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Comment. Math. Helvetici 39 (51) 447-464 Birkhéduser Verlag, Basel

Formes Difiérentielles de Degré 1 Fermées Non Singulieres:
Classes d’Homotopie de leurs Noyaux

F. LAUDENBACH

0. Introduction

Le probleme de la linéarisation des formes différentielles de degré 1 fermées
non singulieres sur le tore T" a servi de motivation a cette étude. Rappelons donc
de quoi il s’agit: dans les coordonnées canoniques x;, ..., x, de T" une forme
a = 3a; dx; dont les coefficients a; sont constants est dite linéaire; si w est une
forme non singuliere cohomologue a @, on peut se poser les questions suivantes:
existe-t-il une conjugaison entre w et a, c’est-a-dire un difféomorphisme ¢ tel que
o = ¢*a? Existe-t-il une linéarisation par isotopie de w, c’est-a-dire une famille a
un paramétre de difféomorphismes ¢, t€[0, 1], telle que go=1Id et w = @Ta?
Cette seconde question, bien qu’elle invoque une relation d’équivalence plus fine
que la premiere, semble plus abordable en partie a cause du lemme de Moser
[10], d’aprés lequel la linéarisation par isotopie de w est impliquée par I’existence
d’un chemin de formes fermées non singulieres w,, toutes cohomologues, joignant
a et w. Si &, désigne I'espace des 1-formes non singulieres de la classe de
cohomologie de la forme linéaire a, le probleme posé est alors le calcul de mo(&,,).
Si n=6, et si [a] est une classe rationnelle (i.e. les coefficients de a sont sur une
Q-droite), on peut faire le calcul de mo(%,), essentiellement a I’aide des travaux de
Hatcher-Wagoner sur la pseudo-isotopie, et I’on trouve un ensemble infini [8].
Notons d’ailleurs que cette obstruction a la linéarisation meurt par relevement
dans un revétement a deux feuillets. Malheureusement le seul résultat d’approxi-
mation est que les formes linéarisables constituent un ouvert dans I’espace de
toutes les 1-formes; mais qu’en est-il des formes non linéarisables?

Pour prouver la non-trivialité de mo(%,) dans le cas irrationnel, il faudrait
mettre la- main sur un invariant stable par approximation. Le candidat le plus
simple qui se présente consiste a associer a chaque forme non singuliére o sa
classe d’homotopie en tant-que section sans zéro du cotangent; pour éviter toute
confusion avec les déformations évoquées plus haut, nous parlerons plutot de la
classe d’homotipie du noyau Ker w, c’est-a-dire du champ de (n-—1)-plans
transversalement orientés, qui en chaque point x de T" est le noyau de w(x).

447



448 F. LAUDENBACH

Deux champs de plans voisins Ker w; et Ker w, sont évidemment homotopes,
méme si les formes w; et w, ne sont pas cohomologues; cet invariant est donc
stable par approximation; malheureusement il ne sert a rien pour notre probléme
comme I’'indique le théoréme suivant:

THEOREME 1. Sur T" toutes les 1-formes fermées non singuliéres ont des
noyaux homotopes.

Ce résultat “négatif” serait sans intérét s’il n’était rapproché du théoréme de
J. Wood [16], qui affirme que dans toute classe d’homotopie de champs d’hyper-
plans il existe un champ intégrable, c’est-a-dire défini par une forme w telle que
wAdow =0 (théoréme valable pour toute une classe de variétés comprenant le
tore). De notre c6té, nous déduirons du théoréme précédent et du théoréeme de
Sacksteder [13], complété par Imanishi [7] le résultat suivant:

COROLLAIRE. Un feuilletage de codimension 1 sur T", dont le champ des
hyperplans tangents n’est pas homotope aux champs linéaires, a nécessairement de
I’ holonomie.

Tel qu’il est énoncé, le théoréme I est di a A. Douady selon une
démonstration tres élégante exposée en appendice. En effet, avant Douady,
j'avais seulement obtenu le théoréme pour n=6 comme conséquence du
théoréme suivant:

THEOREME II. Soient V une variété C* fermée de dimension n=6 et po, p::
V — S' deux fibrations homotopes. Soit H=Ker (p4: m1(V) — m(S")); on suppose
que Why(H)=0. Alors, désignant par d6 la 1-forme canonique sur S', on a
Ker p&(d0) ~Ker p¥(do).

