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Comment. Math. Helvetici 39 (51) 491-526 Birkhduser Verlag, Basel

Die irreduziblen Darstellungen der Gruppen SL,(Z,), insbesondere
SL.(Z,). II. Teil

ALEXANDRE NoBsY und JURGEN WOLFART

1. Ubersicht iiber Methoden und Ergebnisse

Fiir beliebige Primzahlpotenzen p* gewinnen wir alle irreduziblen Darstel-
lungen der Gruppen SLy(Z/p*Z)—und damit auch der Gruppen SL,(Z,)—mit
Hilfe der vollstindigen Zerlegung der Weilschen Darstellungen zu bindren quad-
ratischen Moduln, wie sie in Teil I dieser Arbeit [7] definiert wurden. Wir werden
Teil I immer als “I” zitieren und von dort, soweit nichts anderes gesagt wird, alle
Begriffe und Bezeichnungen iibernehmen. Zur Zerlegung der Weilschen Darstel-
lung W(M, Q) zum bindren quadratischen Modul (M, Q) verwenden wir die in I,
§3 geschilderten Methoden:

ERSTE ZERLEGUNGSMETHODE (Kloosterman [3]). Sei I eine abelsche
Untergruppe von Aut (M, Q) und x ein Charakter von Ul. Dann ist V(x):={fe€
CM | f(ex) = x(e)f(x) Vxe M,Ve e U} ein SLy(Z/p*Z)-invarianter Unterraum von
CM™. Die zugehérige Unterdarstellung von W(M, Q) werde mit W(M, Q, x)
bezeichnet.

Fir alle bindren quadratischen Moduln werden wir in §2 die Automorphis-
mengruppe  bestimmen: Aut(M, Q) ist—mit Ausnahme der Fille
M=Z/2"Z®Z/2Z—stets Diedererweiterung einer abelschen Gruppe U (fiir p# 2
siehe dazu [3], [8]). Fiir die so gefundene abelsche Gruppe I kann man mit Erfolg
die erste Zerlegungsmethode einsetzen:

DEFINITION. Eine Charakter y von U heifle primitiv, wenn ein ¢ € ll mit

x(g)#1 existiert, welches den Untermodul pM elementweise fest ldsst, ausser
wenn M=Z/2"Z® Z/2Z (fiir diesen Sonderfall siche §2).

(Das bedeutet, daB man y nicht als x’e p schreiben kann, wobei p die kanonische
Projektion von U auf die entsprechende abelsche Automorphismengruppe U’

! Unterstiitzt durch den Schweizerischen Nationalfonds (820.167.73).

491



492 ALEXANDRE NOBS UND JURGEN WOLFART

eines quadratischen Moduls (pM, Q') mit Q'(px) = pQ(x) (fiir x in M) ist, und x’
ein Charakter von W’ ist.) Die primitiven Charaktere liefern den groBten Teil der
gesuchten Darstellungen:

HAUPTSATZ 1. Seien x, x1, x2 primitive Charaktere fiir bindre quadratische
Moduln und seien x°, x3, x5# 1. Dann ist

a) W(M, Q, x) irreduzibel und von der gleichen Stufe wie W(M, Q),
b) W(Mi, Qy, x1)= W(M,, Q,, x2) genau dann, wenn die quadratischen Mo-
duln (M, Q,) und (M., Q,) isomorph sind und x, = x, oder x, ist.

Den Beweis dieses Satzes werden wir in den §§3 bis 7 fithren: Zunichst
werden wir in Fallunterscheidung beziiglich der verschiedenen Isomorphieklassen
binirer quadratischer Moduln zeigen, dal der Satz richtig ist unter der Vorausset-
zung (M, Q) =(M;, Q,) =(M,, Q,); in §7 werden wir dann beweisen, dal} jedes
solche W(M, Q, x) den quadratischen Modul (M, Q) bis auf Isomorphie eindeutig
bestimmt.—Fiir p# 2 ist dieses Resultat bekannt ([3], [8]); wir verwenden zum
Teil dhnliche Beweisideen wie Tanaka [8]. Casselman [1] hat die Existenz eines
Teils dieser Darstellungen (fiir beliebige Primzahlen p) auf etwas anderem Wege
bewiesen.—Fiir nicht-primitive x ist W(M, Q, x) im allgemeinen reduzibel. Die
Zerlegung dieser Darstellungen (welche die Hauptschwierigkeit im zweiten Teil
der Arbeit von Kloosterman [3] ausmacht und von Tanaka [8] und Casselman [1]
gar nicht angegriffen wurde) wird durch I, Lemma 3 ermoglicht. Auf diesem
Lemma beruht nimlich die

ZWEITE ZERLEGUNGSMETHODE. Sei W(M, Q) eine Weilsche Darstel-
lung von SL,(Z/p*Z) vom Grad p" und der Stufe A > 1. Der bindre quadratische
Modul (M, Q) erfiille M2Z/p*Z®DZ/pZ im Fall p#2 und M2Z/2" 'ZDZ/2Z,
Z/2*>'Z@DZ/4Z im Fall p=2. Dann ist das Komplement von
Y& rimisy W(M, Q,x) in W(M, Q) eine Summe YPZi W(M;,Q;) von p+1
Weilschen Darstellungen W(M,, Q) vom Grad p"~>; diese W(M;, Q;) sind in
eindeutiger Weise in W(M, Q) eingebettet, und fiir alle j# h ist der Durchschnitt
W(M;, Q)N W(M,, Q,) eine (eindeutig in W(M, Q) eingebettete) Weilsche
Darstellung W(M,, Qo) vom Grad p"~*.

Wir werden die genannten Einbettungen in §8 beschreiben und fiir alle (M, Q)
die zugehorigen (M;, Q;) und (Mo, Qo) konkret angeben. Die vollstindige Zer-
legung der W(M, Q) ist damit durch Induktion iiber die Ordnung der quadrati-
schen Moduln bzw:#den Grad der Weilschen Darstellungen zu 16sen, indem man
erstens den Hauptsatz 1 anwendet, zweitens die W(M, Q, x) mit primitivem x
und x2=1 zerlegt (diese treten nur fiir A =1 im Fall p# 2 und fiir A <6 oder fiir®
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M=A,_ A, im Fall p=2 auf und sind i.a. reduzibel, s. §9), drittens jene
W(M, Q) reduziert, bei welchen der Modul M von der Form®> A, @ A; oder A,
im Fall p#2 bzw. A, A, und A,_ ;D A, im Fall p=2 ist (§6).

Die Anzahl der so gefundenen irreduziblen Darstellungen von SL,(A,) der
Stufe A—das sind insbesondere alle in Hauptsatz 1 genannten Darstellungen,

wenn W(M, Q) die Weilschen Darstellungen der Stufe A durchlduft—ergibt sich
aus den Tabellen in §9 als

p*+3p*™" fiir p#2 und A>1
und

23:2*7  fiir p=2 und \>6.

Da die Anzahl der Konjugiertenklassen von SL,(A,) gerade p* +4 Yi_6 p* bzw.
23-2*72—-16 fiir A >2 (I, Satz 5) ist, hat man damit alle gewiinschten Darstel-
lungen bekommen, sofern das Problem fiir kleine A gelOst ist. Hier treten in der
Tat fiir p=2 Ausnahmedarstellungen auf. Insgesamt erhalt man, was fiir p#2
bereits durch [3] und [8] bekannt ist,

HAUPTSATZ 2. In den Weilschen Darstellungen W(M, Q) zu bindren quad-
ratischen Moduln sind alle irreduziblen Darstellungen der Gruppen SL,(Z/p*Z)
enthalten (i.a. in der Form W(M, Q, x) des Hauptsatzes 1) mit Ausnahme von 18
Darstellungen fiir p =2, welche in §9 beschrieben werden. Diese Ausnahmedarstel-
lungen lassen sich als Tensorprodukte von je zwei Darstellungen schreiben, welche
in den W(M, Q) vorkommen; das ist (nach I, §2) gleichbedeutend damit, daB sie in
Weilschen Darstellungen zu quaterndren quadratischen Formen enthalten sind.

Diese Beschreibung ist explizit: Man kann jeweils Basen fiir die
Darstellungsrdume angeben und Darstellungsmatrizen beziiglich dieser Basen fiir
erzeugende Elemente der Gruppen. Es ist kein Problem, diese Darstellungsmatri-
zen fiir alle Gruppenelemente aufzustellen und die Charaktere der Darstellungen
zu berechnen (etwa mit Hilfe von [4], Satz 1 und 2, [9], (18) sowie [3], S. 368).

2. Die Automorphismengruppen biniirer quadratischer Moduln

Im folgenden werden wir die Automorphismengruppen fiir ein
Reprisentantensystem der Isomorphieklassen bindrer quadratischer Moduln

> Wie in I schreiben wir A, :=Z/p"Z.
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beschreiben. Einen Beweis werden wir nur im Fall der wunverzweigten
quadratischen Form fiihren, da iiberall dhnliche Uberlegungen angestellt werden.

1. M=A, ® A, mit Q(x,y)=p *xy, A=1, (“zerlegt”, 1 (10a) und (12a)).
Aut (M, Q) ist Diedererweiterung einer abelschen Gruppe = Ay der Ordnung
p*'(p—1) mit dem Element «:(x, y)—(y, x). Die Wirkung von A} auf M wird
definiert durch a:(x, y)~>(a"'x, ay). Um die primitiven Charaktere fiir A > 1 zu
beschreiben, Ordnung p—1) und W={ae A} | a=1mod p} (erzeugt von®” 1+ p)
auf; hier gilt: x primitive> x|w injektiv. Im Fall p=2 und A>2 ist A=
(—1)x(5) (mit (n) bezeichnen wir die von n erzeugte zyklische Untergruppe) und
x ist genau dann primitiv, wenn yx auf der Untergruppe (5) vom Grad 2™’
injektiv ist. Fiir p=A =2 ist Ay =(—1), und y ist primitiv, wenn y(—1)=—1. Man
erhilt also (p—1)*p*~2 bzw. 2" primitive Charaktere fiir A =2.

2. M=A, ® A, mit Q(x,y)=p *N(§), A=1, wo £=x+y(1+V-0/2, t=
3 mod 4 quadratfrei und p in Q-9 trage ist (‘“‘unverzweigt”, I (10b) und (12b)):
M ist hier isomorph zu /p*£O, wobei © der Ring der ganzen GroBen in Q(/—1t)
ist; damit wird M zu einem lokalen Ring, dessen maximales Ideal von® p erzeugt
wird. Die Norm N (=Norm der Korpererweiterung Q(/—1)/Q, auf O restringiert
und mod p* betrachtet; analog verfahren wir mit der Konjugation und der Spur
Tr) induziert einen Gruppenhomomorphismus N* von M™ auf A. LaBt man
N:={e e M™| N(¢)=1} multiplikativ auf M operieren, so ist Aut(M, Q) die
Diedererweiterung von I mit der Konjugation «:é—&.11 besitzt folgende
Struktur:

(0) mit ord{=p+1 fir A=1

ord (=6, orda=2""7? fiir p=2

=Y ox(@) mit{ },AZZ

ord{=p+1, orda=p*"' fir p#2

Dabei ist (a)={eeU|e=1modp fiir p#2 bzw. mod4 fir p=2}. Nun ist
x € Car Il (Gruppe der Charaktere von 1) fiir A>1, p#2 und A >2, p=2 genau
dann primitiv, wenn x|, injektiv ist bzw. wenn x(—1)=-—1 ist im Fall A =2,
p=2. Die Anzahl der primitiven Charaktere ist p* —p*~> fiir A =2.

