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Comment. Math. Helvetici 39(51) 465-489 Birkhduser Verlag, Basel

Die irreduziblen Darstellungen der Gruppen SL,(Z,), insbesondere
SL.(Z,). 1. Teil

ALEXANDRE Noss'”

Das Ziel dieser Arbeit ist eine vollstindige Beschreibung der stetigen ir-
reduziblen Darstellungen der Gruppen SL,(Z,), wo Z, der Ring der p-adischen
ganzen Zahlen, und p eine beliebige Primzahl (insbesondere auch p = 2) bezeich-
nen. Die Gruppen SL,(Z,) sind kompakt und total unzusammenhingend. Jede
stetige irreduzible Darstellung von SL,(Z,) ist deshalb von endlichem Grad und
lasst sich iiber SL,(Z/p*Z), fiir eine geeignete positive ganze Zahl A, faktorisieren.
Es geniigt also, die irreduziblen Darstellungen der endlichen Gruppen
SL,(Z/p*Z) fiir alle A zu beschreiben. Eine Zusammenfassung dieser Arbeit
findet man in [5] und [6] (fiir p =2).

Die Arbeiten von Kloosterman [2] und Tanaka [10], [11] ergeben zusammen
eine vollstdndige Losung unseres Problems im Fall p# 2; wir nehmen diesen Fall
aber auch auf, da die hier verwendeten Methoden (siehe Teil I, §3 und Teil II, §1)
den zweiten Teil der Arbeit von Kloosterman wesentlich vereinfachen (den ersten
Teil haben J. Wolfart und ich in [4] vereinfacht und vervollstindigt). Der Fall
p# 2 ist neuerdings mit einer anderen Methode auch von Kutzko [3] vollstindig
gelost worden.

Ueber den Fall p=2 ist in der bisherigen Literatur sehr viel weniger bekannt.
Casselman [1] hat gewisse irreduzible Darstellungen der allgemeineren Gruppen
SL,(k) bzw. SL,(O) konstruiert, wobei k ein nicht-archimedischer lokal kompak-
ter KOrper ist mit beliebiger Restklassenkorpercharakteristik, und X, der
zugehorige Ring der ganzen Zahlen. Er erhélt somit gewisse irreduzible Darstel-
lungen der Gruppen SL,(Z/2*Z), nimlich diejenigen, die man mit primitiven
Chakteren (s. Definition in Teil II, §1) aus der unverzweigten Weilschen Darstel-
lung und aus den verzweigten Weilschen Darstellungen mit o =0 oder 1 erhilt (s.
Teil II, Satz 2, Satz 3 und §9). Selbst wenn man die irreduziblen Darstellungen
der zerlegten Reihe (principal series) und diejenigen, die man mit primitiven
Charakteren aus den iibrigen verzweigten Weilschen Darstellungen (also o> 1)
erhilt, hinzufiigt, fehlen immer noch unendlich viele, nimlich diejenigen, die man
nur mit nicht-primitiven Charakteren konstruieren kann (s. Teil II, §6 und §9),
sowie die sogenannten Ausnahmedarstellungen (s. Teil II, §9).

! Unterstiitzt durch den Schweizerischen Nationalfonds (820.167.73).
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In der vorliegenden Arbeit findet man fiir beliebige Primzahlen p und be-
liebige A eine Klassifikation und Beschreibung aller irreduziblen Darstellungen
von SL,(Z/p*Z). Wir geben auch jeweils den Grad und, fiir feste A und p, die
Anzahl der irreduziblen Darstellungen an. Im ersten Teil wird zuerst gezeigt, wie
man, ausgehend von gewissen quadratischen Formen auf endlichen Z/p*Z-
Moduln, mit der Methode von A. Weil [12] Darstellungen von SL,(Z/p*Z)
konstruiert (§1, Satz 2). Die verwendeten quadratischen Formen werden
vollstindig klassifiziert (§2). Im dritten Paragraphen werden zwei Methoden
beschrieben, mit denen man Unterdarstellungen der konstruierten Darstellungen
finden kann. Die Anzahl der Konjugiertenklassen von SL,(Z/p*Z), d.h. die
Anzahl der irreduziblen Darstellungen von SL,(Z/p*Z), wird im vierten Para-
graphen berechnet. Entsprechende Betrachtungen sind fiir p# 2 von Kloosterman
[2] durchgefiihrt worden. Im zweiten Teil (in Zusammenarbeit mit J. Wolfart),
werden die Weilschen Darstellungen vollstindig reduziert. Die Ausnahmedarstel-
lungen, d.h. die irreduziblen Darstellungen, die nicht in den Weilschen Darstel-
lungen vorkommen, werden durch Tensorprodukte konstruiert.

Ich mochte an dieser Stelle den Herren P. Cartier und J. Wolfart fiir Ihre
wertvollen Hinweise und Bemerkungen, sowie dem “Institut des Hautes Etudes
Scientifiques” in Bures-sur-Yvette fiir seine Gastfreundschaft herzlich danken.

1. Weilsche Darstellungen der Gruppen SL,(A,).

Es sei p eine feste Primzahl und A eine natiirliche Zahl. Wir bezeichnen mit
A, den Ring Z/p*Z. Die Methode von A. Weil (etwas vereinfacht), Darstel-
lungen von SL,(A,) zu konstruieren, beruht auf dem folgenden Struktursatz:

SATZ 1.2 Die Gruppe SL,(A,) wird erzeugt von den Elementen

01
=) Yoear, w=( Oacan wa w=( 1)
und den Relationen:
a) u(by)u(b,)=u(b,+b,), )
b) h(ay)h(az)= h(aia,),
¢) h(a)u(b)=u(a*b)h(a),
) (1)

d) h(a)w=wh(a™"),
e) w?=h(-1),

f) wu(a)w =u(-a )wu(—a)h(-a),
fl.l'l' alle b, bl, szA,\ und a, a, azeA:.

s

? Siehe P. Cartier: Séminaire de théorie des groupes (1972/3), .H.E.S. Bures-sur-Yvette.
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Sei M eine additiv geschriebene abelsche Gruppe. Eine quadratische Form Q
auf M ist eine Abbildung von M nach Q/Z, welche folgenden Bedingungen
genugt:

a) Q(—x)=Q(x) fiir alle xe M,

b) B(x,y):=Q(x+y)— Q(x)— Q(y) definiert eine Z-bilineare Abbildung von
M X M nach Q/Z.

