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Comment. Math. Helvetici 39 (51) 491-526 Birkhâuser Verlag, Basel

Die irreduziblen Darstellungen der Gruppen SL2(ZP), insbesondere
SL2(Z2). II. Teil

Alexandre Nobs(1) und Jûrgen Wolfart

1. Ùbersicht ûber Methoden und Ergebnisse

Fur beliebige Primzahlpotenzen pA gewinnen wir aile irreduziblen Darstellungen

der Gruppen SL2(Z/pAZ)—und damit auch der Gruppen SL2(ZP)—mit
Hilfe der vollstândigen Zerlegung der Weilschen Darstellungen zu binâren quad-
ratischen Moduln, wie sie in Teil I dieser Arbeit [7] definiert wurden. Wir werden
Teil I immer als &quot;I&quot; zitieren und von dort, soweit nichts anderes gesagt wird, aile

Begriffe und Bezeichnungen ûbernehmen. Zur Zerlegung der Weilschen Darstel-
lung W(M, Q) zum binâren quadratischen Modul (M, Q) verwenden wir die in I,
§3 geschilderten Methoden:

ERSTE ZERLEGUNGSMETHODE (Kloosterman [3]). Sei U eine abelsche

Untergruppe von Aut(M, Q) und x ein Charakter von U. Dann ist V(x): {/e
CM\f(ex) x(e)f(x)Vx£M,VeeU} ein SL2(ZlpkZ)-invarianter Unterraum von
CM. Die zugehôrige Unterdarstellung von W(M, Q) werde mit W(M, Q, x)
bezeichnet.

Fur aile binâren quadratischen Moduln werden wir in §2 die Automorphis-
mengruppe bestimmen: Aut (M, Q) ist—mit Ausnahme der Fâlle
M Z/2nZ©Z/2Z—stets Diedererweiterung einer abelschen Gruppe U (fur p# 2

siehe dazu [3], [8]). Fur die so gefundene abelsche Gruppe U kann man mit Erfolg
die erste Zerlegungsmethode einsetzen:

DEFINITION. Eine Charakter x v°n U heifie primitiv, wenn ein e e II mit
X(e) # 1 existiert, welches den Untermodul pM elementweise fest làsst, ausser
wenn M Z/2nZ©Z/2Z (fur diesen Sonderfall siehe §2).

(Das bedeutet, daB man x nicht als x&apos; ° P schreiben kann, wobei p die kanonische

Projektion von U auf die entsprechende abelsche Automorphismengruppe U&apos;

1 Unterstûtzt durch den Schweizerischen Nationalfonds (820.167.73).
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492 ALEXANDRE NOBS UND JURGEN WOLFART

eines quadratischen Moduls (pM, Q&apos;) mit Q&apos;(px) pQ(x) (fur x in M) ist, und x&apos;

ein Charakter von U&apos; ist.) Die primitiven Charaktere liefern den grôBten Teil der

gesuchten Darstellungen:

HAUPTSATZ 1. Seien x, Xi&gt; X2 primitive Charaktere fur binâre quadratische
Moduln und seien *2, *2, xl^L Dann ist

a) W(M, Q, x) irreduzibel und von der gleichen Stufe wie W(M, Q),
b) W(MU Quxi)= W(M2, Qi,X2) genau dann, wenn die quadratischen

Moduln (Mi, Qi) und (M2, O2) isomorph sind und xi= X2 oder X2 ist.

Den Beweis dièses Satzes werden wir in den §§3 bis 7 fûhren: Zunàchst
werden wir in Fallunterscheidung bezûglich der verschiedenen Isomorphieklassen
binârer quadratischer Moduln zeigen, daB der Satz richtig ist unter der Vorausset-

zung (M, Q) (MU Oi) (M2, O2); in §7 werden wir dann beweisen, daB jedes
solche W(M, Q, x) den quadratischen Modul (M, Q) bis auf Isomorphie eindeutig
bestimmt.—Fur p#2 ist dièses Résultat bekannt ([3], [8]); wir verwenden zum
Teil âhnliche Beweisideen wie Tanaka [8]. Casselman [1] hat die Existenz eines

Teils dieser Darstellungen (fur beliebige Primzahlen p) auf etwas anderem Wege
bewiesen.—Fur nicht-primitive x ist W(M, Q, x) *m allgemeinen reduzibel. Die
Zerlegung dieser Darstellungen (welche die Hauptschwierigkeit im zweiten Teil
der Arbeit von Kloosterman [3] ausmacht und von Tanaka [8] und Casselman [1]
gar nicht angegriffen wurde) wird durch I, Lemma 3 ermôglicht. Auf diesem

Lemma beruht nâmlich die

ZWEITE ZERLEGUNGSMETHODE. Sei W(M, Q) eine Weilsche Darstel-
lung von SL2(Z/pAZ) vom Grad pn und der Stufe À &gt; 1. Der bindre quadratische
Modul (M, Q) erfùlle M&amp;Z/pKZ®Z/pZ im Fall p*2 und M^ZI2K~lZ®ZI2Z,
Z/2X&quot;1Z©Z/4Z im Fall p 2. Dann ist das Komplement von
L?Prnmt,vW(M,Q,x) in W(M, Q) eine Summe If=i W(M;, Q) von p + 1

Weilschen Darstellungen W(M}, Qj) vom Grad pn~2; dièse W(MJ9 Q,) sind in
eindeutiger Weise in W(M, Q) eingebettet, und fur aile j^h ist der Durchschnitt

W(MJ9Qj)nW(Mh,Qh) eine (eindeutig in W(M, Q) eingebettete) Weilsche

Darstellung W(M0, Qo) vom Grad pn~~4.

Wir werden die genannten Einbettungen in §8 beschreiben und fur aile (M, Q)
die zugehôrigen (MJ? Q,) und (Mo, O0) konkret angeben. Die vollstândige
Zerlegung der W(M, Q) ist damit durch Induktion ûber die Ordnung der quadratischen

Moduln bzw.-den Grad der Weilschen Darstellungen zu lôsen, indem man
erstens den Hauptsatz 1 anwendet, zweitens die W(M, Q, x) mit primitivem x
und x2 s 1 zerlegt (dièse treten nur fur À 1 im Fall p# 2 und fur À &lt; 6 oder fûr(2)
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im Fall p 2 auf und sind i.a. reduzibel, s. §9), drittens jene
W(M, Q) reduziert, bei welchen der Modul M von der Form2 Ax©Ai oder Ax
im Fall p*2 bzw. Ax-i©A2 und Ak-i®Ax im Fall p 2 ist (§6).

Die Anzahl der so gefundenen irreduziblen Darstellungen von SL2(AA) der
Stufe À—das sind insbesondere aile in Hauptsatz 1 genannten Darstellungen,
wenn W(M, Q) die Weilschen Darstellungen der Stufe À durchlàuft—ergibt sich

aus den Tabellen in §9 als

pA+3px&quot;1 fur p7*2 und A&gt;1

und

23-2A~~3 fur p 2 und À&gt;6.

Da die Anzahl der Konjugiertenklassen von SL2(AX) gerade pA+4£k=opk bzw.
23 • 2A~2 -16 fur A &gt;2 (I, Satz 5) ist, hat man damit aile gewùnschten Darstellungen

bekommen, sofern das Problem fur kleine À gelôst ist. Hier treten in der
Tat fur p 2 Ausnahmedarstellungen auf. Insgesamt erhâlt man, was fur p#2
bereits durch [3] und [8] bekannt ist,

HAUPTSATZ 2. In den Weilschen Darstellungen W(M, Q) zu binàren quad-
ratischen Moduln sind aile irreduziblen Darstellungen der Gruppen SL2(Z/pAZ)
enthalten (i.a. in der Form W(M, Q, x) des Hauptsatzes 1) mit Ausnahme von 18

Darstellungen fur p 2, welche in §9 beschrieben werden. Dièse Ausnahmedarstellungen

lassen sich als Tensorprodukte von je zwei Darstellungen schreiben, welche

in den W(M, Q) vorkommen; das ist (nach I, §2) gleichbedeutend damit, daB sie in
Weilschen Darstellungen zu quaternâren quadratischen Formen enthalten sind.

Dièse Beschreibung ist explizit: Man kann jeweils Basen fur die
Darstellungsrâume angeben und Darstellungsmatrizen beziiglich dieser Basen fur
erzeugende Elemente der Gruppen. Es ist kein Problem, dièse Darstellungsmatrizen

fur aile Gruppenelemente aufzustellen und die Charaktere der Darstellungen
zu berechnen (etwa mit Hilfe von [4], Satz 1 und 2, [9], (18) sowie [3], S. 368).

2. Die Automorphismengruppen binàrer quadratischer Moduln

Im folgenden werden wir die Automorphismengruppen fur ein

Reprâsentantensystem der Isomorphieklassen binàrer quadratischer Moduln

1 Wie in I schreiben wir An : Z/pnZ.
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beschreiben. Einen Beweis werden wir nur im Fall der unverzweigten
quadratischen Form fûhren, da ûberall âhnliche Ûberlegungen angestellt werden.

1. M AX®AK mit O(x, y) p~AJcy, A^l, (&quot;zerlegt&quot;, I (10a) und (12a)).
Aut(M, Q) ist Diedererweiterung einer abelschen Gruppe U^Ax der Ordnung
pkl(p — 1) mit dem Elément k:(x, y)i-»(y, x). Die Wirkung von Aï auf M wird
definiert durch a:(x, y)h-*(a~1x, ay). Um die primitiven Charaktere fur A &gt; 1 zu
beschreiben, Ordnung p-1) und W {a e A x

| a 1 mod p) (erzeugt von(3) 1+ p)
auf; hier gilt: x primitiv O#|w injektiv. Im Fall p 2 und A&gt;2 ist Ax
&lt;-l)x(5) (mit (n) bezeichnen wïr die von n erzeugte zyklische Untergruppe) und

X ist genau dann primitiv, wenn x au^ der Untergruppe (5) vom Grad 2A~2

injektiv ist. Fur p A 2 ist Aï (-1), und x ist primitiv, wenn *(-l) -1. Man
erhâlt also (p-l)2pA~2 bzw. 2A~~2 primitive Charaktere fur A&gt;2.

