur fortsetzt.

Da die Ringe RP Hauptidealbereiche sind, folgt

(1.1c) Jeder beschrànkte R-Modul ist eine direkte Summe von zyklischen
Torsionsmoduln.

Jeder R-Modul A besitzt einen maximalen teilbaren Untermodul dA; ist
dA 0, so heisst A reduziert. Ein R -Modul ist genau dann teilbar, wenn er
injektiv ist. Jeder injektive R -Modul ist eine direkte Summe von unzerlegbaren
injektiven R -Moduln; dièse sind entweder isomorph zu Q oder zu #(P°°), der

injektiven Huile von R/P (fur ein Primideal P#0). Ist I#0 ein Idéal von R, so
schreiben wir I~n fur (I&quot;1)&quot;; die Vereinigung Un=i i&quot;~n ist ein Unterring von Q.

Ist P ein Primideal, so wird U&quot;=i P~n mit QP bezeichnet. Ein R -Modul A heisst

P-teilbar, falls PA A ist; z.B. ist QP als JR-Modul P-teilbar. Ist ein Modul
P-teilbar fur jedes Primideal P^ 0, so ist er teilbar.

Ein Untermodul B des K-Moduls A heisst rein, wenn fur jedes reR die

Gleichung rAHB rB erfûllt ist. Ist A torsionsfrei, so ist ein beliebiger Durch-
schnitt von reinen Untermoduln wieder rein. Im Hinblick darauf existiert zu

jeder Teilmenge S eines torsionsfreien R-Moduls A ein kleinster reiner
Untermodul, der S enthâlt, nâmlich der Durchschnitt aller reinen Untermoduln, welche
S enthalten. Dieser besteht genau aus denjenigen Elementen von A, welche von S

linear abhângig sind.

1.2 Es sei R immer ein Dedekind-Ring, und A, B seien R -Moduln. Im
gegenwârtigen Abschnitt befassen wir uns mit den Funktoren HomR und ExtR.
Jeder Quotient eines injektiven teilbaren) R-Moduls ist wieder injektiv. Dies

bewirkt, dass der Funktor ExtR (-, -) in beiden Argumenten rechsexakt ist.

Folglich ist jeder Untermodul eines projektiven Moduls projektiv, d.h. die globale
Dimension von R ist 1-
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Wichtige Hilfsmittel fur unsere Betrachtungen sind die durch

0-&gt;K-»Q-&gt;Q/K-&gt;0 bzw. 0-&gt;fA-&gt;A-»A/fA-*0

induzierten exakten Hom-Ext-Folgen

(1.2a) 0 -* HomR (A, R) -+ HomR (A, Q) -* HomR (A, Q/R) -»ExtR (A, R)
(1.2b) 0 -? HomR(A/fA, R) -* HomR(A, R) -+ HomR(fA, R) 0 -+

-? ExtR (A/tA, R) -* ExtR (A, R) -* ExtR (tA, R) -&gt; 0.

Ist A ein Torsionsmodul, so ist HomR (A, Q) 0, also

Wir bezeichnen mit r gleichzeitig ein Ringelement und den durch
definierten Endomorphismus des K-Moduls A. Die durch A1* A bzw.
induzierten Abbildungen

ExtR(A,B)-^ExtR(A,B) bzw. ExtR (A, fî)-^ExtR (A, B)

stimmen mit dem Endomorphismus r von ExtR (A, B) ûberein.

PROPOSITION 1.3. £5 seien A und B R-Moduln.
(a) Ist A torsionsfrei und B beliebig, so ist ExtR (A, B) teilbar.

(b) Ist A teilbar und B torsionsfrei, so ist ExtR (A, B) torsionsfrei.

Beweis. (a) Ist A torsionsfrei, so ist A -1» A fur jedes re R, rj* 0, monomorph.
Dann ist ExtR (A, B)-L&gt;ExtR (A, JB) fur jedes reR, r^O, epimorph, dh.

ExtR (A, B) ist teilbar.

(b) Es sei r € R, r# 0; da JB torsionsfrei ist, induziert B-^B eine exakte Folge

HomR (A, B/rB) -&gt; ExtR (A, B) ^ ExtR (A, B).

Nun ist A teilbar und B/rB beschrânkt, also gilt HomR (A, B/rB) 0. Dann ist
ExtR (A,B)-^ExtR (A,B) monomorph. Dies gilt fur aile reR, r#0; also ist
ExtR (A, B) torsionsfrei.
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LEMMA 1.4. Ist 1*0 ein Idéal von R, so gilt ExtR (R/I, R) R/L

Beweis. Wir betrachten das Diagramm

r c r1

0 -&gt; HomR (JR, R) -* HomR (I, R) -* ExtR (JR/I, JR) -» 0

Die Abbildung / sei gegeben durch f(q):r&gt;~*qr, reR, qel&apos;1. Dann kommutiert
das Diagramm, und die untere Zeile ist exakt. Bekanntlich ist / ein Isomorphis-
mus; also ist ExtR (R/I, R) rx/R, und nach [9, Lemma 4.4] gilt I^R^RIL

PROPOSITION 1.5. Fur einen endlich erzeugten R-Modul A gilt:
(a) A=tA(BB fiir einen gewissen Untermodul B von A.
(b) ExtR (A, R) tA.
(c) Es gibt einen Monomorphismus B&gt;-»HomR (A, R).