Remarque 1. En dimension 2 et 3, le théoréeme I découle du fait beaucoup
plus fort que toute 1-forme fermée non singuliere est linéarisable par isotopie; la
linéarisation par conjugaison résulte en dimension 2 du théoreme de Poincaré-
Bendixson [11] et en dimension 3 du travail de Rosenberg-Roussarie [12]; on
obtient la linéarisation par isotopie grace a la classification des difféomorphismes
de T? et de T> [15].

Remarque 2. Le paragraphe 1, consacré a des rappels généraux sur la théorie
d’obstruction, met en évidence une premicre et une seconde obstruction dans les
problémes de déformations de champs d’hyperplans, selon le programme de
Steenrod. La nullité de la premiére obstruction équivaut a la nullité de certaines
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intégrales qui, d’aprés Bott et Chern, s’introduisent naturellement a I’aide d’une
connexion riemannienne; si I’on ne retient du théoréme I que ce qui concerne la
premiere obstruction on obtient une proposition (1.6) qui a mon avis devrait
apparaftre comme cas particulier d’'une théorie d’intersection de sous-variétés
lagrangiennes dans une variété symplectique.

1. Généralités sur la Théorie d’Obstruction dans le Cotangent

Dans ce paragraphe, on considere une variété V lisse fermée de dimension n;
on note 7* son fibré cotangent, d’espace total E et de projection p: E — V. Etant
données deux sections sans z€éro s, et s;, la théorie générale de Steenrod décrit
une obstruction primaire, la premiére différence, d(so, s;)€ H" ' (V; m._1(S"™Y); si
elle est nulle, les deux sections sont homotopes sur le (n— 1)-squelette par une
homotopie ne s’annulant pas. Une seconde obstruction d'(so, s1)€
H"(V; m,(S"™")) est alors définie comme obstruction a prolonger I’homotopie sur
toute la base; en fait d'(so, s;) comporte une certaine indétermination gérée par
un homomorphisine '

H"2(V; ma_y(S" 1)) = H*(V; . (S™7Y))

qui répercute les modifications éventuellement effectuées sur le (n—2)-squelette
(voir [6] lere partie). Bien entendu, les coefficients utilisés ci-dessus sont des
coefficients locaux, tordus par ’orientation. Le but de ce paragraphe est de définir
un objet géométrique qui, dans le cadre lisse, porte d’un seul coup I'information
de ces deux obstructions.

1.1. Les courbes caractéristiques

Soient C_={x e V| s1(x) = Aso(x), A < 0'}
C,= {x % | Sl(X) = I\So(X), A >O}

Génériquement C_ et C, sont des courbes. Remarquons que si C_ est vide, s; est
de fagon naturelle homotope 2 s, par I’homotopie ts;+(1—1t)so qui ne s’annule
jamais. La courbe C_, non nécessairement connexe, sera appelée la courbe
caractéristique de la paire (so, 51); elle est équipée des deux structures suivantes: a)
une orientation, b) un morphisme, bien défini 2 homotopie pres, du fibré normal
v(C-, V) dans le fibré &, supplémentaire a so. Nous dirons que ces deux structures
constituent une &p-orientation.
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a) Une orientation

La variété symplectique E a une orientation naturelle. Posons §o(V)=
{Aso(x); x.e V, A <0}. Dans E—V, ou V est identifié A la section nulle, on a

$1(C-) =5o(V) N 51(V)

et, selon les conventions usuelles, on oriente s;(C.) comme lintersection
ordonnée ci-dessus, en observant que le choix d’une orientation locale sur V en
détermine une sur §,(V) et une sur s;(V), mais que ce choix n’influe pas sur
P'orientation de 'intersection. En termes savants, les deux cycles que I’on intersec-
te sont a coefficients dans duex systemes locaux dont le produit tensoriel est
constant. Remarquons aussi que lorientation de C_ est une fonction
antisymétrique de (s, $1).

b) Un morphisme ¢ :v(C_, V) — & | C- bien défini a isotopie prés

Il est donné par la situation d’intersection transversale décrite ci-dessus. Il est
compatible avec les orientations dans le sens qu’une orientation locale étant
choisie sur V, il en résulte des orientations locales des fibrés v(C_, V) et &, et que
pour ces orientations ¢ est positif. D’autre part le morphisme ¢ dépend
symétriquement de la paire (so, 51); on observera que cette affirmation a un sens
car si &; est le sous-fibré supplémentaire a s;, on a I’égalité

§0|C~=§1IC—-

On peut aussi remarquer que cette symétrie est compatible avec I’antisymétrie de
Porientation de C_ car une orientation locale de V détermine des orientations
locales opposées sur & | C_ et sur & | C-.

