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Comment Math Helvetici 39(51)465-489 Birkhauser Verlag, Basel

Die irreduziblen Darstellungen der Gruppen SL2(ZP), însbesondere
SL2(Z2). I. Teil

Alexandre Nobs(1)

Das Ziel dieser Arbeit ist eine vollstandige Beschreibung der stetigen
irreduziblen Darstellungen der Gruppen SL2(ZP), wo Zp der Ring der p-adischen
ganzen Zahlen, und p eine behebige Pnmzahl (msbesondere auch p 2) bezeich-
nen Die Gruppen SL2(ZP) sind kompakt und total unzusammenhangend Jede

stetige irreduzible Darstellung von SL2(ZP) ist deshalb von endhehem Grad und
lasst sich uber SL2(Z/pAZ), fur eine geeignete positive ganze Zahl A, faktonsieren
Es genugt also, die irreduziblen Darstellungen der endhehen Gruppen
SL2(Z/pxZ} fur aile A zu beschreiben Eine Zusammenfassung dieser Arbeit
findet man m [5] und [6] (fur p 2)

Die Arbeiten von Kloosterman [2] und Tanaka [10], [11] ergeben zusammen
eine vollstandige Losung unseres Problems îm Fall p^2, wir nehmen diesen Fall
aber auch auf, da die hier verwendeten Methoden (siehe Teil I, §3 und Teil II, §1)
den zweiten Teil der Arbeit von Kloosterman wesentheh vereinfachen (den ersten
Teil haben J Wolfart und ich m [4] vereinfacht und vervollstandigt) Der Fall

p^2 ist neuerdings mit emer anderen Méthode auch von Kutzko [3] vollstandig
gelost worden

Ueber den Fall p 2 ist in der bishengen Literatur sehr viel weniger bekannt
Casselman [1] hat gewisse irreduzible Darstellungen der allgemeineren Gruppen
SL2(k) bzw SL2(Ojc) konstruiert, wobei k ein nicht-archimedischer lokal kompak-
ter Korper ist mit behebiger Restklassenkorpercharaktenstik, und £lk der

zugehonge Ring der ganzen Zahlen Er erhalt somit gewisse irreduzible Darstellungen

der Gruppen SL2(Z/2AZ), namhch diejenigen, die man mit pnmitiven
Chakteren (s Définition m Teil II, §1) aus der unverzweigten Weilschen Darstellung

und aus den verzweigten Weilschen Darstellungen mit a 0 oder 1 erhalt (s

Teil II, Satz 2, Satz 3 und §9) Selbst wenn man die irreduziblen Darstellungen
der zerlegten Reihe (principal séries) und diejenigen, die man mit pnmitiven
Charakteren aus den ubngen verzweigten Weilschen Darstellungen (also a&gt;l)

erhalt, hinzufugt, fehlen immer noch unendheh viele, namhch diejenigen, die man
nur mit nicht-pnmitiven Charakteren konstruieren kann (s Teil II, §6 und §9),

sowie die sogenannten Ausnahmedarstellungen (s Teil II, §9)

1 Unterstutzt durch den Schweizenschen Nationalfonds (820 167 73)
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466 ALEXANDRE NOBS

In der vorliegenden Arbeit findet man fur beliebige Primzahlen p und be-

liebige À eine Klassifikation und Beschreibung aller irreduziblen Darstellungen
von SL2(Z/pxZ). Wir geben auch jeweils den Grad und, fur feste À und p, die
Anzahl der irreduziblen Darstellungen an. Im ersten Teil wird zuerst gezeigt, wie

man, ausgehend von gewissen quadratischen Formen auf endlichen Z/pAZ-
Moduln, mit der Méthode von A. Weil [12] Darstellungen von SL2(Z/pAZ)
koristruiert (§1, Satz 2). Die verwendeten quadratischen Formen werden
vollstândig klassifiziert (§2). Im dritten Paragraphen werden zwei Methoden
beschrieben, mit denen man Unterdarstellungen der konstruierten Darstellungen
finden kann. Die Anzahl der Konjugiertenklassen von SL2(Z/pxZ), d.h. die
Anzahl der irreduziblen Darstellungen von SL2(Z/pAZ), wird im vierten
Paragraphen berechnet. Entsprechende Betrachtungen sind fur p# 2 von Kloosterman
[2] durchgefûhrt worden. Im zweiten Teil (in Zusammenarbeit mit J. Wolfart),
werden die Weilschen Darstellungen vollstândig reduziert. Die Ausnahmedarstel-
lungen, d.h. die irreduziblen Darstellungen, die nicht in den Weilschen Darstellungen

vorkommen, werden durch Tensorprodukte konstruiert.
Ich môchte an dieser Stelle den Herren P. Cartier und J. Wolfart fur Ihre

wertvollen Hinweise und Bemerkungen, sowie dem &quot;Institut des Hautes Etudes
Scientifiques&quot; in Bures-sur-Yvette fur seine Gastfreundschaft herzlich danken.

1. Weilsche Darstellungen der Gruppen SL2(AA).

Es sei p eine feste Primzahl und À eine natûrliche Zahl. Wir bezeichnen mit
Ak den Ring Z/pAZ. Die Méthode von A. Weil (etwas vereinfacht), Darstellungen

von SL2(AX) zu konstruieren, beruht auf dem folgenden Struktursatz:

SATZ l.(2) Die Gruppe SL2(AA) wird erzeugt von den Elementen

und w

und den Relationen:

a) u(bl)u(b2)

b) h(a1)h(a2)

c) h(a)u(b) u(a2b)h(a),

d) h(a)w whia-1),

e) w2=h(-l),

f) wu(a)w ui-a&apos;^wui

fur aile b, bu b2€AK und a, au

(D

Siehe P. Cartier: Séminaire de théorie des groupes (1972/3), I.H.E.S. Bures-sur-Yvette.
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Sei M eine additiv geschriebene abelsche Gruppe. Eine quadratische Form Q
auf M ist eine Abbildung von M nach Q/Z, welche folgenden Bedingungen
genûgt:

a) Q(-x)=Q{x) fur aile xeM,

b) B(x, y): Q(x + y)-Q(x)-Q(y) definiert eine Z-bilineare Abbildung von
MxM nach Q/Z.