B heisst die zu Q gehorige Bilinearform. Q heisst nicht-entartet, wenn B
nicht-entartet ist, d.h. wenn fiir jedes x#0 aus M ein ye M mit B(x,y)#0
existiert. ‘

Um Darstellungen von SL;(A,) zu erhalten, betrachten wir endliche A,-
Moduln M und quadratische Formen Q auf M mit Werten in p~*Z/Z < Q/Z. Die
zugehorigen Bilinearformen B sind dann A,-bilinear: Es genugt, die Multiplika-
tion a-r fir ae A, und re p"‘Z/Z durch a - r in Q/Z zu definieren, wo a ein
Reprasentant von @ in Z ist. Wir werden im folgenden, dort wo keine Ver-
wechslungen mdoglich sind, die Klassen von A, und ihre Reprasentanten in Z
nicht mehr unterscheiden.

Unter diesen Voraussetzungen sei V der Raum C der komplexwertigen
Funktionen auf M. Wir nennen das Paar (M, Q) einen quadratischen Modul.

SATZ 2. Die durch

[(1) i)]f(x)=e(b0(x))- f(x), fiiralle be A,

[(‘)’ a(zl]f(x)=A(a)- f(ax), firalle acAl, ¢ 2)

[_(1) é]f(x):So(”l)IMl'”2 2. e(B(x,y) f(y). |

yeM

fiir alle f € V und alle x € M gegebene Operation der Erzeugenden von SL,(A,) auf
V mit

So(a)=|M["? Y e(~aQ(x)) (3)

xeM

und

A(a)=Sq(a)Sq(1)™ 4)
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definiert genau dann eine Darstellung von SL,(A,), wenn

A(aqa;) = A(a)A(a,) fiiralle ay, a,e A} (5)
giiltig ist oder, was dazu dquivalent ist,

So(ai)So(az) = So(1)So(ara,) fiiralle ay, ae Ay. (5"

(Mit e bezeichnen wir den Homomorphismus von Q/Z in C*, der die Klasse mod 1
von t in e*™ abbildet.)

Zum Beweis von Satz 2 muss man zeigen, dass die Operatoren [ ] mit den
Relationen (1) genau dann vertriglich sind, wenn (5) bzw. (5') gilt. Fiir die erste
Relation ist

1 b][1 b]_[1 bitb, |
[O 1][0 1]_[0 1 ] wegen e(b;Q(x)) - e(b,Q(x))
=e((b, + b)) Q(x))

immer erfiillt. Die Relationen (1.b) gelten genau dann fiir die Operatoren [ ],
wenn (5) richtig ist. Die Relationen (1.c) sind genau dann erfiillt, wenn fiir alle
be Ay und a€ A} gilt:

e(bQ(ax)) = e(a’bQ(x));

dies folgt jedoch aus Q(ax)=a’Q(x) (Beweis durch Induktion iber a).
Fiir den vierten Typ von Relationen erhalten wir

" 91 [ ° l]f(x)=A(a)SQ(--l)IMI_”2 2. e(B(ax, ) - f(y),

L_O a =1 O yeM
0 1][a

] - 0 -1 -1/2 ' -1
-1 0]. 0 a]f(x)zA(a Sal-DIMI™ 2 e(BG YY) fla™'y):

und die Substitution y=a~'y’' in der zweiten Summe zeigt, dass hier A(a)=
A(a™") fiir alle ae A nachzuweisen ist. Nach (4) und (3) ist dies jedoch Klar,
denn es ist

Y e(-aQ(x))= 2. e(—a~'Q(ax))= Y, e(-~a~'Q(y)).

xeM xeM yeM
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Die fiinfte Relation ist erfiillt, wenn

So(-1? M| ) e(B(x+2,y))- f(z)= A1) - f(—x) 6)

y,zeM

ist. Da B nicht-entartet ist, hat man

Y., e(B(u,y)=

yeM

{|M|, wenn u=0
0 andernfalls,

was den Nachweis von (6) zuriickfiihrt auf.den Beweis von
Sa(-1>=A(—=1)=8So(-1)So(1)™" oder So(—1)- So(1)=1,

und dies ist eine wohlbekannte Eigenschaft der Gausschen Summen.
Die Relationen (1.f) behandelt man folgendermassen:

I O R

=So(-1)*|M|™* X, { Y. e(B(x, y) +aQ(y)+B(y, z))} - f(2)

zeM \yeM

=So(~1)2Sg(—a) M| ). ‘e(-~aQ(a 'x+a'2)) - f(2),

zeM

wenn man dabei benutzt, dass
B(x,y)+aQ(y)+B(y, z)=a{Q(a 'x+a”'z+y)-Qa 'x+a ' z)}
gilt. Andererseits hat man

FR B P P

= So(-1)A(-a)e(-=a~Q(x)) IM|? X, e(B(x, y)) - e(~aQ(y)) - f(—ay)

yeM
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und durch die Substitution z = —ay ergibt sich daraus

=So(-1)A(=a) IM[™2 ), e(~a {Q(x)+B(x, z)+ Q(2)}) - f(2)

zeM

=So(—1)A(—a) IMI"I/2 Z e(—aQ(a 'x+a'z))- f(z).

zeM

Nun zeigt (4), dass beide Ergebnisse gleich sind; damit ist Satz 2 bewiesen.

DEFINITION 1. Wenn (5) erfiillt ist, wollen wir mit W(M, Q) die Darstel-
lung bezeichnen, welche durch Satz 2 dem quadratischen Modul (M, Q) zugeord-
net wird. Sie heisst die zu (M, Q) gehorige Weilsche Darstellung.

DEFINITION 2. Eine Darstellung von SL»(Z,) heisst von der Stufe A, wenn
sie sich iiber SL,(A, ), aber nicht tiber SL,(A, ;) faktorisieren ldsst. Analog heisst
eine Darstellung von SL,(A,) von der Stufe A, wenn sie sich iiber SL,(A,), aber
nicht uber SL,(A,_;) faktorisieren ldsst (u=A).