Die Aussage (a) ist bekannt; (b) folgt aus (a), (1.1c) und Lemma 1.4.

Beweis von (c). Als endlich erzeugter torsionsfreier jR-Modul ist B Untermodul

eines endlich erzeugten freien K-Moduls F, derart dass F/B ein Torsions-
modul ist. Folglich ist HomR (F, R)-* HomR (B, R) monomorph; da ferner
HomR (B, R) sHomR (A, R) ist, liefert die Zusammensetzung B^F^
HomR (F, JR)»HomR (B, K) HomR (A, R) den gesuchten Monomorphismus.

LEMMA 1.6. Fùrjeden R-Modul A*0 ist auch HomR (A, Q/R)*0.
Beweis. Ist aeA, a#0, so existiert ein Primideal P^O von R, derart dass

^P ist. Folglich gibt es einen Epimorphismus (a)^R/P. Da nach [9, Lemma
4.4] R/P^P^/R ist, kann R/P monomorph in Q/R abgebildet werden; das Bild
der Zusammensetzung /:&lt;a&gt;-&gt; R/P^&gt; Q/R ist P~x/R. Nun ist Q/R injektiv; also

kann / zu f:A-+Q/R erweitert werden. Mit / ist auch /#0; folglich ist

LEMMA 1.7. Es sei P^O ein Primideal und A ein R-Modul mit
HomR (A, R) 0 und tP ExtR (A, R) 0. Dann ist A P-teilbar.

Beweis. Zu 0-» PA -&gt; A -» A/PA^&gt; 0 gehôrt die exakte Folge

HomR (A, R) 0 -t HomR (PA, R) -+ ExtR (A/PA, R) -» ExtR (A, R).

Da tP ExtR (A, R) verschwindet und HomR.(PA,K) torsionsfrei ist, gilt auch



534 MARTIN HUBER

*PExtR (A/PA, R) 0. Der Modul A/PA ist ein JR/P-Vektorraum und zerfâllt
daher in eine direkte Summe ©l€jJE, mit Et R/P fur aile iel. Mit Lemma 1.4

folgt ExtR (A/PA, R)^UiBiEl; also ist ExtR (A/PA, R) ein P-Primârmodul. Da
nun tP ExtR (A/PA, R) 0 ist, muss die Indexmenge I leer sein. Also gilt A PA,
d.h. A ist P-teilbar.

1.3. Ein Modul ûber einem Dedekind-Ring ist genau dann flach, wenn er
torsionsfrei ist. Nun sind Untermoduln von torsionsfreien Moduln wieder tor-
sionsfrei, also ist TorR (—, —) in beiden Argumenten linksexakt.

LEMMA 1.8. Es sei P*0 ein Primideal und A ein P-teilbarer R-Modul mit
fpA 0. Dann besitzt A eine QP-Modulstruktur, welche die gegebene R-Struktur
fortsetzt.

Beweis. Da der R-Modul QP/R eine teilbare wesentliche Erweiterung von
P~XIR und P^/R^R/P ist, gilt QP/R R(P°°). Es gibt also eine exakte Folge

0-* TorR (R(Pœ), A)-&gt;A-± QP®RA -» R(P&quot;)®RA -* 0.

Nach [9, Theorem 3.2] ist TorR (R(P°°), A)= tPA 0; es bleibt zu zeigen, dass

auch i*(P°°)&lt;S&gt;RA 0 ist.
Zu jedem beR(P°°) gibt es eine Zahl n, derart dass Pnb 0 ist. Da A

P-teilbar ist, gilt A PnA; also besitzt jedes aeA die Darstellung a £[=i xlal,
xt€Pn, ateA, l^i^r. Folglich ist

Da R(P°°)®RA von den Elementen dieser Form erzeugt wird, gilt R(P°°)®RA
0.

Wie vorher bezeichnen wir die Mâchtigkeit einer beliebigen Menge bzw. eines

R-Moduls A mit \A\. Da jeder endliche Integritâtsbereich ein Kôrper ist, sind die

Dedekind-Ringe, die wir betrachten, stets von unendlicher Mâchtigkeit. Ist \R\
unendlich, so gilt fur den freien JR-Modul R[S] ûber der beliebigen Menge S die

Gleichung|K[S]| |

2. Klassen von Moduln und der Satz von Stein-Serre

2.1. Wir erinnern daran, dass wir stets Moduln ûber einem Dedekind-Ring R
betrachten, der kein Kôrper ist. Die Klassen von R -Moduln, die wir im Hinblick
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auf die Fragestellung der Einleitung untersuchen, haben immer gewisse
Abschlusseigenschaften und sind damit den Methoden der Homologischen
Algebra leicht zugânglich. Sie stehen ûbrigens in engem Zusammenhang mit den
Klassen, die von Serre in [12] untersucht wurden.

Eine nichtleere Klasse C von R -Moduln nennen wir SE-abgeschlossen, falls
sie den Bedingungen (S) und (E) genûgt:

(S) Ist B^A und AeC, so ist auch BeC.
(E) Ist 0 -&gt; B -» A -* C -&gt; 0 eine exakte Folge von R-Moduln, so ist mit BeC

und CeC auch AeC.