Beweis. DaBl die angegebene Gruppe aus Automorphismen besteht, ist klar,
und daB sie eine Diedererweiterung von Il ist, liegt daran, daB fiir alle £ €I stets
g§=¢"" ist. DaB Aut (M, Q) nicht groBer ist als diese Diedergruppe, kann man
elementar einsehen. DaB N™ = N|y~: M~ — A} surjektiv ist, folgt daraus, daB

? Soweit MiBverstindnisse ausgeschlossen sind, unterscheiden wir nicht zwischen Restklassen und
Reprisentanten.
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Q,(v/—1) eine unverzweigte Erweiterung von Q, ist und 148t sich aus der lokalen
KlassenkoOrpertheorie ableiten oder auch elementar zeigen (I, Beweis von
Satz 4). Daher muB8 ord 11 = ord (KernN )y=ord M™ (ord AY) '=(p** —p** ) x
(" -p* ) =(p+1)p*" sein.

In M™ existiert ein y mit ord(y mod p) = p>—1, da M/pM ein Kérper mit p>
Elementen ist. Man rechnet leicht nach, daB ¢:=y?" "®"" in U liegt und die
Ordnung p+1 besitzt. Im Falle p=2, A >1 kann man o0.B.d.A. t=3 setzen und
fir { eine primitive sechste Einheitswurzel nehmen.—Um a zu gewinnen bzw.
seine Ordnung zu bestimmen, betrachtet man die Folge der Einseinheitengruppen
U;:={1+Bp'ell}, i=1,..., A Eine elementare Rechnung zeigt, daB 1, 1,,,
fiir alle i <A ist. Fiir p# 2 wihlen wir nun a =1+ Bpell;, a¢ll,, d.h. mit Be M>.
Dann ist, wie man z.B. durch Induktion iiber A einsieht, a”  =1+8p*~'#1 und

a?"'=1, also ord a = p* . Fiir p =2 ist dies nicht richtig, da U, =U,U(-1)- U,
ist; fiir jedes a =1+4B mit Be M™ kann man jedoch analog auf ord o =2*72
schlieBen. Da nun {(a)cl, fiir p#2 bzw. U, fiir p=2 ist und ({)NU,; bzw.
($)NU,={1} ist, und da ord a = ord I, bzw. ord U, ist, ist sogar (a)=1U; bzw. I,
und folglich U = ({) X (a).

Fiir A >1 lassen genau die Elemente von 11,_, den Untermodul pM element-
weise fest. Ein primitiver Charakter muB also )(IHA_1 #1 erfiillen. Da U,_; =(a? )
fiir p#2 und (a® ") fiir p=2, A>2 bzw. (1) fiir p=2, A =2 ist, sind jene
Charaktere primitiv, welche auf (a) injektiv sind bzw. y(—1)=—1 (fiir p=A =2)
erfiillen.

3. M=A, DA\, fiir p#2, A=2 und o=1,...,A—-1 mit Q(x,y)=
p~rr(x*+p°ty?) (“verzweigt”, I (10c)). Fiir jedes o erhilt man hier vier nicht-

t :
isomorphe quadratische Moduln je nach den Werten von (Er ), (;) (es sei stets

p 4 r,t), welche jedoch fiir die Struktur von Aut (M, Q) keine Rolle spielen: Wir
haben Q(x, y)=p *rN(£) mit £ =x+yJ=—p®teD,/p* "v-p°tO,, wobei O, den
Ring {x+yJ/=p°t|x,yeZ} bezeichnet. Wenn wir M mit dem Ring
O.p* 7 J—p°t O, identifizieren, ist Aut (M, Q) die Diedererweiterung der (mul-
tiplikativ auf M operierenden) abelschen Gruppe l:={e e M | N(¢) =1€ A,} der
Ordnung 2 - p*™” mit der Konjugation «:&— & Die Gruppe U ist zyklisch, und
zwar ist U=(-1)x{(a) mit aelly, a¢ll; und orda=p*™°, wenn man
U;:={eell|e=1mod p'V-p°t O,} setzt fiir i=0,...,A—0o. Das Element
a? " erzeugt U,_,_,; ein Charakter xy € Carll ist primitiv genau dann, wenn
X ey injektiv ist. Es gibt 2 - (p—1)p* ™! primitive Charaktere.

4 M=A,_ DA, . fiir p=2, A=3 und 0=0,...,A—3 mit Q(x,y)=
27 (x2+2°1y?) (“verzweigt”, 1 (12c)). Wir haben hier M=9Q,/2* "7 'V-2°tQ,
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mit Q, ={x+yv-2°t|x,ye€Z} und Q(x,y)= 272 IN(&), wobei &= x+yv—2°t ist
Die Gruppe Aut(M, Q) ist Diedererweiterung der abelschen Gruppe U=
{seMl N(e)=1€ A,} mit der Konjugation Kk: &> E; die Gruppe U ist von der
Form (i)X{(a) im Fall =0, t=1 (i=-1) und (—1)X{(a) in allen anderen
Fillen."” Die folgende Tabelle gibt Auskunft iiber « fiir die verschiedenen (M, Q)
aus I, Satz 4, (12¢):

Anzahl der
primitiven
o r t a=x+y,/—2tmit orda«a Charaktere
1:3 1 x=4,y=1mod4 2" 222
0 ’ 5 x=2,y=3mod4 2'72®W 2*2
1 3;7 x=1mod4,y=4 27 23
1;5 1;5 A-3 A-3
1 ’ ’ = d4,y=
1,3 3.7 x=1mod4,y=2 2 2
2 1;3 1;3;5;7 x=1mod4,y=2 2™ 24
=3 1;3;5;7 1;3;5;7 x=1mod4,y=1 2*7' 2!

X ist primitiv genau dann, wenn x injektiv auf {(a) ist auBler in den Fillen A =3,
o =0, wo {(a) durch (~1), und A=4, 0 =0, t =5, wo {a) durch {(—a?) zu ersetzen
ist.

5. M=A,_1® A, fir p=2, A=2 mit Q(x,y)=2""r(x*+2"2ty*) {1, (12¢)).
Im Unterschied zu den eben beschriebenen Gruppen féllt hier die Konjugation
weg, so da man stets eine abelsche Gruppe U = Aut (M, Q) erhilt. Diese besteht
aus {1} fiir A =2, t=3, aus {1, (x, y)>(y, x)} fir A=2, t=1, aus {1} fir A=3
oder 4, und ist von der Form (—1)X{(a) fiir A =5 mit ord « =2 und

(1+41+ /=81 fiir A =35,

a:
11—2)‘_3t+~/—2"_2t fir A>S.

Fiir A =5 nennen wir x primitiv, wenn x(ajy=—1.

3. Die zerlegte Reihe

Die Untersuchung von W(M, Q) mit M = A,@® A, und Q(x, y)=p *xy kann
man wesentlich vereinfachen, wenn man ausniitzt, daB W(M, Q) zur natiirlichen

Darstellung D, isomorph ist; abweichend von der Terminologie aus I, §2 (dort

* Mit Ausnahme von A =3, =0, t=5, wo U =(a) mit a®?=—1 ist.
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war D, := W(M, Q)) definieren wir hier D, durch folgende Operation von
SL,(A,) auf C™:

(S-f)(X):=f(XS) fir feC™ SeSLy(A,),XeM

(X sei als Zeilenvektor geschrieben und XS wie iiblich als Matrizenmultiplikation
definiert). Der Isomorphismus W(M, Q)-> D, ist definiert durch (mit
e(u):=e*"™ VYueQ/Z)

o(f)(x, y):= 2, e(pzy)-f(x,z)  VfeCM (x y)e M

z€ A

DaB3 ¢ ein C-Vektorraum-Isomorphismus ist, kann man leicht zeigen, und da
©[S]1=S - ¢ fiir alle SeSL,(A,) ist, 148t sich mit den Erzeugenden von SL,(A,)
nachpriifen.

Fiir jedes y € Car Ay =Car U (s. §2) wird der invariante Unterraum V(x) (s.
§1) durch ¢ abgebildet auf

Vi(x):={geC| g(aX)=x(a) - g(X)Vae A}, Xe M}

Die zugehorige Darstellung wird mit D, (x) bezeichnet. Fiir primitive Charaktere
verschwinden die Funktionen aus V,(x) auf pM. Da andererseits A5 auf
M:=M-pM fixpunktfrei operiert, findet man fiir primitive Charaktere
dim V,(x) =|M] (ord AX)" = (p+1)p* .

Ziel dieses Paragraphen ist es, Hauptsatz 1 fir W(M, Q)= D, zu verifizieren,
d.h. zu zeigen:

SATZ 1. Fiir primitive x, x1, x.€ Car A mit x°, xi, x2#1 gilt:

a) D\(x) ist irreduzibel und von der Stufe A.

b) Es ist Dx(x1)= D\(x2) genau dann, wenn x,= x» oder x, ist. Damit erhdlt
man ((p—1)*/2)p*~2 nicht-isomorphe irreduzible Darstellungen von SL,(A,) vom
Grad (p+1)p ™" fiir A>1, p#2 und A>3, p=2; fiir p#2; A=1 ist die
entsprechende Anzahl (p—3)/2.

Die Anzahl-Aussage folgt aus den Angaben tliber die Automorphismengruppe
und die primitiven Charaktere in §2. Den Beweis von a) und b) kann man
gleichzeitig fiihren, indem man zeigt, da die Dimension des C-Vektorraums
Homgy ,a,) (Va(x1), Va(x2)) der mit SL,(A,) vertriglichen Homomorphismen von
Vi(x1) nach V,(x2) gleich 1 ist fiir x; = x» oder x, (und x3#1) und 0 andernfalls.
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Jeder SL,(A,)-vertriagliche Homomorphismus [K]: V,\(x1) = Va(x2) 1Bt sich in
der Form

[KIf(X)= 2 KX, Vf(Y) VfeV(u),XeM

YeM

schreiben, wobei K eine Funktion aus C"*™ mit den Eigenschaften

1) K(XS, YS)=K(X,Y) VSeSLyA\),X,YeM

2) KX, tY)=x208)x1'(OK(X,Y) Vs, teA,X,YeM

ist; der C-Vektorraum K(xi, x2) aller dieser Funktionen K eCMM st isomorph
zu Homg; ,(a,) (Va(x1), Va(x2)): Die Surjektivitdt der Abbildung K+ [K] ist Klar,
und die Injektivitét iiberpriift man anhand einer Basis von V,(x;) (vgl. dazu Bem.