Um alle irreduziblen Darstellungen von SL»(Z,) zu beschreiben, geniigt es, fiir
alle A die irreduziblen Darstellungen der Stufe A von SL;(A,) zu beschreiben.
Der Kern der Projektion von SL,(A,) auf SL,(A,_;) ist die invariante Unter-
gruppe von SL,(A,), die von den Elementen u(p*~'b), mit be A,, erzeugt wird.
Wenn die Werte von Q auf M in p **'Z/Z liegen, dann ist der Operator
[u(p*~'b)] gleich der Identitit fiir die Darstellung W(M, Q) (siehe (2)), d.h.
W(M, Q) ist hochstens von der Stufe A —1. Deshalb setzen wir jetzt fiir ein fest
gewihltes A voraus, dass die Werte von Q auf M in p~*Z/Z und nicht alle in
p *"'Z/Z liegen. Die Darstellung W(M, Q) ist dann von der Stufe A.

Erfiillt der quadratische Modul (M;, Q;) die Bedingung (5), und ist (M,, Q)
zu (M,, Q,) dquivalent (d.h. gibt es einen Isomorphismus ¢ von M; auf M,,
sodass Q,° ¢ = Q)), so erfiillt auch (M-, Q,) die Bedingung (5) und die Weilschen
Darstellungen W(M;, Q;) und W(M,, Q,) sind isomorph.

2. Klassifikation Quadratischer Moduln und Weilscher Darstellungen.

Wir wollen in diesem Paragraphen die Klassen dquivalenter quadratischer
Moduln klassifizieren. Die Resultate sind fiir p#2 schon bekannt [11], werden
aber vollstindigkeitshalber wiederholt.
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Wir beweisen zunichst folgendes
LEMMA 0. Seien s und d feste Elemente aus A,. Die Menge
S(s,d)={a€ A|3(E n)e A X A, mit £ +stn+dn’=a)

ist eine Untergruppe von Ay. Die genaue Beschreibung von S(s, d) entnimmt man
aus der Tabelle 1.

Dass die Menge S(s, d) eine Untergruppe von Aj ist, folgt sofort aus der
Tatsache, dass

£+ sén +dn® = det ( ¢E + 'n(_sl g))

Sei zunéchst p# 2. Es ist leicht zu zeigen, dass
AX>S(s,d)>(AX)*21+pA,.

Auf der anderen Seite nimmt die quadratische Form &>+ sén+dn? jeden Wert
aus A an, ausser wenn ihre Diskriminante A = s*—4d kongruent null ist mod p.
In diesem Fall stellt sie nur Quadrate dar (siehe etwa H. Hasse: Vorlesung iiber
Zahlentheorie, 2. Auf., Springer-Verlag, §10.4). Damit ist die Richtigkeit der
Tabelle 1 fiir p# 2 bewiesen.

Tabelle 1
Bedingungen fiir s, d A S(s, d) [AX:S(s, d)]
a
A=5?>-4d=0mod {aeA" (—)=1} 2
p¥2 s mod p y e X1 .
A=s5>—4d#0mod p Ax 1
s=1mod 2 A=1 AX 1
s"—d=0 mod 8 {aeA|a=1 mod 8} 4
s”—d=3,4,7mod 8 {ac Al |a=1,5 mod 8} 2
p=2 s"—d=2 mod8 A=3 {ac Al |a=1,7 mod 8} 2
s =2’ s"—d=6 mod 8 {ac A |a=1,3 mod 8} 2
s"-d=1,5 mod8 {ac AY|a=1,3,5,7mod 8} 1
s"~d=0,3 mod 4 A=2 {acAY|a=1 mod4} 2
s"—d=1,2mod 4 B {ae AY|a=1,3 mod 4} 1

s'=0 A=1 A 1
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Sei jetzt p=2 und A =3. Es gilt
AXDS(s,d)2(AY)’=1+8A,.

Um S(s, d) vollstindig zu beschreiben, geniigt es, die ungeraden Zahlen mod 8,
die von ¢+ sén+dn® dargestellt werden, anzugeben. Wir unterscheiden zwei
Fille:

1. Sei s=1mod?2, dann stellt ¢+ sén+dn” alle ungeraden Zahlen mod 8
dar. Um dies einzusehen, geniigt es, die Paare-

(1,1),3,1),(5,1),(7,1) falls d=1mod?2

(& m)= {(1, 0),(1,2),(1,4),(3,2) falls d=0mod?2,

zu betrachten.
2. Sei s =2s', dann gilt

E+stn+dn’=(E+s5'1)’—(s*—d)n’

und es ist eine leichte Aufgabe, die ungeraden Zahlen mod 8, die durch diese
quadratische Form dargestellt werden, in Abhingigkeit von (s”"—d) zu
bestimmen.

Die Fille A =2 und A =1 lassen sich ohne Schwierigkeit von den Resultaten
fiir A =3 ableiten. Damit ist Lemma 0 bewiesen.

Wir nehmen zuerst an, dass M von einem einzigen Element erzeugt wird. Die
einzigen quadratischen A,-Moduln (M, Q), welche fiir die Erzeugung von Dar-
stellungen der Stufe A von SL,(A,) in Frage kommen, sind dann

M=A,, Qx)= p~—arx2, r#0mod p, falls p#2, A=1, } o
M=A,_4, Q(x)=2""rx?, r=1mod?2, falls p=2, A=2.
Fiir p# 2 hat man zwei Klassen, gegeben durch die Werte des Legendre-Symbols

(—;) Fiir p=2 und A =3 hat man vier Klassen, gegeben durch r=1, 3, 5 und

7 mod 8.

LEMMA 1. Sei p#2. Die quadratischen Moduln (M, Q) von (7) erfiillen die
Bedingung (5) von Satz 2, erzeugen also Weilsche Darstellungen von SL,(A,). Die
Faktoren A(a) und So(—1) lauten:

1 falls A gerade,

A(a) = (g)", So(-1)= {({;) e(p) falls A ungerade,

wobei (d)=1 oder i ist, je nachdem ob d=1 oder 3 mod 4 ist.
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Zum Beweis verwendet man die Formeln in [7] (IV, §3).

LEMMA 2. Sei p=2. Die quadratischen Moduln (M, Q) von (7) erfiillen die

Bedingung (5) von Satz 2 nicht, erzeugen also keine Weilschen Darstellungen von
SL2(A,).