Die meisten Klassen, die im folgenden vorkommen, erfullen auch die Bedingung
(F):

(F) Ist B^A und AeC, so ist auch AIBeC.

Wir nennen eine nichtleere Klasse, welche (S), (E) und (F) erfûllt, wie ùblich eine

Serre-Klasse.

Wir geben nun einige Beispiele von SE-abgeschlossenen Klassen. Mit Q
bezeichnen wir wie immer den Quotientenkôrper von R; R3K ist die Kategorie
aller R-Moduln.

Die Klasse {0} ist eine Serre-Klasse.
Die endlich erzeugten jR-Moduln bilden eine Serre-Klasse.
Es sei Ka irgendeine unendliche Kardinalzahl; dann ist die Klasse

C(KJ : {A € RWft | |A| &lt;Ka} eine Serre-Klasse.
Die Klasse aller projektiven R-Moduln ist SE-abgeschlossen, aber keine

Serre-Klasse.

Ist F:R2JÎ-&gt;S2)Î ein linksexakter kovarianter oder ein rechtsexakter kon-
travarianter Funktor, so ist die Klasse K(F): {AeRWl\ F(A) 0} SE-
abgeschlossen. Fur exakte Funktoren F ist K(F) eine Serre-Klasse.

Auf dièse Art kônnen z.B. folgende Klassen beschrieben werden:

Die Klasse T aller Torsionsmoduln; es gilt offenbar T K(Q®R -). Die Klasse

T ist eine Serre-Klasse, da der Funktor Q®R- exakt ist.

Die Klasse aller torsionsfreien R-Moduln gehôrt zum linksexakten Funktor
TorR (Q/R, -). Sie ist also SE-abgeschlossen, aber keine Serre-Klasse.

Die Klasse T(P) (fur ein Primideal P# 0) aller Torsionsmoduln A mit tPA 0

gehôrt zum Funktor RP®R -. Dies folgt aus (1.1a), (1.1b) und aus der Tatsache,
dass RP ein flacher R-Modul ist.
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Schliesslich bemerken wir, dass ein beliebiger Durchschnitt von SE-
abgeschlossenen Klassen wieder SE-abgeschlossen ist.

2.2. Der Hauptsatz dièses Kapitels charakterisiert diejenigen Dedekind-Ringe
R, fur welche jede SE-abgeschlossene Klasse von endlich erzeugten K-Moduln
die Hom-Ext-Eigenschaft besitzt. Er zeigt ferner, dass es genùgt, wenn dies fur
sehr spezielle Klassen (die Klasse {0} bzw. die Klasse aller endlich erzeugten
JR-Moduln) gilt. Dièse Aussagen sind iiberdies âquivalent mit der Gûltigkeit des

Satzes von Stein-Serre.

THEOREM 2.1 Fur einen Dedekind-Ring R mit Quotientenkôrper Q sind

folgende Aussagen âquivalent:
(a) ExtR(Q,R)*0.
(b) Es sei A ein beliebiger R-Modul. Dann ist mit HomR (A, R) 0 und

ExtR (A, R) 0 auch A 0.

(c) Es sei A ein beliebiger R-Modul. Dann ist mit HomR (A, R) und

ExtR (A, R) auch A endlich erzeugt.
(d) Es sei C eine beliebige SE-abgeschlossene Klasse von endlich erzeugten

R-Moduln und A irgendein R-Modul. Dann gehôrt mit HomR (A, R) und

ExtR (A, R) auch A zu C.
(e) &quot;Satz von Stein-Serre&quot;: Jeder R-Modul A von abzâhlbarem Rang mit

ExtR (A, R) 0 ist projektiv.

Unter dem Rang RgA eines R-Moduls A verstehen wir die Dimension des

O-Vektorraums Q®RA.

Bemerkung. Die Aussage (a) von Theorem 2.1 steht im Zusammenhang mit
topologischen Eigenschaften des Rings .R. Ist nâmlich R ein beliebiger
Integritàtsbereich (kein Kôrper), so verschwindet ExtR (Q,R) genau dann, wenn
R in der durch die Idéale I#0 definierten Topologie vollstândig ist (s. [7,
Korollar 6.11]). Ein vollstândiger Dedekind-Ring ist ûbrigens von selbst lokal und
damit ein (vollstândiger) diskreter Bewertungsring (vgl. [9, Korollar 7.9]). Die
durch Theorem 2.1 charakterisierten Ringe sind also die nicht-vollstândigen
Dedekind-Ringe.