B heisst die zu Q gehôrige Bilinearform. Q heisst nicht-entartety wenn B
nicht-entartet ist, d.h. wenn fur jedes x^O aus M ein yeM mit B(x, y)5*0
existiert.

Um Darstellungen von SL2(AA) zu erhalten, betrachten wir endliche AA-
Moduln M und quadratische Formen 0 auf M mit Werten in p~xZ/Zc=Q/Z. Die
zugehôrigen Bilinearformen B sind dann AÀ-bilinear: Es genûgt, die Multiplika-
tion â • r fur âe AA und rep~AZ/Z durch a • r in Q/Z zu definieren, wo a ein

Reprâsentant von â in Z ist. Wir werden im folgenden, dort wo keine Ver-
wechslungen môglich sind, die Klassen von AA und ihre Repràsentanten in Z
nicht mehr unterscheiden.

Unter diesen Voraussetzungen sei V der Raum CM der komplexwertigen
Funktionen auf M. Wir nennen das Paar (M, Q) einen quadratischen Modul.

SATZ 2. Die durch

o J/W e(bOW)/W&apos; ftiralle

r \f(x) A(a)-f(ax) fur aile aeAÏ &gt; (2)
Lo a&quot;1

fur aile fe V und aile xeM gegebene Opération der Erzeugenden von SL2(AA) auf
V mit

SQ(o) |Mr1/2 Z e(-aO(x)) (3)
xeM

und

(4)
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definiert genau dann eine Darstellung von SL2(AA), wenn

A(aia2) A(a1)A(a2) fur aile aua2eAl (5)

gùltig ist oder, was dazu âquivalent ist,

SQ(l)SQ(a1a2) fur aile aua2eA^. (5&apos;)

(Mit e bezeichnen wir den Homomorphismus von Q/Z in Cx, der die Klasse mod 1

von t in t27Tlt abbildet.)

Zum Beweis von Satz 2 muss man zeigen, dass die Operatoren [ ] mit den
Relationen (1) genau dann vertrâglich sind, wenn (5) bzw. (5&apos;) gilt. Fur die erste
Relation ist

immer erfùllt. Die Relationen (l.b) gelten genau dann fur die Operatoren [ ],

wenn (5) richtig ist. Die Relationen (l.c) sind genau dann erfûllt, wenn fur aile

beAk und aeA% gilt:

dies folgt jedoch aus Q(ax) a2Q(x) (Beweis durch Induktion ûber a).
Fur den vierten Typ von Relationen erhalten wir

fn °J î l\f(x) A(a)So(-l)\M\-1/2lte(B(ax,y))-f(y),
LO a JL—1 OJ yeM

yeM-l OJL 0 a

und die Substitution y a~1y&apos; in der zweiten Summe zeigt, dass hier A(a)
A{a~x) fur aile aeÂÎ nachzuweisen ist. Nach (4) und (3) ist dies jedoch klar,
denn es ist

I e(-aQ(jc))= I e(-a&quot;1Q(ax))= IxeM xeM yeM
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Die fùnfte Relation ist erfûllt, wenn

y.zeM

ist. Da B nicht-entartet ist, hat man

Zf|M|, wenn m 0
e(B(u, y))= \

y€M 10 andernfalls,

was den Nachweis von (6) zurùckfùhrt auLden Beweis von

1 oder Sq(-1) • So(l) 1,

und dies ist eine wohlbekannte Eigenschaft der Gausschen Summen.
Die Relationen (l.f) behandelt man folgendermassen:

r o îiri air o n
[-1 oJLo iJL-i oj/w

zeM lyeM

)2SQ(-l)2SQ(-a) |M|&quot;1/2 2. &apos;*{-aQ{a~lx + a^z)) • /(z),
zeM

wenn man dabei benutzt, dass

gilt. Andererseits hat man

il ri: x ?i7-:-
SQ(-l)A(-a)e(-a-1O(x))|M|-1/2 I e(B(x, y)) • e(-aQ(y)) • /(-ay)

MyeM
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und durch die Substitution z — ay ergibt sich daraus

=So(-l)A(-a) |M|-1/2 £ e(-&lt;

SQ(-l)A(-a) |M|-1/2 £ e(

Nun zeigt (4), dass beide Ergebnisse gleich sind; damit ist Satz 2 bewiesen.

DEFINITION 1. Wenn (5) erfûllt ist, wollen wir mit W(M, Q) die Darstellung

bezeichnen, welche durch Satz 2 dem quadratischen Modul (M, Q) zugeord-
net wird. Sie heisst die zu (M, Q) gehôrige Weilsche Darstellung.

DEFINITION 2. Eine Darstellung von SL2(ZP) heisst von der Stufe A, wenn
sie sich ûber SL2(AA), aber nicht ûber SL2(AA_i) faktorisieren lâsst. Analog heisst

eine Darstellung von SL2(A^) von der Stufe A, wenn sie sich ûber SL2(AA), aber
nicht ûber SL2(AA_i) faktorisieren lâsst (ji^A).

Um aile irreduziblen Darstellungen von SL2(ZP) zu beschreiben, genûgt es, fur
aile A die irreduziblen Darstellungen der Stufe A von SL2(AA) zu beschreiben.
Der Kern der Projektion von SL2(AA) auf SL2(AA_i) ist die invariante Unter-
gruppe von SL2(AA), die von den Elementen w(pA~1fe), mit be Au erzeugt wird.
Wenn die Werte von Q auf M in p~A+1Z/Z liegen, dann ist der Operator
[w(pA~1b)] gleich der Identitât fur die Darstellung W(M, Q) (siehe (2)), d.h.