Die Berechnung von A(a)= Sq(a)So(1)™" erfolgt durch

So(@)=|Ar_1|""? Y. e(—aQ(x))=2"*"D2271 Y (=2 *rax?),

xeAn xcAx
und folglich

Sol@) =~ (L )e-an ®
(s. [7], 1V, §3), das Minuszeichen kommt daher, dass dabei (jm;)=

(sign m)(%l) gesetzt wird. Der Quotient So(a)/So(1) wird nun

Aa) = (—2") e(—ar) (——2")i_,(§2_1)/8

ale-r \a

wo a der kleinste natiirliche Rest von a mod 4 ist. Weiter ist

1[&%—1+a§—1_(a1a2)2—1]2a1—1 2l S

2L 8 8 8 2 F
fir alle a;, a,€ AX. Andererseits hat man fiir das Hilbertsymbol
(a1, az); = (—1H@DA@=D2T - (siehe [9], S. 39).
Alles zusammen gibt uns die Beziehung
A(a1az) = A(a1)A(az)(as, az),

und damit ist Lemma 2 bewiesen.

Sei jetzt M von genau zwei Elementen erzeugt (d.h. M/pM ist zweidimen-
sional iiber Z/pZ), und Q eine quadratische Form auf M. Wir sagen dann, dass
(M, Q) ein bindrer quadratischer Modul ist.
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SATZ 3. Sei p#2. Die folgenden quadratischen Moduln bilden ein
Reprdsentantensystem der Klassen der bindren nicht-entarteten quadratischen Mo-
duln mit Werten in p~*Z/Z, aber nicht nur in p™**'Z/Z:

a) M= A, DA, Q(x)=p *xix, (A=1),
b) M=A,DA,, Qx)=p*(xI-ux))® (A=1), } (10)
) M=A,DA,_,, QX)=pMr(xi+p°nx3) (A=2),

g

wobei o die Menge {1,2,...,A—1} durchlduft und r, t die

-

Diese bindren quadratischen Moduln erfiillen alle die Bedingung (5) von Satz 2.
Die Faktoren A(a) und So(—1) lauten:

Menge {1, u}, mit

Q) Al@)=1  So(-D=1, \
b) A(a)=1, So(-1)=(-1)%

(;r)(é)Hle(p) falls o ungerade, (11)
c) Ala)= (g)", So(=1)=7 /_p»

k(—1-7—) falls o gerade. |

Den Beweis von (10) kann man wie fiir p =2 (sieche unten) vornehmen. Man
verwendet dabei Lemma 0. Die Resultate stehen aber schon bei Tanaka [11].

Die (M, Q) in (10) lassen sich alle als direkte Summe (M;®M,, Q:D Q,)
schreiben, mit (M;, Q;) von der Form (7), daraus folgt sofort (11).

SATZ 4. Sei p=2. Die folgenden quadratischen Moduln bilden ein
Reprisentantensystem der Klassen der bindren nicht-entarteten quadratischen Mo-
duln mit Werten in 27*Z/Z, aber nicht nur in 27*"'Z/Z:

Q(x)=27"x1x, (A=1),
Qx)=2""(xi+x1x2+x3) (A=1),
Q(x)=2"r(x?+2°x3) (r,t ungerade, A =2)

a) M= A)\@A/\,
b) M=A, DA,
C) M = A:\—-le A;\—-a—ly

(12)

wobei o die Menge {0,1,2,...,A—2} durchliuft, und die Paare (r,t) ein

~t
3 Ist Ist dquivalent zu Q(x)=p~*(x3+x,x, +[(1+1)/4]x3), t=3 mod 4, (_p-) =-1.
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Reprdisentantensystem der Klassen durchlaufen, die wie folgt definiert werden:

(ry, t1) ~(r2, ;)& t,=t; mod Min (23, 227

und

7

r.=r; oder rit;mod4, falls o =0,
r.=r; oder ri+2ritymod8, falls o=1,

r,=r;mod4, falls o=2,

r,=rymod 8, falls o=3.

Diese bindren quadratischen Moduln erfiillen alle die Bedingung (5) von Satz 2.
Die Faktoren A(d) und So(a) lauten:

a) A(a)=1, So(a)=1,
b) A(a)=1, So(a)=(-1)%, [

o 10~ st oo

(13)

Wir wollen den Beweis von Satz 4 in mehreren Etappen durchfiihren. Die
allgemeinste Gestalt eines bindren quadratischen A,-Moduls (M’, Q') mit Werten
in 27*Z/Z, aber nicht nur in 27**'Z/Z, ist (bei Einfiihrung von Koordinaten in
M'):

M=A,0A,, Q'(x)=2" (rx}+sx1x,+tx3) fir x=(x,x,)e M. (14)

Die Koeffizienten r, s, ¢t diirfen nicht alle gerade sein. Wir haben w, w, so zu
wiéhlen, dass (M’, Q’) ein nicht-entarteter quadratischer A,-Modul ist. Diese Wahl
ist eindeutig und hingt von r, s, t ab. Wir miissen dann zeigen, dass (14) zu (12)
a), b) oder ¢) dquivalent ist.

A. Sei s=1mod?2. Es ist leicht zu sehen, dass fiir u;=p,=A die quad-
ratische Form Q' auf M’ nicht-entartet ist. Sei 0.B.d.A. (ohne Beschriankung der
Allgemeinheit) r=1 mod 2: Wenn nidmlich 2 | r, aber 2 ¥ ¢ ist, vertausche man x,
und x,; wenn r und ¢ beide gerade sind, ersetze man x, durch x;+x,, um eine
dquivalente quadratische Form der gewiinschten Eigenschaft zu erhalten. Mit der
Annahme r=1 mod 2 werden wir nun zeigen, dass Q' zu Q aus (12) a) bzw. aus
(12) b) dquivalent ist, wenn t=0 bzw. t=1mod 2 gilt.
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Sei zundchst r=1, s=1, t=0mod 2. Dann existiert ein isotroper Vektor

0
u# ( O) mod 2 in M'. Multipliziert man némlich die Kongruenz

rx3+sx;X, + tx5=0 mod 2*

1

mit 4r 7, so erhidlt man

(2x1+r 'sx)’=[(r""s)®>—4r 't]x3 mod 2**2.