2) am Ende des Paragraphen). Nun kénnen wir zeigen:
0 fir x:#x2 X2
dimcK(x1, x2) =41 fir x;=x, oder x, xi#l1 (1)
2 fir x1=x2=x2

Dazu nennen wir [X]:={tX|te AY} mit X €M eine Gerade in M. Zwei
Geradenpaare ([X],[Y]) und ([X'],[Y']) sollen dquivalent heien, wenn ein
S eSL,(A,) existiert und s, te Ay, so daB XS =sX' und YS =tY" ist. Wegen der
Eigenschaften 1) und 2) ist es klar, daB jedes K € K(x, x») eindeutig bestimmt ist
durch seine Werte auf einem Repriasentantensystem der Klassen &dquivalenter
Geradenpaare. Ein solches Repridsentantensystem ist die Menge aller Paare
([1,0], [a, p"]), wobei r die Menge {0, 1,..., A} durchlduft und a die Menge

{1} fir r=0,A

n fir p#2

{1, n} mit (-I;)=-1 sonst

{1} fur r=<1 oder A-r=1
{1,3} fir (r=2 oder A-r=2) und A>3, fir p=2.
{1,3,5,7} fir r=3 und A—r=3

Wenn nédmlich ([x;, x,], [y1, y2]) ein Geradenpaar ist, darf man 0.B.d.A. (wenn

notig, nach einer Transformation mit ( )) annehmen, ddB x;€ A} ist; dann

-1 0
-1 -1
I —Xxat 1 0
kann man mit S=(x1 xzﬂl )( ), wobei te Ax und be A, geeignet
0 X1t b 1
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gewihlt werden miissen, das Geradenpaar in ein Paar der Repridsentantenmenge
uberfiihren.

Nun untersuchen wir, welche Werte K auf diesem Reprisentantensystem
annehmen kann. Sei dazu zunichst 0<r<A\; setzt man s=1+p* ™" und b=

—ap*~""'mod p*~’, so erhilt man fiir S= (Z 91)
s

(1,0)S=(s,0) und (a,p")S=(a,p’),

also nach 1) und 2)

x2(s)K((1, 0), (a, p")) = K((s, 0), (a, p")) = K((1, 0), (a, p")).

Fir primitive x, gilt jedoch x»(s)#1, also ist K((1,0),(a,p"))=0. Jene Se
SL,(A,), welche das Geradenpaar ([1, 0],[1, 1]) in sich iiberfiihren, sind notwen-

0
dig von der Form S = (s_f__s S,1> mit s€ AY. Hier erhilt man

x2(8)x1' (sTHK((1,0), (1, 1)) = K((5,0), (s ™", 571))
=K((1,0)S,(1,1)S) = K((1, 0), (1, 1)).

Das bedeutet, da K((1,0), (1,1)) genau dann notwendig verschwindet, wenn
0

X17# X2 = X2 ist. Ebenso schliesst man mit Hilfe der ((s) s") aus SL,(A,),

s€ Ay, welche das Geradenpaar ([1, 0],[1, 0]) in sich iiberfiithren, da

K((1,0), (1, 0) = x2(s)x1 ' (s)K((1, 0), (1, 0))

ist, d.h. daB K((1,0), (1, 0)) genau dann notwendig verschwindet, wenn x: # x-
ist. Daraus folgt (1) und damit die Behauptung des Satzes.
DaB schlielich die gewonnenen Darstellungen die Stufe A haben, siecht man
A—1
an der in Bemerkung 2 angegebenen Basis: Die Wirkung von § = ( 0 P 1 ) auf
die Basisfunktion fy mit Y =(1, 1) ist nicht die Identitét.

Bemerkungen. 1) Im Fall primitiver Charaktere x mit x*>=1 entnimmt man
(1), dass D,(x) in genau zwei irreduzible Darstellungen zerfillt.
2) Eine Basis von V,(x) verschafft man sich z.B. durch Funktionen fy mit

x(a) fir X=aY,acAj,

fY(X)={0 fir Xe[Y],
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wobei Y ein Erzeugendensystem aller Geraden in M durchlauft.

3) Die Darstellung D,(x) ist von einem eindimensionalen Charakter der
Gruppe der oberen Dreiecksmatrizen in SL,(A,) induziert. Satz 1 kOnnten wir
auch mit den wohlbekannten Mackeyschen Séatzen beweisen.

4. Die unverzweigte Reihe

Man kann auch fiir die anderen Weilschen Darstellungen den Beweis von
Hauptsatz 1 so wie in §3 fiihren, indem man Darstellungshomomorphismen durch
Funktionen KeCM*™ beschreibt, welche bestimmten Eigenschaften geniigen
miissen. Diese Eigenschaften werden jedoch in den anderen Fillen recht komp-
liziert, da man dort nicht mehr die natiirliche Darstellung zur Verfiigung hat. Hier
und im folgenden Paragraphen werden wir darum eine andere Methode verwen-
den, welche eher auf der Analyse von Darstellungskoeffizienten beruht. Wir
beginnen mit dem unverzweigten Fall (wir verwenden die Terminologie von §2
mit t=3 fiir p=2) und bezeichnen W(M, Q) bzw. W(M, Q, x) mit N, bzw.
Ny (x)-

SATZ 2. Seien x, x1, X2 primitive Charaktere von W1 mit x°?, x31, x3#1.

a) N,(x) ist irreduzibel von der Stufe A.
b) Es ist Nx(x1) = Ni(x2) genau dann, wenn x1= x, oder x, ist.

Damit erhilt man ((p*>—1)/2)p*~? nicht-isomorphe irreduzible Darstellungen von
SL,(A,) vom Grad p* '(p—1) fiir A>1, p#2 und fiir A>3, p=2. Die

1firh=1,2
entsprechenden Anzahlen lauten (p—1)/2 fiir p#2 und A =1, { 5 ;li::)\— 3 }

und p=2.

Die genannte Anzahl ergibt sich aus der Anzahl der primitiven Charaktere x
mit x*#1, und die Aussage iiber den Darstellungsgrad folgt aus der hier
vorgenommenen Konstruktion einer Basis des zugrundeliegenden invarianten
Unterraumes V(x) von CM™: Zunichst sei wie iiblich 8,€eC" durch

1firé=neM )
36(,7);_—_{0 ur ¢ so?lft } definiert. Dann bilden die f:(x):=Y.cu x(€)8,: ein
Erzeugendensystem von C¥, wenn ¢ den Modul M =O/p*©O und y die Charak-
tere von 11 durchléduft. Fiir ein festes y wird V(x) von den f:(x) ertzeugt, so daB
unter diesen nur noch ein System linear unabhéngiger auszuwéhlen ist. Aus

fe00=x(y)fe(x) firalle yell,éeM, yeCarll (2)
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sieht man sofort, daB f.(x) =0 ist, wenn x primitiv und £ € pM ist. Da nun U auf
M™ = M — pM fixpunktfrei operiert, ist f(x) # 0 fiir alle £€ M™; eine Menge von
Funktionen f;(x), £€ 0, bildet also nach (2) und nach der Definition der f:(x)
genau dann eine Basis von V(x), wenn 0 ein Reprédsentantensystem der Bahnen
von I in M™ ist. Mit anderen Worten muB3 6 zu jedem a€ A} genau ein ¢ mit
N(&) = a enthalten, denn N (s.§2) ist surjektiv und & ne M™ liegen genau dann
in der gleichen Bahn, wenn N(§)= N(n) ist. Dieses 0 1aBt sich also wie folgt
wahlen:

p#2: =06,U6, mit 0,:={ne AX|1=n=3(p"—1)} und 6,:={n-mn.|neb;
dabei sei n, € M™ so gewihlt, daB a = N(7,) mit (2)= —1 ist.
p=2: p
{1} fur A=1
0 =<{1, n3} fir A=2
0,UB;U0sU0; fiir A>2

mit 6;:={n-mn;|n=1,3,...,2* 2= 1}fiir j=1, 3, 5, 7; dabei seien die n;€ M*
so gewidhlt, dal N(n;)=j ist (n1=1).

In der so definierten Basis ist N, (x) gegeben durch die folgenden Operationen
der Erzeugenden von SL,(A,): Fiir alle £€€ 6 ist

1 1

_(1) 1]f§(X)=e(P_AN(§))f§(X), (3)
I

,dO a] fe(X) = fae(X) = x(v) " felx)

Vaec Ay, mit aé=+¢&, yell, &€, (4)

[—(1) (1)] ebo=p 11 I { T xierep™ o£0) | 0. (5)

ned Legcll

(p~ Tr &7j: = p~ (&7 + né) ist die zu p *N(£) gehorige Bilinearform) Diese For-
meln ergeben sich aus I (2), (11b), (13b), wenn man (2) und die Definition der
fe(x) benutzt.

Zum Beweis von Aussage a): Die Restriktion von N,(x) auf die Untergruppe

o 1

beAA} zerfallt in eindimensionale Unterdarstellungen, deren in-
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variante Unterrdume gerade von den f.(x), £€ 0, erzeugt werden. Diese Zer-
legung ist eindeutig bestimmt, denn die entstehenden Unterdarstellungen sind
paarweise verschieden, wie (3) zeigt: Nach Konstruktion von 6 ist N|, injektiv.
Daraus folgt, daB ein invarianter Unterraum der Restriktion N,\(X)|B von N,(x)

b
auf die Boreluntergruppe B = {(a a—l) acAx,be AA} ebenfalls von gewissen

0
fe(x) erzeugt sein muB. Nach (4) gehéren aber mit f;(x) auch alle f,.(x), a€ Ax,
zu einem solchen invarianten Unterraum. Also zerfillt N,(x)|s in die eindeutig
bestimmten invarianten Unterrdume

=1 fiir
Vii={fe0)| €6 mit {;z U557 e e a2
(mit (- - -) bezeichnen wir hier den von den f;(x) erzeugten linearen Unterraum
von V(x); hier und im folgenden ist es klar, wie die entsprechenden
Uberlegungen fiir p=2, A <2, lauten).

Fiir den Irreduzibilititsbeweis von N,(x) geniigt es daher zu zeigen, daB kein
Vi bzw. kein V, @ V; im Fall p =2 invarianter Unterraum von N, (x) sein kann.
Wir tun dies mit Hilfe von (5), indem wir zeigen, daB fiir alle j# 1 ein £€ 6; und
ein 7 € 6; existieren, so daB3 der Darstellungskoeffizient

p (=1 Y x(e)e(p™ Tr e&ij) #0

ecll

ist. Nach Konstruktion von 6; und 6; bedeutet dies: Es existiert ein ne A mit
Yeeu x(e)e(p™ Tren®;) #0. Die entsprechende Summe wiirde fiir p|n ver-
schwinden, denn es existiert ja, weil x primitiv ist, ein yell mit x(y)#1 und
yepm; = epm; fir alle ¢ ell. Angenommen, diese Summe wiirde fiir alle n ver-
schwinden. Dann verschwindet auch folgende Linearkombination fiir jedes g € I:

Y e(—p~*n Tr Biy) Zu x(e)e(p™*n Tr e7;) = p* Zu x(e)=0 (6)
ne A, g€ g€
Trsﬁfr—Trﬁﬁ,

Nun beweisen wir folgendes

LEMMA 1. Sei ye(Q/p*Q)* mit y# ymod pQ. Das Kongruenzensystem
N(&)=N(y) mod p*,
Tré=Try modp?,

hat genau zwei Losungen in (O/p*©)™, ndmlich ¢=+vy und ¢ =¥.
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Die zweite Kongruenz 148t sich schreiben als
£+ &=y +ymodp,
und wegen der ersten Kongruenz ist sie dquivalent zu
(- ¥)(¢—%)=0mod p*O.
Schreibt man pw=¢—1vy und v=£- 7, so gilt
pr=0mod p*© und pw—-v=y—y#0modp®D.

