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Comment. Math. Helvetici 39 (51) 447-464 Birkhàuser Verlag, Basel

Formes Différentielles de Degré 1 Fermées Non Singulières:
Classes d&apos;Homotopie de leurs Noyaux

F. Laudenbach

0. Introduction

Le problème de la linéarisation des formes différentielles de degré 1 fermées
non singulières sur le tore Tn a servi de motivation à cette étude. Rappelons donc
de quoi il s&apos;agit: dans les coordonnées canoniques xu xn de Tn une forme
&lt;x Xaldxl dont les coefficients a, sont constants est dite linéaire; si co est une
forme non singulière cohomologue à a, on peut se poser les questions suivantes:
existe-t-il une conjugaison entre œ et a, c&apos;est-à-dire un difféomorphisme &lt;p tel que
a) &lt;p*al Existe-t-il une linéarisation par isotopie de a&gt;, c&apos;est-à-dire une famille à

un paramètre de difféomorphismes &lt;pt, te[0,1], telle que ço Id et a) (p*ac!

Cette seconde question, bien qu&apos;elle invoque une relation d&apos;équivalence plus fine

que la première, semble plus abordable en partie à cause du lemme de Moser
[10], d&apos;après lequel la linéarisation par isotopie de eu est impliquée par l&apos;existence

d&apos;un chemin de formes fermées non singulières cor, toutes cohomologues, joignant
a et a). Si 8« désigne l&apos;espace des 1-formes non singulières de la classe de

cohomologie de la forme linéaire a, le problème posé est alors le calcul de 7ro(^a).
Si n ^6, et si [a] est une classe rationnelle (i.e. les coefficients de a sont sur une
Q-droite), on peut faire le calcul de 7ro(%*), essentiellement à l&apos;aide des travaux de

Hatcher-Wagoner sur la pseudo-isotopie, et l&apos;on trouve un ensemble infini [8].
Notons d&apos;ailleurs que cette obstruction à la linéarisation meurt par relèvement
dans un revêtement à deux feuillets. Malheureusement le seul résultat d&apos;approximation

est que les formes linéarisâmes constituent un ouvert dans l&apos;espace de

toutes les 1-formes; mais qu&apos;en est-il des formes non linéarisâmes?

Pour prouver la non-trivialité de 7ro(%a) dans le cas irrationnel, il faudrait
mettre la, main sur un invariant stable par approximation. Le candidat le plus
simple qui se présente consiste à associer à chaque forme non singulière co sa

classe d&apos;homotopie en tant que section sans zéro du cotangent; pour éviter toute
confusion avec les déformations évoquées plus haut, nous parlerons plutôt de la
classe d&apos;homotipie du noyau Kerco, c&apos;est-à-dire du champ de (n-l)-plans
transversalement orientés, qui en chaque point x de Tn est le noyau de a)(x).

447



448 F LAUDENBACH

Deux champs de plans voisins Ker a&gt;i et Ker w2 sont évidemment homotopes,
même si les formes o&gt;i et &lt;o2 ne sont pas cohomologues; cet invariant est donc
stable par approximation; malheureusement il ne sert à rien pour notre problème
comme l&apos;indique le théorème suivant:

THÉORÈME I. Sur Tn toutes les 1-formes fermées non singulières ont des

noyaux homotopes.

Ce résultat &quot;négatif&quot; serait sans intérêt s&apos;il n&apos;était rapproché du théorème de

J. Wood [16], qui affirme que dans toute classe d&apos;homotopie de champs d&apos;hyper-

plans il existe un champ intégrable, c&apos;est-à-dire défini par une forme œ telle que
a) a dû) 0 (théorème valable pour toute une classe de variétés comprenant le

tore). De notre côté, nous déduirons du théorème précédent et du théorème de

Sacksteder [13], complété par Imanishi [7] le résultat suivant:

COROLLAIRE. Un feuilletage de codimension 1 sur Tn, dont le champ des

hyperplans tangents n&apos;est pas homotope aux champs linéaires, a nécessairement de

Vholonomie.

Tel qu&apos;il est énoncé, le théorème I est dû à A. Douady selon une
démonstration très élégante exposée en appendice. En effet, avant Douady,
j&apos;avais seulement obtenu le théorème pour n^6 comme conséquence du
théorème suivant:

THÉORÈME IL Soient V une variété C°° fermée de dimension n &gt;6 et p0, px:
V -» S1 deux fibrations homotopes. Soit H Ker (pl# : tti( V) -» tt^S1)); on suppose

que Wti(H) 0. Alors, désignant par d$ la 1-forme canonique sur S1, on a

Kerpî(d0)~Kerp?(d0).

Remarque 1. En dimension 2 et 3, le théorème I découle du fait beaucoup
plus fort que toute 1-forme fermée non singulière est linéarisable par isotopie; la

linéarisation par conjugaison résulte en dimension 2 du théorème de Poincaré-
Bendixson [11] et en dimension 3 du travail de Rosenberg-Roussarie [12]; on
obtient la linéarisation par isotopie grâce à la classification des difféomorphismes
de T2 et de T3 [15].