Die rechte Seite ist kongruent 1 mod 8 fiir x, =1, also existiert eine Losung von
Q'(u)=0 (in Q/Z) mit 2* 'u# (8) Dazu gibt es ein ve M’ mit 2*B'(u, v)€ A}
(B’ ist die zu Q' gehérige Bilinearform), denn andernfalls wiirde B'(2* " 'u, y) fiir
alle ye M’ in Q/Z verschwinden; das ist unméglich, da 2* 'u# ((0)) und B’

nicht-entartet ist. O.B.d.A. darf man sogar 2*B’(u, v) = 1 annehmen (Normierung
von v). Die Elemente u und v bilden eine Basis von M’: wire nidmlich v=
pu mod 2, so wire auch

1=2"B'(u, v)=u2"B'(u, u)=0mod 2,

was unmoglich ist. Wenn Q’(v) =0, dann hat man Q'(&,u + &v) =27¢,&,, also ist
Q’ zu Q aus (12)a) dquivalent; andernfalls ersetze man v durch v'=v— Q'(v)u.

Sei nun r=1, s=1, t=1mod 2. Hier existieren keine isotropen Vektoren v

. 0 . .
mit v# mod 2, da rx3+ sx;x,+ tx3 stets ungerade ist, wenn x; und x, nicht
0 24

beide gerade sind. Es existiert aber ein ue M’ mit 2*Q’(u)=1 mod 2*. Um dies
einzusehen, multipliziert man

ru3 + su u, + tus=1mod 2*
mit 4r~" und erhilt
Quy+r tsuy)*=4r ' +[(r 's)>—4r 't]u3 mod 2**2.
Fir u,=1 gibt es eine Losung u;, denn die rechte Seite ist dann kongruent

. v‘) e M’ mit 2*Q’'(v)=
U U2

1 und 2*B’(u, v)=1 mod 2*. Mit anderen Worten: Es gibt eine Losung der beiden

1 mod 8. Zu diesem u =( ) existiert ausserdem ein v = (



Die irreduziblen Darstellungen der Gruppen I. Teil 477

Kongruenzen
roi+ sv,0,+ tv3=1mod 2%,

2ru 01+ S U2+ SU 01 + 21U, v, =1 mod 22
Dabei ist die zweite Kongruenz von der Form

av,+ bv,=1 mod 2%,

wobei mindestens einer der Koeffizienten a, b invertierbar ist, denn u; und u,
sind nicht beide gerade. O.B.d.A. sei be Ay (andernfalls vertauscht man die

Variablen); wenn man nun v,=b"'—b 'av; mod2* in die erste Kongruenz
einsetzt, findet man

[r=blas+ (b 'a)*t]vi+[sb™ ' —2ab *t]v, +th™>—1=0mod 2.

Die Koeffizienten von v7 und v; sind ungerade, wihrend das konstante Glied
gerade ist. Die Losbarkeit dieser Kongruenz zeigt man wie oben durch Multiplika-
tion mit 4[r—b 'as+ (b 'a)’*t]"’. Die Elemente u und v bilden eine Basis von
M'. Man erhilt also

Q'(6iu+&0)=2"ME+ 66+ E),

was die Aequivalenz von Q' und Q aus (12)b) beweist. (Man kann den zweiten
Fall auch behandeln, indem man zeigt, dass sich Q' mittels der Norm der
eindeutig bestimmten unverzweigten quadratischen Erweiterung von Q;
realisieren lasst; [7], S. 49, Prop. 9.)

B. Sei s=0mod 2. Man darf dann 0.B.d.A. r=1mod 2 annehmen (andern-
falls wire t =1 mod 2 und man kdnnte die Variablen vertauschen). Die Transfor-
mation

- .
X1 X1— 8’1 Xa, X,—> X5, mit s=2¢,

zeigt, dass die quadratische Form Q' aus (14) in diesem Fall auf M'=A,_,®
A, _,_, nicht-entartet ist, und dass (M’, Q') zu einem quadratischen Modul (M, Q)
aus (12) c) dquivalent ist.

Die Automorphismen ¢ von M = A,_® A,_,-1 lassen sich alle als

o(x)= (: 8)(2) fiir alle x= (2), (15)

mit aEA,\_l, Bechh_l, Y, BGA,\_O-_l und d= aS-ﬁ‘yEA:_a_l,
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darstellen. Die quadratischen Formen
Q:(x)=27"r(x1+2°11x3),  Qa(x)=27"r(x7+20,x3)

sind genau dann &quivalent, wenn es einen Automorphismus ¢ von M=

A1 Ax_o-1 gibt mit Q;0¢ = Q,, d.h. wenn es eine Matrix (a g) von der
Y
Form (15) gibt mit
a) r1(02+20t1‘}'2)5r2 mod 2)\,

b) af +2°t;486=0mod 2",

(16)
c) rn(B*+2°t,8*)=2°r,t, mod 2%,
d) a6—By=dmod2* " .
Dieses Kongruenzensystem fiir a, B, vy, 6 und d ist dquivalent zu:
a) ri(e®+2°ty?)=r, mod 2", )
b) rityd*=rit, mod 2,
) 141 282 | (17)

c) r,B=-2°tr;yd mod 2* 7,

d) r28 = rlad mod 2'\_0_1.

P

Dass (16) aus (17) folgt, lasst sich ohne Schwierigkeiten nachrechnen.
Umgekehrt, quadriert man (16.b) und multipliziert man (16.a) mit (16.c), so
erhilt man mit (16.d) die Kongruenz (17.b). Multipliziert man (16.a) mit B (bzw.
(16.c) mit a) und (16.b) mit a (bzw. B), so erhidlt man (17.c) (bzw. (17.d)).

Aus (17) sieht man jetzt, dass Q; und Q, genau dann dquivalent sind, wenn

a) t;=t, mod Min (2°,2*79), (18)

b) JacAs;, YEA 1 mit o’ +274y*=rr7 mod 2t

Sind ndmlich (18.a) und (18.b) erfiillt, so lassen sich 8 und § aus (17.c) und
(17.d) berechnen und es gilt (16.d).

Die Losbarkeit von (18.b) entnimmt man aus Lemma 0, bzw. Tabelle 1.

Es bleiben die Faktoren A(a) und Sp(a) zu bestimmen. Fiir (12)a) erhélt man

So(a)=|M[""? Y e(-2*ax,x;) =2 Y 8o(x1)2* =1.

X1,X2€ A, x1€A,
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2 1
Mit den Bezeichnungen F = ( ), q =4 =3, folgt aus [4] (§2, (5)), fiir (12)b):

1 2
So(a)=27"Ge(-a,2")=(3)" = (-1

In diesen beiden Féllen ist damit A(a)=1; die Bedingung (5) von Satz 2 ist
demnach erfiillt.

