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Klassen von Moduln iiber Dedekind-Ringen und
Satz von Stein-Serre

von MARTIN HUBER

Einleitung

1. Es sei R ein kommutativer Ring (kein Koérper) und A ein beliebiger
R-Modul. Wir untersuchen die folgende Frage: Wie weit kann aus Eigenschaften
des dualen Moduls Hompg (A, R) und des von ihm ‘‘abgeleiteten”” Moduls
Extr (A, R) auf entsprechende Eigenschaften von A geschlossen werden? Im Fall
R =Z (ganze Zahlen) kennt man die Spezialfille:

(1) Ist Homz (A, Z)=0 und Extz (A, Z)=0, so ist auch A =0, und
(2) Mit Hom; (A, Z) und Ext (A, Z) ist auch A endlich erzeugt (siche [1]).

Priziser formuliert lautet unsere Frage: Welche Klassen C von R-Moduln
besitzen die ‘“‘Hom-Ext-Eigenschaft”’: dass mit Homg (A, R) und Extgr (A, R)
auch A zu C gehort? Dabei wollen wir nur Klassen C betrachten, welche
beziiglich Untermoduln und Erweiterungen abgeschlossen sind (wir nennen sie
SE-abgeschlossen).

Fiir Dedekind-Ringe R konnen wir diese Frage weitgehend beantworten. Wir
zeigen zunichst, dass im Falle Extg (Q, R) #0 jede SE-abgeschlossene Klasse
von endlich erzeugten R-Moduln die Hom-Ext-Eigenschaft besitzt; dabei be-
zeichnet Q den Quotientenkorper von R. Genauer gilt

SATZ A (Theorem 2.1). Fiir einen Dedekind-Ring R sind folgende Aussagen
dquivalent:

(a) Extg (Q, R)#0.

(b) Aus Hompg (A, R)=0 und Extg (A, R)=0 folgt stets A =0.

(¢) Sind Hompg (A, R) und Extg (A, R) endlich erzeugt, so ist auch A endlich
erzeugt.

(d) Jede SE-abgeschlossene Klasse von endlich erzeugten R-Moduln besitzt die
Hom-Ext-Eigenschaft.

(e) Jeder R-Modul A von abzdhlbarem Rang mit Extg (A, R) =0 ist projektiv.
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528 MARTIN HUBER

Es gilt Extg (Q, R)=0 genau fiir diejenigen Dedekind-Ringe R, welche
vollstindig sind (in der R-Topologie); solche sind von selbst (vollstdndige) dis-
krete Bewertungsringe. Die durch Satz A charakterisierten Ringe sind also die
nicht-vollstindigen Dedekind-Ringe. Im Fall der abelschen Gruppen sind (a)-(e)
erfiillt; die Aussage (e) ist dann bekannt als “Satz von Stein-Serre’’ [2, Theorem
III. 6.1].

2. Bei der Suche nach weiteren Klassen mit der Hom-Ext-Eigenschaft haben
die Maichtigkeitsbetrachtungen, welche im Fall der abelschen Gruppen zum
Beweis des Satzes von Stein-Serre fithren, den Weg gewiesen. Fiir einen nicht-
vollstandigen Dedekind-Ring R und fiir eine beliebige Kardinalzahl X, =|R| wird
die Klasse C(X,) aller R-Moduln mit Michtigkeit <X, untersucht (dabei ist |R|
die Michtigkeit von R). Dies fiihrt zum zweiten Hauptresultat der Arbeit:

SATZ B (Theorem 3.3). Es sei R ein beliebiger nicht-vollstindiger Dedekind-
Ring und N, eine Kardinalzahl mit der Eigenschaft

(*) Fiir jede Kardinalzahl c ist mit 2°<¥, auch |R|°<X,.
Dann besitzt jeder R-Modul A mit |Homg (A, R)|<R, und |Extg (A, R)|<X,
ein Erzeugendensystem S mit 2'S'<R,,.

Die Bedingung (*) ist fiir jede Kardinalzahl X, =2'®! erfiillt. Damit erhalten wir

(KOROLLAR 3.4). Ist R ein nicht-vollstindiger Dedekind-Ring, so gilt fiir
jeden R-Modul A die Abschdtzung

241< 2Rl |Hompg (A, R)| |Extg (A, R)|.

Fiir die Klassen C(NX,) erhdlt man insbesondere:

SATZ C (Theorem 3.5). Ist R ein nicht-vollstindiger Dedekind-Ring, so
besitzt die Klasse C(X.) fiir jede Kardinalzahl X, =2'"®! die Hom-Ext-Eigenschaft.

3. Im vierten Paragraphen wird R stets als abzdhlbarer Dedekind-Ring
vorausgesetzt. Solche Ringe sind nicht-vollstindig und haben den Vorteil, dass die
Bedingung (*) fiir jede unendliche Kardinalzahl erfiillt ist. Aus Satz B folgt damit

SATZ D (Theorem 4.1). Ist R ein abzdhlbarer Dedekind-Ring, so besitzt jeder
R-Modul A ein Erzeugendensystem S mit

2'5l<|Homg (A, R)||Extg (A, R)|.
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Im Hinblick auf unsere Fragestellung interessieren vor allem die beiden
folgenden Korollare:

SATZ E (Theorem 4.2). Ist R ein abzdhlbarer Dedekind-Ring, so besitzt die
Klasse C(X,) fiir jede unendliche Kardinalzahl X, die Hom-Ext-Eigenschafft.

SATZ F (Theorem 4.3). Ist R ein abzdhlbarer Dedekind-Ring, so besitzt jede
SE-abgeschlossene Unterklasse von C(2%°) die Hom-Ext-Eigenschafft.

Als bemerkenswertes Nebenprodukt erhalten wir eine Aussage iiber R-Moduln,
welche dquivalent ist zur Negation der speziellen Kontinuumshypothese 2™ = X;:

(KOROLLAR 4.4). Folgende Aussagen sind dquivalent:

(i) 2%>N,

(ii) Jeder R-Modul A mit |[Hompg (A, R)|<¥; und |Extgr (A, R)|<N; ist end-
lich erzeugt.

Wir wissen nicht, ob die Klasse aller Torsionsmoduln fiir einen abzdhlbaren
Dedekind-Ring R die Hom-Ext-Eigenschaft besitzt. Immerhin konnen wir
zeigen, dass die ‘“Torsionsklassen” T(2™) aller Torsionsmoduln mit Machtigkeit
<2™ und T(P) aller Torsionsmoduln mit verschwindender P-Primir-Kom-
ponente (fiir ein Primideal P) diese Eigenschaft haben (sieche Abschnitt 4.4).