Remarque 2. Le paragraphe 1, consacré à des rappels généraux sur la théorie
d&apos;obstruction, met en évidence une première et une seconde obstruction dans les

problèmes de déformations de champs d&apos;hyperplans, selon le programme de

Steenrod. La nullité de la première obstruction équivaut à la nullité de certaines



Formes Différentielles de Degré 1 Fermées Non Singulières 449

intégrales qui, d&apos;après Bott et Chern, s&apos;introduisent naturellement à l&apos;aide d&apos;une

connexion riemannienne; si l&apos;on ne retient du théorème I que ce qui concerne la

première obstruction on obtient une proposition (1.6) qui à mon avis devrait
apparaitre comme cas particulier d&apos;une théorie d&apos;intersection de sous-variétés
lagrangiennes dans une variété symplectique.

1. Généralités sur la Théorie d&apos;Obstruction dans le Cotangent

Dans ce paragraphe, on considère une variété V lisse fermée de dimension n;
on note t* son fibre cotangent, d&apos;espace total E et de projection p : E —» V. Etant
données deux sections sans zéro s0 et Si, la théorie générale de Steenrod décrit
une obstruction primaire, la première différence, d(s0, s1)eHn~1(V; tt^-iCS&quot;&quot;1)); si

elle est nulle, les deux sections sont homotopes sur le (n-l)-squelette par une
homotopie ne s&apos;annulant pas. Une seconde obstruction d&apos;(s0, st)e
Hn(V; TTnCS&quot;&quot;1)) est alors définie comme obstruction à prolonger l&apos;homotopie sur
toute la base; en fait d&apos;(s0, Si) comporte une certaine indétermination gérée par
un homomorphisme

Hn&apos;2(V; ^(S&quot;&apos;1))-* Hn(V; ^(S&quot;&quot;1))

qui répercute les modifications éventuellement effectuées sur le (n-2)-squelette
(voir [6] 1ère partie). Bien entendu, les coefficients utilisés ci-dessus sont des

coefficients locaux, tordus par l&apos;orientation. Le but de ce paragraphe est de définir
un objet géométrique qui, dans le cadre lisse, porte d&apos;un seul coup l&apos;information

de ces deux obstructions.

1.1. Les courbes caractéristiques

Soient C_ {x e V \ st(x) àso(jc), A &lt; 0}

C+ {x € V | Sx(x) Aso(x), A &gt; 0}.

Génériquement C et C+ sont des courbes. Remarquons que si C_ est vide, Si est
de façon naturelle homotope à s0 par l&apos;homotopie tsi + (l-t)so qui ne s&apos;annule

jamais. La courbe C-, non nécessairement connexe, sera appelée la courbe

caractéristique de la paire (s0, Si); elle est équipée des deux structures suivantes: a)

une orientation, b) un morphisme, bien défini à homotopie près, du fibre normal

v(C-, V) dans le fibre £0 supplémentaire à s0. Nous dirons que ces deux structures
constituent une ^-orientation.
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a) Une orientation

La variété symplectique E a une orientation naturelle. Posons so(V)
{Àso(x); xje V, A &lt;0}. Dans E- V, où V est identifié à la section nulle, on a

et, selon les conventions usuelles, on oriente Si(C_) comme l&apos;intersection

ordonnée ci-dessus, en observant que le choix d&apos;une orientation locale sur V en
détermine une sur so(V) et une sur Si(V), mais que ce choix n&apos;influe pas sur
l&apos;orientation de l&apos;intersection. En termes savants, les deux cycles que l&apos;on intersecte

sont à coefficients dans duex systèmes locaux dont le produit tensoriel est

constant. Remarquons aussi que l&apos;orientation de C_ est une fonction
antisymétrique de (s0, Si).

b) Un morphisme &lt;p : v(C-, V)-&gt; £0 | C- bien défini à isotopie près

II est donné par la situation d&apos;intersection transversale décrite ci-dessus. Il est

compatible avec les orientations dans le sens qu&apos;une orientation locale étant
choisie sur V, il en résulte des orientations locales des fibres i&gt;(C_, V) et £0, et que
pour ces orientations &lt;p est positif. D&apos;autre part le morphisme ç dépend
symétriquement de la paire (s0, Si); on observera que cette affirmation a un sens

car si £1 est le sous-fibré supplémentaire à S\, on a l&apos;égalité

On peut aussi remarquer que cette symétrie est compatible avec l&apos;antisymétrie de
l&apos;orientation de C_ car une orientation locale de V détermine des orientations
locales opposées sur £01 C_ et sur f11 C_.

Remarques. 1° La courbe C+, qui n&apos;est pas caractéristique du point de vue de

l&apos;homotopie des sections, est également £0~orientée comme intersection ordonnée
du sous-fibré en demi-droites positives engendré par so(V) avec Si(V); l&apos;orientation

de C+ est symétrique pour n impair et antisymétrique pour n pair et la

permutation de s0 et si multiplie par (—l)*1&quot;1 le morphisme

2° On peut étendre de façon évidente la notion de £0-orientation au cas des

surfaces orientées plongées dans Vx[0,1]: si X est une telle surface, une
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£o-orientation est un morphisme
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compatible avec les orientations locales.