In (12)c) ist Q(x)=2"*r(x;+2°tx3) die direkte Summe der quadratischen
Formen Qi(x;)=2"rx} und Q,(x,) =2"**’rx2. Man findet deshalb mit Hilfe von

(8)

So(a) = Sa,(@)So.(a) = i(ltl)(3)“"(3)“(;21-)08(—(:05(-an).

t r
Fiir den Faktor A(a) erhilt man

> g(—ar)é(—art)
e(=re(=r) °

A(a) = So(a)So(1) ™' = (i‘)

Fir alle ungeraden u, v gilt:

e(u)e(uv) = g(v)(— V21 =121 g (_;_) = (1),

Folglich ist

A(a) = (%)0<:a_1)(¢+1)/2

ein Charakter von A5 und erfiillt die Bedingung (5) von Satz 2.

Auf eine Untersuchung quadratischer Moduln, die von mehr als zwei Elemen-
ten erzeugt werden, kann man hier verzichten, denn die Darstellungen, die zu den
quadratischen Moduln (7) und (10) bzw. (12) gehoren, reichen fiir unsere Ziele
im wesentlichen aus. Es ist aber zu bemerken, dass im Fall p#2 jeder hier
betrachtete quadratische Modul zu einer direkten Summe quadratischer Moduln,
die von einem einzigen Element erzeugt werden, dquivalent ist. Im Fall p =2 ist
jeder quadratische Modul zu einer direkten Summe quadratischer Moduln, die
von einem oder zwei Elementen erzeugt werden, dquivalent (man verwendet ein
Resultat von Minkowski iiber ganzzahlige quadratische Formen mod n, ne N).
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Anhand von Satz 2 sieht man leicht, dass fiir quadratische Moduln (M, Q), die
von mehr als zwei Elementen erzeugt werden, die Darstellung W(M, Q), falls sie
existiert, zum Tensorprodukt der Weilschen Darstellungen, welche von den Sum-
manden von (M, Q) erzeugt werden, dquivalent ist.

DEFINITION 3. Die Darstellungen von SL,(A,), die zu den bindren quad-
ratischen Moduln (10) bzw. (12) gehoren, heissen:

—die zerlegte Weilsche Darstellung D, im Fall a);
—die unverzweigte Weilsche Darstellung N, im Fall b);
—die verzweigten Weilschen Darstellungen R3(r, t) im Fall c).

Die Darstellungen von SL,(A,), die im Fall p#2 zu den quadratischen
Moduln (7) gehoren, heissen R, (r).

3. Zwei Zerlegungsmethoden.

In diesem Paragraphen beschreiben wir zwei Methoden, um Unterdarstellungen
der Weilschen Darstellungen zu konstruieren.

Die erste Methode stammt von Kloosterman [2]. Sei (M, Q) ein quadratischer
Modul, der eine Weilsche Darstellung von SL,(A,) erzeugt, und sei Aut (M, Q)
die Gruppe der unter Q invarianten Automorphismen von M, d.h. fiir alle
¢ € Aut (M, Q) gilt Q(¢(x))=Q(x) fiir alle xe M. Sei 1 eine abelsche Unter-
gruppe von Aut (M, Q) und x ein Charakter von 1, dann ist

V(x):={feCM | f(ex) = x(e)f(x) Ve €I, Vx € M}

ein unter SL,(A,) invarianter Unterraum von V =C™. Schreibt man W(M, Q, x)
fiir die Unterdarstellung von W(M, Q) im Raum V(x), so gilt

WM, Q)=dWM, Q, x)

wobei x alle Charaktere von 11 durchliuft.
Die zweite Methode beruht auf einem Lemma von P. Cartier.

LEMMA 3. Sei (M, Q) ein quadratischer Modul, der eine Weilsche Darstellung
W(M, Q) von SL,(A,) erzeugt. Sei H ein Untermodul von M, sodass Q auf H
verschwindet, und sei

H*={xeM|B(x,y)=0Vye H},
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wobei B die zu Q gehorige Bilinearform ist. Es gilt H" o H. Setzt man

M;:=H'/H und Qi(x+H):=Q(x) fiiralle xeH",

so erfillt (M,, Q,) die Bedingung (5) von Satz 2, und W(M,, Q,) ist zu einer
Unterdarstellung von W(M, Q) isomorph.

Q, ist nicht-entartet, denn (H")* = H. Nun hat man

2, e(Q(y+h))= 3. e(B(y, h)+ Q(y)) =

heH heH

{0 fir ye¢ HY,
|H|e(Q(y)) fir yeH™*.

Diese Formel bleibt richtig, wenn man Q durch aQ und B durch aB ersetzt fiir
beliebige a € AX. Daraus folgt

So(@)=IM[""2 Y, e(—aQ(x))=|M[""2 Y Y X e(—aQ(x+y+h))

xeM xeM/H* yeH*/HheH

=M}, |H|e(-aQ(y))

yeH*/H
So(a) = M| |H| |My|*'? Sg,(a) = So,(a).” (20)

Die Bedingung (5') ist also fiir Q; genau dann erfiillt, wenn sie fiir Q erfiillt ist.
Um zu zeigen, dass W(M,;, Q) eine Unterdarstellung von W(M, Q) ist, betrach-
ten wir den Unterraum E von C", der die Funktionen fe CM enthilt, welche

1) f(x)=o fiir alle xg¢ H*,
2) f(x)=f(x') fir alle x, x'e H* mit x—x'e H,

erfilllen. E ist wegen (19) ein invarianter Unterraum von C™ und ist zu CM:
isomorph. Mit Hilfe von (20) ist leicht einzusehen, dass W(M,, Q;) gerade die zu
E gehorige Unterdarstellung von W(M, Q) ist.

4. Die Konjugiertenklassen von SL,(A,).”

Um die Klassen konjugierter Elemente in den Gruppen SL,(A,) zu unter-
suchen, erweist es sich als zweckmaissig, eine Partition von SL,(A,) in zwei

*Um |M|=|H]?|M,| zu beweisen, bemerkt man, dass durch die Zuordnung x — B(x, ?) eine
eineindeutige Abbildung von M auf Car* (M) (additive Charaktere) gegeben ist. Man verwendet dann
die allgemeinen Sitze iiber Charaktere (Siche etwa H. Hasse, Vorlesungen iiber Zahlentheorie, 2.
Aufl, §13.4),

> Dieser Paragraph entstand unabhingig von “The automorphisms and conjugacy classes of
LF(2,2")=PSL,(Z/2"Z)” von J. B. Dennin, Illinois J. of Math. 19, 542-552, 1976.
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konjugationsinvariante Teilmengen

M?}:={UeSL,(A,) | fiir alle ae A, ist U# aE mod p}
und
M} :={UeSL,(A,)|3a€ A, mit U=aE mod p}

1 0
(mit E:= ( 0 1)) vorzunchmen. (Wir werden in diesem Paragraphen meistens in

A, =Z/p"Z rechnen, und nur dort Kongruenzen benutzen, wo es zweckmissiger
ist. Wir werden aber fiir eine Klasse aus Z/p*Z und deren Reprisentanten stets
den gleichen Buchstaben verwenden.)