W(M, Q) ist hôchstens von der Stufe A-l. Deshalb setzen wir jetzt fur ein fest

gewâhltes A voraus, dass die Werte von Q auf M in p~AZ/Z und nicht aile in
p&quot;A+1Z/Z liegen. Die Darstellung W(M, Q) ist dann von der Stufe A.

Erfûllt der quadratische Modul (Ml9 Ch) die Bedingung (5), und ist (M2, Q2)

zu (Mi, Oi) équivalent (d.h. gibt es einen Isomorphismus &lt;p von Mx auf M2,
sodass Q2 ° &lt;p Oi), so erfûllt auch (M2, Q2) die Bedingung (5) und die Weilschen

Darstellungen W(MU Qt) und W(M2, O2) sind isomorph.

2. Klassifikation Quadratischer Moduln und Weilscher Darstellungen.

Wir wollen in diesem Paragraphen die Klassen âquivalenter quadratischer
Moduln klassifizieren. Die Resultate sind fur p#2 schon bekannt [11], werden
aber vollstândigkeitshalber wiederholt.
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Wir beweisen zunâchst folgendes

LEMMA 0. Seien s und d feste Elemente aus Ak. Die Menge

j)eAAx AA mit f 2

ist eine Untergruppe von Al. Die genaue Beschreibung von S(s, d) enînimmt man
aus der Tabelle 1.

Dass die Menge S(s, d) eine Untergruppe von A£ ist, folgt sofort aus der
Tatsache, dass

Sei zunâchst p#2. Es ist leicht zu zeigen, dass

Auf der anderen Seite nimmt die quadratische Form £2 + s£tj + dr\2 jeden Wert
aus Ax an, ausser wenn ihre Diskriminante A s2-Ad kongruent null ist mod p.
In diesem Fall stellt sie nur Quadrate dar (siehe etwa H. Hasse: Vorlesung ûber
Zahlentheorie, 2. Auf., Springer-Verlag, §10.4). Damit ist die Richtigkeit der
Tabelle 1 fur p^ 2 bewiesen.

Tabelle 1

Bedingungen fur s, d

â s2 — 4d# 0 mod p

s s 1 mod 2

A

».

S(s, d)

h6Aï

Ar

[Aï: Sfed)]

2

1

1

s&apos;-dmO mod 8

s&apos;2-ds3,4,7mod8
s&apos;2-ds2 mod 8 A&gt;

s&apos;2-(is6 mod 8

s&apos;2-dsl,5 mod 8

s&apos;2- dm 0,3 mod 4
s&apos;2- d s 1,2 mod 4

{aeA£
{aeAr

3 {aeAÏ
{cieA^
{cieA^

{aeA%
{aEA^

a
a
a
a
a

a
a

III

Bl,
S 1,

— 1,

III

Si
III

mod 8}
5 mod 8}
7 mod 8}
3 mod 8}
3,5,7 mod 8}

mod 4}
3 mod 4}

4
2

2

2
1

2
1

s&apos; 0
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Sei jetzt p 2 und A &gt; 3. Es gilt

Um S(s, d) vollstândig zu beschreiben, genûgt es, die ungeraden Zahlen mod 8,

die von £2 + s£t} + dt]2 dargestellt werden, anzugeben. Wir unterscheiden zwei
Fâlle:

1. Sei s lmod2, dann stellt £2 + s£Tj + dT)2 aile ungeraden Zahlen mod 8

dar. Um dies einzusehen, genûgt es, die Paare*

(1,1), (3,1), (5,1), (7,1) falls d 1 mod 2

(1,0), (1,2), (1,4), (3,2) falls d-l
zu betrachten.

2. Sei s 2s&apos;, dann gilt

und es ist eine leichte Aufgabe, die ungeraden Zahlen mod 8, die durch dièse

quadratische Form dargestellt werden, in Abhângigkeit von (s&apos;2-d) zu
bestimmen.

Die Fâlle À 2 und À 1 lassen sich ohne Schwierigkeit von den Resultaten
fur À ^ 3 ableiten. Damit ist Lemma 0 bewiesen.

Wir nehmen zuerst an, dass M von einem einzigen Elément erzeugt wird. Die
einzigen quadratischen AA-Moduln (M, Q), welche fur die Erzeugung von Dar-
stellungen der Stufe À von SL2(AA) in Frage kommen, sind dann

r^Omodp, falls p^2, A&gt;1,|

falls p 2, A&gt;2.)

Fur p^ 2 hat man zwei Klassen, gegeben durch die Werte des Legendre-Symbols

(-). Fur p 2 und A^3 hat man vier Klassen, gegeben durch r l, 3, 5 und

7 mod 8.

LEMMA 1. Sei p^2. Die quadratischen Moduln (M, Q) von (7) erfullen die

Bedingung (5) von Satz 2, erzeugen also Weilsche Darstellungen von SL2(AX). Die
Faktoren A(a) und So(-1) lauten:

(v
x ri falls A gerade,

-) SQ(-l) i/r\
p/ l&quot;&quot;le(P) falls A ungerade,

wobei e(d) 1 oder i ist, je nachdem ob d 1 oder 3 mod 4 isf.
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Zum Beweis verwendet man die Formeln in [7] (IV, §3).

LEMMA 2. Sei p 2. Die quadratischen Moduln (M, Q) von (7) erfullen die

Bedingung (5) von Satz 2 nicht, erzeugen also keine Weilschen Darstellungen von
SL2(AA).