Wir ordnen den Beweis von Theorem 2.1 in folgender Weise an: Die
Implikation (b)=£&gt;(a) ist trivial; den Beweis der Umkehrung findet man bei Nunke
[9, Theorem 8.5], er wird deshalb weggelassen. Im nâchsten Abschnitt beweisen

wir in dieser Reihenfolge: (b)=&gt;(c), (c)=£&gt;(d) und (b)=^(e). Der &quot;Satz von Stein-
Serre&quot; wird ûbrigens (auf anderem Wege) in [9] ebenfalls bewiesen. Schliesslich
sind die Implikationen (d)=£&gt;(b) und (e)=£&gt;(a) wiederum trivial.
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2.3. Der Modul HomR (A, R) heisst auch der zu A duale Modul und wird mit
A* bezeichnet. Die Abbildung iA:A-* A**, welche gegeben ist durch iA(a):/•-*
f(a) fur a g A und /ê A*, vermittelt eine natûrliche Transformation der Identitàt
in den Funktor (—)**. Ist iA monomorph, so nennt man A torsionslos.

LEMMA 2.2. Es sei R ein Dedekind-Ring, fur den die Aussage (b) von
Theorem 2.1 erfullt ist. Dann ist jeder R-Modul A mit ExtR (A, jR) 0 torsionslos.

Beweis. Es ist Ker iA {a e A | f(à) 0 fur aile fe A*}. Die Inklusion
X:=KeriAçA induziert folglich die Nullabbildung A* ^ K* und somit eine
exakte Folge

0 -&gt; K* -* ExtR (A/K, JR) -* ExtR (A, R) 0.

Als Untermodul von A** ist A/K torsionsfrei; nach Prop. 1.3(a) ist dann
ExtR (A/K, R) teilbar. Damit ist K* sowohl teilbar als auch reduziert, also gilt
K* 0. Andererseits verschwindet mit ExtR (A, R) auch ExtR (K,R); aus (b)
folgt K - 0 und damit die Behauptung.

Nun sind wir imstande, die Implikation (b)^&gt;(c) von Theorem 2.1 zu be-
weisen: Es sei A ein .R-Modul mit der Eigenschaft, dass HomR (A, .R) und
ExtR (A, JR) endlich erzeugt sind. Wegen (1.2b) sind damit auch HomR (A/tA, R),
ExtR (AItA, R) und ExtR (fA, #) endlich erzeugt. Nach Prop. 1.3(a) ist aber
ExtR (A/tA, R) auch teilbar und muss daher verschwinden. Aus Lemma 2.2 folgt
dann, dass es einen Monomorphismus A/tA&gt;+(AltA)** gibt. Nun ist mit (A/tA)*
auch (A/tA)** endlich erzeugt, also ist auch A/tA endlich erzeugt.

Es bleibt zu zeigen, dass tA endlich erzeugt ist. Wegen (b) gilt
ExtR (Q, R)t*0; dann ist tA nach [9, Lemma 8.2] beschrânkt und zerfâllt daher
in eine direkte Summe rA=©ieJC von zyklischen Torsionsmoduln Q (vgl.
(1.1c)). Nach Lemma 1.4 gilt dann ExtR (tA, R) Y[lGiQ; mit ExtR (tA, R) ist
somit auch tA endlich erzeugt.

Beweis von (c)=&gt;(d). Es sei C eine SE -abgeschlossene Klasse von endlich

erzeugten R-Moduln und A ein K-Modul mit HomR (A, R)eC und
ExtR (A, JR)€C. Dann folgt mit (c), dass A endlich erzeugt ist. Nach Prop. 1.5

besitzt also A die Darstellung A tA(BB&apos;, ferner ist ExtR (A, R) tA, und es

gibt einen Monomorphismus B&gt;*HomR (A, R). Weil C die Bedingungen (S) und
(E) erfullt, gilt daher tAeC, BeC und damit auch AeC.

Bemerkung. Wir haben nur verwendet, dass die Klasse C gegenûber Unter-
moduln und direkten Summen abgeschlossen ist. Folglich besitzt auch jede Klasse

von endlich erzeugten R-Moduln, welche diesen beiden Bedingungen genûgt, die

Hom-Ext-Eigenschaft.
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Fur unsern Beweis des Satzes von Stein-Serre benôtigen wir zwei weitere
Hilfssâtze, welche fur beliebige Dedekind-Ringe richtig sind:

LEMMA 2.3. Jeder torsionslose R-Modul von endlichem Rang ist projektiv.

Beweis. Jeder torsionslose R-Modul von endlichem Rang ist nach [8, Prop.
1.3] endlich erzeugt. Ein endlich erzeugter torsionsloser R-Modul ist aber ein
Untermodul eines freien R-Moduls und damit projektiv.

LEMMA 2.4. Es sei A ein R-Modul von abzàhlbarem Rang mit der

Eigenschaft, dass jeder Untermodul von endlichem Rang projektiv ist. Dann ist A
projektiv.

Fur einen Beweis siehe [9, Lemma 8.3].

Beweis des Satzes von Stein-Serre (d.h. der Implikation (b)=&gt;(e) von Theorem
2.1). Es sei R ein Dedekind-Ring, fur den (b) erfûllt ist, und A ein jR-Modul von
abzàhlbarem Rang mit Extj* (A, jR) 0. Dann ist A nach Lemma 2.2 torsionslos,
und dasselbe gilt fur jeden Untermodul von A. Wir schliessen mit Lemma 2.3,
dass jeder Untermodul von endlichem Rang projektiv ist; nach Lemma 2.4 ist
dann A selbst projektiv.