Es sei noch bemerkt, dass sich die Resultate dieser Arbeit auf R-projektive
Komplexe anwenden lassen. Neben Beziehungen zwischen Homologie- und
Cohomologiemoduln mit Koeffizienten in R erhélt man auch Kriterien fiir das
Verschwinden von Homologie- und Cohomologiemoduln mit Koeffizienten in
R/P* und Q. Die austiihrliche Formulierung findet sich in der vorliufigen Fassung[3]
der vorliegenden Arbeit.

4. Satz A ist nur teilweise neu; die Aequivalenz der Aussagen (a), (b) und (e)
steht schon bei Nunke [9]. Unser Beweis des ‘‘Satzes von Stein-Serre” ist aber
vom dort angegebenen verschieden (vgl. 2.3 unserer Arbeit). Hingegen sind die
Satze B, C, D, E und F neu—auch im Fall der abelschen Gruppen, mit Ausnahme
eines Spezialfalls von Satz D, welcher in [10, Theorem 9] enthalten ist.

Unser Vorgehen beim Beweis von Satz B, der die Grundlage fiir die Sitze C,
D, E und F bildet, kann kurz so skizziert werden: Zunichst zeigen wir, dass
Hompg (A, Q) derselben Maichtigkeitsschranke unterliegt wie Homg (A, R) und
Extg (A, R); hiefiir wird die Vektorraumstruktur des Moduls A/PA (fiir ein
Primideal P) herangezogen. Die weiteren wesentlichen Beweisschritte sind die
Auswahl des Erzeugendensystems S wund das ‘““Abzidhlen” der R-
Homomorphismen von A in Q/R mithilfe des Systems S.
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Dass wir R als Dedekind-Ring annehmen, hat folgende Griinde: Wir verwen-
den wesentlich, dass Q/R ein injektiver R-Modul ist und die Eigenschaft besitzt,
dass fiir jeden R-Modul A # 0 auch Homg (A, Q/R) # 0 ist. Die Injektivitdt von
Q/R bewirkt u.a., dass der Funktor Extg (—, R) rechtsexakt ist. Ferner beniitzen
wir Struktursitze fiir R-Torsionsmoduln, welche darauf beruhen, dass die Ideale
eines Dedekind-Rings invertierbar sind (vgl. 1.1). Einige Resultate gelten auch
fiir allgemeinere kommutative Ringe, die an anderer Stelle diskutiert werden
sollen.

Die vorliegende Arbeit ist ein iiberarbeiteter Auszug aus meiner Disserta-
tion.* Herrn Professor Beno Eckmann méchte ich meinen herzlichsten Dank
ausdriicken; sein Interesse und seine Erfahrung haben sehr viel zur Ver-
wirklichung dieser Arbeit beigetragen. Daneben habe ich auch von den Herren
Prof. Urs Stammbach und Peter Neumann wertvolle Anregungen erhalten, fiir die
ich an dieser Stelle ebenfalls danken mochte.

1. Moduln iiber Dedekind-Ringen

Dieser Paragraph hat vorbereitenden Charakter. Die Beweise fiir die in 1.1
zusammengestellten Aussagen sind in [13], [11] und [6] zu finden. Die Abschnitte
1.2 und 1.3 handeln von den Funktoren Homyz und ® k. Es werden Hilfssétze
hergeleitet, die auf die Fragestellung unserer Arbeit zugeschnitten sind.

1.1. Es sei R ein Integrititsbereich mit Quotientenkorper Q. Ist I#0 ein
Ideal von R, so ist {g€ Q | gl = R} ein R-Modul, der mit I"* bezeichnet wird. Gilt
I"'I=R, so heisst I invertierbar. Ein Dedekind-Ring ist ein Integrititsbereich mit
der Eigenschaft, dass jedes Ideal I# 0 invertierbar ist. Invertierbare Ideale sind
endlich erzeugt, also sind Dedekind-Ringe Noethersch. Diese besitzen ferner die
Eigenschaft, dass jedes Primideal P# 0 maximal ist.

Ist P ein Primideal eines Integritdtsbereiches R, so bilden die Elemente der
Form r/s, re R, s€ R—P, einen Unterring von Q, der mit Rp bezeichnet wird.
Der Ring Rp ist lokal mit maximalem Ideal PRp; man nennt Rp die P-
Lokalisierung von R. Ein Hauptidealbereich mit genau einem Primideal P#0
heisst diskreter Bewertungsring. Ist R ein Dedekind-Ring, so ist fiir jedes
Primideal P# 0 die P-Lokalisierung Rp ein diskreter Bewertungsring.

Ein Ideal I# 0 ist genau dann invertierbar, wenn es als R-Modul projektiv ist;
Dedekind-Ringe konnen also charakterisiert werden als diejenigen
Integrititsbereiche, fiir welche jedes Ideal projektiv ist.

* ETH Ziirich, Dezember 1975; vervielfaltigt in [3].
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Von nun an sei R immer ein Dedekind-Ring mit Quotientenkorper Q# R.
Der Torsionsuntermodul eines R-Moduls A werde mit tA beziechnet. Unter der
Ordnung eines Elements a € A verstehen wir das Ideal O(a) ={re R | ra = 0}. Die
P-(Primdr-)Komponente tpA (fiir ein Primideal P#0) des R-Moduls A besteht
aus denjenigen Elementen von A, deren Ordnung eine Potenz von P ist. Gilt
tpA = A, so heisst A ein P-Primdrmodul. Man nennt einen Modul A beschrdnkt,
falls es ein re R, r# 0, gibt, derart dass rA =0 ist. Fiir R-Torsionsmoduln gelten
folgende Struktursitze:

(1.1a) Jeder Torsionsmodul ist die direkte Summe seiner P- Komponenten (wo P
die Menge aller Primideale durchléuft).

(1.1b) Jeder P-Primdrmodul besitzt eine Rp-Modulstruktur, welche die
gegebene R-Struktur fortsetzt.

Da die Ringe Rp Hauptidealbereiche sind, folgt

(1.1c) Jeder beschrinkte R-Modul ist eine direkte Summe von zyklischen
Torsionsmoduln.

Jeder R-Modul A besitzt einen maximalen teilbaren Untermodul dA; ist
dA =0, so heisst A reduziert. Ein R-Modul ist genau dann teilbar, wenn er
injektiv ist. Jeder injektive R-Modul ist eine direkte Summe von unzerlegbaren
injektiven R-Moduln; diese sind entweder isomorph zu Q oder zu R(P”), der
injektiven Hiille von R/P (fiir ein Primideal P# 0). Ist I# 0 ein Ideal von R, so
schreiben wir I™" fiir (I"")"; die Vereinigung U -, I"" ist ein Unterring von Q.
Ist P ein Primideal, so wird U}, -; P~" mit Qp bezeichnet. Ein R-Modul A heisst
P-teilbar, falls PA = A ist; z.B. ist Qp als R-Modul P-teilbar. Ist ein Modul
P-teilbar fiir jedes Primideal P# 0, so ist er teilbar.