Die Berechnung von A(a) SQ(a)SQ(l)~1 erfolgt durch

So(a) |AA_ir1/2 X c(-aO(jc)) 2-(;
xeAx-i xeAx

und folglich

(s. [7], IV, §3), das Minuszeichen kommt daher, dass dabei I —\-n)
(signm)( —j gesetzt wird. Der Quotient So(a)/SQ(1) wird nun

wo à der kleinste natûrliche Rest von a mod 4 ist. Weiter ist

2L 8 8 8 J 2 2

fur aile au a2eA^. Andererseits hat man fur das Hilbertsymbol

(ai, a2)2 (-i)K-i-«^K-a-«^3 (siehe [9], S. 39).

Ailes zusammen gibt uns die Beziehung

A{a1)A{a2){au a2)i,

und damit ist Lemma 2 bewiesen.

Sei jetzt M von genau zwei Elementen erzeugt (d.h. M/pM ist zweidimen-
sional ûber Z/pZ), und Q eine quadratische Form auf M. Wir sagen dann, dass

(M, O) ein binàrer quadratischer Modul ist.
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SATZ 3. Sei p#2. Die folgenden quadratischen Moduln bilden ein

Reprâsentantensystem der Klassen der binâren nicht-entarteten quadratischen
Moduln mit Werten in p~xZ/Z, aber nicht nur in p~x+1Z/Z:

a) M

b) M

c) M

p-*(x?p-*(x?-uxl)l)&lt;3)

(A al),
(A al),
(A a 2),

(10)

wofcei cr die Menge {1, 2,..., À-l} durchlàuft und r, t die Menge {1, u}, mit

Dièse binâren quadratischen Moduln erfullen aile die Bedingung (5) uon Satz 2.

Die Faktoren A(a) und So(-1) lauten:

a)

b)

c)

A(a) l,
A(a) l,

A(a) (-)°
P

SQ(-1) ]u

SQ(-1) (-1)\

Sq(-1)=-

(f)(

/-A
(7/

hl
e(p) falls cr ungerade,

falls a gerade.

(H)

Den Beweis von (10) kann man wie fur p 2 (siehe unten) vornehmen. Man
verwendet dabei Lemma 0. Die Resultate stehen aber schon bei Tanaka [11].

Die (M,Q) in (10) lassen sich aile als direkte Summe (A^ ©M2, Q!©Q2)
schreiben, mit (M,, Q,) von der Form (7), daraus folgt sofort (11).

SATZ 4. Sei p 2. Die folgenden quadratischen Moduln bilden ein

Reprâsentantensystem der Klassen der binâren nicht-entarteten quadratischen
Moduln mit Werten in 2&quot;AZ/Z, aber nicht nur in 2~A+1Z/Z;

(12)

a) M A

b) M A

c) M Ax-10 Aw-i, OU) 2-xr(*? + 2&lt;rfjc!) (r, r ungerade, A ^ 2)J

î cr die Menge {0,1,2,..., A-2} durchlàuft, und die Paare (r,t) ein

Ist Ist âquivalent zu l)t r*3 mod4, f—J-»-!.
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Reprâsentantensystem der Klassen durchlaufen, die wie folgt definiert werden:

(ru h) - (r2, h)O t2 h mod Min (23, 2W)

und

r2 ri oder rx tx mod 4, falls a 0,

r2 rx oder rt + 2riti mod 8, /a//s cr=l,
r2 ri mod 4, /a//s a 2,

r2 r! mod 8,

binâren quadratischen Moduln erfullen aile die Bedingung (5) von Satz 2.
Die Faktoren A(d) und SQ(a) lauten:

a) A(a) l, SQ(a) l,
b) A(a)=l, SQ(a)=(-l)x,

(13)

Wir wollen den Beweis von Satz 4 in mehreren Etappen durchfûhren. Die
allgemeinste Gestalt eines binâren quadratischen AA-Moduls {M&apos;, Q&apos;) mit Werten
in 2~AZ/Z, aber nicht nur in 2~A+1Z/Z, ist (bei Einfûhrung von Koordinaten in
M&apos;):

M&apos;^A^A^, Qf(x) 2~A(rx? + sx1x2 + rjC2) fur x (xux2)eM&apos;. (14)

Die Koeffizienten r, s, t dùrfen nicht aile gerade sein. Wir haben jlli, fx2 so zu
wâhlen, dass (M&apos;, Q&apos;) ein nicht-entarteter quadratischer AA-Modul ist. Dièse Wahl
ist eindeutig und hângt von r, s, t ab. Wir mûssen dann zeigen, dass (14) zu (12)
a), b) oder c) àquivalent ist.

A. Sei s 1 mod 2. Es ist leicht zu sehen, dass fur ju,i /u,2 à die quad-
ratische Forai Q&apos; auf M&apos; nicht-entartet ist. Sei o.B.d.A. (ohne Beschrânkung der
AUgemeinheit) r s 1 mod 2: Wenn nâmlich 2 | r, aber 2 Jf t ist, vertausche man xx
und jc2; wenn r und t beide gerade sind, ersetze man x2 durch *i + x2, um eine
âquivalente quadratische Form der gewûnschten Eigenschaft zu erhalten. Mit der
Annahme r= 1 mod 2 werden wir nun zeigen, dass Q&apos; zu Q aus (12) a) bzw. aus
(12) b) àquivalent ist, wenn f 0 bzw. f 1 mod 2 gilt.
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Sei zunâchst r^l, s l, f==0mod2. Dann existiert ein isotroper Vektor

u^( I mod2 in M&apos;. Multipliziert man nâmlich die Kongruenz

rx\ + sxxx2 + tx\ 0 mod 2A

mit 4r~\ so erhâlt man

Die rechte Seite ist kongruent 1 mod 8 fur x2 1, also existiert eine Lôsung von

Q&apos;(u) 0 (in Q/Z) mit 2A~1w^( J. Dazu gibt es ein ueM&apos; mit 2AB&apos;(u, v)eAÏ
(Bf ist die zu Q&apos; gehôrige Bilinearform), denn andernfalls wûrde B&apos;(2x~lu, y) fur

aile yeM&apos; in Q/Z verschwinden; das ist unmôglich, da 2A~1u?H 1 und B&apos;

nicht-entartet ist. O.B.d.A. darf man sogar 2*B&apos;(u, v) l annehmen (Normierung
von v). Die Elemente u und v bilden eine Basis von M&apos;: wàre nâmlich v

fjm mod 2, so wâre auch

1 s 2kB&apos;(u, v) /ul2aB/(m, m) s 0 mod 2,

was unmôglich ist. Wenn Q&apos;(v) 0, dann hat man Q&apos;(£iM + £2u)= 2~A£i£2, also ist
Q&apos; zu Q aus (12)a) àquivalent; andernfalls ersetze man v durch 1/ v-Q&apos;(v)u.