Daraus folgt entweder p =0 mod p*© oder »=0mod p* O, also £ =+ oder ¥ (p
ist ja in £ unverzweigt!).

Ist p#2, so erfiillen alle Elemente y= 8%, mit Bell die Bedingung von
Lemma 1, denn N(y)=a mod p* mit y=ymod pQ ist fiir (§)=—1 gar nicht

16sbar. Aus (6) wiirde dann folgen
x(e)+x(&)x(nafa') =0 fiiralle eell,

d.h. x=x7', und das ist ein Widerspruch.
Ist p=2 (und A >2), so kann man

1+/=3 1+/-3 1+/-3

=4+ =2+
> ns =4 o N7 )

wihlen, und die Elemente y = B%; mit B €ll, erfiilllen wiederum die Bedingung

von Lemma 1 (siche §2.2), also ist man auch in diesem Fall fertig.
A—1

Mit Hilfe von (3) sieht man, da [(1) P 1 ] nicht die Identitdt auf V(y) ist;

1“:19 n3=2_

N,(x) hat also die Stufe A.

Zum Beweis von b) iiberlegt man sich zunichst anhand von (3), (4), (5), da8
pfe(x)—fe(x) (fir alle £€ 6) einen Darstellungsisomorphismus von N,(x) auf
N, (x) erzeugt.

Sei umgekehrt ein Darstellungsisomorphismus K:N,(x1) = N\(x2) gegeben.

Da K mit [(1) ﬂ fir alle be A, kommutieren muf3, entnimmt man (3), daf

K(fe(x1)) = cefe(x2) sein muB mit gewissen komplexen c,#0. Da K mit allen
-1
a

0 . .
0 a]’ a € Ay, kommutiert, folgt aus (4) notwendig ¢, = c,, wenn ¢ und n im
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gleichen 6; liegen. Daraus folgt schlieBlich, wenn man KO[—(I) (1)] = [__(1) (l)]oK

beachtet und die entstehenden Darstellungskoeffizienten fiir geeignete & ne 0,
vergleicht, daf3

Z xi(e)e(np™ Tre)= Z x2(e)e(np™ Tr &)

ecll selU

fiir alle ne A} ist. Durch Bildung von Linearkombinationen schlieBt man daraus
ganz ahnlich wie eben: es gilt

p’ Zu (x1(€)—x2(e))=0 fiir alle yell,
TrziTr-y

d.h. fiir alle vy, die die Bedingung von Lemma 1 erfiillen, gilt

x1(¥)+ x1(¥) = x2(y) + x2(¥).

Sind { und a die erzeugenden Elemente von Ul aus §2.2, so sieht man, da ¢
und (e fiir alle £ € (a) die Bedingung von Lemma 1 erfiillen, d.h.

x2(8)=x1() oder xi({)

und

x1(8)x1(&) + x1()x1(€) = x2(L)x2(e) + x2(L ) x2(e)  fiir alle € €{a).

Aus der linearen Unabhingigkeit der Charaktere der Gruppe (a) folgt sofort
X2= X1, falls x2(£) = x1({) und x2= x, falls x2({) = x1(¢). Damit ist b) bewiesen.

S. Die verzweigten Reihen

Wir befassen uns hier mit den Weilschen Darstellungen R3(r, t) aus I, Defini-
tion 3 (mit o <A—2 im Fall p=2); Il bezeichne jeweils die in §2 beschriebene
abelsche Automorphismengruppe von (M, Q), und fiir die nach dem ersten
Zerlegungsprinzip gewonnenen Unterdarstellungen W(M, Q, x) schreiben wir
R3(r, t, x). Fiir diese Fille soll hier Hauptsatz 1 bewiesen werden:

SATZ 3. Seien x, x1, X2 primitive Charaktere von 11 mit x°, xi, x3#1. Dann
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ist
a) R3(r, t, x) irreduzibel von der Stufe A,

b) R3(r, t, x1)= R3(r, t, x2) genau dann, wenn x; = x» oder X, ist.

Fiir p#2 und feste r, t, o, 0<o <A, erhilt man damit p* ™" '(p—1) nicht-
dquivalente irreduzible Darstellungen vom Grad 3(p°>—1)p*~>. Die entsprechenden
Aussagen fiir p=2 und die dort auftretenden Aquivalenzklassen quadratischer
Moduln macht die folgende Tabelle:

Anzahl der indquivalenten

irreduziblen R3(r, t, x) Grad von
o r t fir feste r, t RY(r. t, x)
0 1;3 1;5 1 fir A =3,4; 27 fir A >4 3.2*73
1 3;7 22 fiir A >4 3.2
1;5 1;5 A—d ¢ . AA—3
1 1.3 3.7 2 fur A >4 3.2
1;3 1;3;5;7 2273 fiir A>5 3.2273
3=g=A-3 1;3;5;7 1;3;5;7 Qrmo=2 3.2

In den anderen Fillen ist o = A —2 (s. §6) oder x*>=1 fiir alle primitiven y (s.89).
Die Anzahlaussage ergibt sich aus der Anzahl und dem Verhalten der primiti-
ven Charaktere (§2), die Gradaussage aus der nun folgenden Konstruktion. Wir
verwenden die in §2 fiir diese (M, Q) eingefiihrte Terminologie und suchen wie in
§4 eine Basis des Darstellungsraums V(x) bzw. genauer V3(r, t, x) von R3(r, t, x)

unter den Funktionen f:(x):= Zeeu x(£)8.. € CY. Ebenso wie dort ist (2) giiltig,

daher verschwinden alle f,(x) mit £ € pM, da x primitiv sein soll. Anders als dort
besteht M:= M — pM hier nicht mehr nur aus der multiplikativen Gruppe M™ von
M; jedenfalls operiert Il aber fixpunktfrei auf 1\71, so dal} die Anzahl der Bahnen
dieser Operation gerade |M|-(ord )™ ist. Diese Anzahl ist gleichzeitig der
Darstellungsgrad, denn die Auswahl einer Basis {f;(x) | £ € 6} ist gleichbedeutend
mit der Auswahl eines Reprisentantensystems § = M fiir diese Bahnen.

Es ist klar, daB man 8 N M wieder so zu wihlen hat, daB N|ona:0 N M —
Aj injektiv ist. Im Fall p#2 kann man einfach

0,:=0NM*={ne AX|1=n=3(p*-1)}

nehmen. Im Fall p =2 setzen wir wieder 6,: ={nm;|n=1,3,...,2"*7>~1}, soweit
ein m;€ M™ mit N(n;)=j existiert (j=1,3,5,7, insbesondere n; =1). Hier kann
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man dann
(6, U 05 fir ¢=0,t=1 oder5
01U03U05U07 fur O'=O,t=3 oder 7
6,U 6, fir o=1,t=1 oderS5
M N o =4
6,U 06, fir o=1,t=3 oder?7
61U05 fir o=2
;91 fir o=3

wihlen. Wie man die Elemente von (M —M>)N @ wihlt, ist fiir den Beweis von
Satz 3 gleichgiiltig. Es sei hier nur erwihnt, daB N((M—M>)N 6) = N(M) N pA,
ist; wir werden in §7 darauf zuriickkommen.

In der so definierten Basis ist RX(r,t, x) gegeben durch die folgenden
Operationen der Erzeugenden von SL,(A,): Fiir alle £ €0 ist

(1) i]fe(x) =e(rp*N(£)fe(x), %
[a™' 0 ~
0 a]fe(x)"/\(a)fae(x)f—A(a)x(v) fe(x)

VacAl undfir y&'=af mit yell,¢eo, (8)
[_(1) é]fg(x) = So(—1) |M|™*"? 7.2;9 {egu x(e)e(rp™ Tr efﬁ)}fn(x); (9)

Die expliziten Werte der Zahlen A(a), Sqo(—1)eC findet man in I, (11c) und
(13c). rp™* Tr &5 = B(&, n) ist die zu rp *N(£) = Q(&) gehérige Bilinearform.

Ebenso wie im Beweis von Satz 2 zeigt man nun, daB fiir alle vorkommenden
;< M der Unterraum V; von V}(rt x), erzeugt von den f(x) mit &€,
invariant und irreduzibel ist beziiglich der Boreluntergruppe B < SL,(A,). Ge-
nauso 148t sich beweisen, daB der von den f;(x) mit &€ 6N (M—-M>) erzeugte
Unterraum V) invariant (jedoch i.a. nicht irreduzibel) beziiglich B ist und daB die
Zerlegung Vo @ ),; @ V; eindeutig bestimmt ist.

Fiir alle f;(x)e Vo ist [_(1) (1)] fe(x)€X,;® V,, denn fiir alle ne(M-M*)N 0

verschwindet der Transformationskoeffizient Y.y x(e)e(rp™ Tr eén) aus
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Gleichung (9): In diesem Fall ist ndmlich én € pM;; es existiert darum ein y € I mit
x(y) # 1 und yén = én. Daraus sieht man, daB3 der einzige invariante Unterraum
von V(x), welcher }; @ V; enthilt, der ganze Raum V(y) ist.

Im Fall p#2 und im Fall p=2, =3, ist damit bereits bewiesen, daB
R3(r, t, x) irreduzibel ist, denn hier besteht ;D V; nur aus V;, und die Restriktion
auf die Borelgruppe B hat gezeigt, daBl V; in einem irreduziblen Unterraum von
V(x) enthalten sein muB.

In den Fillen p=2, =0, 1, 2, ist zwar aus dem gleichen Grund jedes V; in
einem irreduziblen Unterraum von V(x) enthalten, man muB aber zusitzlich
nachweisen, dal z.B. ein irreduzibler Unterraum, der V, enthélt, zugleich die
iibrigen vorkommenden V; enthilt. Wie im Beweis von Satz 2 kann dies dadurch
geschehen, dal man die Existenz eines §€ 6, und eines m € 6; zeigt, so da der
Transformationskoeffizient Y. ci x(£)e(r2™ Tr e£7) aus (9) nicht verschwindet (im
Fall =0, t=3 oder 7, geht man etwas anders vor: Man zeigt dasselbe fiir £ € 6,
und m € 63, m € 6,; anschlieBend fiir £ € 6; und 7 € 65).

Man kann den Beweis von Satz 2 fast wortlich libernehmen, indem man fir
eine geeignete Linearkombination

Y. ¥ x(e)e(nr2™(Tr &, — Tr Bii)) # 0

neA, ecll

nachweist (fiir 0 =0, t =3, 7 ist gegebenenfalls %; durch 7375 zu ersetzen).
Damit ist die Irreduzibilitdt der fraglichen Darstellungen gezeigt. DaB sie die

1 p*t]. . .
Stufe A besitzen, siecht man wieder mit Hilfe von (7) ein: [ 0 P 1 ] ist nicht die

Identitat auf V3(r, t, x).

Einen Isomorphismus w:R3(r, t, x) = R3(r, t, x) konnen wir durch u(fe(x))=
fe(x) definieren.