1.2. Le groupe de cobordisme ^-orienté

Soit £ un (n-l)-sous-fibré de t*. On définit /2f(V) comme quotient de
l&apos;ensemble des 1-sous-variétés £-orientées de V par la relation d&apos;équivalence

suivante: (Ci, &lt;f&gt;i)~(C2, &lt;p2) s&apos;il existe une surface orientée X dans Vx[0,1],
équipée d&apos;un morphisme de ^-orientation W: v(X, Vx[0,1])-» £x[0, 1] | X, telle

que le bord orienté de X soit l&apos;union de C2 dt de -Ci et que &quot;V |C, ç (i 1, 2).

Remarque fondamentale. Soient (C, &lt;p) une courbe ^-orientée dans V et W un
cobordisme élémentaire d&apos;indice 1 orienté dans Vx[0,1], admettant C pour l&apos;une

de ses faces. Alors on peut toujours prolonger &lt;p en une ^-orientation de W; en
effet si U est le support de la modification, sur CHU, une ^-orientation n&apos;est rien
d&apos;autre qu&apos;une orientation.

L&apos;opération de la réunion disjointe de deux représentants induit au quotient
une opération d&apos;addition bien définie dès que n^3, munissant il\{V) d&apos;une

structure de groupe abélien. Ceci est évident par position générale si n&gt;3; si

n 3 il faut essentiellement vérifier qu&apos;une modification élémentaire de
l&apos;entrelacement de deux branches ne modifie pas la classe de ^-cobordisme orienté; la
suite des deux cobordismes élémentaires d&apos;indice 1 schématisés sur la figure 1

prouve l&apos;équivalence, compte tenu de la remarque fondamentale.
Enfin on peut parler de courbes ^-orientées dans Vx[0,1] et on a un

morphisme de stabilisation Ù\( V) -&gt; Û\*{V x [0,1]) qui est clairement un isomor-

phisme si n&gt;4.

Figure 1
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1.3. Le calcul de n\(V)

Par oubli de la ^-orientation et en ne retenant que l&apos;orientation usuelle, on
construit un épimorphisme

p:/2f(V)-»Hi(V;Z).

Le groupe de cobordisme ^-orienté est alors déterminé par la proposition
suivante:

PROPOSITION. Si n&gt;3, il existe un isomorphisme naturel

Démonstration. Soit (C, &lt;p) représentant un élément de Ker p. D&apos;après la

remarque fondamentale, ce représentant peut être choisi tel que C soit le bord
d&apos;un disque A. Le choix de ce disque détermine une ^-orientation çA de C (elle
est telle que (C, çA) — 0) et un élément aA£TTi(0{n-l)) tel que &lt;p aA-(pA
(l&apos;opération est l&apos;action naturelle de 7Ti(0(n-l)) sur les classes d&apos;isotopie de

morphismes de (n-l)-fibrés au-dessus d&apos;une courbe).
Pour n&gt;3, aA ne dépend ni du représentant (Qç) ni du disque A. Pour

vérifier ce fait, considérons une surface orientable fermée X, plongée dans V x R,
sur laquelle la fonction hauteur a tous ses points critiques dans Vx[0,1] sauf un
minimum de valeur négative et un maximum de valeur supérieure à 1. Notons

Xo X n vx[o, î], dX0=cou d

Considérons une ^-orientation &lt;p de Xo et ses restrictions &lt;p, à C,. On a

&lt;Pi ocAicpAi et il s&apos;agit de démontrer que:

aAo=aAl. (1)

II existe une ^-orientation &lt;p&apos; de Xo telle que (p&apos;\C0 &lt;pAo et &lt;p&apos; \ Ci aÂo &apos;

&lt;Pi-

En effet Xo a le type d&apos;homotopie d&apos;un bouquet de cercles dans lequel la somme
connexe de Co et Ci représente un commutateur; alors l&apos;abélianité de 7Ti(0(n — 1))

fait que l&apos;on peut construire &lt;p&apos; à partir de &lt;p en faisant agir aAl sur &lt;p0 et &lt;pi et en
conservant &lt;p au-dessus d&apos;un système de courbes représentant un système libre de
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générateurs de tti(X0)- D&apos;ailleurs le même argument prouve que &lt;p&apos; | Ci est
entièrement déterminé par l&apos;unique donnée de XoUAo. Dès lors, l&apos;égalité (1)
revient à montrer que X est ^-orientable.

Puisque X est stablement parallélisable, on a stablement un isomorphisme:
i;(5, Vx[0, 1])~t*(Vx[0, 1])\X et d&apos;autre part £x[0, l]| X® e2 r*(Va0,1]).
Si n -1 &gt; 2, on peut déstabiliser l&apos;isomorphisme pour construire une ^-orientation
de X.

Maintenant si (C, &lt;p)~(d4, aA&lt;P^), on peut définir T.Ker p-&gt; 7Ti(0(rc-l)) par
(C, &lt;p)*-»aA. Par construction même T est injectif. cqfd.