Sei nun r^l, s l, f=lmod2. Hier existieren keine isotropen Vektoren 1;

mit v&amp;[
1 mod 2, da rx\ + sxxX2 + tx\ stets ungerade ist, wenn jci und x2 nicht

beide gerade sind. Es existiert aber ein ueM&apos; mit 2AQ/(w) l mod2\ Um dies

einzusehen, multipliziert man

ru\ + swi u2 + tu\ 1 mod 2A

mit 4r-1 und erhâlt

Fur u2=l gibt es eine Lôsung uu denn die rechte Seite ist dann kongruent

1 mod8. Zu diesem u M existiert ausserdem ein t;
1

eM&apos; mit 2AQ&apos;(i&gt;)s

\m2/ \i&gt;2/

1 und 2AB&apos;(w, u) 1 mod 2A. Mit anderen Worten: Es gibt eine Lôsung der beiden
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Kongruenzen

l mod 2A,

=l mod2A.

Dabei ist die zweite Kongruenz von der Form

avi + bv2 1 mod 2\
wobei mindestens einer der Koeffizienten a, b invertierbar ist, denn Wi und u2

sind nicht beide gerade. O.B.d.A. sei beA* (andernfalls vertauscht man die

Variablen); wenn man nun v2 b~1 — b~1avi mod 2A in die erste Kongruenz
einsetzt, findet man

Die Koeffizienten von v\ und x&gt;\ sind ungerade, wâhrend das konstante Glied
gerade ist. Die Lôsbarkeit dieser Kongruenz zeigt man wie oben durch Multiplika-
tion mit 4[r — b~1as + (fe~1a)2r]~1. Die Elemente u und v bilden eine Basis von
M&apos;. Man erhâlt also

was die Aequivalenz von Q&apos; und Q aus (12)b) beweist. (Man kann den zweiten
Fall auch behandeln, indem man zeigt, dass sich Q&apos; mittels der Norm der

eindeutig bestimmten unverzweigten quadratischen Erweiterung von Q2

realisieren làsst; [7], S. 49, Prop. 9.)
B. Sei s 0 mod 2. Man darf dann o.B.d.A. r lmod2 annehmen (andernfalls

wâre t 1 mod 2 und man kônnte die Variablen vertauschen). Die Transformation

zeigt, dass die quadratische Form Q&apos; aus (14) in diesem Fall auf M&apos;-Ax~i®

Ax-ff_i nicht-entartet ist, und dass (M&apos;, Q&apos;) zu einem quadratischen Modul (M, Q)
aus (12) c) âquivalent ist.

Die Automorphismen &lt;p von M AA_i©AA_ff_i lassen sich aile als

fur aile x [
(15)

mit a € AA_i, j8 e 2&lt;rAA_i, y, 8 e Aw_! und d a8-
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darstellen. Die quadratischen Formen

Q1(x) 2&quot;Ar1(jc? + 2^x1), Q2(x) 2&quot;xr20c2 + 2&quot;t2x\)

sind genau dann âquivalent, wenn es einen Automorphismus &lt;p von M

Ax-i©AA_a_i gibt mit Qi°&lt;p Q2, d.h. wenn es eine Matrix I von der
\y o/

Form (15) gibt mit

a) r1(a2 + 2&lt;rt

b) a]8 + l^hy
c) r1(p2 + Trt

d) aÔ-/37

Dièses Kongruenzensystem fur a, j3, y, 8 und d ist âquivalent zu:

(16)

a)

b)

c) r2j8 s -2&lt;rr1riyd mod 2A~~\

d) 1

(17)

Dass (16) aus (17) folgt, lâsst sich ohne Schwierigkeiten nachrechnen.

Umgekehrt, quadriert man (16.b) und multipliziert man (16.a) mit (16.c), so

erhâlt man mit (16.d) die Kongruenz (17.b). Multipliziert man (16.a) mit f$ (bzw.
(16.c) mit a) und (16.b) mit a (bzw. /3), so erhâlt man (17.c) (bzw. (17.d)).

Aus (17) sieht man jetzt, dass Oi und Q2 genau dann âquivalent sind, wenn

a) f1^t2modMin(23,2w),

b) 3a€Ax-i, yeAx-v-x rçiit

(18)
&apos; r2r71mod2A.

Sind nâmlich (18.a) und (18.b) erfûllt, so lassen sich /3 und S aus (17.c) und
(17.d) berechnen und es gilt (16.d).

Die Lôsbarkeit von (18.b) entnimmt man aus Lemma 0, bzw. Tabelle 1.

Es bleiben die Faktoren A(a) und So(a) zu bestimmen. Fur (12)a) erhâlt man
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Mit den Bezeichnungen F= j, q A 3, folgt aus [4] (§2, (5)), fur (12)b):

SQ(a) 2-xGF(-a, 2k) (|)A (-1)\

In diesen beiden Fâllen ist damit A(a)=l; die Bedingung (5) von Satz 2 ist
demnach erfûllt.