Wir beweisen zuerst zwei Lemmata, die auch noch richtig sind, wenn man A,
durch einen lokalen Ring ersetzt.

LEMMA 4. Sei U=(: g) aus My(A,) (Menge der (2,2)-Matrizen mit

Koeffizienten aus A,) mit U# aE mod p fiir alle a aus A,, dann existiert X aus

% %
SL,(A,), sodass XUX™ =( *) mit y,€ AX gilt.

Y1
: . : 0 1
Wenn y=0=pBmodp ist, so konjugiert man U mit X=| 1 o) Wenn
1
y=B=0#a—8modp ist, so konjugiert man U mit X=(1 (1)) Der Fall

y=pB=a—-86=0mod p ist nach Voraussetzung ausgeschlossen.

LEMMA 5. Seien U, = (‘; ’;‘)(i =1,2) aus M(A,) mit vie A}. Es existiert

genau dann ein X aus SL,(A,) mit XU, X' = U,, wenn
1) Sp U, =Sp U,=s (Spur),

2) det U, =det U, =d (Determinante),
3) die Gleichung

E+stn+dn’=y1y3' (21)

mindestens eine Losung (£, m) aus A, X A, besitzt.
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% %
Die Notwendigkeit der Bedingungen 1) und 2) ist klar. Existiert X =( )
aus SL,(A,) mit XU, X '=Uj, so gilt

72y2+(a2-—82)xy—62x2= Y1 (22)
Das Paar (£ 1) mit

E=y—8y2'x und m=v3'x (23)

ist eine Losung von (21).

Seien umgekehrt 1) und 2) erfiillt und sei (£ n)e€ A, X A, eine Losung von
(21). Aus (23) lasst sich ein Paar (x, y) berechnen, das (22) erfiillt. Die Elemente x
und y konnen, wegen der Voraussetzung iiber v;, nicht beide in A, — A} liegen.

* %
Man kann also das Paar (x, y) zu einer Matrix X, = (x y) aus SL,(A,) ergénzen

as PBs
Y3 03
Spuren und Determinanten von U,; und U; stimmen iiberein, wegen 1) und 2).
Waihlt man

_1 7?1(01—013))=(1 ‘YII(53—51)
Xz’(o 1 0 1 )

und U, ist zu einer Matrix Us;= X, U, X1 = ( ) mit y3 = y; konjugiert. Die

so gilt
Xz U3X51 = XX, Uz(X2X1)—1 =U,

mit X,X,; aus SL,(A,). Damit ist Lemma 5 bewiesen.
Lemma 4 und Lemma 5 lassen sich auf M} anwenden.

LEMMA 6. Die Anzahl der Konjugiertenklassen in M} ist (p+2)p*~", falls
p#2 und A =1 oder p=2 und A =3 (sie ist 6 falls p=2 und A =2, 2 falls p=2
und A =1).

Die Elemente aus M) erfiillen die Bedingung von Lemma 4. Aus Lemma 5
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e |
(d =1) folgt, dass die Matrizen (:, 2; ) ein Reprédsentantensystem der Kon-

jugiertenklassen in M} bilden, wobei s ganz A, und vy ein Reprisentantensystem
von A; mod S(s, 1) (siehe §2) durchlaufen. Die Anzahl der verschiedenen 7y ist
fir ein festes s gleich [AX:S(s, 1)] (siche Tabelle 1), damit lisst sich die Anzahl
der Konjugiertenklassen in M} sofort berechnen.

Die Tabelle 2 gibt vollstindige Angaben iiber Mj. Um die Michtigkeit der

-1

Klassen zu berechnen, geht man wie folgt vor. Sei U = ( ° z
Y

aus SL,(A,), die mit U kommutieren, sind alle von der Form ¢E+nU mit

(g, 'n) € A,\ X AA und

det ((E+qU)=¢€*+sén+n°=1.

). Die Matrizen

Die Michtigkeit m(U) der Klasse von U ist also gleich der Ordnung von SL,(A,)
dividiert durch die Anzahl N(s) der Losungen (& n) in Ay X A, von

E+sén+ni=1.
Sei n, (s, d) die Anzahl der Losungen (£, 1) in A, X A, von

£+ sén+dn’#0 mod p,

Tabelle 2
_t“
Die Matrizen (S
t 0
der Konjugiertenklassen von M.

1 :
), wobel s und ¢ folgende Werte durchlaufen, bilden ein Reprisentantensystem

Anzahl der Maichtigkeit

p A s€ A, mit t= Klassen der Klassen
s=+2modp 1, u; (§)=__1 4pr~1 Yp*—1)p*2

p#2 A=1 s#+2 mod p, (s2p—4)=+1 1 %(p..:;)pk—l (p+1)p2""‘
s#+2 mod p, (sz;4) =-1 1 Wp-p*™" (p-Dp*T

s=2mod4
A=3 s=0mod4
s=1mod?2

1,3,5,7 h B3« P4

1,3

1
p=2 s=0mod?2 1,3 4

1

1

1

2)&—1 3 . 22A~3

2A—-1 221\—1

s=1mod2

0
1

N W oo

2
— N 1
A=1 s 1

o
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dann ist N(s) gleich n,(s, 1) dividiert durch die Ordnung von S(s, 1) (Lemma 0).
Man erhailt also

— |SL2(A,‘)| ‘S(S, 1)l _ ISLz(Ax)l lAﬂ
m(U) = n (s, 1) T ma(s, D[AY:S(s, 1)]

Eine leichte Rechnung zeigt, dass fiir A =1

ISL,(A))|=(p>-1)p** 2 .
( A
(p— 1)(?"(;))[72'\_2 falls p#2 (A=s"-4d),
n(s, d)=42""" falls s=0mod?2 ) > (24)
22)‘_2 falls d=0 \ und p= 2;
282 und s=1mod?2
32 falls d=1 ,

damit lasst sich jetzt m(U) explizit berechnen.