3. Màchtigkeitsschranken

Im gegenwârtigen Paragraphen beweisen wir die stârkste Aussage, die wir fur
einen beliebigen nicht-vollstândigen Dedekind-Ring JR bei vorgegebenen
Màchtigkeitsschranken von HomR (A, jR) und ExtR (A, R) ùber den R-Modul A
machen kônnen (Theorem 3.3). Aile weiteren Sâtze der Arbeit (mit Ausnahme
der Propositionen 4.6 und 4.7) sind Folgerungen daraus.

3.1. Der Beweis von Theorem 3.3 beruht auf den folgenden beiden
Hilfssâtzen:

LEMMA 3.1. Es sei R ein nicht-vollstândiger Dedekind-Ring. Dann gibt es zu
jedem R-Modul A einen Untermodul B, derart dass folgende Abschâtzungen
gelten:

(i) 2RgB ^ |HomR (A, R)\ |Ext* (A, R)\ ;

(ii) 2RgA/fî ^ |HomR (B, R)\ |ExtR (A, R)\.
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Beweis. Zunàchst nehmen wir an, A sei ein torsionsfreier K-Modul; ferner sei
ein Primideal von R und peP, p^O. Wir definieren eine Abbildung

/: A —» PA durch a*-+pa, aeA. Da der Cokern von / ein Torsionsmodul ist, gibt
es eine exakte Folge

0 -* HomR (PA, R) -+ HomR (A, R);

also gilt |HomR (PA, K)|^|HomR (A, R)\. Andererseits induziert die Inklusion
PA c A eine exakte Folge

HomR (PA, R) -» ExtR (A/PA, R) -» ExtR (A, R);

daher gilt |ExtR (A/PA, K)|^|HomR (A, R)\ |ExtR (A, jR)|.
Da R/P ein Kôrper ist, zerfâllt A/PA (als R/P-Vektorraum) in eine direkte

Summe ©ieI(K/P),. Somit ist ExtR (A/PA, R) Uisi(R/P)i, und wir erhalten die

Abschâtzung

(iii) 2d Yi(R/P\ :|HomR(A,R)||ExtR(A,R)|

mit à dirriR/p (A/PA).
Nun sei X {x, e A | i g 1} ein Reprâsentantensystem einer R/P-Basis von

A/PA. Definieren wir dann B als den kleinsten reinen Untermodul von A, der X
enthâlt, so gilt RgB Rg(X)^d und mit (iii) folgt die Abschâtzung (i).

Der Modul B ist so gewâhlt worden, dass der Faktormodul C:=A/B tor-
sionsfrei und P-teilbar ist. Dann ist C nach Lemma 1.8 ein QP-Modul. Ist Co ein
maximaler freier QP-Untermodul von C, so ist Rg Co Rg C, und wegen der
exakten Folge

ExtR (C, R) -&gt; ExtR (Co, R) -* 0

gilt |ExtR(QP,jR)|RgC^|ExtR(C,JR)|. Da R nicht-vollstândig ist und
HomR (QP,R) verschwindet, ist ExtR (QP, R)*0; also gilt die Abschâtzung

(iv)

Nun gibt 0-»B-»A-*C-*0 Anlass zu einer exakten Folge

HomR (JB, R) -» ExtR (C, JR) -&gt; ExtR (A, R).
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Es folgt |ExtR (C, K)|^|HomR (B, jR)| |ExtR (A, R)\ und somit wegen (iv) die

Abschâtzung (ii).
Es sei jetzt A ein beliebiger JR-NÎodul. Wie soeben gezeigt, besitzt dann

A&apos;:=A/tA einen Untermodul B&apos;, derart dass die Abschâtzungen (i) und (ii)
gelten. Wir bezeichnen die Projektion A-$&gt;A/tA mit rr und definieren
B := ir^iB&apos;). Dann ist tB Ker tt\b fA, und rr induziert einen Isomorphismus
A/B A&apos;/B&apos;. Somit gilt RgB RgB&apos; und Rg A/B Rg A&apos;/B&apos;; mit (1.2b) und
den Abschâtzungen (i) und (ii) fur A&apos; und B&apos; folgt, dass dièse Abschâtzungen
auch fur A und B gelten.

LEMMA 3.2. Ist R ein beliebiger Dedekind-Ring, so besitzt jeder R-Modul A
ein Erzeugendensystem S mit

Beweis. Es gibt ein wohlgeordnetes Erzeugendensystem S {aleA\i&lt;a}
von A, a eine Ordinalzahl, derart dass alé(a]eS\j&lt;i) fur aile i&lt;a. Wir
definieren fur jedes i &lt; a Untermoduln Al: (a]eS\j^ i) und A? :

Uj^Aj (Ao: 0). Nach der Wahl von S sind die Moduln AJA°* 0.

Wir werden nun eine Mengenabbildung

$ : fi HomR (AM?, Q/R) -&gt; HomR (A, Q/K)

konstruieren. Zu diesem Zweck sei fur jedes i&lt;a und fur jede Abbildung
/:A?-^Q/K eine Abbildung c,(/): A,-&gt; O/JR mit el(/)|A? / ausgezeichnet. Da
Q/Jî injektiv ist, existieren solche Erweiterungen immer.