2. M=Ax(BAx mit 0(x, y) p AN(£), A^l, wo £ x
3 mod 4 quadratfrei und p in Q(V~t) trâge ist (&quot;unverzweigt&quot;, I (10b) und (12b)):
M ist hier isomorph zu £)/pA£), wobei O der Ring der ganzen GrôBen in Q(&gt;f-t)

ist; damit wird M zu einem lokalen Ring, dessen maximales Idéal von(3) p erzeugt
wird. Die Norm N Norm der Kôrpererweiterung Q(V-ï)/Q, auf O restringiert
und mod pA betrachtet; analog verfahren wir mit der Konjugation und der Spur
Tr) induziert einen Gruppenhomomorphismus Nx von Mx auf Ax. LâBt man
U: {eeMx | JV(e) 1} multiplikativ auf M operieren, so ist Aut(M, Q) die

Diedererweiterung von U mit der Konjugation k :^i—&gt;^. U besitzt folgende
Struktur:

Î(O
mit ord£ p + l fur A l

ford^ 6, orda 2A&quot;2 fur p :

&lt;0x&lt;«&gt; mit
^ord^ p-fl, orda p fur p¥^\

Dabei ist (a) {ee U\ e^l modp fur p?*2 bzw. mod4 fur p 2}. Nun ist

X e Car U (Gruppe der Charaktere von II) fur A &gt; 1, p# 2 und A &gt; 2, p 2 genau
dann primitiv, wenn x|&lt;«&gt; injektiv ist bzw. wenn x(-l) ~~l ist im Fall A 2,

p 2. Die Anzahl der primitiven Charaktere ist pk-pk~2 fur A&gt;2.

Beweis. Da8 die angegebene Gruppe aus Automorphismen besteht, ist klar,
und daB sie eine Diedererweiterung von U ist, liegt daran, daB fur aile e e U stets

ê e~1 ist. DaB Aut(M, Q) nicht grôBer ist als dièse Diedergruppe, kann man
elementar einsehen. DaB Nx N|M* : Mx-* AA surjektiv ist, folgt daraus, daB

3 Soweit MiBverstândnisse ausgeschlossen sind, unterscheiden wir nicht zwischen Restklassen und
Reprâsentanten.
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Qpiyf-t) eine unverzweigte Erweiterung von Qp ist und lâBt sich aus der lokalen
Klassenkôrpertheorie ableiten oder auch elementar zeigen (I, Beweis von
Satz 4). Daher muB ord U ord (Kern Nx) ord Mx (ord Aî)&quot;1 (p2x - p2A&quot;2) x

In Mx existiert ein y mit ord (y modp) p2-l,da M/pM ein Kôrper mit p2

Elementen ist. Man rechnet leicht nach, da8 £:= yp2K~2(p~1} in II liegt und die
Ordnung p + 1 besitzt. Im Falle p 2, A&gt;1 kann man o.B.d.A. f 3 setzen und
fur £ eine primitive sechste Einheitswurzel nehmen.—Um a zu gewinnen bzw.
seine Ordnung zu bestimmen, betrachtet man die Folge der Einseinheitengruppen
II, : {1 + jSp1 € U}, i 1,..., À. Eine elementare Rechnung zeigt, daB U, 5e ll,+i
fur aile i &lt; A ist. Fur p^ 2 wâhlen wir nun a 1 + j3peUu aé 112, d.h. mit /3 e Mx.
Dann ist, wie man z.B. durch Induktion ûber A einsieht, apX

2
1 + jSp*&quot;1 # 1 und

apX1 1, also ord a pA~\ Fur p 2 ist dies nicht richtig, da Ux U2 U (-1) • U2

ist; fur jedes a 1 + 4/3 mit j3€Mx kann man jedoch analog auf orda 2A~2

schlieBen. Da nun (a)(^U1 fur p^2 bzw. U2 fur p 2 ist und (^)nlli bzw.

(0 n U2 {1} ist, und da ord a ord Ui bzw. ord U2 ist, ist sogar (a) Ui bzw. U2

und folglich U &lt;C)x&lt;a&gt;.

Fur À &gt; 1 lassen genau die Elemente von UA_x den Untermodul pM élément-
weise fest. Ein primitiver Charakter muB also xW-t^ 1 erfûllen. Da UA_i (apA 2)

fur p#2 und (a2K 3) fur p 2, À&gt;2 bzw. (-1) fur p 2, À 2 ist, sind jene
Charaktere primitiv, welche auf (a) injektiv sind bzw. x(~l)= ~1 tf^r p A 2)
erfûllen.

3. M AA©AA_tr /wr p^2, A&gt;2 und cr=l,...,À-l mîr y
p~xr(x2 + pcrry2) (&quot;uerzweigr&quot;, I (10c)). Fur jedes a erhâlt man hier vier nicht-

isomorphe quadratische Moduln je nach den Werten von f-j, (-J (es sei stets

p Jf r, r), welche jedoch fur die Struktur von Aut (M, Q) keine Rolle spielen: Wir
haben Q(x, y) p~KrN(Ç) mit ^ x + yJZIp5rte£)Jpk~(T&gt;j-pfTt£)„ wobei O^ den

Ring {x + y V-p°&quot;t | x, y e Z} bezeichnet. Wenn wir M mit dem Ring
&amp;Jpk~(T\/-pcrt£)&lt;r identifizieren, ist Aut (M, Q) die Diedererweiterung der (mul-
tiplikativ auf M operierenden) abelschen Gruppe 11 : {e e M \ N(e) le AA} der
Ordnung 2 • p*&quot;^ mit der Konjugation K:Çh+£. Die Gruppe 11 ist zyklisch, und

zwar ist ll (-l)x(a) mit aello, aélli und orda pA~cr, wenn man
11, : {e € 111 e 1 mod p&apos;yf-p^t O^} setzt fur i 0,..., A - a. Das Elément
aPx—1 erzeugt Ux-^-i; ein Charakter # g Car 11 ist primitiv genau dann, wenn
#|&lt;a&gt; injektiv ist. Es gibt 2 • (p-l)pA~&lt;r&quot;1 primitive Charaktere.

4. M^Ax-i^Aw-i /ur p 2, A&gt;3 wnd a 0, ...,A-3 mit Q(x, y)
xr(x2 + 2&lt;Tfy2) (&quot;uerzweîgf&quot;, I (12c)). Wir haben hier M^^^V^
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mit Qo- {x + yV~2crr | x, y € Z} und Q(x, y) 2 ArN(£), wobei £ x + yV-2crr ist
Die Grappe Aut (M, Q) ist Diedererweiterung der abelschen Gruppe U

{eeM| N(e) le A*} mit der Konjugation k:£h*£; die Gruppe U ist von der
Form &lt;i)x&lt;«) im Fall cr O, f=l (i^V17!) und &lt;-l)x&lt;a&gt; in allen anderen
Fâllen.(4) Die folgende Tabelle gibt Auskunft ûber a fur die verschiedenen (M, Q)
aus I, Satz 4, (12c):

Anzahl der

primitiven
a r t a x + yj—l^t mit ord a Charaktere

1

2

&gt;3

1

5

3;7

3;7

1;3;5;7
*;5;7
&gt;;5;7

x 4, y ¦¦ 1 mod 4 2A 3

x 2, y 3 mod 4 2X&quot;2(4)

Jt lmod4, y 4 2A&quot;3

x 1 mod 4, y 2 2A~3

x s 1 mod 4, y 2 2A~4

x s 1 mod 4, y 1 2A&quot;tr~1

^ ist primitiv genau dann, wenn x injektiv auf (a) ist auBer in den Fàllen À 3,

a 0, wo (a) durch &lt;-l), und A 4, cr 0, t 5, wo (a) durch (-a2) zu ersetzen
ist.

5. M AA_1©A1 fur p 2, A^2 mît Q(x, y) 2~Ar(x2-h2A~2ry2) (I, (12c)).
Im Unterschied zu den eben beschriebenen Gruppen fàllt hier die Konjugation
weg, so daB man stets eine abelsche Gruppe U Aut (M, O) erhâlt. Dièse besteht

aus {1} fur A 2, t 3, aus {1, (x, y)i-*(y, x)} fur A 2, t 1, aus {±1} fur A 3

oder 4, und ist von der Form (-l)x(a) fur A &gt;5 mit ord a =2 und

a
fur A 5,

fur A&gt;5.

Fur A ^5 nennen wir x primitiv, wenn #(&lt;*)^-l.

3. Die zerlegte Reihe

Die Untersuchung von W(M, Q) mit M Ak(&amp;AK und Q(x, y) p~xxy kann
man wesentlich vereinfachen, wenn man ausnûtzt, daB W(M, Q) zur naturlichen
Darstellung DA isomorph ist; abweichend von der Terminologie aus I, §2 (dort

4 Mit Ausnahme von A 3, a 0, t 5, wo tt &lt;&lt;*) mit a2 -l ist.
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war DX:=W(M, Q)) definieren wir hier DK durch folgende Opération von
SL2(AJ auf CM:

(S-f)(X): f(XS) fur /eCM, SgSL2(Aa), XeM

(X sei als Zeilenvektor geschrieben und XS wie ûblich als Matrizenmultiplikation

defîniert). Der Isomorphismus W(M9 Q) -* DA ist definiert durch (mit

y): I e(p-Azy) - f(x, z) V/eCM, (x, y)eM.
zeAx

Da8 &lt;p ein C-Vektorraum-Isomorphismus ist, kann man leicht zeigen, und daB

(p[S] S • &lt;p fur aile SeSL2(Ax) ist, lâfit sich mit den Erzeugenden von SL2(AA)
nachprûfen.

Fur jedes ^eCar AA Carll (s. §2) wird der invariante Unterraum V(x) (s-

§l) durch &lt;p abgebildet auf

Die zugehôrige Darstellung wird mit DK(x) bezeichnet. Fur primitive Charaktere
verschwinden die Funktionen aus Va(x) auf pM. Da andererseits AA auf
M: M-pM fixpunktfrei operiert, findet man fur primitive Charaktere
dim Vk(X) \M\ (ord Al)&apos;1 (p + l)pk&apos;\

Ziel dièses Paragraphen ist es, Hauptsatz 1 fur W{M, Q) DK zu verifizieren,
d.h. zu zeigen:

SATZ 1. Fur primitive x, Xu ^eCar Aj mit x2, Xu
a) DK(x) ist irreduzibel und von der Stufe À.

b) Es ist Dx(xi) DÀ(#2) genau dann, wenn Xi Xi oder xi ist. Damit erhâlt
man ((p-l)2/2)pA~2 nicht-isomorphe irreduzible Darstellungen von SL2(AA) vom
Grad (p+l)px&quot;1 fur A&gt;1, p^2 und A&gt;3, p 2; fur p^2; A l ist die

entsprechende Anzahl (p-3)/2.