In (12)c) ist Q(x) 2~xr(x21 + 2trtxl) die direkte Summe der quadratischen
Formen Qi(*i) 2~xrx\ und Q2(x2) 2&quot;x+orrtxl. Man findet deshalb mit Hilfe von
(8)

Sa(a) SQl(a)SO2(a) (^{f)&apos; &quot;&quot;(^&quot;(f V
Fur den Faktor A (a) erhâlt man

A(a) SQ(a)SQ(l) =[-)

Fur aile ungeraden w, t; gilt:

e(u)e(uv) e(i;)(- lp&quot;1^ -K-d/2] und ^ (-i)(«-D/2#

Folglich ist

I)(t)
ein Charakter von A* und erfûllt die Bedingung (5) von Satz 2.

Auf eine Untersuchung quadratischer Moduln, die von mehr als zwei Elemen-
ten erzeugt werden, kann man hier verzichten, denn die Darstellungen, die zu den
quadratischen Moduln (7) und (10) bzw. (12) gehôren, reichen fur unsere Ziele
im wesentlichen aus. Es ist aber zu bemerken, dass im Fall p#2 jeder hier
betrachtete quadratische Modul zu einer direkten Summe quadratischer Moduln,
die von einem einzigen Elément erzeugt werden, âquivalent ist. Im Fall p 2 ist
jeder quadratische Modul zu einer direkten Summe quadratischer Moduln, die
von einem oder zwei Elementen erzeugt werden, âquivalent (man verwendet ein
Résultat von Minkowski ûber ganzzahlige quadratische Formen mod n, neN).
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Anhand von Satz 2 sieht man leicht, dass fur quadratische Moduln (M, Q), die

von mehr als zwei Elementen erzeugt werden, die Darstellung W(M, Q), falls sie

existiert, zum Tensorprodukt der Weilschen Darstellungen, welche von den Sum-

manden von (M, Q) erzeugt werden, àquivalent ist.

DEFINITION 3. Die Darstellungen von SL2(AX), die zu den binâren quad-
ratischen Moduln (10) bzw. (12) gehôren, heissen:

—die zerlegte Weilsche Darstellung Dk im Fall a);
—die unverzweigte Weilsche Darstellung NK im Fall b);
—die verzweigten Weilschen Darstellungen RZ(r, t) im Fall c).

Die Darstellungen von SL2(AA), die im Fall p#2 zu den quadratischen
Moduln (7) gehôren, heissen Rk(r).

3. Zwei Zerlegungsmethoden.

In diesem Paragraphen beschreiben wir zwei Methoden, um Unterdarstellungen
der Weilschen Darstellungen zu konstruieren.

Die erste Méthode stammt von Kloosterman [2]. Sei (M, Q) ein quadratischer
Modul, der eine Weilsche Darstellung von SL2(AA) erzeugt, und sei Aut(M, Q)
die Gruppe der unter Q invarianten Automorphismen von M, d.h. fur aile
&lt;peAut(M, Q) gilt Q(&lt;p(x)) Q(x) fur aile xeM. Sei U eine abelsche Unter-
gruppe von Aut (M, Q) und \ Qm Charakter von U, dann ist

ein unter SL2(AA) invarianter Unterraum von V CM. Schreibt man W(M, Q,
fur die Unterdarstellung von W(M, Q) im Raum V(x), so gilt

wobei x aile Charaktere von U durchlâuft.
Die zweite Méthode beruht auf einem Lemma von P. Cartier.

LEMMA 3. Sei (M, Q) ein quadratischer Modul, der eine Weilsche Darstellung
W(M, Q) von SL2(AA) erzeugt Sei H ein Untermodul von M, sodass Q auf H
verschwindet, und sei
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wobei B die zu Q gehôrige Bilinearform ist. Es gilt Hx ^ H. Setzt man

Ml:=H±/H und QiU + H):= Q{x) fur aile xeH^,
so erfùllt (MuQx) die Bedingung (5) von Satz 2, und W{MX,QX) ist zu einer
Unterdarstellung von W(M, 0) isomorph.

0i ist nicht-entartet, denn (H±)± H. Nun hat man

\H\ c(O(y)) fur yeH

Dièse Formel bleibt richtig, wenn man Q durch aQ und B durch aB ersetzt fur
beliebige aeA^. Daraus folgt

e(-aQ(x
X€M

|M|&quot;1/2 I |H|e(-aO(y))
yeHx/H

So(a) |M|&quot;1/2 |H| |M!|+1/2 SQl(a) SOl(a).(4) (20)

Die Bedingung (5&apos;) ist also fur Qt genau dann erfùllt, wenn sie fur Q erfûllt ist.
Um zu zeigen, dass W(MU Oi) eine Unterdarstellung von W(M, Q) ist, betrach-
ten wir den Unterraum E von CM, der die Funktionen feCM enthâlt, welche

1) f(x) o fur aile

2) /(*) /(*&apos;) fur aile jcx&apos;eH&quot;1- mit x-x&apos;eH,

erfûllen. E ist wegen (19) ein invarianter Unterraum von CM und ist zu CMl

isomorph. Mit Hilfe von (20) ist leicht einzusehen, dass W(MU Oi) gerade die zu
E gehôrige Unterdarstellung von W(M, Q) ist.

4. Die Konjugiertenklassen von SL2(AÀ).(5)

Um die Klassen konjugierter Elemente in den Gruppen SL2(AA) zu unter-
suchen, erweist es sich als zweckmâssig, eine Partition von SL2(AÀ) in zwei

4 Um |M| |H|2 |Mj| zu beweisen, bemerkt man, dass durch die Zuordnung x—&gt;B(jc, eine
eineindeutige Abbildung von M auf Car+ (M) (additive Charaktere) gegeben ist. Man verwendet dann
die allgemeinen Sâtze ùber Charaktere (Siehe etwa H. Hasse, Vorlesungen ûber Zahlentheorie, 2.