Ein Untermodul B des R-Moduls A heisst rein, wenn fiir jedes re R die
Gleichung rA N B = rB erfiillt ist. Ist A torsionsfrei, so ist ein beliebiger Durch-
schnitt von reinen Untermoduln wieder rein. Im Hinblick darauf existiert zu
jeder Teilmenge S eines torsionsfreien R-Moduls A ein kleinster reiner Unter-
modul, der S enthilt, namlich der Durchschnitt aller reinen Untermoduln, welche
S enthalten. Dieser besteht genau aus denjenigen Elementen von A, welche von S
linear abhéngig sind.

1.2 Es sei R immer ein Dedekind-Ring, und A, B seien R-Moduln. Im
gegenwirtigen Abschnitt befassen wir uns mit den Funktoren Homy und Extg.
Jeder Quotient eines injektiven (= teilbaren) R-Moduls ist wieder injektiv. Dies
bewirkt, dass der Funktor Extg (—,—) in beiden Argumenten rechsexakt ist.
Folglich ist jeder Untermodul eines projektiven Moduls projektiv, d.h. die globale
Dimension von R ist=1.
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Wichtige Hilfsmittel fiir unsere Betrachtungen sind die durch
0>R->Q—-Q/R—-0 bzw. 0>tA—>A—->A/tA—>0
induzierten exakten Hom-Ext-Folgen

(1.2a) 0— Homg (A, R) > Hompg (A, Q) = Homg (A, Q/R) >Extr (A, R)
(1.2b) 0— Homg(A/tA, R) > Homg(A, R) > Homg(tA, R)=0—

— Extg (A/tA, R) — Extg (A, R)— Extg (tA, R)— 0.
Ist A ein Torsionsmodul, so ist Homg (A, Q) =0, also
Hompg (A, Q/R)=Extg (A, R).
Wir bezeichnen mit r gleichzeitig ein Ringelement und den durch aw~>ra

definierten Endomorphismus des R-Moduls A. Die durch A A bzw. B> B
induzierten Abbildungen

Extg (A, B)——Extg (A, B) bzw. Extg (A, B)—=>Extg (A, B)

stimmen mit dem Endomorphismus r von Extg (A, B) iiberein.

PROPOSITION 1.3. Es seien A und B R-Moduln.
(a) Ist A torsionsfrei und B beliebig, so ist Extg (A, B) teilbar.
(b) Ist A teilbar und B torsionsfrei, so ist Extg (A, B) torsionsfrei.

Beweis. (a) Ist A torsionsfrei, so ist A > A fiir jedes re R, r# 0, monomorph.
Dann ist Extg (A, B) > Extg (A, B) fiir jedes reR, r#0, epimorph, dh.
Extr (A, B) ist teilbar.

(b) Essei re R, r#0; da B torsionsfrei ist, induziert B — B eine exakte Folge

Hompg (A, B/rB) — Extg (A, B) = Extg (A, B).

Nun ist A teilbar und B/rB beschridnkt, also gilt Homg (A, B/rB)=0. Dann ist
Extgr (A, B) 5 Extg (A, B) monomorph. Dies gilt fiir alle re R, r#0; also ist
Extr (A, B) torsionsfrei.
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LEMMA 1.4. Ist I#0 ein Ideal von R, so gilt Extg (R/I, R)=R/L
Beweis. Wir betrachten das Diagramm

R c )
= U
0 — Hompg (R, R) —» Homg (I, R) = Extg (R/I, R)— 0

Die Abbildung f sei gegeben durch f(q):r—gqr, re R, qe I '. Dann kommutiert
das Diagramm, und die untere Zeile ist exakt. Bekanntlich ist f ein Isomorphis-
mus; also ist Extg (R/I, R)=1""/R, und nach [9, Lemma 4.4] gilt I '/R = R/I.

PROPOSITION 1.5. Fiir einen endlich erzeugten R-Modul A gilt:
(a) A =tA®B fiir einen gewissen Untermodul B von A.

(b) Extr (A, R)=tA.

(c) Es gibt einen Monomorphismus B>>Hompg (A, R).

Die Aussage (a) ist bekannt; (b) folgt aus (a), (1.1c) und Lemma 1.4.

Beweis von (c). Als endlich erzeugter torsionsfreier R-Modul ist B Unter-
modul eines endlich erzeugten freien R-Moduls F, derart dass F/B ein Torsions-
modul ist. Folglich ist Hompg (F, R) = Homg (B, R) monomorph; da ferner
Hompg (B, R)=Hompg (A, R) ist, liefert die Zusammensetzung Bc F=
Hompg (F, R)>»Hompg (B, R)=Homg (A, R) den gesuchten Monomorphismus.

LEMMA 1.6. Fiir jeden R-Modul A# 0 ist auch Homg (A, Q/R) #0.

Beweis. Ist ae A, a#0, so existiert ein Primideal P# 0 von R, derart dass
O(a) < P ist. Folglich gibt es einen Epimorphismus (a)->R/P. Da nach [9, Lemma
4.4] R/P=P7'/R ist, kann R/P monomorph in Q/R abgebildet werden; das Bild
der Zusammensetzung f:{a)—> R/P— Q/R ist P”'/R. Nun ist Q/R injektiv; also
kann f zu f:A — Q/R erweitert werden. Mit f ist auch f#0; folglich ist
Hompg (A, Q/R) #0.

LEMMA 1.7. Es sei P#0 ein Primideal und A ein R-Modul mit
Hompg (A, R)=0 und tp Extg (A, R)=0. Dann ist A P-teilbar.

Beweis. Zu 0—>PA—> A—> A/PA—(0 gehort die exakte Folge
Hompg (A, R)=0— Homg (PA, R) = Extg (A/PA, R) — Extg (A, R).

Da tp Extr (A, R) verschwindet und Homg.(PA, R) tarsionsfrei ist, gilt auch
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tp Extg (A/PA, R)=0. Der Modul A/PA ist ein R/P-Vektorraum und zerfillt
daher in eine direkte Summe @;.; E; mit E; = R/P fiir alle i€ I. Mit Lemma 1.4
folgt Extg (A/PA, R)=[[ic1 E;; also ist Extg (A/PA, R) ein P-Primdrmodul. Da
nun tp Extg (A/PA, R) =0 ist, muss die Indexmenge I leer sein. Also gilt A = PA,
d.h. A ist P-teilbar.