Die Anzahl-Aussage folgt aus den Angaben ûber die Automorphismengruppe
und die primitiven Charaktere in §2. Den Beweis von a) und b) kann man
gleichzeitig fûhren, indem man zeigt, daB die Dimension des C-Vektorraums
HomSL2(Aj V\(Xi)&gt; VkiXi)) der mit SL2(AX) vertrâglichen Homomorphismen von
VA(xi) nach Va(*2) gleich 1 ist fur xi X2 oder xi (und Xi&amp;l) und ° andernfalls.
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Jeder SL2(AA)-vertrâgliche Homomorphismus [K]:Vk(xi)~* VA(^2) lâBt sich in
der Form

[K]f(X) I K(X, Y)f(Y) Vfe V(xi), XeM
YeM

schreiben, wobei K eine Funktion aus CMxM mit den Eigenschaften

1) K(XS, YS) K(X, Y) VS € SL2(AA), X,YeM
2) K(sX, tY) X2(s)xî\t)K(X, Y) Vs, teA^X, YeM

ist; der C-Vektorraum K(xi,X2) aller dieser Funktionen KeCMxM ist isomorph
zu HomSL2(Ax)(VA(^1), VA(x2)): Die Surjektivitàt der Abbildung Kh[K] ist klar,
und die Injektivitât ûberprùft man anhand einer Basis von Vx(xi) (vgl. dazu Bem.
2) am Ende des Paragraphen). Nun kônnen wir zeigen:

{0

fur Xi**2,*2
1 fur xi *2 oder x2,xï^l (1)

2 fur xi *2 *2.

Dazu nennen wir [X]: {fX| te AA} mit XeM eine Gerade in M. Zwei
Geradenpaare ([X], [Y]) und ([X&apos;], [Y&apos;]) sollen âquivalent heiBen, wenn ein

SeSL2(AA) existiert und s, te AA, so daB XS sX&apos; und YS tY ist. Wegen der
Eigenschaften 1) und 2) ist es klar, daB jedes KeK(x\, X2) eindeutig bestimmt ist
durch seine Werte auf einem Reprâsentantensystem der Klassen âquivalenter
Geradenpaare. Ein solches Reprâsentantensystem ist die Menge aller Paare

([1, 0], [a, pr]), wobei r die Menge {0,1,..., A} durchlâuft und a die Menge

{1} fur r 0,A
fur p*2

{1, ri) mit l-) -l sonst
\p/

{1} fur r&lt;l oder A-r&lt;l

{1,3} fur (r 2 oder A-r 2) und A&gt;3 \ fur p 2.

{1,3,5,7} fur r&gt;3 und A-r&gt;3

Wenn nâmlich ([xu x2], [yi, y2]) ein Geradenpaar ist, darf man o.B.d.A. (wenn

nôtig, nach einer Transformation mit 1 1) annehmen, daB xxe AA ist; dann
-. A 1 0/

o (xixt -x2r1\(i o\ u J t Akann man mit S l -1 H, -I» wobei teAk und beAk geeignet\ 0 X\t /\b 1/
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gewahlt werden mûssen, das Geradenpaar in ein Paar der Reprâsentantenmenge
ùberfûhren.

Nun untersuchen wir, welche Werte K auf diesem Reprâsentantensystem
annehmen kann. Sei dazu zunàchst 0&lt;r&lt;À; setzt man s l + pk~l und b

-apk~r~l mod pA~r, so erhàlt man fur S A
\b s I

(s,O) und (a,pr)S (aypr),

also nach 1) und 2)

Xi(s)K((h 0), (a, pr)) K((s, 0), (a, pr)) X((l, 0), (a, pr)).

Fur primitive xi gilt jedoch x2(s)#l, also ist K((l,0), (a, pr)) 0. Jene Se
SL2(Aa), welche das Geradenpaar ([1,0], [1,1]) in sich ùberfûhren, sind notwen-

dig von der Form S _t _, I mit s g A%. Hier erhâlt man
\s —s s I

Xi(s)xî\s-l)K((U 0), (1,1)) K((s, 0), (s&quot;1, 5&quot;1))

Das bedeutet, daB K((l,0), (1,1)) genau dann notwendig verschwindet, wenn

Xi^Xï1 X2 ist. Ebenso schliesst man mit Hilfe der _, I aus SL2(AA),
\0 s I

sgAa, welche das Geradenpaar ([1,0], [1,0]) in sich ùberfûhren, daB

X((l, 0), (1, 0)) X2(s)xT\s)K((U 0), (1, 0))

ist, d.h. daB K((l,0), (1,0)) genau dann notwendig verschwindet, wenn Xi^Xi
ist. Daraus folgt (1) und damit die Behauptung des Satzes.

DaB schlieBlich die gewonnenen Darstellungen die Stufe A haben, sieht man

(1
DX~X\

1
aU^

die Basisfunktion fY mit Y (l, 1) ist nicht die Identitât.

Bemerkungen. 1) Im Fall primitiver Charaktere x mit ^2 1 entnimmt man
(1), dass D^(x) in genau zwei irreduzible Darstellungen zerfàllt.

2) Eine Basis von Vk(x) verschafït man sich z.B. durch Funktionen fY mit

/y(X)~l0 fur
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wobei Y ein Erzeugendensystem aller Geraden in M durchlâuft.
3) Die Darstellung DK(x) ist von einem eindimensionalen Charakter der

Gruppe der oberen Dreiecksmatrizen in SL2(AX) induziert. Satz 1 kônnten wir
auch mit den wohlbekannten Mackeyschen Sâtzen beweisen.

4* Die unverzweigte Reihe

Man kann auch fur die anderen Weilschen Darstellungen den Beweis von
Hauptsatz 1 so wie in §3 fûhren, indem man Darstellungshomomorphismen durch
Funktionen KeCMxM beschreibt, welche bestimmten Eigenschaften genûgen
mûssen. Dièse Eigenschaften werden jedoch in den anderen Fâllen recht komp-
liziert, da man dort nicht mehr die natûrliche Darstellung zur Verfùgung hat. Hier
und im folgenden Paragraphen werden wir darum eine andere Méthode verwen-
den, welche eher auf der Analyse von Darstellungskoeffizienten beruht. Wir
beginnen mit dem unverzweigten Fall (wir verwenden die Terminologie von §2

mit r 3 fur p 2) und bezeichnen W(M, Q) bzw. W(M, Q, x) mit NK bzw.

SATZ 2. Seien #, xu Xi primitive Charaktere von U mit #2, #

a) Nk(x) ist irreduzibel von der Stufe A.

b) Es ist Nk(xi) NK(x2) genau dann, wenn Xi *2 oder xi ist.

Damit erhâlt man ((p2-l)/2)pA~2 nicht-isomorphe irreduzible Darstellungen von
SL2(AA) vom Grad pk~\p-l) fur A&gt;1, p^2 und fur A&gt;3, p 2. Die

entsprechenden Anzahlen lauten (p-l)/2 fur p#2 und A 1, |
&apos;

\
\Jl fur A — 3 J

und p 2.

Die genannte Anzahl ergibt sich aus der Anzahl der primitiven Charaktere x
mit #2^1&gt; und die Aussage ûber den Darstellungsgrad folgt aus der hier

vorgenommenen Konstruktion einer Basis des zugrundeliegenden invarianten
Unterraumes V(^) von CM: Zunâchst sei wie ûblich ô^eCM durch

| definiert. Dann bilden die /*(*): £«€U x(e)àeç ein

Erzeugendensystem von CM, wenn ^ den Modul M=O/pAO und x die Charaktere

von U durchlâuft. Fur ein testes x wu*d V(x) von den fç(x) ertzeugt, so da8

unter diesen nur noch ein System linear unabhângiger auszuwâhlen ist. Aus

fur aile yell, £eM, x^CarU (2)



Die irreduziblen Darstellungen der Gruppen II. Teil 501

sieht man sofort, da8 fç(x) 0 ist, wenn x primitiv und ÇepM ist. Da nun II auf
]Vfx M-pM fixpunktfrei operiert, ist /$(x)^0 fur aile Ce M*; eine Menge von
Funktionen fç(x), ££#, bildet also nach (2) und nach der Définition der fç(x)
genau dann eine Basis von V(#), wenn 0 ein Reprâsentantensystem der Bahnen

von U in Mx ist. Mit anderen Worten muB 0 zu jedem aeAÎ genau ein £ mit
N(£) a enthalten, denn Nx (s.§2) ist surjektiv und £, tj e Mx liegen genau dann
in der gleichen Bahn, wenn N(£) N(tj) ist. Dièses 0 lâBt sich also wie folgt
wàhlen:

p^2: 0 0!U0a mit 01 : {ne Ax | 1 &lt; n&lt;|(pA- 1)} und 0a : {n • r\a \ ne 0t};

dabei sei Tja e Mx so gewâhlt, daB a N(r)a) mit (- W -1 ist.

p 2: VP/

!{1}

fur A 1

{1,t)3} fur A 2

0iU03U05U07 fur A&gt;2

mit 0,: {n • r\} \ n 1, 3,..., 2X 2-l}fùr /=1, 3, 5, 7; dabei seien die r),eM*
so gewàhlt, daB N(ri}) j ist (tji 1).

In der so definierten Basis ist Nx(x) gegeben durch die folgenden Operationen
der Erzeugenden von SL2(Ak): Fur aile £e 0 ist

Lo 1

l 0 &lt;d

mit af yf, yeU, f&apos;efl, (4)

Tr e^))/^^)- (5)
eU

(p~x Tr^: p~x(^fj4-i7|) ist die zu p~kN(Ç) gehôrige Bilinearform) Dièse For-
meln ergeben sich aus I (2), (llb), (13b), wenn man (2) und die Définition der

fè(x) benutzt.
Zum Beweis von Aussage a): Die Restriktion von Nk(x) auf die Untergruppe

|( 1 6eAA| zerfâllt in eindimensionale Unterdarstellungen, deren in-
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variante Unterrâume gerade von den fç(x), £e0, erzeugt werden. Dièse Zer-
legung ist eindeutig bestimmt, denn die entstehenden Unterdarstellungen sind

paarweise verschieden, wie (3) zeigt: Nach Konstruktion von 6 ist N\e injektiv.
Daraus folgt, da8 ein invarianter Unterraum der Restriktion NA(^)|B von Nx(x)

auf die Boreluntergruppe # {( n ^l a6A^,6eAA ebenfalls von gewissen

fç(x) erzeugt sein mu8. Nach (4) gehôren aber mit fe(x) auch aile
zu einem solchen invarianten Unterraum. Also zerfâllt NA(#)|B in die eindeutig
bestimmten invarianten Unterrâume

V •

1/ 1, 3, 5, 7 tur p Z9\&gt;2

(mit &lt;• • •) bezeichnen wir hier den von den fç(x) erzeugten linearen Unterraum
von V(x)l hier und im folgenden ist es klar, wie die entsprechenden
Ùberlegungen fur p 2, À ^2, lauten).