Aufl., §13.4).
5Dieser Paragraph entstand unabhàngig von &quot;The automorphisms and conjugacy classes of

LF(2,2n) PSL2(Z/2nZ)&quot; von J. B. Dennin, Illinois J. of Math. 19, 542-552, 1976.
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konjugationsinvariante Teilmengen

MA : {t/ e SL2(AA) | fur aile a e Ax ist l/# aE mod p}

und

1 mit l/ aEmodp}

(mit E:= 1 vorzunehmen. (Wir werden in diesem Paragraphen meistens in

AA Z/pAZ rechnen, und nur dort Kongruenzen benutzen, wo es zweckmâssiger
ist. Wir werden aber fur eine Klasse aus Z/pAZ und deren Reprâsentanten stets
den gleichen Buchstaben verwenden.)

Wir beweisen zuerst zwei Lemmata, die auch noch richtig sind, wenn man AA

durch einen lokalen Ring ersetzt.

(a B\
LEMMA 4. Sei U H aus M2(Ak) (Menge der (2,2)-Matrizen mit

Koeffizienten aus AA) mit U&amp;aE mod p fur aile a aus Au dann existiert X aus

SL2(AA), sodass XUX&apos;1 J mit yteAÏ gilt.

Wenn y 0^/3 mod p ist, so konjugiert man [/ mit X 1. Wenn

j3 0^a-S modp ist, so konjugiert man 17 mit ^==(1 )•
1 r Fall

ysEjSssa-gsEO mod p ist nach Voraussetzung ausgeschlossen.

LEMMA 5. Seien Ut
&quot;&apos;

)(i 1,2) aus M2(AA) mit yt e AA. Es e^istiert

genau dann ein X aus SL2(AA) mit XU2X~l UÎ9 wenn

1) Sp[/1 Spt/2 s (Spwr),

2) det Ut det l/2 d (Déterminante),
3) die G/eichung

*2 + sfi| + *,2 71yï1 (21)

mindestens eine Lôsung (^, ry) aws AA x AA besitzt
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/* *\
Die Notwendigkeit der Bedingungen 1) und 2) ist klar. Existiert X l I

\x y i
aus SL2(AA) mit XU2X~l Uu so gilt

y2y2 + («2 - à2)xy - p2x2 yi. (22)

Das Paar (£, tj) mit

f y-S2721x und r] y21x (23)

ist eine Lôsung von (21).
Seien umgekehrt 1) und 2) erfûllt und sei (£, 17) eAxxAA eine Lôsung von

(21). Aus (23) lâsst sich ein Paar (x, y) berechnen, das (22) erfûllt. Die Elemente x
und y kônnen, wegen der Voraussetzung ùber yh nicht beide in AA-Ax liegen.

/* *\
Man kann also das Paar (x, y) zu einer Matrix Xi I 1 aus SL2(AA) ergànzen

und U2 ist zu einer Matrix U3 Xt U2Xi =1 I mit y3 71 konjugiert. Die
\73 03/

Spuren und Determinanten von t/i und I/3 stimmen ûberein, wegen 1) und 2).
Wâhlt man

so gilt

mit X2Xi aus SL2(AX). Damit ist Lemma 5 bewiesen.
Lemma 4 und Lemma 5 lassen sich auf M\ anwenden.

LEMMA 6. Die Anzahl der Konjugiertenklassen in M\ ist (p + 2)pk~\ falls

p*2 und A &gt; 1 oder p 2 wnd A &gt;3 (sie isr 6 /af/s p 2 wnd A 2, 2 falls p 2

und A 1).

Die Elemente aus Mî erfûllen die Bedingung von Lemma 4. Aus Lemma 5
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/s -y^X
(d 1) folgt, dass die Matrizen I I ein Repràsentantensystem der

Konjugiertenklassen in M\ bilden, wobei s ganz AA und 7 ein Repràsentantensystem
von AA mod S(s, 1) (siehe §2) durchlaufen. Die Anzahl der verschiedenen y ist
fur ein festes s gleich [AA:S(s, 1)] (siehe Tabelle 1), damit lâsst sich die Anzahl
der Konjugiertenklassen in Mi sofort berechnen.

Die Tabelle 2 gibt vollstândige Angaben ûber Mi. Um die Màchtigkeit der

Klassen zu berechnen, geht man wie folgt vor SeiC/=(5 ~T \ Di
\7 0 /

Die Matrizen
\y 0

aus SL2(AÀ), die mit U kommutieren, sind aile von der Form ÇE + r)U mit
(£ 17) €AAxAx und

det CE + tj 17) Ç2 + s£tj + tj
2 1.

Die Màchtigkeit m (U) der Klasse von U ist also gleich der Ordnung von SL2(AA)
dividiert durch die Anzahl N(s) der Lôsungen (£, 17) in AA x AA von

Sei nA(s, d) die Anzahl der Lôsungen (£, 17) in AAx AA von

Tabelle 2

Die Matrizen J, wobei s und t folgende Werte durchlaufen, bilden ein Repràsentantensystem

der Konjugiertenklassen von Mi.

P

p

P 2

A

A&gt;3

A=2

seAA mit

s ±2 mod p

/s2-4\
\ p /
(s2-4\S*±&quot;m°

P&apos;\

p

s 2mod4
s * 0 mod 4
s « l mod 2

s » 0 mod 2

s ^ 1 mod 2

r

4-1 1

-1 1

1,3
1,3
1

1,3
1

1

1

,5,7

Anzahl der
Klassen

4P-1

«p-3)p-1

2x-i

4
2

1

1

Màchtigkeit
der Klassen

V-Dp-
(p+Dp2*&quot;1

(p-Dp2-1

3 • 22A&quot;4

3 • 22X&quot;3

6
8

3

2
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dann ist N{s) gleich nK(s, 1) dividiert durch die Ordnung von S(s, 1) (Lemma 0).
Man erhâlt also

m(U)
|SL2(A

nx(s,l) nA(s,l)[AÏ:S(s,l)]

Eine leichte Rechnung zeigt, dass fur À ^ 1

|SL2(AJ| (p2-l)p3

»\ (s, d)

2-2 falls s2-

22A~1

22A-2

3-22X
und 5 1 mod 2

und p 2;

(24)

damit lâsst sich jetzt m(U) explizit berechnen.