1.3. Ein Modul iiber einem Dedekind-Ring ist genau dann flach, wenn er
torsionsfrei ist. Nun sind Untermoduln von torsionsfreien Moduln wieder tor-
sionsfrei, also ist Tor® (—, —) in beiden Argumenten linksexakt.

LEMMA 1.8. Es sei P#0 ein Primideal und A ein P-teilbarer R-Modul mit
tpA =0. Dann besitzt A eine Qp-Modulstruktur, welche die gegebene R-Struktur
fortsetzt.

Beweis. Da der R-Modul Qp/R eine teilbare wesentliche Erweiterung von
P7'/R und P '/R=R/P ist, gilt Qp/R = R(P7). Es gibt also eine exakte Folge

0— Tor® (R(P¥), A) > A = Qp®rA — R(P*)®rA — 0.

Nach [9, Theorem 3.2] ist Tor™ (R(P®), A)=t,A =0; es bleibt zu zeigen, dass
auch R(P")®gr A =0 ist.

Zu jedem be R(P™) gibt es eine Zahl n, derart dass P"b=0 ist. Da A
P-teilbar ist, gilt A = P"A; also besitzt jedes a € A die Darstellung a =} -, x;a;,
x;€ P", a;e A, 1<i=<r. Folglich ist

bQ§(1==l7Q§(:§: Xﬂk):= }i (xd’@b(h)==(L

i=1 i=1

Da R(P”)®gr A von den Elementen dieser Form erzeugt wird, gilt R(P*)®rA =
0.

Wie vorher bezeichnen wir die Méachtigkeit einer beliebigen Menge bzw. eines
R-Moduls A mit |A|. Da jeder endliche Integrititsbereich ein Korper ist, sind die
Dedekind-Ringe, die wir betrachten, stets von unendlicher Michtigkeit. Ist |R|
unendlich, so gilt fiir den freien R-Modul R[S] iiber der beliebigen Menge S die
Gleichung |R[S]|=|R||S|.

2. Klassen von Moduln und der Satz von Stein-Serre

2.1. Wir erinnern daran, dass wir stets Moduln iiber einem Dedekind-Ring R
betrachten, der kein Korper ist. Die Klassen von R-Moduln, die wir im Hinblick
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auf die Fragestellung der Einleitung untersuchen, haben immer gewisse
Abschlusseigenschaften und sind damit den Methoden der Homologischen
Algebra leicht zugdnglich. Sie stehen iibrigens in engem Zusammenhang mit den
Klassen, die von Serre in [12] untersucht wurden.

Eine nichtleere Klasse C von R-Moduln nennen wir SE-abgeschlossen, falls
sie den Bedingungen (S) und (E) geniigt:

(S) Ist B A und A€C, so ist auch BeC.

(E) Ist 0> B —> A — C — 0 eine exakte Folge von R-Moduln, so ist mit BeC
und CeC auch AeC.

Die meisten Klassen, die im folgenden vorkommen, erfiillen auch die Bedingung
(F):

(F) Ist B A und A €C, so ist auch A/BeC.

Wir nennen eine nichtleere Klasse, welche (S), (E) und (F) erfiillt, wie tiblich eine
Serre-Klasse.

Wir geben nun einige Beispiele von SE-abgeschlossenen Klassen. Mit Q
bezeichnen wir wie immer den Quotientenkérper von R; IR ist die Kategorie
aller R-Moduln.

Die Klasse {0} ist eine Serre-Klasse.

Die endlich erzeugten R-Moduln bilden eine Serre-Klasse.

‘Es sei N, irgendeine unendliche Kardinalzahl; dann ist die Klasse
C(X.):={A erM||A|<N,} eine Serre-Klasse.

Die Klasse aller projektiven R-Moduln ist SE-abgeschlossen, aber keine
Serre-Klasse.

Ist F:gIM— ¢IN ein linksexakter kovarianter oder ein rechtsexakter kon-
travarianter Funktor, so ist die Klasse K(F):={AexMM|F(A)=0} SE-
abgeschlossen. Fiir exakte Funktoren F ist K(F) eine Serre-Klasse.

Auf diese Art konnen z.B. folgende Klassen beschrieben werden:

Die Klasse T aller Torsionsmoduln; es gilt offenbar T =K(Q®x —). Dle Klasse
T ist eine Serre-Klasse, da der Funktor Q®g — exakt ist.

Die Klasse aller torsionsfreien R-Moduln gehdrt zum linksexakten Funktor
Tor® (Q/R, —). Sie ist also SE-abgeschlossen, aber keine Serre-Klasse.

Die Klasse T(P) (fiir ein Primideal P# 0) aller Torsionsmoduln A mit tpA =0
gehort zum Funktor Rp®g —. Dies folgt aus (1.1a), (1.1b) und aus der Tatsache,
dass Rp ein flacher R-Modul ist.
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Schliesslich bemerken wir, dass ein beliebiger Durchschnitt von SE-
abgeschlossenen Klassen wieder SE-abgeschlossen ist.

2.2. Der Hauptsatz dieses Kapitels charakterisiert diejenigen Dedekind-Ringe
R, fiir welche jede SE-abgeschlossene Klasse von endlich erzeugten R-Moduln
die Hom-Ext-Eigenschaft besitzt. Er zeigt ferner, dass es geniigt, wenn dies fiir
sehr spezielle Klassen (die Klasse {0} bzw. die Klasse aller endlich erzeugten
R-Moduln) gilt. Diese Aussagen sind iiberdies dquivalent mit der Giiltigkeit des
Satzes von Stein-Serre.

THEOREM 2.1 Fiir einen Dedekind-Ring R mit Quotientenkorper Q sind

folgende Aussagen dquivalent:

(a) Extg (Q, R)#0.

(b) Es sei A ein beliebiger R-Modul. Dann ist mit Homg (A, R)=0 und
Extg (A, R)=0 auch A =0.

(c) Es sei A ein beliebiger R-Modul. Dann ist mit Homg (A, R) und
Extgr (A, R) auch A endlich erzeugt.

(d) Es sei C eine beliebige SE-abgeschlossene Klasse von endlich erzeugten
R-Moduln und A irgendein R-Modul. Dann gehért mit Homg (A, R) und
Extg (A, R) auch A zu C.

(e) “Satz von Stein-Serre”’: Jeder R-Modul A von abzdhlbarem Rang mit
Extg (A, R)=0 ist projektiv.

Unter dem Rang Rg A eines R-Moduls A verstehen wir die Dimension des
Q-Vektorraums Q®x A.