Fur den Irreduzibilitâtsbeweis von Nk(x) genùgt es daher zu zeigen, daB kein
V; bzw. kein Vh(BVj im Fall p 2 invarianter Unterraum von Nx(x) sein kann.
Wir tun dies mit Hilfe von (5), indem wir zeigen, daB fur aile ;V 1 ein Ce 0i und
ein r)E$j existieren, so daB der Darstellungskoeffizient

eelt

ist. Nach Konstruktion von 0i und 0, bedeutet dies: Es existiert ein neAk mit
Ze€u x(£)*(P A Tr enrj^^O. Die entsprechende Summe wùrde fur p\n ver-
schwinden, denn es existiert ja, weil x primitiv ist, ein 76II mit #(7)7*1 und

yept}] epr]j fur aile eeVL. Angenommen, dièse Summe wûrde fur aile n ver-
schwinden. Dann verschwindet auch folgende Linearkombination fur jedes p e U:

I e(-p~xn Tr jB^) I x(e)t(p~xn Tr er),) pA I X(e) 0 (6)
neAx eelt eeU

Nun beweisen wir folgendes

LEMMA 1. Sei ye(£l/pK€l)x mit y^ymoàp€l. Das Kongruenzensystem

Tr£-Try modpA,

hat genau zwei Lôsungen in (O/pA£))x, nâmlich ^ 7 und £ 7.
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Die zweite Kongruenz lâBt sich schreiben als

£ _|_ |== y + y mO(| pA?

und wegen der ersten Kongruenz ist sie âquivalent zu

(£ ~~ y)(è ~ y) — 0 mod pA £).

Schreibt man n £ - y und v £ - 7, so gilt

/Lt^ 0modpAO und /u,-^ 7~7^0modpO.

Daraus folgt entweder /LL^0modpAOoder *&gt; 0modpA£),also £ 7 oder 7 (p
ist ja in O unverzweigt!).

Ist p?*2, so erfûllen aile Elemente 7 /3fja mit /3eU die Bedingung von

Lemma 1, denn N(7) amodp mit 7=7modp£) ist fiir (— =-1 gar nicht
\PJ

lôsbar. Aus (6) wûrde dann folgen

xi^ + xi^xiVaï)^1) 0 fur aile eeVl,

d.h. x X&apos;1* un&lt;^ das ist ein Widerspruch.
Ist p 2 (und À &gt;2), so kann man

wâhlen, und die Elemente 7 ^fj, mit j3 € U, erfûllen wiederum die Bedingung
von Lemma 1 (siehe §2.2), also ist man auch in diesem Fall fertig.

Mit Hilfe von (3) sieht man, daB nicht die Identitât auf V(x) ist;

Nk(x) hat also die Stufe A.

Zum Beweis von b) ùberlegt man sich zunâchst anhand von (3), (4), (5), daB

P:fç(x)*-*fï(x) (ftif aile Ce 6) einen Darstellungsisomorphismus von Nk(x) auf
Nk(x) erzeugt.

Sei umgekehrt ein Darstellungsisomorphismus K:Nk(xi)-+ NA(^2) gegeben.

Da K mit fur aile b e Ak kommutieren muB, entnimmt man (3), daB

)~Cçfç(x2) sein muB mit gewissen komplexen c€#0. Da K mit allen

l, kommutiert, folgt aus (4) notwendig c€ c*,, wenn £ und t\ im
a- 01

0 aï
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gleichen 0, liegen. Daraus folgt schlieBlich, wenn man K°\ \°K

beachtet und die entstehenden Darstellungskoeffizienten fur geeignete £, 17 e 6r

vergleicht, daB

Tre)
eeU eeU

fur aile neA% ist. Durch Bildung von Linearkombinationen schlieBt man daraus

ganz âhnlich wie eben: es gilt

PA I (Xi(e)-Xi(e)) 0 fur aile yell,
eeU

Tre =Try

d.h. fur aile y, die die Bedingung von Lemma 1 erfûllen, gilt

Sind £ und a die erzeugenden Elemente von U aus §2.2, so sieht man, daB
und le fur aile e e(a) die Bedingung von Lemma 1 erfûllen, d.h.

*2(O Xi(O oder *!(£)

und

e) fur aile e€&lt;a&gt;.

Aus der linearen Unabhângigkeit der Charaktere der Gruppe (a) folgt sofort
2(£) Xi(£) und ^2 ^1, falls XiiÛ^XiiÛ- Damit ist b) bewiesen.

5. Die verzweigten Reihen

Wir befassen uns hier mit den Weilschen Darstellungen R^(r, t) aus I, Définition

3 (mit a&lt;k-2 im Fall p 2); tt bezeichne jeweils die in §2 beschriebene
abelsche Automorphismengruppe von (M, Q), und fur die nach dem ersten

Zerlegungsprinzip gewonnenen Unterdarstellungen W(M, Q, x) schreiben wir
^xfo t, x)- Fur dièse Fàlle soll hier Hauptsatz 1 bewiesen werden:

SATZ 3. Seien x, Xu X2 primitive Charaktere von II mit x2, Xu xl&amp;l- Dann
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ist

a) R^(r, t, x) irreduzibel von der Stufe A,

b) Rl(r, t, xi) Rk(r, f, Xi) genau dann, wenn Xi Xi oder xi ist

Fur p#2 und feste r, f, a, 0&lt;cr&lt;A, erhâlt man damit pÀ~&lt;r~1(p-l) nicht-
âquivalente irreduzible Darstellungen vom Grad §(p2-l)px~2. Die entsprechenden

Aussagen fur p 2 und die dort auftretenden Aquwalenzklassen quadratischer
Moduln macht die folgende Tabelle:

0

1

2

3&lt;(j&lt;A-3

r

1

1

1

1

1

1

,3

,5
,3

,3

,3,5,7

t

1,5
3,7

1,5
3,7
1,3,5,7
1,3,5,7

Anzahl der maquivalenten
irreduziblen R^(r, t, x)
fur feste r, t

1 fur A 3,4, 2A 3 fur A&gt;4
2A&quot;4 fur A&gt;4

2k~4 fur A&gt;4

2K~5 fur A&gt;5

2k—2

Grad

3 2A

3-2x

3 2k

3 2X

3 2A

von
ux)

-3

-4

In den anderen Fâllen ist a À - 2 (s. §6) oder x2 1 fur aile pnmitwen x (s.§9).
Die Anzahlaussage ergibt sich aus der Anzahl und dem Verhalten der primiti-

ven Charaktere (§2), die Gradaussage aus der nun folgenden Konstruktion. Wir
verwenden die in §2 fiir dièse (M, O) eingefûhrte Terminologie und suchen wie in
§4 eine Basis des Darstellungsraums V(x) bzw. genauer V°(r, t, x) von Rx(r&gt; t, x)

unter den Funktionen /^(x):=X x(e)^^CM. Ebenso wie dort ist (2) gùltig,

daher verschwinden aile fç(x) mit ÇepM, da x primitiv sein soll. Anders als dort
besteht M:= M-pM hier nicht mehr nur aus der multiplikativen Gruppe Mx von
M; jedenfalls operiert U aber fixpunktfrei auf M, so daB die Anzahl der Bahnen
dieser Opération gerade \M\ • (ord U)&quot;1 ist. Dièse Anzahl ist gleichzeitig der

Darstellungsgrad, denn die Auswahl einer Basis {fç(x) | f € 6} ist gleichbedeutend
mit der Auswahl eines Reprâsentantensystems 6 a M fur dièse Bahnen.

Es ist klar, daB man 0DMx wieder so zu wâhlen hat, daB N|0nM*:0rïMx-»
Ax injektiv ist. Im Fall p#2 kann man einfach

0!:=0nMx {nGAx|l&lt;n&lt; |(pA -1)}

nehmen. Im Fall p 2 setzen wir wieder 0; : {n^ | n 1,3,..., 2A~2 -1}, soweit
ein Tfc g Mx mit N(t);) / existiert (j 1,3, 5,7, insbesondere rji 1). Hier kann
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0i U 05 fur a 0, t 1 oder 5

0!U03U05U07 fur cr 0, r 3 oder 7

0iU03 fur cr=l, r=l oder 5

0iU07 fur or l, r 3 oder 7

0iU05 fur ct=2

0i fur cr&gt;3

wâhlen. Wie man die Elemente von (M-Mx)fl 0 wâhlt, ist fur den Beweis von
Satz 3 gleichgûltig. Es sei hier nur erwàhnt, daB N((M-M*)n6) N(M)npAx
ist; wir werden in §7 darauf zurùckkommen.

In der so definierten Basis ist R\(r, t, x) gegeben durch die folgenden
Operationen der Erzeugenden von SL2(AA): Fur aile £g 0 ist

[o (7)

°a] h(x)

und fur

f

mit yell, ^G0, (8)

(9)
eU

Die expliziten Werte der Zahlen A(a)9 Sq(~1)gC findet man in I, (Ile) und

(13c). rp~x Tr £rj B(4 tj) ist die zu rp~xN(ij) Q(f) gehôrige Bilinearform.
Ebenso wie im Beweis von Satz 2 zeigt man nun, daB fur aile vorkommenden

0,c=M der Unterraum V, von VI(r, f, x), erzeugt von den /€(x) mit £e0,,
invariant und irreduzibel ist bezûglich der Boreluntergruppe BcSL2(Ax). Ge-

nauso lâBt sich beweisen, daB der von den faix) niit ÇeODiM—M*) erzeugte
Unterraum Vo invariant (jedoch i.a. nicht irreduzibel) bezûglich B ist und daB die

Zerlegung Vo © £i © V, eindeutig bestimmt ist.