Remarque. Dans le cas n 3 (cas non stable), Ker p est isomorphe à un
quotient de 7Ti(0(2))-comparer à l&apos;indétermination de la seconde obstruction. Cela
tient au fait que si S parcourt les sphères plongées de V, la classe d&apos;Euler £ | S

peut être n&apos;importe quel entier multiple de 2, tandis que si V est orientable toute
surface orientable X dans Vx[0,1] a un fibre normal trivial car la théorie des

anses montre qu&apos;à isotopie près X relève une surface immergée dans V.

1.4. Le groupe de cobordisme Ço-orienté et la théorie d&apos;obstruction

En 1.2, à une section s en position générale par rapport à s0, nous avons
associé une courbe caractéristique £0-orientée (Q&lt;p); une homotopie générique
de s modifie (C, &lt;p) par cobordisme ^-orienté. Nous avons donc une application
bien définie

où Sf désigne l&apos;ensemble des classes d&apos;homotopie de sections sans zéro, ensemble

pointé arbitrairement par la section s0. D&apos;autre part si {sh te[0,1]} est une

homotopie générique de s à s0, le lieu des zéros de cette homotopie est une
courbe de Vx[0,1], réorientée, dont la classe dans 17ï*(Vx[0,1]) ne dépend

que de celle de s dans Sf. D&apos;où une application

PROPOSITION. 1° 0(fo) est une bijection.
2° Si n&gt;3, Û(Ço) G(so, •) via Visomorphisme de stabilisation; le groupe Q\*(Vx
[0,1]) agit alors simplement transitivement sur &amp;&gt;.

Démonstration. La surjectivité de Û(Ç0) se prouve par une construction de

Thom-Pontrjagin. D&apos;autre part chaque modification sphérique des courbes
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caractéristiques par cobordisme élémentaire £0-orienté se relève en une

homotopie de la section selon les constructions classiques de chirurgie plongée, ce

qui prouve l&apos;injectivité. cqfd.

Identification de la première obstruction

De façon précise pC(£o)(si)eHi(V;Z) s&apos;identifie à la &quot;première différence&quot;

d(s0, Si)€Hn~1(V; TTn-iiS*1&quot;1)) via la dualité de Poincaré. On observera d&apos;abord

que la dualité de Poincaré est bien un isomorphisme d&apos;un groupe sur l&apos;autre

puisque Tin-iCS&quot;&quot;1) est un système de coefficients Z, tordu par l&apos;orientation du
fibre r*. Pour se convaincre de l&apos;identification de p6(Ço)(si) avec d(s0, Si), on se

contentera d&apos;observer que si p&lt;9(fo)(si) 0 on peut trouver une homotopie de s0 à

Si sur le (n — l)-squelette. En effet, si la courbe caractéristique de (s0, Si) est

homologue à zéro, elle est équivalente au bord d&apos;un 2-disque, par un cobordisme
£0-orienté qui modifie Si par homotopie. Cette première homotopie conduit donc
à une situation où la courbe caractéristique ne rencontre pas le (n — l)-squelette;
alors l&apos;homotopie barycentrique entre s0 et Si est permise sur le (n — l)-squelette.

1.5. La première obstruction et les classes d&apos;Euler1

Lorsque n est impair, il y a une obstruction évidente à homotoper la section Si

jusqu&apos;à s0: l&apos;égalité des classes d&apos;Euler y0 et yx des fibres supplémentaires £0, £r,
elles habitent aussi dans le groupe Hn&quot;1( V; Z), où les coefficients sont tordus par
l&apos;orientation.

PROPOSITION. Les classes d&apos;Euler y0 et yi sont congrues modulo 2 et on a

la formule 2d(s0, Si) y0- Ji&gt;

Démonstration. Notons i, / deux indices distincts de {0,1} et tt, la projection
naturelle de r* sur £,. Dans le fibre £, ttvSj est une section générique qui s&apos;annule

sur les courbes C+ et C_ (notations de 1.1). Le dual de Poincaré de yt est donné

par le cycle [C_]-[C+] pour la £-orientation définie sur ces courbes et d&apos;un autre
côté d(s0, Si) est le dual de [C_] pour la £0-orientation. On a dit que la

£o-orientation de C_ est l&apos;opposée de sa ^-orientation, alors que, pour n impair,
les deux orientations coïncident sur C+. Ainsi si l&apos;on calcule tout avec la
£0-orientation, 71 est dual de —[C_]-[C+]. La formule s&apos;en suit par combinaison
linéaire.

1 Les paragraphes 1.5 et 1.6 ne sont pas nécessaires pour la démonstration du théorème IL
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Remarque. D&apos;après 1.4, on peut aussi calculer d(s0, Si) en induisant la classe
de Thom de t* par une homotopie (avec zéros) joignant s0 et Si (voir 1.6). Cette
méthode conduit à la formule

d(s0, -so) yo

qui, dans ce cas, est plus précise que la précédente. Il s&apos;en suit un exemple
(essentiellement le seul que je connaisse) de deux formes fermées non singulières
non homotopes: soit FL-*V-*S1 une fibration où F est une variété de

caractéristique d&apos;Euler non nulle; alors la classe d&apos;Euler du fibre tangent aux
fibres est non nulle; aussi la première différence entre p*(dO) et p*(-dd) est elle
non nulle.