Bemerkung. Die Aussage (a) von Theorem 2.1 steht im Zusammenhang mit
topologischen Eigenschaften des Rings R. Ist nadmlich R ein beliebiger
Integrititsbereich (kein Korper), so verschwindet Extg (Q, R) genau dann, wenn
R in der durch die Ideale I#0 definierten Topologie vollstindig ist (s. [7,
Korollar 6.11]). Ein vollstdndiger Dedekind-Ring ist librigens von selbst lokal und
damit ein (vollstindiger) diskreter Bewertungsring (vgl. [9, Korollar 7.9]). Die
durch Theorem 2.1 charakterisierten Ringe sind also die nicht-volistindigen
Dedekind-Ringe.

Wir ordnen den Beweis von Theorem 2.1 in folgender Weise an: Die
Implikation (b)=>(a) ist trivial; den Beweis der Umkehrung findet man bei Nunke
[9, Theorem 8.5], er wird deshalb weggelassen. Im nichsten Abschnitt beweisen
wir in dieser Reihenfolge: (b)=> (c), (¢)=>(d) und (b)=>(e). Der “Satz von Stein-
Serre” wird iibrigens (auf anderem Wege) in [9] ebenfalls bewiesen. Schliesslich
sind die Implikationen (d)=>(b) und (e)= (a) wiederum trivial.
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2.3. Der Modul Hompg (A, R) heisst auch der zu A duale Modul und wird mit
A* bezeichnet. Die Abbildung i : A — A**, welche gegeben ist durch is(a): f—>
f(a) fiir ae A und fe A*, vermittelt eine natiirliche Transformation der Identitit
in den Funktor (—)**. Ist i, monomorph, so nennt man A torsionslos.

LEMMA 2.2. Es sei R ein Dedekind-Ring, fiir den die Aussage (b) von
Theorem 2.1 erfiillt ist. Dann ist jeder R-Modul A mit Extg (A, R) =0 torsionslos.

Beweis. Es ist Keria={aeA|f(a)=0 fiir alle fe A*}. Die Inklusion
K:=Keris c A induziert folglich die Nullabbildung A* % K* und somit eine
exakte Folge

0 - K* — Extg (A/K, R) — Extg (A, R)=0.

Als Untermodul von A** ist A/K torsionsfrei; nach Prop. 1.3(a) ist dann
Extr (A/K, R) teilbar. Damit ist K* sowohl teilbar als auch reduziert, also gilt
K*=0. Andererseits verschwindet mit Extg (A, R) auch Extg (K, R); aus (b)
folgt K =0 und damit die Behauptung.

Nun sind wir imstande, die Implikation (b)=(c) von Theorem 2.1 zu be-
weisen: Es sei A ein R-Modul mit der Eigenschaft, dass Homg (A, R) und
Extr (A, R) endlich erzeugt sind. Wegen (1.2b) sind damit auch Homg (A/tA, R),
Extr (A/tA, R) und Extg (tA, R) endlich erzeugt. Nach Prop. 1.3(a) ist aber
Extr (A/tA, R) auch teilbar und muss daher verschwinden. Aus Lemma 2.2 folgt
dann, dass es einen Monomorphismus A/tA>>(A/tA)** gibt. Nun ist mit (A/tA)*
auch (A/tA)** endlich erzeugt, also ist auch A/tA endlich erzeugt.

Es bleibt zu zeigen, dass tA endlich erzeugt ist. Wegen (b) gilt
Extr (Q, R) #0; dann ist tA nach [9, Lemma 8.2] beschriankt und zerfillt daher
in eine direkte Summe tA =@®,.;C; von zyklischen Torsionsmoduin C; (vgl.
(1.1c)). Nach Lemma 1.4 gilt dann Extg (tA, R)=[];c; G; mit Extg (tA, R) ist
somit auch tA endlich erzeugt.

Beweis von (c)=>>(d). Es sei C eine SE-abgeschlossene Klasse von endlich
erzeugten R-Moduln und A ein R-Modul mit Homg (A, R)eC und
Extr (A, R)eC. Dann folgt mit (c), dass A endlich erzeugt ist. Nach Prop. 1.5
besitzt also A die Darstellung A =tA®D B; ferner ist Extg (A, R)=tA, und es
gibt einen Monomorphismus B>»Hompg (A, R). Weil C die Bedingungen (S) und
(E) erfiillt, gilt daher tA €C, B€C und damit auch A €C.

Bemerkung. Wir haben nur verwendet, dass die Klasse C gegeniiber Unter-
moduln und direkten Summen abgeschlossen ist. Folglich besitzt auch jede Klasse
von endlich erzeugten R-Moduln, welche diesen beiden Bedingungen geniigt, die
Hom-Ext-Eigenschaft.
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Fir unsern Beweis des Satzes von Stein-Serre bendtigen wir zwei weitere
Hilfssdtze, welche fiir beliebige Dedekind-Ringe richtig sind:

LEMMA 2.3. Jeder torsionslose R-Modul von endlichem Rang ist projektiv.

Beweis. Jeder torsionslose R-Modul von endlichem Rang ist nach [8, Prop.
1.3] endlich erzeugt. Ein endlich erzeugter torsionsloser R-Modul ist aber ein
Untermodul eines freien R-Moduls und damit projektiv.

LEMMA 2.4. Es sei A ein R-Modul von abzdhlbarem Rang mit der
Eigenschaft, dass jeder Untermodul von endlichem Rang projektiv ist. Dann ist A
projektiv.

Fiir einen Beweis siche [9, Lemma 8.3].

Beweis des Satzes von Stein-Serre (d.h. der Implikation (b)=>(e¢) von Theorem
2.1). Es sei R ein Dedekind-Ring, fiir den (b) erfiillt ist, und A ein R-Modul von
abzdhlbarem Rang mit Extg (A, R)=0. Dann ist A nach Lemma 2.2 torsionslos,
und dasselbe gilt fiir jeden Untermodul von A. Wir schliessen mit Lemma 2.3,
dass jeder Untermodul von endlichem Rang projektiv ist; nach Lemma 2.4 ist
dann A selbst projektiv.

3. Michtigkeitsschranken

Im gegenwirtigen Paragraphen beweisen wir die stdarkste Aussage, die wir fiir
einen beliebigen nicht-vollstindigen Dedekind-Ring R bei vorgegebenen
Michtigkeitsschranken von Homg (A, R) und Extg (A, R) iiber den R-Modul A
machen koénnen (Theorem 3.3). Alle weiteren Sdtze der Arbeit (mit Ausnahme
der Propositionen 4.6 und 4.7) sind Folgerungen daraus.