Fur aile /c(*)e Vo ist f î]/€(x)€l,© Vh denn fur aile Tj€(M-Mx)n0

verschwindet der Transformationskoeffizient £C€U x(e)c(r? A Tr e^fj) aus
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Gleichung (9): In diesem Fall ist nàmlich frj € pM; es existiert darum ein y e U mit
x(y) 5e 1 und y£fj £fj. Daraus sieht man, daB der einzige invariante Unterraum
von V(x), welcher £; © V, enthâlt, der ganze Raum V(x) ist.

Im Fall p^2 und im Fall p 2, &lt;r&gt;3, ist damit bereits bewiesen, daB

R\(r, t, x) irreduzibel ist, denn hier besteht £;© V} nur aus Vi, und die Restriktion
auf die Borelgruppe B hat gezeigt, daB Vi in einem irreduziblen Unterraum von
V(x) enthalten sein muB.

In den Fâllen p 2, cr 0,1, 2, ist zwar aus dem gleichen Grund jedes Vs in
einem irreduziblen Unterraum von V(x) enthalten, man muB aber zusâtzlich
nachweisen, daB z.B. ein irreduzibler Unterraum, der Vx enthàlt, zugleich die

ûbrigen vorkommenden V, enthâlt. Wie im Beweis von Satz 2 kann dies dadurch
geschehen, daB man die Existenz eines £ e 6t und eines tj g 0, zeigt, so daB der
Transformationskoeffizient £eeu x(e)e(r2~A Tr e^fj) aus (9) nicht verschwindet (im
Fall or 0, t 3 oder 7, geht man etwas anders vor: Man zeigt dasselbe fur £ e 6t
und t) g 03, 17 g 07; anschlieBend fur £g 03 und 17 g 05).

Man kann den Beweis von Satz 2 fast wôrtlich ùbernehmen, indem man fur
eine geeignete Linearkombination

Z I ^(e)e(nr2-À(Tr^i-Tri8fi/))^0
neAx eell

nachweist (fur o- 0, f 3, 7 ist gegebenenfalls fj; durch 173TJ5 zu ersetzen).

Damit ist die Irreduzibilitàt der fraglichen Darstellungen gezeigt. DaB sie die

[1
vK~ll

ist nicht die

Identitàt auf VJ(r, t, x).
Einen Isomorphismus /x:RÎ(r, t, *)-» Ra^, *, x) kônnen wir durch ^(f^ix))-

fî(x) definieren.
Sei andererseits ein Isomorphismus K : R°(r, t,xi) -* R\(r&gt; UX2) gegeben, xu

primitiv. Aus Ko \°K VfceAAundK°

K folgt mit Hilfe von (7), (8), daB fur aile £g 0, gilt: K(/€(*i)) cj
mit einem komplexen c7^0, und daB K den Raum Vo auf sich abbildet.

r, f 0 11 [ 0 il „ .*,,»*Anwendung von K&gt;
4 ^ 4 ^ °^ ai&quot; U\Xih ç^Ou zeigtL-l OJ L-l OJ

daB fur aile ti g 0, c: 0
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sein muB. Durch Bildung von Linearkombinationen dieser Ausdrûcke erhâlt man

I {ciX2(e)-c]Xi(e)} 0 (10)

fur aile /3 e II und aile /.

Fur p^2 und fur p 2, a^3, ist notwendig / 1, Ci cp tj; 1; wenn fur
j3 6i 4- b2^—p(Tt, die Komponente 62 nicht durch p teilbar ist, so hat Tr e Tr /3

nur die zwei Lôsungen e j8 und e /3. Dies ist insbesondere fur /3 a und (—a)

(siehe §2.3 und 4) der Fall, also folgt aus (10), daB X2 Xi oder xi ist. Genauso
kann man im Fall p 2, cr 0, t 1 oder 5 vorgehen. In den anderen Fâllen, d.h.

p - 2, cr 1, 2 oder cr 0 mit t 3 oder 7, gibt es jeweils ein ;V 1, so daB fur aile
/3 6II entsprechend j3tj; x + y J—l^t mit 2 /f y ist und darum die Gleichung
Tr efjj =Tr /3fjj nur die Lôsungen e p, e P^r}&apos;1 besitzt. Aus (10) folgt daher

fur aile |3gU. Da die ci, cJ5 XiC^j&quot;1) und ^(^r1) Constant # sind, kann dièse

Gleichung nur erfûllt sein, wenn die Charaktere xu X^\ X2 und xî1 nicht
paarweise verschieden sind. Damit ist auch hier Teil b) des Satzes bewiesen.

6. Die Sonderfaile a ^ A - 3

Wie in §1 bereits angedeutet wurde, kann man die vollstàndige Zerlegung
aller Weilschen Darstellungen W(M, Q) zu binâren quadratischen Moduln
dadurch durchfûhren, daB man die zweite Zerlegungsmethode (§8) verwendet,
welche i.a. besagt: Aile irreduziblen Unterdarstellungen von W(M, Q) sind
entweder von der Form W(M,Q,x) mit primitivem xe Car II, oder sie liegen
bereits in Weilschen Darstellungen kleineren Grades. Dies ist jedoch falsch fur
kleine À (§9) und vor allem fur die Moduln AÀ©Ai bzw. Ax, wenn p^2, und

AA_i©A2 bzw. Ax-i©Ai, wenn p 2 ist. Fur dièse Sonderfâlle wollen wir
gewisse irreduzible Unterdarstellungen angeben, so daB wir mit Hilfe einer
schwâcheren Form der zweiten Zerlegungsmethode eine vollstàndige Zerlegung
erhalten werden.

1. p#2, M AK, Q(x) rp~Kx2, p X r. Die Isomorphieklasse des quadratischen

Moduls ist durch f-) bestimmt, und es ist Aut(M, Q) {1, -1}. Die

Weilsche Darstellung Rx(r):= W(M, Q) besitzt nach dem ersten Zerlegungsprin-
zip zwei Unterdarstellungen Rk(r, +) und R\(r, —), deren invariante Unterrâume
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sind

Beide sind fur À &gt; 2 reduzibel, es gilt jedoch

SATZ 4. Rk(r, ±) enthâlt genau eine irreduzible Unterdarstellung R\(r, ±)i der

Stufe A, welche den Grad \{p2-Y)pk~~2 fùr\&gt;\ und (p±l)/2 fùrk l besitzt. Es
ist

Eine Basis des Darstellungsraumes von RA(r, ±)x ist B1{±)UB0(±), wobei

B0(±):={/y.k(±)= Z e(—)(ôpy+ap-±ô_py_ûp-)
l aeA, L \ P / J

L) fur

JBo(+): {So},
\ fur A 1 ist.

Bo(-): 0

Man kann leicht

/X(±)=e(rp-Ax2)/X(±),

(H)

zeigen und entsprechende Formeln fur die Erzeugenden und

aufstellen und mit deren Hilfe analog zu Satz 3 Invarianz und Irreduzibilitât von

JRx(r, ±)i beweisen. Insbesondere erhâlt man [-£]/x( + — I /x( + und
\ P /

(~1\A— /x(-)- Daraus folgt die Inâquivalenz. Die Eindeutigkeit, d.h.
P I

da8 das Komplement von Rk(r,±)1 in RA(r, ±) eine kleinere Stufe besitzt, wird
sich am einfachsten aus Satz 8 ergeben.
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2. p#2, M AK®AU A&gt;1, O(jc, y) rp A(x2 + pA 1ty2), p X r,t. Hier
kônnen wir wieder die Terminologie von §5 bzw. §2 verwenden; die Darstel-
lungen Rx&quot;1(r, t, x) sind fur primitive \ bereits in §5 beschrieben worden, so daB

wir uns hier auf die nicht-primitiven #€CarU beschrânken kônnen. Nach §2

haben nicht-primitive Charaktere die Eigenschaft x(a) l; es handelt sich also

nur um zwei Charaktere x+ und X-» welche durch ^±(~1)= ±1, #*(&lt;*) 1

vollstândig bestimmt sind.

LEMMA 2. JRx&apos;V, t, x±) enthâlt genau eine irreduzible Unterdarsîellung
Rx^ir, t, x±)i der Stufe A, und fur dièse gilî

(12)

Rk(r,±)t fur (—) 1,

i^x(r,^)i fur (—) -!•

Die Basis des zu Rx 1(r,t,x±)i gehôrigen irreduziblen Unterraums ist Bi(±)\J
Bo(±) mit

Zum Beweis verwendet man (7), (8), (9) und die Tatsache, daB man a so wàhlen
kann, daB a1 l-2J2pK~1t + jJ-pt, / 0, ...,p-l, ist. Die Eindeutigkeit
folgt wieder am einfachsten aus Satz 8, und fur (12) wird sich in §7 ein einfacher
Beweis ergeben.

3. p 2, M Ax-i0A!, A&gt;4, Q(x, y) r2&quot;A(jc2 + 2x~2ry2) fur r l,3,5,7
und t 1,3. U Aut (M, Q) ist in §2 beschrieben worden; die Charaktere von U

sind ^i l sowie die nichttrivialen Charaktere x-u X-a, Xa&gt; deren Kerne aus 1

und jeweils -1, -a, a bestehen. Ein Reprâsentantensystem fur die Bahnen von U

in M ist die Vereinigung der folgenden Mengen:

: {2,6,...,2x-3-2},

fur A&gt;5,

fur A 5,
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04: {7-2A-2r}, 05: {2A-3 + v/C2r:=I7},

06: {2 + VZ^^,6 + /:F^,..^
07: {4,8,...,2A-2-4}, 08: {O,2A&quot;2}.