1.6. Calculs riemanniens sur le tore

D&apos;une façon très générale, si U est une n-forme sur l&apos;espace total E du

cotangent t*, à support concentré dans un petit tube autour de la section nulle
/(V), représentant la classe de Thom et si h est une homotopie entre deux
sections s0 et Si, h*U est une forme relative sur Vx[0,1] et l&apos;intégration de cette
forme le long des segments [0, 1] fournit une (n-l)-forme fermée J[o,i]h*£/ qui
représente la première différence d(s0, Si); cette intégration induit en

cohomologie l&apos;isomorphisme

Hn(Vx[0,1], Vx{0, l}) Hn-\V).

Si on change l&apos;homotopie, on change ce représentant par un cobord. On
conviendra de choisir pour h l&apos;homotopie (jc, 0 -* (1 - 2t)so(x) pour t e [0, |] suivie
de (x, t)-*(2t-l)si(x) pour te[5,1]. Faisons l&apos;hypothèse

(*) U est nulle en tout point de la section nulle.

Alors, si c(s) désigne la classe de J[0,i] 5*(7, avec S(x, t) ts(x), x e V, te[0,1],
on a:

d(s0, s1) c(s1)-c(s0).

Rappelons que le choix d&apos;une connexion riemannienne détermine, selon un
calcul établi par Bott-Chern [1] et repris pas Marry-Verdier [9] une (n - l)-forme
a sur E-j(V), appelée par ces derniers l&apos;élément d&apos;aire relatif canonique, dont
les propriétés sont les suivantes:
1° Soit £0 l&apos;espace total d&apos;un quelconque fibre en sphères dans E; si F est une
fibre de Eo, JFo&quot; 1.
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2° Si 7T est la projection du fibre r*, on a da tt*x, où x est une forme d&apos;Euler.

3° Sur le fibre en boules B bordé par Eo, il existe une forme de Thom U reliée à

X et o&quot; de la façon suivante:

ii) soit q l&apos;application naturelle Eox[0,l]--&gt; B qui identifie Eox0 au bord de

B et projette Eoxl sur j(V) par it; alors o- j[0,i]q*l/.

Dans le cadre de l&apos;hypothèse (*), a est une forme fermée et on a la formule

s*a=\ S*l/

forme que nous appellerons la forme de a-enlacement de la section s avec la
section nulle. Si V= Tn, l&apos;hypothèse (*) est satisfaite si l&apos;on calcule la forme de

Thom à partir de la connexion plate des coordonnées canoniques. De plus, si s0

est une forme linéaire, on a sJcr O; donc d(s0, s) est la classe de s*cr. Le
théorème I affirme que si s est une section lagrangienne ne s&apos;annulant pas,
d(s0, s) 0, autrement dit, pour tout (n-l)-cycle y

Cet énoncé est peut-être plus intéressant sous la forme suivante:

PROPOSITION. Soir une section largangienne du cotangent de T&quot;; soit a
l&apos;élément d&apos;aire canonique du cotangent pour la connexion plate. Si le long d&apos;un

certain (n - l)-cycle y, s ne s&apos;annule pas et y a un cr-enlacement non trivial, alors il
existe un zéro de s sur T&quot;.

A titre d&apos;exemple explicitons le cas n 2. Utilisant les coordonnées canoniques

x, y de T2 et x, p d/dx, y, q d/dy du cotangent, on a

^^qdp-pdq
p2 + q2

Pour toute forme sans zéro p(x, y) dx + q(x, y) dy, on peut construire par
substitution dans a la forme qdp-pdq/p2 + q2 qui est fermée sur T2; si
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p(x, y) dx + q(x, y) dy est fermée, le théorème affirme que qdp-pdq/p2 + q2 est
une forme exacte

2. Fibrations sur le Cercle avec une Fibre-base Donnée

2 0 THÉORÈME Soient deux fibrations p0, Pi V-^S1 définies sur une
variété fermée V de dimension n &gt; 6 On suppose que pour un point-base 0O sur S1,

on a l égalité des sous-vanetes transversalement orientées pol(0o) px 1(60) Alors, dd
désignant la 1-forme canonique du cercle, les champs Kerp*(d0) et Kerpf(d0)
sont homotopes

2 1 Nullité de la première différence

Si Ton coupe V le long de la fibre commune, on obtient un cobordisme
(trivial) W équipé de deux fonctions sans point critique /0, /i W —» R, induites

respectivement par p0 et px Soit F Wx[0, l]-&gt; Rx[0,1] une famille à un
paramètre de fonctions, joignant f0 et fu c&apos;est-à-dire que F(x, t) est de la forme
(F(x, t), t) avec F(x, 0) /&lt;,(*) et F(x, 1) fx(x) Si la famille est générique, le heu

singulier X est une courbe T*-onentée donnée par dft(x) 0, ou ft F\ Wx{t}
D&apos;après 1 4 Proposition 2°, X est équivalente à la courbe caractéristique de la

paire (p*(dO), pf(dd)) La nullité de la première différence résulte du lemme
ci-dessous