3.1. Der Beweis von Theorem 3.3 beruht auf den folgenden beiden
Hilfssatzen:

LEMMA 3.1. Es sei R ein nicht-vollstindiger Dedekind-Ring. Dann gibt es zu
jedem R-Modul A einen Untermodul B, derart dass folgende Abschdtzungen
gelten:

(i) 2R#® <|Homg (A, R)||Extr (A, R)|;

(ii) 2R%#*'® <|Homg (B, R)| |[Extxr (A, R)|.
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Beweis. Zunachst nehmen wir an, A sei ein torsionsfreier R-Modul; ferner sei
P#0 ein Primideal von R und pe P, p#0. Wir definieren eine Abbildung
f:A — PA durch a— pa, a€ A. Da der Cokern von f ein Torsionsmodul ist, gibt
es eine exakte Folge

0— Homg (PA, R) - Homg (A, R);

also gilt |Homg (PA, R)|<|Hompg (A, R)|. Andererseits induziert die Inklusion
PA c A eine exakte Folge

Hompg (PA, R) = Extg (A/PA, R) — Extg (A, R);

daher gilt [Extg (A/PA, R)|<|Homg (A, R)| |Extg (A, R)|.

Da R/P ein Korper ist, zerfillt A/PA (als R/P-Vektorraum) in eine direkte
Summe ©D;.; (R/P);. Somit ist Extg (A/PA, R)=][]ic: (R/P);, und wir erhalten die
Abschatzung

(iii) 2% <

I1 (R/P)il <|Homg (A, R)| |[Extg (A, R)|

iel

mit d =dimg;p (A/PA).

Nun sei X={x;e A|ieI} ein Reprisentantensystem einer R/P-Basis von
A/PA. Definieren wir dann B als den kleinsten reinen Untermodul von A, der X
enthilt, so gilt Rg B=Rg(X)=<d und mit (iii) folgt die Abschitzung (i).

Der Modul B ist so gewéhlt worden, dass der Faktormodul C:= A/B tor-
sionsfrei und P-teilbar ist. Dann ist C nach Lemma 1.8 ein Qp-Modul. Ist C, €ein
maximaler freier Qp-Untermodul von C, so ist Rg Co=Rg C, und wegen der
exakten Folge

Extz (C, R) = Extg (Cy, R)— 0

gilt |Extg (Qp, R)[*¥“ <|Extg (C,R)|. Da R nicht-vollstindig ist und
Hompg (Qp, R) verschwindet, ist Extg (Qp, R) # 0; also gilt die Abschétzung

(iv) 2%8€ <|Extg (C, R)|.
Nun gibt 0> B — A — C — 0 Anlass zu einer exakten Folge

Hompg (B, R) — Extg (C, R) — Extgr (A, R).
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Es folgt |[Extg (C, R)|<|Homg (B, R)||Extr (A, R)| und somit wegen (iv) die
Abschitzung (ii).

Es sei jetzt A ein beliebiger R-Modul. Wie soeben gezeigt, besitzt dann
A':= A/tA einen Untermodul B’, derart dass die Abschitzungen (i) und (ii)
gelten. Wir bezeichnen die Projektion A—»A/tA mit 7 und definieren
B:=7"'(B’). Dann ist tB =Ker 7|s = tA, und 7 induziert einen Isomorphismus
A/B=A'/B’. Somit gilt Rg B=Rg B’ und Rg A/B=Rg A'/B’; mit (1.2b) und
den Abschitzungen (i) und (ii) fir A’ und B’ folgt, dass diese Abschitzungen
auch fiir A und B gelten.

LEMMA 3.2. Ist R ein beliebiger Dedekind-Ring, so besitzt jeder R-Modul A
ein Erzeugendensystem S mit
2''<|Homg (A, Q/R)).

Beweis. Es gibt ein wohlgeordnetes Erzeugendensystem S={a,€ A |i<a}
von A, a eine Ordinalzahl, derart dass a;€ (ajeSI j<i) fiir alle i<a. Wir
definieren fiir jedes i<a Untermoduln A;:=(qjeS|j<i) und A}:=
Uj<iA; (Ag: =0). Nach der Wahl von S sind die Moduln A/A?# 0.

Wir werden nun eine Mengenabbildung

@: ]| Homx (A/A?, Q/R) — Homg (A, Q/R)

i<a

konstruieren. Zu diesem Zweck sei fiir jedes i<a und fiir jede Abbildung
f:AY— Q/R eine Abbildung &(f): A; > Q/R mit ¢;(f)|a2=f ausgezeichnet. Da
Q/R injektiv ist, existieren solche Erweiterungen immer.

Nun sei ein Element (h;)e€[]i<o Homg (A/A?, Q/R) gegeben. Wir kon-
struieren dazu induktiv eine Folge (f;)i<. von Abbildungen f;e Homg (A;, Q/R)
mit f;|a, =f; fiir alle j<i: Wir setzen fo:= hoe Homg (Ao, Q/R). Sind die f; fiir
j<i schon vertriglich definiert, so gibt es genau ein f{ € Homg (A}, Q/R) mit
fila,=f; fiir alle j<i. Wir definieren f;:= ¢(f{)+ hym € Homg (A, Q/R), wo m;
die Projektion A;»A/A; bezeichnet; nach Konstruktion gilt fi|4, =f; fiir alle
j<i. Die derart konstruierte Folge (f)i<. legt nun eindeutig eine Abbildung
feHomg (A, Q/R) fest mit f|, =f; fiir alle i <a. Wir definieren

®:[] Homz (A/A?, Q/R) - Homg (A, Q/R) durch (h)—f.

i<a

Wir behaupten, die Abbildung ® sei eine Injektion. Sind (g), (h:) zwei
verschiedene Folgen aus [[;<, Homg (A/A?, Q/R), so gibt es einen kleinsten
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Index B mit gg# hs. Folglich ist ®(g;)|as = P(h)|as, aber es existiert ein ae
Ag— A} mit ggmg(a)# hgmg(a). Setzen wir g:=®(g;)|a, so gilt daher

[(8:))(a) =[ep(8) + gema1(a) # [£5(g) + hama](a) = [P(h:))(a),

d.h. q)(g,) # (D(h,).
Da nach Lemma 1.6 Homg (A/AY, Q/R) fiir jedes i < a nichttrivial ist, gilt

25'< | [] Homg (A/A?, Q/R)|<[Homg (A, Q/R)|.

3.2. Das Hauptresultat dieses Paragraphen lautet nun:

THEOREM 3.3. Es sei R ein beliebiger nicht-volistindiger Dedekind-Ring
und R, eine unendliche Kardinalzahl, welche der folgenden Bedingung geniigt:
(*) Fiir jede Kardinalzahl ¢ mit 2°<¥, gilt |R|°<N,.
Dann besitzt jeder R-Modul A mit [Homg (A, R)|< R, und |Extg (A, R)|< R,
ein Erzeugendensystem S, fiir welches die Abschdtzung 2''< R, gilt.