LEMMA 7. Jedes Elément U aus M\ besitzt, eventuell nach Konjugation mit
einem geeigneten X aus SL2(AX), die Gestalt

L/ T)
mit l&lt;h&lt;A, e&lt;ph, e2 lmodph, s,deAx-h,

(25)

s lâsst sich

mod pk~h eindeutig in Abhàngigkeit von e, h, d durch die Kongruenz

(26)

berechnen (AA_H AAx_h {0} falls h A).

Wenn U [ in M2 liegt, so gibt es einen Exponenten fi&gt;l mit
\7 o/

p^g.g.T.la-ô^,^, und eine Zahl a g Ax, sodass

U s a£ mod ph und fur aile a! e AA L/^ a&apos;E mod ph+1.

Es gibt also ein e&lt;ph mit s amodph und ein VeM2(AA_h), sodass
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Die Matrix V erfûllt die Bedingung von Lemma 4, d.h. sie lâsst sich durch

Konjugation auf die Forai 1 mit teA^-h bringen (Anwendung von

Lemma 5). Berechnet man die Déterminante von U, so erhâlt man die Relation
(26). Daraus folgt insbesondere, dass 62 1 mod ph gelten muss, d.h. 1 mod ph ist

±1 falls h&gt;\ und

1 falls h l 1

±1 falls h 2 iund p 2.

±l,±(l + 2h~1) falls h&gt;3 J

Sl ~
J1 J (i l,2) aw5 M^ sind

dann konjugiert, wenn

und die Gleichung (im Ring AA_H)

mindestens eine Lôsung (£, 17) aus Ax-hxAx-h besitzt.

Das ist eine unmittelbare Folgerung aus Lemma 5.

LEMMA 9. Die Anzahl der Konjugiertenklassen in M2 ist

4- 2pA~1 falls A 2=1 und p/2,p-1
15 -2A&quot;~2-16 falls A&gt;3

&apos;

4 falls A 2 &gt; und p 2.

1 /a//s A 1

Aus den Lemmata 7 und 8 folgt, dass die Konjugiertenklassen in M2 durch

1) h (durchlâuft aile ganzen Zahlen von 1 bis A),
2) e (durchlâuft die Lôsungen von e2« 1 mod ph, mit e &lt;ph),

3) d (durchlâuft ganz Ax-h),
4) t (durchlâuft, fur gegebene h, e, d, ein Repràsentantensystem von

Ax-h mod S(s, d), wobei s (26) erfûllt)



Die irreduziblen Darstellungen der Gruppen I. Teil 487

eineinduetig charakterisiert werden. Mit Hilfe von Tabelle 1 lâsst sich nun die

Anzahl der Konjugiertenklassen in M\ sofort berechnen.

Die Tabelle 3 enthàlt vollstàndige Angaben ùber M£. Sei

* ~J JeM2(Ax_h),

Tabelle 3

Die Matrizen eE + pH J, wobei e, h, d und t folgende Werte durchlaufen und s die

Kongruenz (26) erfûllt, bilden ein Repràsentantensystem der Konjugiertenklassen von M%

Anzahl der Mâchtigkeit
A, h s deAK-hd^ f Klassen der Klassen

dsOmodp 1, u 4px~H&quot;~1 è(p2-l)p2

±1 — =+1 1 (p-l)pK~h&apos;1

l&lt;h&lt;A X|&quot;

1 I &quot;~ 1 A

\ P /
A ±1 0 0

p 2

0,1 mod 8 1,3,5,7 2X-1

1 4,5 mod 8 1,3 2X~2

2,3,6,7 mod 8 1,5 2X-1

a ~ _t 0,lmod4 1,3 4
&apos; l 2,3mod4 1 2

A 2, H 1 1 0,1 mod 2 1 2

0mod8 1,3,5,7 2x&quot;h

A&gt;5 I,4,5mod8 1,3 3-2x
3 2,6 mod 8 1,5 2x&quot;h

3,7 mod 8 1 2x~h&quot;

.n&gt;Oh-u Imod2 1 2X&quot;H

1 J
0mod2 1 2x&quot;h

A&gt;4 0, Imod4 1,3 8

fi A-2 2,3mod4 1 4

^^ ±1 0,lmod2 1 4

3-
3-
3-

6
12

3

3.
^
3-
3-

3-

6
12

22X-6
22X-5

22X-2h-4
22X-2K-3
22X-2h-3
22X-2h-2

22X-2h-l

±10 0 2 110 0 11
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wie in (25). Eine Matrix X aus SL2(AA) kommutiert genau dann mit U, wenn

XV=VXmodpA~\

Die Mâchtigkeit m(U) der Klasse von U ist demnach gleich der Ordnung von
SL2(AA_h) dividiert durch die Anzahl der X aus SL2(Aa_h), die mit V kom-
mutieren. Man wiederholt jetzt fast wôrtlich die Rechnung, die fur U aus MÎ
gemacht wurde, und erhâlt

n,(s,d)[At-h:S(s,d)]

(wobei S(s, d) hier eine Untergruppe von Aa-h ist, d.h. X muss in Tabelle 1 durch
À - h ersetzt werden).

SATZ 5. Die Anzahl der Konjugiertenklassen in SL2(AA) (mit AA Z/pxZ) ist

gleich

px+4(px-l)/(p-l) falls p#2, A&gt;1,

23-2A&quot;2-16 falls A&gt;

10 falls \ 2} und p 2.

3 falls A 1

Das folgt aus den Lemmata 6 und 9. Damit ist nun auch die Anzahl der
irreduziblen Darstellungen von SL2(AA) bekannt.
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