LEMME Si dim W^6 les fonctions f0 et fi sont joignables par un chemin de

fonctions ft, te[0,1], équipées de champs de pseudo-gradient1 Xt, ayant la propriété
suivante

1° Les points critiques nés ensemble s&apos;éliminent ensemble,
2° Si (ct, c{) est une telle paire de points critiques, il existe une sélection continue at
de lignes des champs Xt, reliant ct et c\,
3° Lorsque ct et c\ sont des points de Morse, le long de at les variétés stables et
instables de Xt se coupent transversalement

Démonstration Commençons par le cas ou W=Tn ^[0,1], le seul utile
pour le théorème I Puisque Wh2(Zn&quot;1) 0, d&apos;après Hatcher-Wagoner [5], on
peut choisir le chemin ft avec un graphique (heu des valeurs critiques dans

Rx[0,1]) du type indiqué sur la figure 2

1 Voir la définition des champs de pseudo-gradient dans [5]
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Figure 2

D&apos;après la classification des chemins ayant un graphique de ce type (voir [3]),
il existe une sélection continue de lignes de pseudo-gradient joignant à chaque
instant les deux points critiques et satisfaisant à la condition de transversalité 3°).

Dans le cas général, on peut prendre le chemin de fonctions dans l&apos;espace 9X

des fonctions ordonnées à deux indices critiques i et i + 1, 2&lt;i&lt;n-3,
commençant par les naissances de points critiques, t e [0, J], se poursuivant par les

croisements de valeurs critiques, fe[j,!] et se terminant par l&apos;élimination des

paires de points critiques, f e[f, 1]. Puis on modifie le chemin de sorte que les

points critiques nés ensemble meurent ensemble; pour cela on utilise la procédure
suivante, schématisée par des déformations de graphique: si un point critique Ci
d&apos;indice i + 1 nait avec un point critique c\ et meurt avec c2#ci, on repousse
l&apos;élimination de ci au-delà de celle de c2; alors le graphique a la configuration (1),
déformable en (2) par apparition de queue d&apos;aronde, puis en (3) par unicité des

naissances (voir Fig. 3; les lemmes sont prouvés dans [2]).
Maintenant on cherche une sélection continue de lignes de pseudo-gradient.

Pour cela on munit le chemin de fonctions d&apos;une famille de champs de

pseudogradient Xt telle que les naissances et les morts soient indépendantes au sens de

Hatcher-Wagoner; la numérotation des points critiques et l&apos;orientation des nappes

sont faites de sorte que la matrice d&apos;intersection de f1/3 soit l&apos;identité; alors
celle de /2/3 est une matrice diagonale dont les coefficients sont des unités
triviales eg de Z[tt], où tt est le groupe fondamental, €e{ + -}, g€7r. Si le

k-ième terme de la diagonale n&apos;est pas ±1, alors la courbe décrite par la k-ième
paire de points critiques n&apos;est pas homotope à zéro. Heureusement, on peut
greffer sur le chemin de fonctions un lacet convenable d&apos;origine /2/3 et ainsi se

ramener au cas où la matrice de /2/3 est l&apos;identité (voir [4] ou [5]; l&apos;hypothèse

(1)
Figure 3

(3)
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dimensionnelle intervient ici, la construction d&apos;un tel lacet nécessitant le lemme de
la queue d&apos;aronde; l&apos;interprétation algébrique de ce lacet est la suivante: une
matrice diagonale dont les coefficients sont des unités triviales de Z[tt] et qui est

produit de matrices élémentaires peut se relever dans le groupe de Steinberg
St(Z[ir]) en un élément dont la classe est nulle dans Wh2(7r)).

Suivant la terminologie de Hatcher-Wagoner, appelons j/i -intersection toute
ligne de Xt descendant d&apos;un point critique d&apos;indice / jusqu&apos;à un point critique
d&apos;indice i. Génériquement les î + l/i 4-1 -intersections et les i/i-intersections
n&apos;existent qu&apos;à des instants isolés tu tk,..., tq e[|, §]; au franchissement de ces

instants, la structure des i + 1/i-intersections est modifiée selon la règle expliquée
dans [5] p. 249 et suivantes; mais, comme l&lt;i&lt;n-2, on peut déformer la
famille Xt pour que toute i + 1/i-intersection transversale existant juste avant tk

persiste après tk. Ainsi la sélection continue qui est évidente et unique pour
t e [0, 3], se prolonge naturellement pour t e [5, |] avec la condition de transversa-
lité 3°).