Beweis. Nach Lemma 3.1 gibt es einen Untermodul B von A, derart dass die
Abschitzungen

(i) 27¢® <|Homg (A, R)| |Extg (A, R)| und
(i) 2%~ <|Homg (B, R)| |[Extg (A, R)|

erfiillt sind. Folglich ist 27#® <N, und wegen (*) gilt damit |R|?® <¥,. Ist nun -
B, ein maximaler freier Untermodul von B, so ist B/B, ein Torsionsmodul, und es
gilt daher [Hompg (B, R)|<|Homg (Bo, R)|=|R|?®® und damit [Homg (B, R)|<
N.. Daraus folgt mit (i) und (i) die Abschitzung 2%%“ <N, und wegen (*) gilt
somit |R|*#4 <N,,. :

Nun betrachten wir die exakte Folge

Homg (A, Q) - Homg (A, Q/R) — Extg (A, R).
Da Homg (A, Q)=Homg (A®r Q, Q) ist, gelten die (Un-) Gleichungen
[Homg (A, Q)| =|Q[*#* =|R[*** <N,
Wegen |Extg (A, R)|<N, ist dann auch |Homg (A, Q/R)|<N,; es folgt mit

Lemma 3.2, dass A ein Erzeugendensystem S besitzt, fiir welches die
Abschitzung 2'°'< R, gilt.
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3.3. Ist R ein Ring von beliebiger unendlicher Machtigkeit, so ist die Beding-
ung (*) der Voraussetzung von Theorem 3.3 fiir jede Kardinalzahl N, =2
erfiillt: Es sei ¢ eine Kardinalzahl mit 2° <R,. Ist ¢ <|R|, so gilt |R|* <2/®!<X,;
ist aber ¢ >|R|, so haben wir |R|* =2°<N,.

Als erste Folgerung aus Theorem 3.3 erhalten wir

KOROLLAR 3.4. Ist R ein nicht-vollstindiger Dedekind-Ring, so gilt fiir
jeden R-Modul A die Abschdtzung

241<2®|Homg (A, R)| |Extr (A, R)|.

Beweis. Es sei X, = 2%/ [Homg (A, R)||Extg (A, R)|. Nach obiger Bemerkung
erfiillt X, die Bedingung (*), und es gilt |Homg (A, R)|<X, und |Extg (A, R)|<
N.. Dann folgt aus Theorem 3.3, dass A ein Erzeugendensystem S besitzt mit
2IS1< .. Nun ist 2"41<2521Rl; also gilt, wie behauptet, 24/ <N,

Wir erinnern daran, dass die Klasse C(X,) aus denjenigen R-Moduln besteht,
deren Michtigkeit kleiner als X, ist. Es sei nun N,=2%!; gilt dann
|[Homg (A, R)|<2¥ und |Extg (A, R)|<2%, so folgt aus Korollar 3.4 die
Abschitzung |A|<N,. Wir erhalten damit folgendes Resultat fiir die Klassen
C(N,):

THEOREM 3.5. Es sei R ein beliebiger nicht-vollstindiger Dedekind-Ring, X,
eine Kardinalzahl=2"! und A ein beliebiger R-Modul. Dann gehért mit
Hompg (A, R) und Extg (A, R) auch A zu C(R,).

Mit andern Worten besitzt die Klasse C(N,) fiir jede Kardinalzahl &, =2%! die
Hom-Ext-Eigenschaft.

4. Abzahlbare Dedekind-Ringe

4.1. Von nun an sei R immer ein abzdhlbarer Dedekind-Ring (kein Korper).
Solche Ringe sind stets nicht-vollstdndig. Dies kann anhand der exakten Folge

Homp (Q, Q) = Homg (Q, Q/R) — Extg (Q, R)

eingesehen werden: Nach Lemma 3.2 gilt [Homg (Q, Q/R)|=2"; ohnehin ist
|Homg (Q, Q/R)|<2%, also gilt Gleichheit. Da Homg (Q, Q)= Q abzihlbar ist,
muss somit auch |Extg (Q, R)| =2 sein; R ist also nicht-vollstindig. Genauer gilt
sogar Rg[Extg (Q, R)]=2" (dies folgt z.B. aus Lemma 4.5).
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Die Beschrinkung auf abzahlbare Dedekind-Ringe R hat ferner den Vorteil,
dass jede unendliche Kardinalzahl X, die Bedingung (*) der Voraussetzung von
Theorem 3.3 erfiillt: Ist ¢ endlich, so gilt sicher |R|°<N,; ist aber c eine
unendliche Kardinalzahl mit 2°<¥,, so gilt |R|® =2° <N,. Dies bewirkt, dass die
Aussage von Korollar 3.4 verscharft werden kann:

THEOREM 4.1. Es sei R ein abzdhlbarer Dedekind-Ring. Dann besitzt jeder
R-Modul A ein Erzeugendensystem S, derart dass folgende Abschdtzung gilt:

2'<|Homg (A, R)| [Extg (A, R)|.

Beweis. Ist die Kardinalzahl |Hompg (A, R)| |[Extg (A, R)| unendlich, so erfiillt
sie, wie soeben gezeigt, die Bedingung (*). Die Behauptung des Satzes ist dann
eine unmittelbare Folgerung aus Theorem 3.3. Ist |Homg (A, R)| |Extr (A, R)|
hingegen endlich, so ist A nach Theorem 2.1 (d) selbst endlich. Dann gibt es ein
Erzeugendensystem S mit 2''<|A|. Da nach Prop. 1.5(b) A =Extg (A, R) ist,
gilt fiir dieses System S die Behauptung.

Es folgen daraus Verbesserungen der bisherigen Resultate betreffend Klassen
mit der Hom-Ext-Eigenschaft (vgl. Theoreme 3.5 bzw. 2.1):

THEOREM 4.2. Es sei R ein abzdhlbarer Dedekind-Ring, X, eine beliebige
unendliche Kardinalzahl und A irgendein R-Modul. Dann gehért mit
Hompg (A, R) und Extg (A, R) auch A zu C(X,,).

Beweis. Fiir liberabzihlbare Kardinalzahlen folgt diese Aussage aus Theorem
4.1; fiir N, hingegen ist sie eine Konsequenz aus Theorem 2.1(d).

THEOREM 4.3. Ist R ein abzdhlbarer Dedekind-Ring, so besitzt jede SE-
abgeschlossene Unterklasse von C(2%°) die Hom-Ext-Eigenschaft.