Nun sei ein Elément (K) e l\l&lt;a HomR (AJA°, Q/R) gegeben. Wir
konstruieren dazu induktiv eine Folge (/i)l&lt;a von Abbildungen /,eHomR (Al5 Q/R)
mit /JAj =f} fur aile /&lt;î: Wir setzen /0:= h0eHomR (Ao, Q/R). Sind die /j fur
j&lt;i schon vertrâglich definiert, so gibt es genau ein /?eHomR (A?, Q/R) mit

/fU^/j fur aile j&lt;L Wir definieren /,:= e^/^ + h^eHoniR (A,, Q/jR), wo tt,
die Projektion A^AJA0, bezeichnet; nach Konstruktion gilt /»|a, =// fur aile
/&lt;ï. Die derart konstruierte Folge (/»),&lt;« legt nun eindeutig eine Abbildung
/eHomR (A, Q/R) fest mit /|Ai =/i fur aile i&lt;a. Wir definieren

n durch

Wir behaupten, die Abbildung &lt;I&gt; sei eine Injektion. Sind (g,), (h,) zwei
verschiedene Folgen aus fli&lt;a HomR (AJA°, Q/R), so gibt es einen kleinsten
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Index |3 mit gp^hp. Folglich ist ^gOUj! *(foi)Lv a^er es existiert
A$ — A% mit gpTTpia)^ hpirp(a). Setzen wir g: &lt;I)(gi)|Ap&gt; so gilt daher

d.h.
Da nach Lemma 1.6 HomR (AJA°ly Q/R) fur jedes i&lt;a nichttrivial ist, gilt

;|HomR(A,Q/R)|.

3.2. Das Hauptresultat dièses Paragraphen lautet nun:

THEOREM 3.3. Es sei R ein beliebiger nicht-vollstàndiger Dedekind-Ring
und Xa eine unendliche Kardinalzahl, welche der folgenden Bedingung genùgt:

(*) Fur jede Kardinalzahl c mit 2c^Xa gilt \R\C ^Ka.
Dann besitzt jeder R-Modul A mit |HomR (A, R)\^ Ka und |ExtR (A, R)\^ Ka

ein Erzeugendensystem S, fur welches die Abschâtzung 2|s| =^ X« gilt.

Beweis. Nach Lemma 3.1 gibt es einen Untermodul B von A, derart dass die

Abschâtzungen

(i) 2RgB ^ |HomR (A, R)\ |ExtR (A, R)\ und

(ii) 2RgA/B ^ |HomR (B, R)\ |ExtR (A, R)\

erfûllt sind. Folglich ist 2RgB^Ka, und wegen (*) gilt damit |R|RgB^Ka. Ist nun
Bo ein maximaler freier Untermodul von B, so ist B/Bo ein Torsionsmodul, und es

gilt daher |HomR (B, l*)|^|HomR (Bo, R)| |R|RgB und damit |HomR(B, R)|^
Ka. Daraus folgt mit (i) und (ii) die Abschâtzung 2RgA^Xa, und wegen (*) gilt
somit li^p^^Na.

Nun betrachten wir die exakte Folge

HomR (A, Q) -* HomR (A, Q/R) -&gt; ExtR (A, R).

Da HomR (A, Q) HomQ (A®RQ, O) ist, gelten die (Un-) Gleichungen

|HomR(A,Q)| |Q|RgA |JR|RgA

Wegen |ExtR (A, R)|^K« ist dann auch |HomR (A, Q/R)|^N«; es folgt mit
Lemma 3.2, dass A ein Erzeugendensystem S besitzt, fur welches die

Abschâtzung 2|S|^K« gilt.
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3.3. Ist R ein Ring von beliebiger unendlicher Mâchtigkeit, so ist die Beding-

ung (*) der Voraussetzung von Theorem 3.3 fur jede Kardinalzahl |R|

erfûllt: Es sei c eine Kardinalzahl mit 2c^Xa. Ist c^\R\, so gilt |jR|c^
ist aber c&gt;|R|, so haben wir |R|c

Als erste Folgerung aus Theorem 3.3 erhalten wir

KOROLLAR 3.4. Ist R ein nicht-vollstândiger Dedekind-Ring, so gilt fur
jeden R-Modul A die Abschâtzung

Beweis. Es sei X« 2|R| |HomR (A, jR)| |ExtR (A, JR)|. Nach obiger Bemerkung
erfûllt Ka die Bedingung (*), und es gilt |HomR (A, .R)|^Ka und |ExtR (A, R)\^
Ka. Dann folgt aus Theorem 3.3, dass A ein Erzeugendensystem S besitzt mit

Nun ist 2|A|^2|S|2|R|; also gilt, wie behauptet, ||
Wir erinnern daran, dass die Klasse C(Ka) aus denjenigen jR-Moduln besteht,

deren Mâchtigkeit kleiner als Ka ist. Es sei nun Ka^2|R|; gilt dann
|HomR(A,R)|&lt;2x« und |ExtR (A, R)\&lt;2\ so folgt aus Korollar 3.4 die

Abschâtzung |A|&lt;Xa. Wir erhalten damit folgendes Résultat fur die Klassen

C(Ktt):

THEOREM 3.5. Es sei R ein beliebiger nicht-vollstàndiger Dedekind-Ring, Xa
eine Kardinalzahl^2|R| und A ein beliebiger R-Modul. Dann gehôrt mit
HomR (A, R) und ExtR (A, R) auch A zu C(KJ.