Sei andererseits ein Isomorphismus K: R3(r, t, x1) = RX(r, t, x2) gegeben, x;,

. e 1 b} |1 b al o0 _
X2 € Car II primitiv. Aus Ko[o 1]-—[0 1] K VbeA, und K [0 a]—

[a(; 1 g]oK folgt mit Hilfe von (7), (8), daB fiir alle & € 6; gilt: K(f¢(x1)) = ¢;fe(x2)
mit einem komplexen ¢;#0, und daB K den Raum V, auf sich abbildet.
Anwendung von KO[——(l) (1)]=[_(1) (l)]oK auf f.(x1), &€ 0,1, zeigt schlieBlich,
daB fiir alle ne ;< 0

Y. {cixa(e) - cixa(e)e(rp ™ Tr e£) =0

eecll
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sein muf}. Durch Bildung von Linearkombinationen dieser Ausdriicke erhédlt man

Zu {cix2(e) — cixa(e)} =0 (10)
Tred, = TrB,

fiir alle el und alle j.

Fir p#2 und fiir p=2, o0=3, ist notwendig j=1, ¢;=¢;, 7;=1; wenn fiir
B = by + b,v—p°t, die Komponente b, nicht durch p teilbar ist, so hat Tr e =Tr 8
nur die zwei Losungen ¢ =8 und ¢ = B. Dies ist insbesondere fiir 8 =a und (—a)
(siche §2.3 und 4) der Fall, also folgt aus (10), daB y,= x; oder x; ist. Genauso
kann man im Fall p=2, 0 =0, t=1 oder 5 vorgehen. In den anderen Fillen, d.h.
p=2,0=1,2 oder o =0 mit t=3 oder 7, gibt es jeweils ein j# 1, so daB fiir alle
Bell entsprechend B7;=x+y+/—2 mit 24y ist und darum die Gleichung
Tr en; =Tr Bn; nur die Losungen e =6, € = B'n,-ﬁ,-"l besitzt. Aus (10) folgt daher

cix2(B)+ cixz ' (B)x2(ni §; ) = eixa(B) + eix1 ' (B)xa(mydi; 1)

fiir alle B el1. Da die ¢4, ¢;, x1(n7; ") und x2(m;7i; ') konstant # sind, kann diese
Gleichung nur erfiillt sein, wenn die Charaktere x;, x1', x2 und x2 ' nicht
paarweise verschieden sind. Damit ist auch hier Teil b) des Satzes bewiesen.

6. Die Sonderfille c=A -3

Wie in §1 bereits angedeutet wurde, kann man die vollstindige Zerlegung
aller Weilschen Darstellungen W(M, Q) zu bindren quadratischen Moduln
dadurch durchfiihren, daB man die zweite Zerlegungsmethode (§8) verwendet,
welche i.a. besagt: Alle irreduziblen Unterdarstellungen von W(M, Q) sind
entweder von der Form W(M, Q, x) mit primitivem y € Carll, oder sie liegen
bereits in Weilschen Darstellungen kleineren Grades. Dies ist jedoch falsch fiir
kleine A (§89) und vor allem fiir die Moduln A,@® A, bzw. A,, wenn p# 2, und
Ar_1PA; bzw. A\,_1®DA;, wenn p=2 ist. Fiir diese Sonderfille wollen wir
gewisse irreduzible Unterdarstellungen angeben, so dal wir mit Hilfe einer
schwicheren Form der zweiten Zerlegungsmethode eine vollstindige Zerlegung
erhalten werden.

1. p#2, M=A,, Q(x)=rp x?, p 4 r. Die Isomorphieklasse des quadrati-

schen Moduls ist durch (_r) bestimmt, und es ist Aut(M, Q)={1,—1}. Die

p
Weilsche Darstellung R, (r):= W(M, Q) besitzt nach dem ersten Zerlegungsprin-
zip zwei Unterdarstellungen R, (r, +) und R,(r, —), deren invariante Unterrdume
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sind
V(£)={feC™| f(-x)=£f(x) V¥ x € M}.
Beide sind fiir A >2 reduzibel, es gilt jedoch

SATZ 4. R,(r, ) enthdlt genau eine irreduzible Unterdarstellung R, (r, ), der
Stufe A, welche den Grad 3(p>—1)p* > fiir A >1 und (p+1)/2 fiir A =1 besitzt. Es
ist

R\(r,+); # R, (r, —);.

Eine Basis des Darstellungsraumes von R, (r, £); ist B;(+) U By(%), wobei

Bi(£):={8; £ 8_.=:fu(£) |x € AJ, 1=x=3(p" - 1)},

Bo(%):= {fy,k(:t) = Z I:,e(%)(apyﬂ“ap*“ + 5—py—ap*“‘):l

aeA;
05y5p"”2—1} i
A>1,
1=k=<ip-1J
Bo(+):={6
o(+):=1 "}] fir A=1 ist.
Bo(""):= )
Man kann leicht
fo(x) =e(rp*x)fi (),
) (11)

O = O =
O S g

foa(E) =e(rp™ 2 y)f, 1 (2)

L i

: o al 0 0 1
zeigen und entsprechende Formeln fiir die Erzeugenden 0 a und | 1 0

aufstellen und mit deren Hilfe analog zu Satz 3 Invarianz und Irreduzibilitit von

A
R,(r, +); beweisen. Insbesondere erhilt man [—E]fx(+)=(—p—-> fe(+) und

_ A

[-E]lf,(—)= —-(-——-1-) f«(=). Daraus folgt die Indquivalenz. Die Eindeutigkeit, d.h.
p

daB das Komplement von R,(r, £); in R,(r, &) eine kleinere Stufe besitzt, wird

sich am einfachsten aus Satz 8 ergeben.
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2. p#£2, M=A, DA, A>1, Q(x,y)=rp *(x*+p*'ty>), ptrt Hier
konnen wir wieder die Terminologie von §5 bzw. §2 verwenden; die Darstel-
lungen R)™'(r, t, x) sind fiir primitive y bereits in §5 beschrieben worden, so daB
wir uns hier auf die nicht-primitiven y € Carll beschrinken konnen. Nach §2
haben nicht-primitive Charaktere die Eigenschaft x(a)=1; es handelt sich also
nur um zwei Charaktere x. und y_, welche durch x.(—=1)==x1, y.(a)=1
vollstindig bestimmt sind.

LEMMA 2. RY7'(r,t, x2) enthdlt genau eine irreduzible Unterdarstellung
ANr, t, x+)1 der Stufe A, und fiir diese gilt

R,(r, £), fir (1—) =1,
R, 1, )= P (12)
R\ (r, ), fiir ('%1”)7--1.

Die Basis des zu R}™'(r, t, x); gehorigen irreduziblen Unterraums ist B;(+)U

Bi():={fe(x+) | € AX, 1=¢=3(p"* - D},

0_<_n5p"“2—-1,1_<_ks£:—1-}.

Bo(i):={fn,k(X¢):= 2 e(%’)fwdpk-l(xi) 5

ae A,

Zum Beweis verwendet man (7), (8), (9) und die Tatsache, daB man «a so wéhlen
kann, daB o’ =1-3j%p* 't+jJy-p*~'t, j=0,...,p—1, ist. Die Eindeutigkeit
folgt wieder am einfachsten aus Satz 8, und fiir (12) wird sich in §7 ein einfacher

Beweis ergeben.

3. p=2, M=A,_1®A;, A>4, Q(x,y)=r2"*(x*+2"?ty?) fiir r=1,3,5,7
und t=1, 3. U=Aut (M, Q) ist in §2 beschrieben worden; die Charaktere von U
sind x; =1 sowie die nichttrivialen Charaktere x_;, X-a» Xa, deren Kerne aus 1
und jeweils —1, —a, a bestehen. Ein Représentantensystem fiir die Bahnen von Il
in M ist die Vereinigung der folgenden Mengen:

0,:={1,3,...,2" -1}, 6,:={2,6,...,2"7>-2},

. {{4+,/—2"_2t,8+~/~2"'2t,...,2)"3—-4+\/—2)“2t} fir A>5,
3:=

g fir A=5,
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0.:={/-2""1), 05:={2""+./-2"24},

0s:=2+J-22"2, 6+ /-2, .. 22 224 /-2 7,
6,:={4,8,...,2*72—4},  65:={0,2""%.

Es ist klar, daB eine Basis des Darstellungsraumes fiir die Darstellung R *(r, t, x)

wieder unter den Funktionen f;(x)=).cu x(€)8. zu suchen ist, und zwar
durchlduft ¢ dabei die Menge

81U02U93U04 fur X~ X-1,
01 U 02 U 83 U 05 fur X = X—a
61U02U03U96U97 fur X = Xas

8
U 6 fur x=x:.
=1

i

DaB R)7%(r, t, x_1) und Ry ™A1, t, x_o) irreduzible Darstellungen sind, beweist man
wortlich ebenso wie in Satz 3 (es handelt sich in diesem Fall um die beiden
primitiven Charaktere!); die beiden anderen Unterdarstellungen sind reduzibel,
aber sie enthalten jeweils genau eine irreduzible Unterdarstellung RY72(r t, X1
bzw. R)7%(r, t, x1): der Stufe A vom Grad 3 -2*"*. Die zugehdrigen invarianten
irreduziblen Unterraume dieser Darstellungen werden erzeugt von

{fé(xlx) | ge 91 Oder §= 2A—3}U{fE(Xa)—*-fZ"“z*E(Xa) I
E=2+/-2221 6+ /222 .., 22 P24 20

und (fiir A>5) 4,8,...,2*73-4}

bzw. von

{fe(x1) | €€ 03 U{fe(x1)— fr-2—e(x1) |
£=0,4,...,2"3-4;2+ /-2,
64+ -2""2t ..., 22224+ /2777

Die Beweise dazu kann man elementar mit Hilfe der Erzeugenden von SL,(A,)

fiihren. Die Frage nach méglichen Isomorphismen zwischen diesen Darstellungen
werden wir weiter unten beantworten.
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4. p=2, M=A,_1DA,, A>5, Q(x,y)=r2"*(x*+2"ty?®). Durch Satz 3
sind uns hier bereits die Darstellungen RY73(n, ¢, x) fiir primitives y und A >S5
bekannt (fiir A =S werden wir diese in §9 behandeln). Wir werden uns darum hier
auf die nicht-primitiven Charaktere beschrinken und zu diesem Zweck zunéchst
die Gruppe 1 =(—1)x{a) noch genauer beschreiben: Es ist

a=1-2""%-2""7"+/-2"7t und o’=1-2""7+2/-2""t

und die nicht-primitiven Charaktere sind x; =1 sowie jene nicht-trivialen Charak-
tere Xo» X-1, X-o deren Kern durch a? und jeweils a, —1, —a erzeugt wird, Fiir
alle diese nicht-primitiven Charaktere x enthdlt R)(r, t, x) eine eindeutig be-
stimmte irreduzible Unterdarstellung R)7>(r, t, x), der Stufe A vom Grad 3 -2*™*,
deren zugehorige Unterrdume von folgenden Funktionen erzeugt werden (mit 6,
bezeichnen wir wie in §5 die Menge {1,3,...,2"*—1}):

Darstellung Erzeugende des Darstellungsraumes
RY7(r t, x—at fe(X—o) mit £€6, oder £=4,12,...,2* 3 —4,

E=842/-2"31 164+2/-2" 3, ..., 22342 /-2y
fe(X—a) + frr2_g(x_o) mit £=2,6,...,2"3=2,
RY73(r t, x-1h fe(x-1) mit £€ 0, oder £=4,12,...,2* 3 -4,
E=2V=22 3 84+ 2V-22 3 L 20 -8 42V 20y,
fe(x=1) = far2_¢(x-1) mit £=2,6,...,2* -2
RX7(r t, xoa 1 fe(Xa) mit £€ 6,,
felXa) + f2r-2_¢(xa) mit £=2,6,...,2 3 =2,
E=4+2V-22"31 1242223, ., 22 44220
£=8,16,...,2*73
RY73(r t, x1)s fe(x1) mit €€ 64,
fe(x1) — fr-2_g(x1) mit £=2,6,...,2" 32,

E=4+2V-22 T3 1242V=-22 3 22 P a 42V
£=0,8,...,2*°-8.