Es ist klar, da6 eine Basis des Darstellungsraumes fur die Darstellung R*~2(r,1, x)
wieder unter den Funktionen fç(x) &apos;Leenx(e)àeç zu suchen ist, und zwar
durchlâuft £ dabei die Menge

OiUO2Ue3U05 fur * *-«,

»iU02U03U06U07 fur x Xc

U »,
l

fur x Xi-

DaB RÏ 2(r, f, ^_i) undRkK \r, t, X-&lt;*) irreduzible Darstellungen sind, beweist man
wortlich ebenso wie in Satz 3 (es handelt sich in diesem Fall um die beiden

primitiven Charaktere!); die beiden anderen Unterdarstellungen sind reduzibel,
aber sie enthalten jeweils genau eine irreduzible Unterdarstellung JR* 2(r, U Xo)\
bzw. R^~2(r, t,Xi)i der Stufe À vom Grad 3 • 2A~4. Die zugehôrigen invarianten
irreduziblen Unterràume dieser Darstellungen werden erzeugt von

0i oder £ 2&apos;

£ 2 + V-2A-2f,6 + &gt;/-2A-

und (furA&gt;5) 4, 8,..., 2A~3-&lt;

bzw. von

{/«(Xi)| i) |

-iA-3

Die Beweise dazu kann man elementar mit Hilfe der Erzeugenden von SL2(AX)
fûhren. Die Frage nach môglichen Isomorphismen zwischen diesen Darstellungen
werden wir weiter unten beantworten.
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4. p 2, M AA_!©A2, A&gt;5, Q(x, y) r2 A(x2 + 2A 3fy2). Durch Satz 3

sind uns hier bereits die Darstellungen R^~3(r, t,x) fur primitives x unc^ À&gt;5

bekannt (fur À 5 werden wir dièse in §9 behandeln). Wir werden uns darum hier
auf die nicht-primitiven Charaktere beschrànken und zu diesem Zweck zunâchst
die Gruppe U (-l)x(a) noch genauer beschreiben: Es ist

1 _O*-4,_o2X-9_

und die nicht-primitiven Charaktere sind Xis 1 sowie jene nicht-trivialen Charaktere

Xa, X-ii X-ol, deren Kern durch a2 und jeweils a, —1, —a erzeugt wird, Fur
j~3(aile dièse nicht-primitiven Charaktere x enthâlt jRj~3(r, f, x) eme eindeutig be-

stimmte irreduzible Unterdarstellung R*~3(r, t, x)\ der Stufe À vom Grad 3 • 2A~4,

deren zugehônge Unterràume von folgenden Funktionen erzeugt werden (mit Si

bezeichnen wir wie in §5 die Menge {1,3,..., 2X~2-1}):

Darstellung Erzeugende des Darstellungsraumes

Rkk-3(r,t,X-a)i fÈ(X-a) mit (e 6t oder g 4,12, ,2A&quot;3-4,

VA3 VÀ3 x3
2-ç(x-a) mit f 2,6, 2x~3-2

?fo_i) mit %£$! oder { 4,12, ,2x~3-4,

^ 2V-2x-3r,8 + 2&gt;/-2x~3r, ,2x&apos;3-8 + 2V-2x~3r,

:(X-i)-/2**-É(x-i)imtf 2,6, ,2x~3-2

,2x&quot;3-2,

,12 + 2V-2x~3f, ,2x~3-4-h2V-2x~3f,

U(Xi)-f» 2€(yi)mitg 2,6, ,2x~3-2,

{ 0,8, ,2x~3-8

Die Beweise dazu kônnen elementar mit Hilfe der Erzeugenden von SL2(AX)

gefùhrt werden und der Beweis der Eindeutigkeit wird sich wieder einfacher aus
Satz 8 ergeben.

SATZ 5. Fur feste r 1, 3, 5, 7, t 1, 3 und jedes A &gt;7 sind Rx~2(r, t, x~i),
R\~2(r, t,x-a), R\~3(r, t, xi)u R\~3(r,t, x-ùi vier paarweise nicht-isomorphe
irreduzible Darstellungen vom Grad 3 • 2X~4 und der Stufe À.

Zum Beweis, daB dièse vier Darstellungen nicht isomorph sind, dûrfen wir uns
darauf beschrànken, die Restriktion dieser Darstellungen auf die Borelgruppe zu
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betrachten. Mit Hilfe von I, (2) bzw. zu (7) und (8) analogen Formeln stellt man
leicht fest, daB fur die oben konstruierten Basen der Darstellungsrâume die

Darstellungsmatrizen der Elemente
\0 1/

und -EeSL2(AA) diagonal sind.

Bestimmt man unter diesen Diagonalelementen jeweils die Menge der achten

Einheitswurzeln, so sieht man elementar, indem man dièse fur die vier angegebe-
nen Darstellungen vergleicht, daB dièse nicht isomorph sein kônnen.

Derselbe Vergleich von Darstellungsmatrizen legt die Existenz folgender
Isomorphien zwischen den hier konstruierten Darstellungen nahe:

fur aile nicht-primitiven x fur À &gt; 5

(A =5)

Rl(r,t, xi)i
RÎ(r,3,X-a) fur

Rl(r,3,X-ù fur

Kir

(A 6)

(13)

(14)

(15)

4 fur A 7

fur A&gt;7
(16)

Man kann dièse Isomorphismen explizit angeben; im nâchsten Paragraphen bzw.

(fur (13) bis (15)) in §9 wird sich jedoch ein einfacherer Beweis fur sie ergeben.

7. Ein Inàquivalenzsatz und seine Konsequenzen

In diesem Paragraphen wollen wir den Beweis von Hauptsatz 1 beenden und
die Beschreibung der irreduziblen Darstellungen von SL2(AA) der Stufe À fur

A &gt; 1 und p 2, A &gt; 6 abschlieBen.

SATZ 6. a) Seien (Mu Ch), (M2, Q2) binâre quadratische Moduln, Xi und \i
primitive Charaktere der zugehôrigen abelschen Automorphismengruppen Ux bzw.

U2. Mit Ausnahme des Falles p 2, A 5, a 3 (wegen (14)) folgt dann aus
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ly Qu *i)= W(M2, 02, X2), dafi (Mu Qi) und (M2, Q2) isomorph sind.

b) Die vier Darstellungen RA(r, ±)t mit 1 - J ±l aus Satz 4 (p#2) fczw. die

16 Darstellungen RKk~3(r,t, X-i)i, Rx~3(r,t9 X-i)i (p 2, A&gt;7) mit r l, 3, 5, 7,

t 1, 3 aus Safz 5 sind zu den unfer a) genannten Darstellungen und untereinan-
der paarweise nicht isomorph.

Sei zunâchst p#2: Hier bestimmt schon der Darstellungsgrad von
W(M, O, x), X primitiv, den quadratischen Modul (M, Q) eindeutig bis auf

Isomorphie, wenn es sich um Darstellungen der zerlegten oder der unverzweigten
Reihe handelt (man beachte die Sâtze 1 bis 3 sowie die Tatsache, daB wir dort aile

Isomorphieklassen binàrer quadratischer Moduln behandelt haben, s.I, Satz 3).

Es bleibt nur zu zeigen, daB aus R£(r, t, x) R\(r\ t\ x&apos;) notwendig |- J |-J,

l-j=l —j und cr or&apos; folgt. Nach (7) ist die Darstellungsmatrix von R%(r,t,x)

fur |€SL2(AA) diagonal mit den Diagonalelementen e(rp~Km), me

{x2-¥p&lt;rty2\xeAt, y 0 oder xepAk, yeAÏ} (mit Multiplizitâten), und ent-
sprechendes gilt mit r&apos;, t\ &amp; anstelle von r, t, a im Falle der Darstellung

R\&apos;(r&apos;*t&apos;9x&apos;)* I^aran sieht man sofart — — Die anderen Gleichungen

i und a tr&apos; folgen aus(K)

durch naheliegende z&amp;hlentheoretische Ûberlegungen. Ganz analog dazu gewinnt
man hier auch die Aussage b) des Satzes; das Spektrum der Darstellungsmatrix

J Dvon JRA(r,±)i fur I I besteht hier (fur A&gt;1) einfach aus allen t{rp An

neAk.
Im Fall p 2 bestimmt wieder der Darstellungsgrad eindeutig die

Zugehôrigkeit zur zerlegten oder zur unverzweigten Reihe. Zum Beweis von a)

bleibt also nur zu zeigen, daB r, f, cr eindeutig durch Rx(r, t, x)&gt; X primitiv,
bestimmt sind, wenn r und t die in Satz 3 angegebenen Werte durchlaufen (bzw.

fur a À - 2 die Werte r 1, 3, 5, 7, t 1, 3, wenn A &gt; 5 ist; fur A &lt; 5 gibt es nur
in den Fâllen A 3 und A 2, t 1 primitive Charaktere, und dort kann man die

Gûltigkeit des Satzes elementar ûberprûfen, s. auch §9). besitzt auch hier
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als Darstellungsmatrix eine Diagonalmatrix mit den Diagonalelementen e(r2~xm),
wobei fur or&lt;A-3 me{(x2 + 2crty2)\(x,y)eM-2M} ist, und dièse Menge be-
stimmt r, t und a wieder eindeutig. Die entsprechenden Mengen fur die 32

Darstellungen KA~~2(r, t, X-i), KA~2(r,&apos;&gt;*-«), Ri~3(r, t,xi)u RÏ~3(r, t, X-i)i (fur
A&gt;7; fur A =6 entfâllt die letzte Darstellung wegen (15), und der Fall A 5

bleibt wegen (14) von der Betrachtung ganz ausgeschlossen) bestehen nur aus
Elementen der Restklassen rx2 mod 2k~2, x e AA_2. Damit ist erstens klar, da8 sie

nicht zu Darstellungen RZ(r\t&apos;,X&apos;) mit &lt;r&apos;&lt;k — 2 und primitivem x isomorph
sein kônnen. Zweitens ist r mod 8 durch sie eindeutig bestimmt. DaB sie schlieB-
lich fur A &gt; 5 auch noch t mod 4 bestimmen bzw. (von den erwâhnten
Einschrânkungen fur A 6 abgesehen) untereinander nicht isomorph sind, sieht
man wieder dadurch ein, daB man wie im Beweis von Satz 5 die achten

Einheitswurzeln in den Darstellungsmatrizen fur die Elemente I und -E
berechnet und vergleicht

Satz 6a zeigt—zusammen mit den Sâtzen 1 bis 3 und I, Satz 3 und 4-, daB

Hauptsatz 1 richtig ist (die in Satz 6a genannte Ausnahme spielt keine Rolle, da
dort Xi X2 l ist). Ferner folgt aus Satz 6 und aus der Tatsache, daB man die
Anzahl aller irreduziblen Darstellungen auf anderem Wege berechnen kann (s. I,
§4), daB die Sàtze î bis 5 aile irreduziblen Darstellungen von SL2(AA) der
Stufen A &gt; 1 fur p ^ 2 und der Stufen A &gt; 6 fur p 2 beschreiben; wir haben sie in
den Tabellen des §9 zusammengestellt.