Soit (c, c&apos;) une paire de points critiques à éliminer de la fonction /2/3; soient

ao,...,aq les i4-1/i-intersections les joignant. Disons que a0 est l&apos;arc

sélectionné. Puisque la matrice d&apos;intersection est l&apos;identité, on peut, par le

procédé de Whitney déformer X2/3 jusqu&apos;à éliminer ai,...,aq et ne conserver

que a0; ce nouveau champ X2/3 de pseudo-gradient de /2/3 permet de construire
une élimination de (c, c1) pour laquelle la sélection continue se prolonge. Si cette
élimination n&apos;est pas celle indiquée par le chemin /„ te [3, 1], on utilise comme
dans le cas du tore la classification des chemins d&apos;élimination pour constater que
la sélection continue, compatible avec un chemin d&apos;élimination, est compatible
avec tous les chemins d&apos;élimination, cqfd.

2.2. Nullité de la seconde obstruction

La T*-orientation &lt;p du lieu des points critiques est donnée en coordonnées
locales par la matrice

à2F,
x

d2F

Regardons, comme (2.1) nous le permet, le lieu d&apos;une paire de points critiques
(ct, c{) d&apos;indice respectif i 4-1 et i, joints par une sélection continue at de lignes des

champs Xt. Dans Wx[0,1] la collection des at engendre un 2-disque A. En tout
point (x, t) € dA, notons qt la forme quadratique définie par la fonction ft sur

TxWx{t}; elle est de rang n sauf aux deux sommets de dA, points critiques de la

r-projection de dA; en ces points, correspondants aux valeurs t0 et h du
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paramètre, son rang est n — 1 et son noyau est la tangente à dâ. Pour (jc, t) e dA,
tî* t0, ti, on définit T{Xyt)W comme le sous-espace de dimension n-1 orthogonal à

at par rapport à la forme quadratique qt. Lorsque t —&gt; t0, T{c&gt;ut) W et T[Cut) W ont la
même limite qui est un supplémentaire au noyau de q^; il en est de même lorsque

t-*ti. On observe que pour tout (x, t)edA, qt induit sur T[Xyt)W une forme
quadratique non dégénérée d&apos;indice i; d&apos;autre part le champ T[Xjt)W se prolonge à

A en un champ de (n-l)-plans tangents à W et supplémentaire à at.
Pour montrer que la t*-orientation &lt;p coïncide à isotopie près avec celle

induite pour A, il suffit de montrer qu&apos;il existe un champ de i-plans P^o^ T[x,t)W,
tels que, pour (jc, t) e dA, qt soit définie négative sur P(X,ty

On obtient le champ P(X,t) de la façon suivante: notons Dt la nappe de Xt
descendant de ct; l&apos;hypothèse de transversalité (2.1 3°) signifie que l&apos;on peut
parler du i + l-plan tangent à Dt au point c\. Alors on pose, pour tout (jc, 0^

Pix,t)=T&apos;(x,t)WnT(x,t)D,

si jc c, il est clair que qt est définie négative sur P(X,o- Si x cj, qt est d&apos;indice i
sur T(xt)Dt et la tangente à at est un sous-espace &quot;positif&quot; maximal; P(x,t) est son

qt-orthogonal et est donc un sous-espace &quot;négatif&quot;, cqfd.

3. Démonstration du Théorème II

Soient coo et o&gt;i deux formes de degré 1 fermées non singulières et
cohomologues sur une variété fermée V de dimension n. Si pour V= Tn, on sait

prouver que Ker o&gt;o~Ker a)u alors le théorème I s&apos;en suivra, car les formes
linéaires ont leurs noyaux tous homotopes (champs constants!). D&apos;autre part la

classe d&apos;homotopie du noyau étant inchangée par approximation et par multiplication

de la forme par un scalaire positif, on peut supposer que la classe de

cohomologie de &lt;o, est entière. D&apos;après Tischler [14], nous sommes alors dans la
situation de fibration sur le cercle: pour i 0, 1, il existe une fibration # : V—» S1

telle que pfidd)^^, où dO est la forme canonique de S1; de plus p0 et px sont
deux applications homotopes. Désignons par H le groupe fondamental de la

fibre-base; comme sous-groupe de tti(V), il est le même dans les deux cas.

3.1. (THÉORÈME II). Si n&gt;6 et si Wht(H) 0, on a Ker û&gt;o~Ker a&gt;i.

Le théorème I est donc essentiellement un cas particulier de cette proposition
puisque Wh1(Zn~1) 0.
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Démonstration D&apos;après [8], il existe un difféomorphisme G de Vx[0,1], tel
que G0 Id et que p\Gx ait une fibre en commun avec p0 D&apos;après le théorème
2 0 Ker coo~Ker Gfcoi II ne reste donc plus qu&apos;à démontrer qu&apos;une pseudo-
îsotopie à la source ne modifie pas la classe d&apos;homotopie du champ de plans (voir
ci-dessous) cqfd

3 2 PROPOSITION Soient g un difléomorphisme de V, pseudo-isotope à

Videntité, et co une 1-forme fermée non singulieere sur V Si dim V&gt;5, on a
Kercu~Ker g*w

Démonstration Soit G une pseudo-isotopie de g a l&apos;identité Convenant de

considérer co aussi bien comme une forme sur Vx[0,1], la forme G*o) fournit un
chemin de formes singulières wt, joignant w et g*a&gt; si jt est l&apos;inclusion Vx{r}-&gt;