Die Beweise dazu konnen elementar mit Hilfe der Erzeugenden von SL,(A,)
gefiihrt werden und der Beweis der Eindeutigkeit wird sich wieder einfacher aus
Satz 8 ergeben.

SATZ 5. Fiir feste r=1,3, 5,7, t=1, 3 und jedes A=7 sind R)™*(r, t, x_1),
RY72(r, t, x-a), RAT3(r, t, x1)1, RAT(r, t, x-1)1 vier paarweise nicht-isomorphe ir-
reduzible Darstellungen vom Grad 3 - 2*™* und der Stufe A.

Zum Beweis, daf} diese vier Darstellungen nicht isomorph sind, diirfen wir uns
darauf beschrinken, die Restriktion dieser Darstellungen auf die Borelgruppe zu
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betrachten. Mit Hilfe von I, (2) bzw. zu (7) und (8) analogen Formeln stellt man
leicht fest, daB fiir die oben konstruierten Basen der Darstellungsrdume die
1
1) und —EeSL,(A,) diagonal sind.
Bestimmt man unter diesen Diagonalelementen jeweils die Menge der achten
Einheitswurzeln, so sicht man elementar, indem man diese fiir die vier angegebe-
nen Darstellungen vergleicht, daB diese nicht isomorph sein kdnnen.
Derselbe Vergleich von Darstellungsmatrizen legt die Existenz folgender
Isomorphien zwischen den hier konstruierten Darstellungen nahe:

1
Darstellungsmatrizen der Elemente (

RX7(r 6, x)1= RAT(r, t 42, xXa
fir alle nicht-primitiven y fir A>S5 (13)

Rt—z(ra t’ Xa)l = );—2(’,’ t+29 Xl)l
R3(r, t, x-1)=R3(r, t+2,x-a) (A=5) (14)

Ré(r,3,x-o) fir t=1)
R§(r,3, x-1) fiir t=3
RA(r1, xoo) fir t=3
Ré(r, 1, x-1) fir t=1

R3(r, 1, XI)IE{
> (A=6) (15)
Rg(", t’ X*I)IE{

P

A—3 -
(r,t,x-a); fuir A=7
RY(r, 1, xa)ls{ " 1 (16)
RA7(rnt xa) fir A>7

Man kann diese Isomorphismen explizit angeben; im néchsten Paragraphen bzw.
(fir (13) bis (15)) in §9 wird sich jedoch ein einfacherer Beweis fiir sie ergeben.

7. Ein Indquivalenzsatz und seine Konsequenzen

In diesem Paragraphen wollen wir den Beweis von Hauptsatz 1 beenden und
die Beschreibung der irreduziblen Darstellungen von SL,(A,) der Stufe A fiir
p#2,A>1und p=2, A >6 abschlieBen.

SATZ 6. a) Seien (M,, Q,), (M>, Q,) bindre quadratische Moduln, x; und x»
primitive Charaktere der zugehdérigen abelschen Automorphismengruppen U1, bzw.
U,. Mit Ausnahme des Falles p=2, A=5, a0 =3 (wegen (14)) folgt dann aus
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WMy, Qy, x1)= W(M,, Qy, x2), da (M;, Q;) und (M,, Q,) isomorph sind.
b) Die vier Darstellungen R,(r, £); mit (;r)=i1 aus Satz 4 (p#2) bzw. die

16 Darstellungen Ry 73(r, t, x-1)1, RA7>(n t, x-1)1 (p=2, A=T) mitr=1,3, 5, 7,
t=1, 3 aus Satz 5 sind zu den unter a) genannten Darstellungen und untereinan-
der paarweise nicht isomorph.

Sei zundchst p#2: Hier bestimmt schon der Darstellungsgrad von
W(M, Q, x), x primitiv, den quadratischen Modul (M, Q) eindeutig bis auf
Isomorphie, wenn es sich um Darstellungen der zerlegten oder der unverzweigten
Reihe handelt (man beachte die Siatze 1 bis 3 sowie die Tatsache, daBB wir dort alle
Isomorphieklassen bindrer quadratischer Moduln behandelt haben, s.I, Satz 3).

Es bleibt nur zu zeigen, daB aus R3(r, t, x)= Ry (7', t, x") notwendig (_;)z (L),
' p
t t'

(;)= (;) und o =o' folgt. Nach (7) ist die Darstellungsmatrix von R}(r, t, x)

. (1 1 . . : -
fiir ( 0 1)<£SL2(AA) diagonal mit den Diagonalelementen e(rp*m), me

{x>+p°ty*| xe AX, y=0 oder xepA,, ye A} (mit Multiplizititen), und ent-
sprechendes gilt mit r/, ', o' anstelle von r, t, ¢ im Falle der Darstellung

R (r',t', x'). Daran sieht man sofart (;:—)=(%) Die anderen Gleichungen

(1) - (L) und o = ¢’ folgen aus
p p

{x2+p°ty’| xe pAs, ye AX}={x*+p” t'y*| xe pA,, ye A}

durch naheliegende zahlentheoretische Uberlegungen. Ganz analog dazu gewinnt
man hier auch die Aussage b) des Satzes; das Spektrum der Darstellungsmatrix
von R,(r, £); fir ((1) 1) besteht hier (fiir A >1) einfach aus allen e(rp“"nz),
ne A,.

Im Fall p=2 bestimmt wieder der Darstellungsgrad eindeutig die
Zugehorigkeit zur zerlegten oder zur unverzweigten Reihe. Zum Beweis von a)
bleibt also nur zu zeigen, daB r, t, o eindeutig durch R3(r, t, x), x primitiv,
bestimmt sind, wenn r und ¢ die in Satz 3 angegebenen Werte durchlaufen (bzw.
fiir o =A-2 die Werte r=1, 3,5,7, t=1, 3, wenn A =5 ist; fiir A <5 gibt es nur
in den Fillen A =3 und A =2, t=1 primitive Charaktere, und dort kann man die

1
Giiltigkeit des Satzes elementar iiberpriifen, s. auch §9). ((1) 1) besitzt auch hier
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als Darstellungsmatrix eine Diagonalmatrix mit den Diagonalelementen e(r2 *m),
wobei fir o=A-3 me{(x*+2°ty*) | (x, y)e M—2M} ist, und diese Menge be-
stimmt r, t und o wieder eindeutig. Die entsprechenden Mengen fiir die 32
Darstellungen R)7>(r, t, x_1), RX72(r, t, x—a), RAT3(r, t, x1)1, RAT3(r, t, x—1):1 (fiir
A=T7; fir A =6 entfillt die letzte Darstellung wegen (15), und der Fall A=35
bleibt wegen (14) von der Betrachtung ganz ausgeschlossen) bestehen nur aus
Elementen der Restklassen rx?> mod 2* 2, x € A, _,. Damit ist erstens klar, daB sie
nicht zu Darstellungen RY(r', ¢, x’) mit ¢’<A—2 und primitivem y isomorph
sein konnen. Zweitens ist r mod 8 durch sie eindeutig bestimmt. DaB sie schlieB-
lich fir A>5 auch noch tmod4 bestimmen bzw. (von den erwihnten
Einschriankungen fiir A =6 abgesehen) untereinander nicht isomorph sind, sieht
man wieder dadurch ein, da man wie im Beweis von Satz 5 die achten

<~ (1 1
Einheitswurzeln in den Darstellungsmatrizen fiir die Elemente ( 0 1) und —FE

berechnet und vergleicht.

Satz 6a zeigt—zusammen mit den Sidtzen 1 bis 3 und I, Satz 3 und 4-, daB
Hauptsatz 1 richtig ist (die in Satz 6a genannte Ausnahme spielt keine Rolle, da
dort x3=x3=1 ist). Ferner folgt aus Satz 6 und aus der Tatsache, daB man die
Anzahl aller irreduziblen Darstellungen auf anderem Wege berechnen kann (s. I,
§4), daB die Sdtze 1 bis 5 alle irreduziblen Darstellungen von SL,(A,) der
Stufen A >1 fiir p# 2 und der Stufen A > 6 fiir p =2 beschreiben; wir haben sie in
den Tabellen des §9 zusammengestellt.

Daraus erhilt man folgenden einfachen Beweis fiir (12) und (16): Da man alle
irreduziblen Darstellungen der betreffenden Stufe kennt, muB z.B. im Fall p=2,
A >7 die Darstellung R} 73(r, t, o)1 zu einer der Darstellungen der Sitze 1, 2, 3
und 5 isomorph sein. Eine Analyse der Eigenwerte aller Darstellungsmatrizen fiir

((1) i) und —E eSL,(A,) zeigt, daB dafiir nur R)7%(, t, x.) in Frage kommt.

Ebenso sieht man auch die Giiltigkeit von (13) fiir A >6 ein. In den Fillen
p=2, A=5, 6 kann man zum Beweis von (13) bis (15) ebenso vorgehen, sobald

man sich (§9) auf anderem Wege die noch fehlenden irreduziblen Darstellungen
dieser Stufen verschafft hat.

8. Eingebettete Weilsche Darstellungen

Sei W(M, Q) eine Weilsche Darstellung von SL,(A,) zu einem binéren:
quadratischen Modul (M, Q) von einer Stufe A >1. M besitzt dann p+1 Unter-
moduln H; j=1,...,p+1, der Ordnung p. Man iiberzeugt sich leicht, da83
Q|u, =0 ist fiir alle j=1,...,p+1 mit Ausnahme der in §6 diskutierten
Sonderfille M=A,_ DA, M=A,_ DA, fir p=2und M= A, DA, fir p#2:
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Hier besitzt jeweils nur ein H; (0.B.d.A. H,) diese Eigenschaft bzw. fiir p =2,
A =2 ia. sogar keines. Analog gibt es nur ein solches H;=p* 'M im Fall
M=A,, p#2, A>1. Die Eigenschaft Q| =0 hat nach I, Lemma 3 zur Folge,
daB die zu H; orthogonalen Untermoduln Hj (beziiglich der zugehorigen
Bilinearform B) die Eigenschaften H; < Hj und [M: H;]= p besitzen, und daB Q
auf jedem Faktormodul M;:= H;/H; eine (ebenfalls nicht-entartete) quadratische
Form Q; induziert. Zu den quadratischen Moduln (M;, Q;) gehdren nach I,
Lemma 3 Weilsche Darstellungen W(M;, Q;), welche folgendermaB3en in
W(M, Q) eingebettet sind: Der Darstellungsraum C™ von W(M, Q;) wird iden-
tifiziert mit dem Unterraum V; von V=C", wobei

f(x)=0 V x€ H7,

I &)
fx)=f(y) Vx,yeH;i mit x=ymodH,

u-{pev

Wenn dim V =p" ist, ist dim V;=p" .