LEMMA 7. Jedes Element U aus M5 besitzt, eventuell nach Konjugation mit
einem geeigneten X aus SL,(A,), die Gestalt

g1
U=eE+ph(: ‘g) (25)

mit 1=sh=\, e<p", e’=1modp", s,de A _,, t€ AX_,, und s ldsst sich
mod p* " eindeutig in Abhdngigkeit von ¢, h, d durch die Kongruenz

e+ p"se + p*"d =1 mod p* (26)
berechnen (Ax_, = Ax_,={0} falls h= ).
* f:) in M3 liegt, so gibt es einen Exponenten h=1 mit
Y

ph= g.g8.T.(a—38,B,vy), und eine Zahl ae A}, sodass

Wenn U=(

U=aE mod p" und fiir alle a'e A, U a'E mod p"*".
Es gibt also ein £ <p" mit ¢ =a mod p" und ein VeM,(A,_.), sodass

U=¢eE+p"V.
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Die Matrix V erfiillt die Bedingung von Lemma 4, d.h. sie lisst sich durch
_ 1
Konjugation auf die Form (: cg ) mit t€ AX_, bringen (Anwendung von

Lemma 5). Berechnet man die Determinante von U, so erhdlt man die Relation
(26). Daraus folgt insbesondere, dass £¢=1 mod p" gelten muss, d.h. 1 mod p" ist

’:tl falls h=1 und p#2,
1 falls h=1

€ =9
+1 falls h=2 jund p=2.
+1,+(1+2""") falls h=3

-1

;. —dt; . .
LEMMA 8. Zwei Matrizen Ui=£iE+ph‘(: 0 ) (i=1,2) aus M5 sind

genau dann konjugiert, wenn
g1=g, hi=hy=h, si=s,=s5, di=d,=d
und die Gleichung (im Ring Ax-;)
E+sén+dn’=unt;"

mindestens eine Losung (€, m) aus A,_p X A,_), besitzt.

Das ist eine unmittelbare Folgerung aus Lemma 5.
LEMMA 9. Die Anzahl der Konjugiertenklassen in M5 ist

-1
42— _2p*' falls A=1 und p#2,

p—1
15:2*2-16 falls A=3
4 falls A=2 % und p=2.
1 falls A=1

Aus den Lemmata 7 und 8 folgt, dass die Konjugiertenklassen in M3 durch

1) h (durchléduft alle ganzen Zahlen von 1 bis A),

2) & (durchliuft die Losungen von £°=1mod p", mit ¢ <p"),

3) d (durchlduft ganz A,_;),

4) t (durchlduft, fiir gegebene h, &, d, ein Reprisentantensystem von
AX_nmod S(s, d), wobei s (26) erfiillt)
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eineinduetig charakterisiert werden. Mit Hilfe von Tabelle 1 lédsst sich nun die
Anzahl der Konjugiertenklassen in M3 sofort berechnen.

Die Tabelle 3 enthilt vollstindige Angaben iiber M;. Sei

" . s —dt™!
U = EE +p V, mit V= ¢ 0 € Mz(A,\-h),

Tabelle 3

—dt !
Die Matrizen ¢E+ ph(: 0’

Kongruenz (26) erfiillt, bilden ein Reprisentantensystem der Konjugiertenklassen von M3.

), wobei &, h, d und t folgende Werte durchlaufen und s die

Anzahl der Michtigkeit

Ah € deA,_pd= t= Klassen der Klassen
p#2
d=0mod p 1,u 4pr—h-1 L(p?—1)p—2h-2
A=1 +1 _—_d.)..—.+1 1 (p-l)p)‘"h—l (p+1)p2x—2u—1
1=h<aA 14
:__ =-1 1 (p_l)p)\—h*I (p_l)p2k—2h—-l
p
1<sh=A +1 0 0 2 1
p“‘_."
A=4 0’1m0d8 1, 3: 577 2A~1 ’ 3‘22)‘*6
h;1 1 4,5mod 8 1,3 222 3.2%3
2,3,6,7mod 8 1,5 A1 3.922-5
_ _ 0,1 mod4 1,3 4 6
A=3h=1 1 2,3 mod 4 1 2 12
A=2,h=1 1 0,1 mod?2 1 2 3
Omod 8 1,3,5,7 gA=h 3.92A—2h—4
A=5 +1 1,4,5mod 8 1,3 3 .9A—h-1 3 .9Q2A~2h-3
2<h=A-3 2,6mod 8 1,5 2" 3.22272h3
3,7mod 8 1 gA=h-1 3. 92A~2h-2
A=4 h-1 1mod?2 1 2'\—;‘ 22)\_2,'—1
3=h<aA +(1+2"7) O mod 2 1 gA—h 3.92A-2h-1
A=4 +1 0, 1 mod 4 1,3 8 6
h=x-2 2,3mod 4 1 4 12
A3 1 4 3
heA—1 *1 0, 1 mod 2
+1
=h= 4 1
A=h=3 " q+ry O 0
A=h=2 +1 0 0 Z 1
A=h=1 1 0 0 1 1
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wie in (25). Eine Matrix X aus SL,(A,) kommutiert genau dann mit U, wenn
XV=VX mod p*~".

Die Maichtigkeit m(U) der Klasse von U ist demnach gleich der Ordnung von
SL>(A,_,) dividiert durch die Anzahl der X aus SL;(A,-.), die mit V kom-
mutieren. Man wiederholt jetzt fast wortlich die Rechnung, die fiir U aus M}
gemacht wurde, und erhalt

ISL2(Ax—i)| |AX-4]

M) =G AT SGs, d)]

(wobei S(s, d) hier eine Untergruppe von Ajx_ ist, d.h. A muss in Tabelle 1 durch
A — h ersetzt werden).

SATZ 5. Die Anzahl der Konjugiertenklassen in SL,(A,) (mit Ay, =Z/pZ) ist
gleich

p*+4(p*—1)/(p—1) falls p#2, A=1,

23:2*7?-16 falls A=3
10 falls A=2; und p=2.
3 falls A=1

Das folgt aus den Lemmata 6 und 9. Damit ist nun auch die Anzahl der
irreduziblen Darstellungen von SL,(A,) bekannt.
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