Daraus erhâlt man folgenden einfachen Beweis fur (12) und (16): Da man aile
irreduziblen Darstellungen der betreffenden Stufe kennt, muB z.B. im Fall p 2,
A &gt;7 die Darstellung R£~3(r, t, ^«)i zu einer der Darstellungen der Sàtze 1, 2, 3

und 5 isomorph sein. Eine Analyse der Eigenwerte aller Darstellungsmatrizen fur

j und -EeSL2(Ax) zeigt, daB dafûr nur R£~2(r, t, Xa) in Frage kommt.

Ebenso sieht man auch die Gûltigkeit von (13) fur A&gt;6 ein. In den Fàllen

p 2, A 5, 6 kann man zum Beweis von (13) bis (15) ebenso vorgehen, sobald

man sich (§9) auf anderem Wege die noch fehlenden irreduziblen Darstellungen
dieser Stufen verschafft hat.

8. Eingebettete Weilsche Darstellungen

Sei W(M, Q) eine Weilsche Darstellung von SL2(AA) zu einem binàren-

quadratischen Modul (M, Q) von einer Stufe A &gt; 1. M besitzt dann p +1 Unter-
moduln Hp / l,...,p + l, der Ordnung p. Man ûberzeugt sich leicht, daB

Q|H/=0 ist fur aile / l,...,p + l mit Ausnahme der in §6 diskutierten
Sonderfâlle M^Ak-x®A2, M AA-i©Ai fur p 2 und M AA©Ai fur
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Hier besitzt jeweils nur ein H7 (o.B.d.A. Hx) dièse Eigenschaft bzw. fur p 2,
À 2 i.a. sogar kejnes. Analog gibt es nur ein solches Hi pA~1M im Fall
M^AK, p^2, À&gt;1. Die Eigenschaft Q|h,=0 hat nach I, Lemma 3 zur Folge,
da8 die zu H} orthogonalen Untermoduln Hf (bezûglich der zugehôrigen
Bilinearform B) die Eigenschaften Hfc:Hf und [M:HJ p besitzen, und da8 Q
auf jedem Faktormodul M, : Hf/Hj eine (ebenfalls nicht-entartete) quadratische
Form Qj induziert. Zu den quadratischen Moduln (M;, Q}) gehôren nach I,
Lemma 3 Weilsche Darstellungen W(MP Q,), welche folgendermaBen in
W(M, Q) eingebettet sind: Der Darstellungsraum CM&gt; von W(M}, Q}) wird iden-
tifiziert mit dem Unterraum V, von V CM, wobei

f(x) 0 VxéHf,&apos;

(17)
mit Jc^dJ

Wenn dim V pn ist, ist dim V, =pn 2.

Zwei solche in W(M, Q) eingebettete Darstellungen W(M}, Q,) und
W(Mh,Qh), j^h, besitzen eine gemeinsame Unterdarstellung, welche man auf
âhnlichem Wege gewinnt und welche nicht von / und h abhàngt: Die Summe der
Untermoduln H, und Hh ist Ho : {x e M \ px 0} mit ord Ho p2. Es ist wieder
q|Ho==0 — die in §6 diskutierten Sonderfâlle bleiben bis auf weiteres
ausgeschlossen — und Ho Hf nHt pM hat in M den Index p2 und enthâlt Ho.
Wie oben induziert Q auf Mo:= Ho/Ho eine quadratische Form Qo, und die nach

I, Lemma 3 in W(M, Q) eingebettete Darstellung W(M0, Qo) vom Grad pn~4 ist

genau die gemeinsame Unterdarstellung von je zwei verschiedenen W(MP Q,),
W(Mh, Qh).

M

h{ \i\ / L W(M/5O;) 2? W(M,Q,
X pnmitiv

&apos;

W(M}, Q) W(Mh, Qh)
xlO

TT U

\ /&quot; W(Mo,Qo)
{0}

Wir fûhren in V das Skalarprodukt

(/»g)= I f(x)g(x) fur /, g€V
xeM
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ein, und bezeichnen mit V] das orthogonale Komplement von Vo (siehe (17)) in
Vy Die Unterrâume V\ sind SL2-invariant, da

([U]f,[U]g) (f,g) fur aile f,geV und l/eSL2(AJ.

SATZ 7. Es gilt

W(M, Q) X © W(M, Q, *)) 0 (t W(M}, Q,)\

oder genauer

v= I evw e(PlV; ©v0. (i8)

Zum Beweis zeigen wir zuerst, daB die in (18) auftretenden Unterrâume von V
paarweise orthogonal sind. DaB die V(*) (x primitiv) unter sich und die VJ

(j 1,..., p + 1) unter sich paarweise orthogonal sind, ist leicht zu sehen. Sei

/€ V(x) und ge Vr Wir wollen zeigen, daB (/, g) 0 ist. Es existiert stets ein p
aus II mit folgenden Eigenschaften:

1) x(P) 5e 1 fur aile primitiven Charaktere x von U,

2) j8x x mod H, fur aile jc € H^ und aile /.

(Im zerlegten Falle wâhlt man j3 H-pA~x und in den anderen Fâllen j8 H-j3&apos;

mit Tr j3&apos; s 0 mod px, /3P 1 und j8 ^ 1, und verwendet, daB

Hf {z ax; 4- y e M | a€ Ax, y g Ho}

mit einem Xj£Hf, XjéHt) Es gilt

da g(x) ausserhalb von Hf verschwindet. Mit x durchlâuft auch |3x ganz Hf, also

gilt, da f(Px)

Aus x(P) ^ 1 folgt (/, g) 0. Damit ist gezeigt, dass die V(x) und die V,

orthogonal sind. Wegen der Définition der V] sind also aile die in (18) auftretenden

Unterrâume von V paarweise orthogonal. Zum SchluB rechnet man nach, daB
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gilt

dim V(x) \M-pM\/\U\ (und es gibt |U| (p-l)/p primitive Charaktere),

dim V; p&apos;2 |M|-p-4|M| (/ 1,..., p + l),
dim V0 p&quot;4|M|,

dim V |M|.

Ein Vergleich der Dimensionen liefert die Gleichheit in (18).
Fur aile binâren quadratischen Moduln (M, Q) kann man die (M;, Q;) eflEektiv

berechnen; da isomorphe quadratische Moduln isomorphe Weilsche Darstel-
lungen ergeben, kann man in der Aufspaltung des Satz 7 W(M, Q) und aile

W(M}, Q}) durch jene Weilschen Darstellungen ersetzen, welche hier in den §§3

bis 6 behandeit wurden. Im einzelnen erhâlt man:

SATZ 8. Es sei stets W(M, Q) : Ifprimit,v W(M, Q, x
bezeichne immer die triviale Darstellung. Dann gelten folgende Charakteren-

gleichungen (wir verwenden hier fiir eine Darstellung und ihren Charakter das

gleiche Symbol !):

a) p#2 und A&gt;1 (neAt erfùlle |-) - l und es sei fur aile fi aus N

DA + 2D
p+l -n)~p • NA_2,

fur 0&lt;cr&lt;A-l,

Ri-,(rt,t) /Sr &lt;r

Dx-2 /ûr

Nx_2 /«r

R&apos;-î(r,t) fur cr&gt;3

und o- 2
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b) p 2,

/ur À &gt; 1

Dx Dx + 2 • Dx_,

/ur A &gt; 1

L|(r, t) fur À&gt;3

-)i + Rx-2(r).

Dl fur (±)-l

N, fur (—) -l
i?i(rt) /ùr À 2

7) - 2 • Dx_2)

3,

/urÀ&gt;3

Ri(r, t) R%r, t) + R2K{r, t) + Rl{rt, t)

A&gt;4

Rl(r, t) Rl(r, t) + Rl(r,

fur À&gt;5, 2:£&lt;r&lt;À-3,

fur 1(4)

fur 3(8)

fur f^7(8)J

.-2-Rx_2(r,t),

t) + Rl-i(rt, t)-2- R{-2(r, t),

&apos;-i(r, t),
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fur A&gt;5

^ nicht
primitiv

/urÀ&gt;4

Kr2(r, 0 .Rr2(r, f, X-i) + «x&quot;2(r, f, X-~)

+ Kr2(r, f, ^)! + Rî-\r, t, Xl)t + Kjlfo f).

Die angegebenen Isomorphien fur JRj~1(r, f)&gt; ^xM ™ Fall p^2 bzw. fur
i^A~3(r, 0» #A~2(r&gt; 0 im Fall p 2 beruhen auf der oben erwâhnten Tatsache, da8
in diesen Fâllen jedenfalls ein W(MU Oi) in W(M, Q) eingebettet ist; wie die

Rechnung zeigt, ist W{MU Qx) immer eine Weilsche Darstellung von SL2(AX_2),
kann also die in §6 konstruierten irreduziblen Darstellungen W(M, Q, x) bzw.

W(M, Q, x)i nicht enthalten, da dièse die Stufe À besitzen. Ailes andere zeigt ein

Vergleich der Darstellungsgrade.
Daraus folgt auBerdem, daB in diesen Fâllen das Komplement von

W(M, Q, x)i in W(M, Q, x) hôchstens die Stufe A-2 besitzt, was die Eindeutig-
keitsaussagen des §6 (z.B. in Satz 4 und im Lemma) rechtfertigt.

Am Beispiel NA, p^2, soll kurz gezeigt werden, wie man die (M}, Q})

bestimmt: Wie in I, (10b) sei Q(xu x2) p~k(xl-nxl) mit |-j -l gewàhlt. Fur

HJ={apK-1(l,j)\aeA1}9 / l,...,p, ist Hf {(x1,x2)eM\x1-jnx2^Omodp}.
Dann ist M, Hf/H, zu AK®AX~2 isomorph und lâBt sich durch die Koordinaten

yi (jxi-x2)e Ak und y2 p~1(xi-/nx2)€ AK-2 beschreiben. Die von Q auf M,
induzierte quadratische Form Q, erhâlt man durch pKQ\H,4^u x2) Xi~nx2
Ky? + p2ry2) pAQ(yi, y2)modp\ wenn r0&apos;2 + 0sl ist, r/(l + m) 0 und

r(l+;2n20 ~&quot;n modpA. An der zweiten Bedingung (bzw. an der ersten und

dritten fur / p) sieht man, daB dies nur fur (—j -l môglich ist (t^-n&apos;1).