Zwei solche in W(M, Q) eingebettete Darstellungen W(M, Q;) und
W(M,, Qy), j# h, besitzen eine gemeinsame Unterdarstellung, welche man auf
dhnlichem Wege gewinnt und welche nicht von j und h abhéngt: Die Summe der
Untermoduln H; und H, ist Ho:={x e M | px =0} mit ord Hy = p>. Es ist wieder
Qly,=0—die in §6 diskutierten Sonderfille bleiben bis auf weiteres
ausgeschlossen — und Hy = Hj N Hj, = pM hat in M den Index p® und enthilt H,.
Wie oben induziert Q auf My:= Hy/H, eine quadratische Form Q,, und die nach
I, Lemma 3 in W(M, Q) eingebettete Darstellung W(M,, Qo) vom Grad p"* ist
genau die gemeinsame Unterdarstellung von je zwei verschiedenen W(M;, Q;),
W(M,, Q).

M WM, Q)
AW L TEIN
o h ,-‘;1 W(M, Q) xpﬁ},;fﬁv W(M, Q, x)
Hg = pM l
III WM, Q)  W(M,, Q)
0
H/ \H
J\ / ' W(M,, Qo)
{0}

Wir fiihren in V das Skalarprodukt

(f, )= L f(x)gkx) fir f,geV

xeM
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ein, und bezeichnen mit V| das orthogonale Komplement von Vj (siehe (17)) in
V;. Die Unterrdume Vj sind SL,-invariant, da

(Ulf,[Ulg)=(f,g) firalle fgeV und UeSLy(A)).
SATZ 7. Es gilt
p+1
WM, o)=( Y @& wM,Q, x))ea(Z WM, o,-)),
X primitiv j=1
oder genauer

v Y @V ea(pf)v; ® Vo, (18)

X primitiv ji=1

Zum Beweis zeigen wir zuerst, da8 die in (18) auftretenden Unterrdume von V
paarweise orthogonal sind. DaB die V(x) (x primitiv) unter sich und die Vj
(j=1,...,p+1) unter sich paarweise orthogonal sind, ist leicht zu sehen. Sei
fe V(x) und ge V,. Wir wollen zeigen, daB (f, g =0 ist. Es existiert stets ein
aus II mit folgenden Eigenschaften:

1) x(B)#1 fiir alle primitiven Charaktere x von U,

(19)
2) Bx=xmod H; fiir alle xeH; und alle j

(Im zerlegten Falle wihlt man B=1+p* " und in den anderen Fillen g =1+’
mit Tr 8'=0mod p*, B =1 und B# 1, und verwendet, daBl

Hj={z=ax;+yeM|ae A,, yc Ho}
mit einem x; € Hj, x;€ Hp.) Es gilt

(=2 fx)gx)= 2 f(x)gx),

xeM xeH*

da g(x) ausserhalb von H; verschwindet. Mit x durchliuft auch Bx ganz Hj, also

gilt, da f(Bx)= x(B)f(x) und g(Bx)= g(x),
(f, 8)=x(B)f, 8.

Aus x(B)#1 folgt (f g)=0. Damit ist gezeigt, dass die V(x) und die V; or-
thogonal sind. Wegen der Definition der V/ sind also alle die in (18) auftretenden
Unterrdume von V paarweise orthogonal. Zum SchluB rechnet man nach, daB
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gilt

dim V(x)=|M—pM|/[| (und es gibt || (p—1)/p primitive Charaktere),
dim Vi=p*|M|-p~*|M|  (j=1,...,p+1),

dim Vo=p~*|M]|,

dim V =|M|.

Ein Vergleich der Dimensionen liefert die Gleichheit in (18).

. Fiir alle bindren quadratischen Moduln (M, Q) kann man die (M;, Q;) effektiv
berechnen; da isomorphe quadratische Moduln isomorphe Weilsche Darstel-
lungen ergeben, kann man in der Aufspaltung des Satz 7 W(M, Q) und alle
W(M; Q;) durch jene Weilschen Darstellungen ersetzen, welche hier in den §§3
bis 6 behandelt wurden. Im einzelnen erhilt man:

SATZ 8. Es sei stets W(M, Q): =Y rimisv W(M, Q, x) und Do= No= Ry(r)
bezeichne immer die triviale Darstellung. Dann gelten folgende Charakteren-
gleichungen (wir verwenden hier fiir eine Darstellung und ihren Charakter das
gleiche Symbol !):

a) p#£2 und A>1 (neAX erfiille (-;—:-)=—-1 und es sei fiir alle u aus N
Ri(r, t):=R,.(r)),

. - -1
Dy=Dy+2- DH+£5—1 - RX(1, ——1)+P——2—— - R3(n,—1)—p - Dy,

- +1 +1
M=M+"2 -Ri(l,—n)+’—’-—2——-Ri(n,~n)-—p~Nh_2,

fir 0<o<A-1,
Ri(r,ty=R3(r,t)+p - RI*(r, 1)

(Ry_1(rt,t) fiir o=1 ]

’
D, fiir (——f) =1
p >und o=2¢—p - RY_5(r,t),
-t
Ny fiir (—~)=-—1
A-2 p )

L RZ3(r,t) fir o=3 )
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RIZ3(r,t) fiir A>3

5A—1 _ 3
x (nt) D, fiir (.;)_t)=1

+R)\(r9 +)1+R,\(r, —)1 + 9

Ry t)=
=

Ni fiir (;) =-1

R(rt) fiir r=2

P

Ry (r)= Ry (r,+)1+ R\(r, =)1 + Ry _(r).

b) p=2,
fir A>1

D,=D,+2-D\_;+R%1,7)-2- Dy_,,

fir A>1
N,=N,+3-R%1,3)-2" Ny_,,

fiir A>3
R3(r, t) = R3(r, t) + R}(r, t) + R¥(rt, 1)

( +

R‘z_l(rf—z-l,t) fiir t51(4)7
+ —2-RY_5(n, 1),
1N fir t=3(8)( sl
LD)\—2 far t=7 (8)J

fiir A >4
Ri(r, )= Ri(r, )+ R3(r, ) + RA(r(1+21), ) + Ry _1(rt, ) =2 - Ry (1, 1),

fir A\>5,2<0<A-3,
R(r, ) =R(r, ) + RI™(r, ) + RI2(r(1 +2°1), ) + RIZ3(r, t) =2 - RY (1, 1),
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fiir A>5
Ry73(r,)=RX73(r, )+ z RA73(r t, )1+ RYZ3(r, 1),
x nicht
primitiv

fir A>4
R, )=RA2(r t, x-1) + RA2(r, t, X—a)
+RATA(r t, xa)1+ RAT2(r, t, x1)1 + RATS(r, 1),

Die angegebenen Isomorphien fiir Ry 7'(r,t), R,(r) im Fall p#2 bzw. fiir

A 73(r, ), RX7*(r, t) im Fall p =2 beruhen auf der oben erwihnten Tatsache, daB

in diesen Fillen jedenfalls ein W(M;, Q;) in W(M, Q) eingebettet ist; wie die

Rechnung zeigt, ist W(M;, Q,) immer eine Weilsche Darstellung von SL,(A,_>),

kann also die in §6 konstruierten irreduziblen Darstellungen W(M, Q, x) bzw.

W(M, Q, x): nicht enthalten, da diese die Stufe A besitzen. Alles andere zeigt ein
Vergleich der Darstellungsgrade.

Daraus folgt auBerdem, daB in diesen Fillen das Komplement von
WM, Q, x); in W(M, Q, x) hochstens die Stufe A —2 besitzt, was die Eindeutig-
keitsaussagen des §6 (z.B. in Satz 4 und im Lemma) rechtfertigt.

Am Beispiel N,, p#2, soll kurz gezeigt werden, wie man die (M; Q;)

bestimmt: Wie in I, (10b) sei Q(xy, x2) =p *(x]—nx3) mit (g) = —1 gewihlt. Fiir

Hy={ap*'(1,j)|a€ A}, j=1,...,p, ist Hi ={(x1, x2)€ M | x;— jnx, =0 mod p}.
Dann ist M; = H;j'/H; zu A, @ A,_, isomorph und 148t sich durch die Koordinaten
y1 = (jx;—x2)€ A, und y,=p '(x;— jnx,) € A\_, beschreiben. Die von Q auf M;
induzierte quadratische Form Q; erhilt man durch p*Q|u:(x1, x;)=x7—nx3=
r(y;+p’ty3)=p*Qi(y1, y2) mod p*, wenn r(j®’+t)=1 ist, rj(1+tn)=0 und
r(1+j’n*t)=—nmod p*. An der zweiten Bedingung (bzw. an der ersten und

—t C e -
dritten fiir j = p) sieht man, daB dies nur fiir (?)=—-1 moglich ist (t=—n h.

Dann wird (in A,) r=(j?*—n"")"", und es ist bekannt ([2], S.157), daB fiir
(p+1)/2 der moglichen j dieses r ein quadratischer Nichtrest mod p und fiir die
iibrigen ein quadratischer Rest ist.—SchlieBlich bleibt noch der Fall H,,;=
{ap*7'(0,1) | a€ A}, Hpry ={(x1, px2)}. Mit y;=x;, y,=p 'x, kommt man hier
auf dem gleichen Wege wie oben auf das analoge Ergebnis mit t=—n, r=1.

9. Beschreibung aller irreduziblen Darstellungen von SL,(Z,)

Wir wollen die irreduziblen Darstellungen von SL»(Z,) nach ihrer Stufe A
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klassifizieren. Dabei werden wir zunéchst die Spezialfdlle A =0, 1 fiir p#2 und
0=A =<5 fiir p=2 gesondert behandeln.

Die in diesen Fillen am héufigsten vorkommende Schwierigkeit besteht darin,
Darstellungen W(M, Q, x) mit x>=1 zu zerlegen. Wenn Aut (M, Q) eine Kon-
jugation « enthdlt, kann man hier den invarianten Unterraum V(x) in zwei
invariante Unterrdume V(x). und V(x)- zerlegen:

V(x)::={fe V()| f(kx)=xf(x) VxeM}.

Entsprechend dazu zerfillt W(M, Q, x) in zwei Unterdarstellungen W(M, Q, x)-
und W(M, Q, x)-.