Mit andern Worten besitzt die Klasse C(Ka) fur jede Kardinalzahl K«^2|R| die

Hom-Ext-Eigenschaft.

4. Abzahlbare Dedekind-Ringe

4.1. Von nun an sei R immer ein abzàhlbarer Dedekind-Ring (fcein Kôrper).
Solche Ringe sind stets nicht-vollstàndig. Dies kann anhand der exakten Folge

HomR (O, O) -&gt; HomR (Q, Q/R) -» ExtR (Q, R)

eingesehen werden: Nach Lemma 3.2 gilt |HomR (Q, Q/J?)|^2X°; ohnehin ist

|HomR (O, Q/R)\*z2*°, also gilt Gleichheit. Da HomR (Q, Q)^Q abzâhlbar ist,
muss somit auch |ExtR (Q, JR)| 2X° sein; R ist also nicht-vollstândig. Genauer gilt
sogar Rg[ExtR (Q, R)] 2K° (dies folgt z.B. aus Lemma 4.5).
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Die Beschrânkung auf abzàhlbare Dedekind-Ringe .R hat ferner den Vorteil,
dass jede unendliche Kardinalzahl Xa die Bedingung (*) der Voraussetzung von
Theorem 3.3 erfûllt: Ist c endlich, so gilt sicher |JR|c^Ka; ist aber c eine
unendliche Kardinalzahl mit 2e ^Xa, so gilt |JR|C 2c^Ka. Dies bewirkt, dass die

Aussage von Korollar 3.4 verschàrft werden kann:

THEOREM 4.1. Es sei R ein abzàhlbarer Dedekind-Ring. Dann besitzt jeder
R-Modul A ein Erzeugendensystem S, derart dass folgende Abschâtzung gilt:

Beweis. Ist die Kardinalzahl |HomR (A, R)\ |ExtR (A, R)\ unendlich, so erfùllt
sie, wie soeben gezeigt, die Bedingung (*). Die Behauptung des Satzes ist dann
eine unmittelbare Folgerung aus Theorem 3.3. Ist |HomR (A, R)\ |ExtR (A, R)\
hingegen endlich, so ist A nach Theorem 2.1 (d) selbst endlich. Dann gibt es ein

Erzeugendensystem S mit 2|S|^|A|. Da nach Prop. 1.5(b) A ExtR(A, R) ist,

gilt fur dièses System S die Behauptung.

Es folgen daraus Verbesserungen der bisherigen Resultate betreffend Klassen

mit der Hom-Ext-Eigenschaft (vgl. Théorème 3.5 bzw. 2.1):

THEOREM 4.2. Es sei R ein abzàhlbarer Dedekind-Ring, N« eine beliebige
unendliche Kardinalzahl und A irgendein R-Modul Dann gehôrt mit
HomR (A, R) und ExtR (A, R) auch A zu C(KJ.

Beweis. Fur ûberabzâhlbare Kardinalzahlen folgt dièse Aussage aus Theorem
4.1; fur Xo hingegen ist sie eine Konsequenz aus Theorem 2.1(d).

THEOREM 4.3. Ist R ein abzàhlbarer Dedekind-Ring, so besitzt jede SE-
abgeschlossene Unterklasse von C(2*°) die Hom-Ext-Eigenschaft.

Beweis. Es sei C eine SE-abgeschlossene Unterklasse von C(2*°) und A ein
JR-Modul mit der Eigenschaft, dass HomR (A, JR) und ExtR (A, JR) zu C gehôren.
Dann ist A nach Theorem 4.1 endlich erzeugt, und dasselbe gilt fur HomR (A, R)
und ExtR (A, R). Folglich sind HomR (A, R) und ExtR (A, R) in der Klasse Ce

aller endlich erzeugten R -Moduln, welche zu C gehôren. Die Klasse Ce ist

SE-abgeschlossen; es folgt mit Theorem 2.1(d), dass auch A in Ce und damit erst
recht in C liegt.

4.2 Als bemerkenswertes Nebenprodukt erhalten wir Aussagen ûber R-
Moduln, welche àquivalent sind zur Négation der speziellen Kontinuums-

hypothese 2K° Xi:
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KOROLLAR 4.4. Ist R ein abzàhlbarer Dedekind-Ring, so sind folgende
Aussagen âquivalent:

(i) 2X°&gt;K1.

(ii) Jeder R-Modul A mit |HomR (A, JR)|^Ki und |ExtR (A, J?)|^Xi ist end-
lich erzeugt.

(iii) Jede SE-abgeschlossene Unterklasse von C(X2) besitzt die Hom-Ext-
Eigenschaft.

Beweis. Die Implikation (i)=^(ii) folgt aus Theorem 4.1, wâhrend
analog bewiesen wird wie Theorem 4.3 mit C(K2) anstelle von C(2*°).