Beweis. Es sei C eine SE-abgeschlossene Unterklasse von C(2%) und A ein
R-Modul mit der Eigenschaft, dass Homg (A, R) und Extg (A, R) zu C gehdren.
Dann ist A nach Theorem 4.1 endlich erzeugt, und dasselbe gilt fiir Homg (A, R)
und Extg (A, R). Folglich sind Homg (A, R) und Extg (A, R) in der Klasse C.
aller endlich erzeugten R-Moduln, welche zu C gehoren. Die Klasse C. ist
SE-abgeschlossen; es folgt mit Theorem 2.1(d), dass auch A in C, und damit erst
recht in C liegt.

4.2 Als bemerkenswertes Nebenprodukt erhalten wir Aussagen iiber R-
Moduln, welche #quivalent sind zur Negation der speziellen Kontinuums-
hypothese 2% =N;:
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KOROLLAR 4.4. Ist R ein abzdhlbarer Dedekind-Ring, so sind folgende
Aussagen dquivalent:
(i) 2Mo>N;.
(i) Jeder R-Modul A mit |[Homg (A, R)|<RX, und |Extg (A, R)| <N, ist end-
lich erzeugt.
(iii) Jede SE-abgeschlossene Unterklasse von C(N,) besitzt die Hom-Ext-
Eigenschaft.

Beweis. Die Implikation (i)= (ii) folgt aus Theorem 4.1, wéhrend (ii) = (iii)
analog bewiesen wird wie Theorem 4.3 mit C(X,) anstelle von C(2).

Fiir (iii)=> (i) beweisen wir die Kontraposition anhand der Klasse C aller
torsionsfreien R-Moduln mit Michtigkeit<2™. Diese Klasse ist SE-
abgeschlossen, besitzt aber die Hom-Ext-Eigenschaft nicht: Es gilt
Hompg (Q/R, R) =0; ferner ist Extg (Q/R, R) nach Prop. 1.3(b) torsionsfrei, und
wegen Extg (Q/R, R)=Homg (Q/R, Q/R) gilt |Extg (Q/R, R)|<2%. Folglich
gehoren Homg (Q/R, R) und Extg (Q/R, R) zu C, aber Q/R liegt nicht in C.
Nehmen wir nun an, (i) sei falsch, so ist C in C(XX,) enthalten; also ist auch (iii)
falsch.

4.3. Dem Beweis von Korollar 4.4 entnehmen wir, dass die Klasse aller
torsionsfreien R-Moduln mit Michtigkeit<2™ die Hom-Ext-Eigenschaft nicht
besitzt. Dies widerlegt nicht nur die Vermutung, dass jede SE-abgeschlossene
Klasse diese Eigenschaft besitze, sondern zeigt auch, dass die Maichtigkeits-
schranke in Theorem 4.3 nicht vergrdssert werden kann. Hingegen bleibt die
Frage offen, ob fiir jede Serre-Klasse von Moduln iiber einem abzihlbaren
Dedekind-Ring die Hom-Ext-Eigenschaft erfiillt sei. Insbesondere wissen wir dies
im Fall der Klasse T aller Torsionsmoduln nicht. Immerhin kdnnen wir zeigen,
dass die Klasse T(2™):=TNC(2™) und die Klassen T(P) aller Torsionsmoduln A
mit tpA =0 die Hom-Ext-Eigenschaft besitzen. Dazu bendtigen wir den folgen-
den Hilfssatz:

LEMMA 4.5. Jeder torsionsfreie R-Modul A von endlichem Rang ist entweder
projektiv, oder es gilt Rg[Extg (A, R)]=2".

Beweis. Ist A nicht projektiv, so gilt Extg (A, R) # 0. Die Behauptung folgt
nun aus [4, Prop. 1].

PROPOSITION 4.6. Es sei R ein abzdhlbarer Dedekind-Ring und A ein
beliebiger R-Modul. Dann gehért mit Hompg (A, R) und Extg (A, R) auch A zur
Klasse T(2™).
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Beweis. Aus |Homg (A, R)|<2™ und |[Extg (A, R)|<2™ folgt mit Theorem
4.1, dass A abzdhlbar ist. Es bleibt zu zeigen, dass A ein Torsionsmodul ist. Mit
Extg (A, R) ist nach (1.2b) auch Extg (A/tA, R) ein Torsionsmodul, und fiir
jeden Untermodul B von A/tA ist Extg (B, R) ein Torsionsmodul. Nach Lemma
4.5 ist somit jeder Untermodul mit endlichem Rang von A/tA projektiv. Dann ist
A/tA nach Lemma 2.4 selbst projektiv. Nun gilt aber Hompg (A/tA, R)=
Hompg (A, R)=0; also muss A/tA verschwinden, dh. A ist ein Torsionsmodul.

PROPOSITION 4.7. Es sei R ein abzdhlbarer Dedekind-Ring, P#0 ein
Primideal von R und A ein beliebiger R-Modul. Dann ist mit Homg (A, R) und
Extz (A, R) auch A in T(P).

Beweis. Sind Homgz (A, R) und Extg (A, R) aus T(P), so ist A nach Lemma
1.7 P-teilbar. Dann ist auch A/tA P-teilbar und damit nach Lemma 1.8 ein
Qp-Modul. Es sei nun A, ein maximaler freier Qp-Untermodul von A/tA. Dann
ist mit Extg (A/tA, R) auch Extg (Ao, R) ein Torsionsmodul; daraus folgt mit
Lemma 4.5, dass Ay und daher auch A/tA verschwindet.

Es bleibt zu zeigen, dass tpA =0 ist. Als direkter Summand eines P-teilbaren
Moduls ist tpA selbst P-teilbar und damit teilbar, denn tpA ist ohnehin P’-teilbar
fir jedes nichttriviale Primideal P’'# P. Folglich ist tpA =@;.; R(p”);. Da
Extg (tpA, R) ein Torsionsmodul, Extgz (R(P~), R) hingegen torsionsfrei (nach
Prop. 1.3(b)) und nichttrivial ist, muss die Indexmenge I leer sein; also gilt
tpA = 0.

Bemerkung. Es gibt (iiberabzidhlbare) Dedekind-Ringe R mit der Eigenschaft,
dass Extg (Q, R)=Q ist (vgl. [5]). Fiir einen solchen Ring besitzt z.B. der
torsionsfreie R-Modul A = Extgz (Q/R, R) die Eigenschaft, dass Homg (A, R)=0
und Extg (A, R) ein Torsionsmodul ist. Es gibt also (liberabzdhlbare) nicht-
vollstindige Dedekind-Ringe, fiir welche die Klasse aller Torsionsmoduln die
Hom-Ext-Eigenschaft nicht besitzt.
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