Vx[0, 1], on prend (ot ]fG*(o Dans le cas générique, la courbe des zéros de ce
chemin est C C U C&quot;,

C {(x, 0 | G*o&gt;(x, t) A du A &gt; 0}

C&quot; {(jc, t) | G*w(x, 0 A dt, A &lt; 0}

Ces courbes ont des T*-onentations naturelles, respectivement &lt;p, &lt;p&apos;, &lt;p&quot; (observer

que t* est le fibre supplémentaire à la section dt dans le cotangent de Vx[0,1])
La classe de (C, ç) dans I2ï*(Vx[0, 1]), qui est l&apos;obstruction a déformer Ker &lt;o

sur Ker g*cu d&apos;après 1 4, se décompose comme suit

(voir une formule analogue dans la démonstration 1 5)

La famille {G*((l - u)œ + udt),ue[0,1]} fournit un cobordisme r*-onenté de
C&quot; avec la courbe

dont la T*-onentation naturelle est notée V&quot; II faut remarquer que ce cobordisme

reste à l&apos;intérieur de Vx[0,1], car au voisinage du bord on a G* dt dt
On a donc
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De même la famille {G*((l — u)ù)-udt); mg[O, 1]} fournit un cobordisme t*-
orienté de C&quot; avec la courbe

y {(*, 0 | G*(-dt)(x, 0 kdu A&gt;0}

dont la r*-orientation naturelle est notée V. On a donc

(C, ?&apos;)-(?&apos;,*&apos;)•

Bien sûr, ensemblistement y&apos; y&quot;. Mais on déduit l&apos;une de l&apos;autre via l&apos;antipodie

radiale du cotangent de Vx[0,1] qui change l&apos;orientation par (-l)n+1. Donc

Pour n impair, la nullité de [(C,ç)] est formelle. Pour n pair, on a [(C, &lt;p)]

2[(y&quot;, tf&quot;*)]; or [(/, #&quot;&apos;)] n&apos;est autre que l&apos;obstruction à déformer Ker G* dt en
Ker dt par une homotopie fixe sur le bord; c&apos;est donc la situation du paragraphe 2

et d&apos;après le théorème 2.0, (y&quot;, V&quot;)~0. cqfd.

3.3. Démonstration du corollaire

Soit %F un feuilletage sans holonomie sur Tn, défini par une 1-forme co ne
vérifiant que la condition d&apos;intégrabilité (o a do) 0. Soit 0 la famille d&apos;orbites

d&apos;un champ de vecteurs transversal à 9. D&apos;après le théorème de Sacksteder-
Imanishi [7], il existe un feuilletage $F\ défini par une forme fermée io\ transversale

à €, et un homoéomorphisme h conjugant SF et 3F&apos;. Puisque ^ et 9? sont
transversaux à un même champ de vecteurs, la combinaison barycentrique tœ +
(l-f)fc&gt;&apos; ne s&apos;annule jamais; donc on a Ker o)~Ker co&apos;.

Je remercie Harold Rosenberg d&apos;avoir attiré mon attention sur l&apos;article de

Imanishi.

Appendice1&apos;—Démonstration de A. Douady pour le théorème I

Si o&gt; et ct&gt;o sont deux formes linéaires, la proposition est claire: les sections s^

et s^ qu&apos;elles définissent dans le cotangent apparaissent comme constantes dans la

trivialisation canonique. On peut donc se limiter à o)O linéaire et &lt;o cohomologue à

} Extrait d&apos;un exposé au séminaire d&apos;Orsay sur le fibre cotangent (février 1976).
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o&gt;0; si â&gt; et â&gt;0 désignent les relèvements sur Rn, œo= dL où L :Rn —&gt; R est une
fonction linéaire, &lt;ô ù&gt;0+dg où g est une fonction périodique. Le théorème
revient à démontrer:

(*) grad (L + g) est homotope à grad L parmi les champs de vecteurs
périodiques ne s&apos;annulant pas sur Rn.

Evidemment si le produit scalaire (grad (L + g), grad L) est positif, le chemin
barycentrique donne l&apos;homotopie. On se ramène à cette situation grâce aux
déformations suivantes: on commence par une homothétie pour remplacer
grad (L + g) par X grad (L + g)/||grad (L + g)||2; puisque X est périodique, il
admet un flot global ij/(x, t):

dû
-f(x,0),ot

On vérifie que (L + g)(i(/(x, t)) - (L + g)(x) t. Puisque |(L + g)(x)-L(x)|&lt;m
max g, on voit que si t&gt; 2 m, on a

L(t(x,t))-L(x)&gt;0

c&apos;est-à-dire t &gt; 2m =&gt; &lt;i/&gt;(*&gt; t) - x, grad L) &gt; 0.

Posons Xt(x) l/t[xP(x,t)-x]; c&apos;est un champ périodique qui ne s&apos;annule

jamais; en effet X n&apos;a pas d&apos;orbite fermée puisque la fonction L + g est strictement

croissante sur les orbites. Lorsque f—»0, Xt—»X et pour t&gt;2m,

&lt;Xt,gradL&gt;&gt;0.
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