Fur (iii)=&gt;(i) beweisen wir die Kontraposition anhand der Klasse C aller
torsionsfreien i?-Moduln mit Mâchtigkeit^2N°. Dièse Klasse ist SE-
abgeschlossen, besitzt aber die Hom-Ext-Eigenschaft nicht: Es gilt
HomR (Q/R, R) 0; ferner ist ExtR (Q/R, R) nach Prop. 1.3(b) torsionsfrei, und

wegen ExtR (Q/R, JR) HomR (Q/R, Q/R) gilt |ExtR (Q/R, jR)|^2*°. Folglich
gehôren HomR (Q/R,R) und ExtR (Q/R,R) zu C, aber Q/R liegt nicht in C.
Nehmen wir nun an, (i) sei falsch, so ist C in C(X2) enthalten; also ist auch (iii)
falsch.

4.3. Dem Beweis von Korollar 4.4 entnehmen wir, dass die Klasse aller
torsionsfreien jR-Moduln mit Mâchtigkeit^2N° die Hom-Ext-Eigenschaft nicht
besitzt. Dies widerlegt nicht nur die Vermutung, dass jede SE-abgeschlossene
Klasse dièse Eigenschaft besitze, sondern zeigt auch, dass die Mâchtigkeits-
schranke in Theorem 4.3 nicht vergrôssert werden kann. Hingegen bleibt die

Frage oflfen, ob fur jede Serre-Klasse von Moduln ûber einem abzâhlbaren

Dedekind-Ring die Hom-Ext-Eigenschaft erfûllt sei. Insbesondere wissen wir dies

im Fall der Klasse T aller Torsionsmoduln nicht. Immerhin kônnen wir zeigen,
dass die Klasse T(2Xl): TnC(2Kl) Und die Klassen T(P) aller Torsionsmoduln A
mit tpA 0 die Hom-Ext-Eigenschaft besitzen. Dazu benôtigen wir den folgen-
den Hilfssatz:

LEMMA 4.5. Jeder torsionsfreie R-Modul A von endlichem Rang ist entweder

projektiv, oder es gilt Rg [ExtR (A, R)] 2\
Beweis. Ist A nicht projektiv, so gilt ExtR (A, R)jé0. Die Behauptung folgt

nun aus [4, Prop. 1].

PROPOSITION 4.6. Es sei R ein abzàhlbarer Dedekind-Ring und A ein

beliebiger R-Modul Dann gehôrt mit HomR (A, JR) und ExtR (A, R) auch A zur
Klasse T(2*&gt;).
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Beweis. Aus |HomR (A, K)|&lt;2Xl und |ExtR (A, R)\&lt;2*1 folgt mit Theorem
4.1, dass A abzâhlbar ist. Es bleibt zu zeigen, dass A ein Torsionsmodul ist. Mit
ExtR (A, R) ist nach (1.2b) auch ExtR (A/tA, R) ein Torsionsmodul, und fur
jeden Untermodul B von A/tA ist Ext* (J5, R) ein Torsionsmodul. Nach Lemma
4.5 ist somit jeder Untermodul mit endlichem Rang von A/tA projektiv. Dann ist
A/tA nach Lemma 2.4 selbst projektiv. Nun gilt aber HomR (A/tA, K)
HomR (A, R) 0; also muss A/tA verschwinden, dh. A ist ein Torsionsmodul.

PROPOSITION 4.7. Es sei R ein abzâhlbarer Dedekind-Ring, P#0 ein
Primideal von R und A ein beliebiger R-Modul. Dann ist mit HomR (A, R) und
ExtR (A, R) auch A in T(P).

Beweis. Sind HomR (A, R) und ExtR (A, R) aus T(P), so ist A nach Lemma
1.7 P-teilbar. Dann ist auch A/tA P-teilbar und damit nach Lemma 1.8 ein
Qp-Modul. Es sei nun Ao ein maximaler freier QP-Untermodul von A/tA. Dann
ist mit ExtR (A/tA, R) auch ExtR (Ao, R) ein Torsionsmodul; daraus folgt mit
Lemma 4.5, dass Ao und daher auch A/tA verschwindet.

Es bleibt zu zeigen, dass tPA 0 ist. Als direkter Summand eines P-teilbaren
Moduls ist tpA selbst P-teilbar und damit teilbar, denn tPA ist ohnehin P&apos;-teilbar

fur jedes nichttriviale Primideal P&apos;*P. Folglich ist tPA =(BieiR(p~)i. Da
ExtR (tpA, R) ein Torsionsmodul, ExtR (K(P°°), R) hingegen torsionsfrei (nach

Prop. 1.3(b)) und nichttrivial ist, muss die Indexmenge I leer sein; also gilt
tPA 0.

Bemerkung. Es gibt (uberabzâhlbare) Dedekind-Ringe JR mit der Eigenschaft,
dass ExtR (O, R) Q ist (vgl. [5]). Fur einen solchen Ring besitzt z.B. der
torsionsfreie K-Modul A ExtR (Q/R, R) die Eigenschaft, dass HomR (A, R) 0

und ExtR (A, R) ein Torsionsmodul ist. Es gibt also (uberabzâhlbare) nicht-
vollstàndige Dedekind-Ringe, fur welche die Klasse aller Torsionsmoduln die

Hom-Ext-Eigenschaft nicht besitzt.
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