Dann wird (in AA) r (/2-n~1)&quot;1, und es ist bekannt ([2], S.157), daB fur
(p + l)/2 der môglichen / dièses r ein quadratischer Nichtrest modp und fur die

ûbrigen ein quadratischer Rest ist.—SchlieBlich bleibt noch der Fall Hp+i
{apx~1(0,1) | a e Ai}, Hp+i {(jti,pjt2)}. Mit yi xx, y2 p~1x2 kommt man hier
auf dem gleichen Wege wie oben auf das analoge Ergebnis mit t — n, r= 1.

9. Beschreibung aller irreduziblen Darstellungen von SL2(ZP)

Wir wollen die irreduziblen Darstellungen von SL2(ZP) nach ihrer Stufe À
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klassifizieren. Dabei werden wir zunâchst die Spezialfâllë À=0,1 fur p#2 und
0&lt;À&lt;5fùrp 2 gesondert behandeln.

Die in diesen Fâllen am hâufigsten vorkommende Schwierigkeit besteht darin,
Darstellungen W(M, Q,x) mit #2=1 zu zerlegen. Wenn Aut(M, Q) eine Kon-
jugation k enthàlt, kann man hier den invarianten Unterraum V(x) in zwei
invariante Unterrâume V(x)+ und V{x)- zerlegen:

V(xU: {/€V(X)|/(kx) ±/(x) VxeM}.

Entsprechend dazu zerfâllt W(M, Q, x) in zwei Unterdarstellungen W(M, Q, x)+
und W(M,Q:x)-.

Fur die in den folgenden Tabellen aufgefûhrten Darstellungen kann die

Irreduzibilitât, soweit sie nicht schon durch die bisher bewiesenen Sâtze bekannt
ist, durch (elementare) Abwandlungen des Beweises von Satz 2 bewiesen werden.
Die Inàquivalenz sieht man meistens durch Analyse der Eigenwerte der Darstel-

lungsmatrizen fur J und -EeSL2(Ak) ein, soweit sie nicht schon ander-

weitig bewiesen wurde, und die Vollstândigkeit der Tabellen folgt daraus, daB

man die Anzahl der zu erwartenden irreduziblen Darstellungen aus I, Satz 5 bzw.

[3] kennt.

Bezeichnungen. Die genannten Charaktere gehôren immer zu den in §2

beschriebenen abelschen Automorphismengruppen U. Wie in §6 sei stets Xi^l.
$ sei die Menge der primitiven Charaktere von II. Unter Anzahl verstehen wir
immer die Anzahl der inâquivalenten Darstellungen des jeweils betrachteten

Typs, so daB also W(M9 Q, x) und W(M, Q, x) als eine Darstellung gezâhlt
werden.

À 0. Hier definieren wir — in Ùbereinstimmung mit Satz 8 — Ci : Do No

als die triviale Darstellung von SL2(ZP).

Darstellungen
der Stufe 1

Grad Anzahl Bemerkungen

* p + 1 è(p-3) Satzl
Ni(x) X^ p-1 è(p-D Satz 2

4 Satz4

1 &quot;Steinberg-Darstellung&quot;
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Die Zerlegung von Dt und Nt wird hier vervollstândigt durch

fiir x^l, *2=1,

fur x+hx2=h

Darstellungen
der Stufe 1

p 2 Grad Anzahl Bemerkungen

&lt; ;x: :)=-&gt;

Die vollstândige Zerlegung der Weilschen Darstellungen lautet hier

Darstellungen
der Stufe 2

p 2 Grad Anzahl Bemerkungen

Darstellungsraum erzeugt von

Ausnahmedarstellung (s.u.)
Satz 2

;)-.-&lt;? i),
bezeichnen wir hier und im folgenden jeweils die Ausnahmedarstellungen, welche
in keiner Weilschen Darstellung zu binâren quadratischen Moduln enthalten sind.
Die Darstellung C2®Rl(l,3)l ist aber in N^ JR^l, 3) enthalten, d.h. in
der Weilschen Darstellung W(M,Q) mit M A1®A1®A1QA1 und
Q(xl9 x2, x3, X4) 2(xÎ4-XiX2H-X2)+i(xl + 3x5).—Die vollstândige Zerlegung von
D2 und N2 gibt Satz 8, die vollstândige Zerlegung von R^ir, 1) steht in der
Tabelle, es bleibt also nur nachzutragen, da8
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ist (das Komplement von #2(1,3) wird von ôo + ^i+y^ erzeugt).

Grad Anzahl Bemerkungen

Darstellungen
der Stufe 3

p 2

N3(X) Ml
2=1

r=l,3; f 1,5

,x.r, t,xi) mit
(1,1), (1,3), (3,3), (5,1)

*&quot;

~,Xi)i (s.u.)

Satz2
&gt;, f, i/r) mit «Jr# 1 fur

(1,1), (1,3), (3, 3), (5,1)
Satz 3

Dabei wird der Darstellungsraum von JR^l, r, ^1)1 fur f 3, 7 erzeugt von

und es ist
Dx fur t 7

Wi fur r 3.

Zur vollstândigen Zerlegung aller Weilschen Darstellungen der Stufe 3 ist im
Hinblick auf Satz 8 nur nachzutragen, daB fur x(a) -l die Darstellungen
Rï(r91, x)&gt; r== h 5, in C3 bzw. C4 und eine der Darstellungen 1?3(1&gt;3,^)±,^#1,

zerfallen, und daB K^r, t, ^1), r=l,5, in eine der Darstellungen 1*3(1,7,^)*,
ij/^1, und eine der Darstellungen D2(x)±&gt; X^h zerfâllt.

Darstellungen
der Stufe 4

p 2 Grad Anzahl Bemerkungen

D4(x)
N4(x)

r=l,3; f 1,5

r=l/3; r=i,5

r,te{l,3}
X&amp;l, r= 1, 3

r=l,3

24
8

6

6
6

6
6

12

2

6

4

16

8

4

2

2

Satz 1

Satz 2

Satz 3
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Die Darstellungsrâume von RÎ(r,t, xùi werden erzeugt von
-ô4 und +&gt;/=4f; auBerdem ist

r, t, Xi) °2(r, t).

Zut vollstândigen Zerlegungen aller Weilschen Darstellungen fehlt noch die
Zerlegung von R\(r, t), da in allen anderen Fâllen Satz 8 anwendbar ist: Fiir
primitive &lt;p sind die R\(r,t,(p)± zu Darstellungen R^ir&apos;, t\ x)± m^ f&apos;=l&gt;5,

r&apos; 1, 3, x primitiv und #2 1 isomorph (und zwar treten dabei aile 16 Darstellungen

vom Grad 3 genau zweimal auf); fiir die beiden nicht-primitiven Charak-
tere &lt;p enthâlt Rl(r, t, &lt;p) jeweils eine irreduzible Unterdarstellung vom Typ
jR2(1, f&apos;, x)± mit f&apos; 3,7 und primitivem x- ^as Komplement dieser Darstellungen

in R\(r, t) ist nach der SchluBweise von §8 zu R\(rt, t) isomorph.

Darstellungen
der Stufe 5

Grad Anzahl Bemerkungen

D5(X)

NÎ(X)
Rs(r,t,x)

R°5(ht,x)

Rl(r,t,X)

Rî(r,t&gt;x)*

Rî(r, hx)i

*C3®R25(r,l,X)i

X^V
Xt%

r=l,

r=l,
(r=l,

Xé%

Xé%

3

5

3

3

r l,5
f 3,7

• -¦¦, ^
r 3,7

r=l,3
,5,7
r=l,3

r=l,3

48
16

12

24

12

6

12

12

4
12

16

4

16

32

4

4

Satz 1

Satz 2

Satz 3

ssJRfO

&lt;P X

d (s u mit
« 1 mod 4

fur (s3mod4

Fiir die beiden nicht-primitiven Charaktere #1 1 und #« (mit Xa(«) l&gt;

Xa(~~l)= -1) wird der Darstellungsraum von Rl(r, r, x)i analog zu §6 erzeugt von

und

1,3, 5, 7;

f4+2yT4t(Xa), cc), h+2f=Zt(X&lt;x) + /ô+aV^C^a

bzw.

2,2 + 2V=ît, 0,2V=



Die irreduziblen Darstellungen der Gruppen II Teil

und es ist (nach der Méthode von §8)
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t) R25(r, r)0R?(r, f, *«)i r, f, S(r, r)

Nach §6 und Satz 8 zerfallt Rl(r, t) in R^r, r) und vier irreduzible Darstellungen
Rî(r, t, x) bzw #5(7, f, ^)j vom Grad 6 und def Stufe 5, dièse sind zu gewissen
Darstellungen vom Typ Rl(rf, t&apos;, &lt;p)± isomorph

In den beiden letzten Tabellen bezeichnet x ohne Index immer primitive
Charaktere

Darstellungen der Stufen
Grad Anzahl Bemerkungen

r, t X)

v 2

A 1

2(P~1)2
(P2-D

4(p-l)pA

Satz 1

Satz 2

Satz 3

Satz 4

Darstellungen
A&gt;5, p 2

DM
Nx(x)

R°(ht,x)

Rï(r,t,x)

R\(r, U X)

Rl~\r, t, x)

Fur A&gt;7

fur A 6

der Stufen

t

&lt;

a
a

(T

a
r,

r
t

î» r
t

3,7

0, r
1, r

r
2, r

t

3,

*€{1,

1,3,
1,3

1,3,
1 o1, 3

1,3, r l,
1,5, f=l,
1,3, r 3,
1,3
1,3,5,7

,A-3
3,5,7}

5,7

5,7

5

5

7

Grad

3 2A

2A 1

3 2X~2

3 2A 3

3 2X~4

3 2A~4

3 2A~4

Anzahl

2A 3

3 2X&apos;3

2x-3

4 2A 3

4 2X~3

2 2A 3

A-3
X 16 2A-a-2

16

16

Bemerkungen

Satz 1

Satz 2

Satz 3

Satz 5

Satz 5

Formeln (13)
und (15)
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Mit den vorstehenden Tabellen ist auch Hauptsatz 2 vollstândig bewiesen.
DaB nâmlich die 18 genannten Ausnahmedarstellungen nicht in Weilschen Dar-
stellungen zu binâren quadratischen Moduln vorkommen kônnen, sieht man an
deren vollstandiger Zerlegung, die i.a. in Satz 8 und in den dort nicht behandelten
Fâllen hier in §9 beschneben ist.
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