Fir die in den folgenden Tabellen aufgefiihrten Darstellungen kann die
Irreduzibilitat, soweit sie nicht schon durch die bisher bewiesenen Satze bekannt
ist, durch (elementare) Abwandlungen des Beweises von Satz 2 bewiesen werden.
Die Indquivalenz siecht man meistens durch Analyse der Eigenwerte der Darstel-
1
1
weitig bewiesen wurde, und die Vollstindigkeit der Tabellen folgt daraus, daB

man die Anzahl der zu erwartenden irreduziblen Darstellungen aus I, Satz 5 bzw.
[3] kennt.

lungsmatrizen fiir ( ) und —E €SL,(A,) ein, soweit sie nicht schon ander-

Bezeichnungen. Die genannten Charaktere gehOren immer zu den in §2
beschriebenen abelschen Automorphismengruppen U. Wie in §6 sei stets x;=1.
8 sei die Menge der primitiven Charaktere von lI. Unter Anzahl verstehen wir
immer die Anzahl der indquivalenten Darstellungen des jeweils betrachteten

Typs, so daB also W(M, Q, x) und W(M, Q, y¥) als eine Darstellung gezahlt
werden.

A =0. Hier definieren wir — in Ubereinstimmung mit Satz 8 — C;: =Dy = N,
als die triviale Darstellung von SL»(Z,).

Darstellungen

der Stufe 1
p#2 Grad Anzahl Bemerkungen
D (x) xeB p+1 i(p-3) Satz 1
Ni(x) x€B p—1 ip-1) Satz 2
+1

Rl(ls :t): Rl(n, i) (2) =1 P‘E‘— 4 Satz 4

P
Ni(x1) p 1 “Steinberg-Darstellung”
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Die Zerlegung von D; und N, wird hier vervollstindigt durch
DI(X)ER1(1’+)®R1(n3 +) fllr X¢17 ngla

Ni(x)=Ry(1, -)® Ry(n, -) fir x=1, x’=1,
Di(x1)=N1(x1)® C:D C;.

Darstellungen
der Stufe 1
p=2 Grad Anzahl Bemerkungen
11 01
C,:=N 1 1 C =C =-1
2 1(X) XG% 2(0 1) 2(__1 0)
N;(x1) 2 1

Die vollstindige Zerlegung der Weilschen Darstellungen lautet hier

D= C;® C:®D Ni(x1), N; = C,®D C,® Ni(x1).

Darstellungen

der Stufe 2

p=2 Grad Anzahl Bemerkungen

D5 (x)+ x*=1 3 1 =R(1, 1, x1)

D (x)- x*=1 3 1 =RJ(3,1, x1)

RY(1, 3), 3 1 Darstellungsraum erzeugt von

61, 8\/:3’ 80‘61+J’3
Ausnahmedarstellung (s.u.)
Satz 2

ENZ(‘I’)—a QIIE%, ¢251
ENZ(J‘)H» ¢e$9 szl

* C,®R(1, 3),
Na(x) . X€B, x*=1
C3:=R2(3’1,X)

Co=RAL1Ly) X1

el il \* 7]
ek

. 11_,__ 01 11_,___ 0 1 o ccnss
Dabei ist C3(O 1)—— i= C3(_1 O)’ C4(0 1)—-1—- C4(_1 O)' Mit ““%k

bezeichnen wir hier und im folgenden jeweils die Ausnahmedarstellungen, welche
in keiner Weilschen Darstellung zu bindren quadratischen Moduln enthalten sind.
Die Darstellung C,® R(1,3); ist aber in N;® R3(1,3) enthalten, d.h. in
der Weilschen Darstellung W(M,Q) mit M=A A DPA,PA; und
Q(x1, X2, X3, X4) =3(x3+ x1 %, + x3) + 4(x5 + 3x3).—Die volistiindige Zerlegung von
D, und N, gibt Satz 8, die vollstindige Zerlegung von R35(r, 1) steht in der
Tabelle, es bleibt also nur nachzutragen, daB

Rg(l’ J)= Rg(ls 3):1DC
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ist (das Komplement von R3(1, 3) wird von 80+ 81+y=3 erzeugt).

Darstellungen

der Stufe 3

p=2 Grad Anzahl  Bemerkungen
Ds(x)« x€P 6 4 =R1(r, t, x,) mit

(nn=(1,1),(1,3),3,3), 5,1

R3(1,3, x1h 6 1 =RY(1,7, x1); (s.u.)
*C3®Rg(17 3a Xl)l 6 1
N;(x) x€B, x*#1 4 2 Satz 2
N3(x)« x€B, x*=1 2 4 =R(r, t, ) mit ¢=1 firr
(rty=(1,1),(1,3),(3,3), (5, 1)

RY(r, t, x) x(a)=i 3 4 Satz 3

r=1,3;,t=1,5
Rg(l’ L X):t X$1 3 4

t=3,7

Dabei wird der Darstellungsraum von R3(1,t, xy); fiir t=3, 7 erzeugt von

80— 0242y=5 02— 02y=, O1+0_1, S142m5+0 142y Oy=+0_ = Ooiy=it+82 =
und es ist

a 0 Dl fir t=7
R3(1, t, Xl)E R3(1’ t, Xl)l@

N1 fur t=3.

Zur vollstindigen Zerlegung aller Weilschen Darstellungen der Stufe 3 ist im
Hinblick auf Satz 8 nur nachzutragen, daB fiir x(a)=—1 die Darstellungen
R3(r, t,x), t=1, 5, in C; bzw. C, und eine der Darstellungen R3(1,3, ¢).,y#1,
zerfallen, und daB R3(r,t, x1), t=1,5, in eine der Darstellungen R3(1,7, ¢).,
¢#1, und eine der Darstellungen D,(x)., x# 1, zerfilit.

Darstellungen

der Stufe 4

p=2 Grad Anzahl Bemerkungen

D.(x) x€B 24 2 Satz 1

N4(x) xeB 8 6 Satz 2

RA(r, t, x) x€B, x*#1 6 4 Satz 3
r=1,3;t=1,5

RE(r, 4, X)« xe®, x2=1 316
r=1,3;t=1,5

RY(1, t, x)x x€B, t=3,7 6 8

Ri(r, 1, x) x*1 6 4 R2(r, 3, x)=R2(r, 1, x,); (s.u.)
r,te{l, 3}

* C,®R3(r,3, x) x¥1,r=1,3 6 2

Ri(r, 3, x1 r=1,3 6 2 (s.u.)
Yla)=-1

* N3(x)+®RI(1, 7, ¢), y(-1)=1 12 2

x€B, x’=1
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Die Darstellungsrdume von R3(r, t, x1); werden erzeugt von 8;+8_;, 83+ 6_3,
814.‘/::[["{’ 8_1+J'_?E, 83+J;7{+ 6-3+J:.’1?, 80“’84 und 6J__¢;‘;“64+J1—4?; auBBerdem ist

Ri(r, t, x1) = Ri(r, t, x1)1 D R3(r, ).

Zur vollstindigen Zerlegungen aller Weilschen Darstellungen fehlt noch die
Zerlegung von Ri(r, 1), da in allen anderen Fillen Satz 8 anwendbar ist: Fiir
primitive ¢ sind die Rj(r,t, ¢). zu Darstellungen R3(r', ¢, x). mit ¢'=1,5,
r'=1,3, x primitiv und y*=1 isomorph (und zwar treten dabei alle 16 Darstel-
lungen vom Grad 3 genau zweimal auf); fiir die beiden nicht-primitiven Charak-
tere ¢ enthdlt R4(r,t, @) jeweils eine irreduzible Unterdarstellung vom Typ
R3(1,t, x)+ mit t'=3,7 und primitivem y. Das Komplement dieser Darstel-
lungen in R(r, t) ist nach der SchluBweise von §8 zu Rj(rt, t) isomorph.

Darstellungen
der Stufe 5
p=2 Grad  Anzahl  Bemerkungen
Ds(x) X€P 48 4 Satz 1
Ns(x) x €B 16 12 Satz 2
RS(r, 1, x) xXeB )
r=1,3;t=1,5 12 16
0 . o=
R5(1, ¢, x) iig, t=3,7 24 4 \ Satz 3
Ri(r, t, x) r=1,5;t=1,5 12 16
r=1,3;t=3,7 J
R%(r, t, )+ x€P; r=13
t=1,3,5,7 5 A
R%(r,. 1, x) x€B;r=1,3 12 4 =R3(r, t, ¢); (s.u.) mit e B,
¢=x fir t=1mod 4
¢# x fir t=3mod 4
* C;®R(r, 1, x) x€%B;r=1,3 12 4

Fir die beiden nicht-primitiven Charaktere x;=1 und x, (mit y.(a)=1,
X«(—1)=—1) wird der Darstellungsraum von R2(r, t, x); analog zu §6 erzeugt von

{fe(x)|€=1,3,5,7; 1+J=4¢1,...,7+ =41}

und

f4(Xa), f4+2\/—:-71(Xa), f2(Xa) +f6(Xa); f2+2\/:-jT(Xa) +f6+2JT%(Xa)

bzw.

{ff(X1)—f8—€(X1) ‘ g = 29 2+ 2\/37’ 0’ 2\/:—1}}
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und es ist (nach der Methode von §8)
Rg—(r’ t) = Rg('} I)@ Rg(rv tv Xa)IQRg(r’ t, Xl)1®Rg(rs t)

Nach §6 und Satz 8 zerfillt R3(r, t) in R3(r, t) und vier irreduzible Darstellungen
Ri(r, t, x) bzw. Ri(r, 1, x)1 vom Grad 6 und det Stufe 5; diese sind zu gewissen
Darstellungen vom Typ R3(r', t', ¢). isomorph.

In den beiden letzten Tabellen bezeichnet y ohne Index immer primitive
Charaktere.

Darstellungen der Stufen

A>1, p#2 Grad Anzahl Bemerkungen
D, (x) (p+p*! 0" A(p-1)? Satz 1
N, (x) (p—-1)p*~" " 2(p*-1) Satz 2
A—-1
R3(r, 1, x) o=1....,A—1 p*—1)p*2 Y 4(p-1p* ' Saz 3
)-(;)
). l=)==1
p p
R, (r, £), (1)=:t1 Yp?— 1)p"‘i 4 Satz 4
p

Darstellungen der Stufen

A>5,p=2 Grad Anzahl Bemerkungen
Dy (x) 3.2 213 Satz 1
Ny (x) 21 3.2273 Satz 2
RY1, ¢, x) t=3,7 J.g2  gaed )
o=0;r=1,3;t=1,5 4.2r"3
o=1;r=1,5;t=1,5 4223
R3(r, t, x) r=1,3;¢t=3,7 3.2
0___:2; r=1,3 2.2,\——3 >SatZ3
t=1,3,5,7
A-=3
R3(r, 1, x) o=3,...,A-3 3.0 Y 16-2*702
r,te{l,3,5,7} gl J
Rﬁﬁz(ra t7 X) I'=1, 33 577 3'2A~4 16 SatZ 5
t=1,3
Fir A=7 Satz 5
RQ—S(',’ t, Xil)ly —
fiir A =6 - i g 37 3.2 16 Formeln (13)

Rg(f, tv X1)1,

und (15)
* C2®Rg(r7 l, Xl)l
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Mit den vorstehenden Tabellen ist auch Hauptsatz 2 vollstandig bewiesen.
DaB namlich die 18 genannten Ausnahmedarstellungen nicht in Weilschen Dar-
stellungen zu bindren quadratischen Moduln vorkommen konnen, siecht man an
deren vollstandiger Zerlegung, die i.a. in Satz 8 und in den dort nicht behandelten
Fillen hier in §9 beschrieben ist.
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