Remarques. 1° La courbe C., qui n’est pas caractéristique du point de vue de
’homotopie des sections, est également £y-orientée comme intersection ordonnée
du sous-fibré en demi-droites positives engendré par so(V) avec s,(V); l'orienta-
tion de C. est symétrique pour n impair et antisymétrique pour n pair et la
permutation de s, et s, multiplie par (—1)"' le morphisme

V(C-H V) - §0| C,= ‘fl ‘ C..

2° On peut étendre de fagon évidente la notion de ¢p-orientation au cas des
surfaces orientées plongées dans VX[0,1]: si 3 est une telle surface, une
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éo-orientation est un morphisme
v(Z, VX[0,1) — &x[0,1]]| X

compatible avec les orientations locales.

1.2. Le groupe de cobordisme &-orienté

Soit ¢ un (n—1)-sous-fibré de 7*. On définit 25(V) comme quotient de
I’ensemble des 1-sous-variétés &-orientées de V par la relation d’équivalence
suivante: (C;, ¢,)~(C,, ¢2) s’il existe une surface orientée 3 dans V X[O0,1],
équipée d’un morphisme de &-orientation ¥: v(3, VX[0, 1)) = £x][0, 1]| 3, telle
que le bord orienté de 3 soit I'union de C, dt de —C; et que ¥ |Ci=¢ (i=1, 2).

Remarque fondamentale. Soient (C, ¢) une courbe £-orientée dans V et W un
cobordisme élémentaire d’indice 1 orienté dans V X[0, 1], admettant C pour I'une
de ses faces. Alors on peut toujours prolonger ¢ en une ¢-orientation de W; en
effet si U est le support de la modification, sur CN U, une §-orientation n’est rien
d’autre qu’une orientation.

L’opération de la réunion disjointe de deux représentants induit au quotient
une opération d’addition bien définie dés que n =3, munissant Q%(V) d’une
structure de groupe abélien. Ceci est évident par position générale si n>3; si
n=3 il faut essentiellement vérifier qu’'une modification élémentaire de I’en-
trelacement de deux branches ne modifie pas la classe de £-cobordisme orienté; la
suite des deux cobordismes élémentaires d’indice 1 schématisés sur la figure 1
prouve I’équivalence, compte tenu de la remarque fondamentale.

Enfin on peut parler de courbes r*-orientées dans V x[0,1] et on a un
morphisme de stabilisation Q25(V) — 07°(V %[0, 1]) qui est clairement un isomor-
phisme si n=4.

X =<

Figure 1
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1.3. Le calcul de 25(V)

Par oubli de la £-orientation et en ne retenant que l'orientation usuelle, on
construit un épimorphisme

p:2i(V)— H\(V; Z).

Le groupe de cobordisme &-orienté est alors déterminé par la proposition
suivante:

PROPOSITION. Si n>3, il existe un isomorphisme naturel

T:Ker p — m(0(n—1)).

Démonstration. Soit (C, ¢) représentant un élément de Kerp. D’aprés la
remarque fondamentale, ce représentant peut étre choisi tel que C soit le bord
d’un disque A. Le choix de ce disque détermine une £-orientation ¢, de C (elle
est telle que (C, ¢a)~0) et un élément a, e m(0(n—1)) tel que e =a, - @a
(Popération est I’action naturelle de 7;(0(n—1)) sur les classes d’isotopie de
morphismes de (n— 1)-fibrés au-dessus d’une courbe).

Pour n>3, a, ne dépend ni du représentant (C, ¢) ni du disque A. Pour
vérifier ce fait, considérons une surface orientable fermée 3, plongée dans V xR,
sur laquelle la fonction hauteur a tous ses points critiques dans V X[0, 1] sauf un
minimum de valeur négative et un maximum de valeur supérieure a 1. Notons

30=3NVx[0,1], 030=CoU C,
A(): N VX(—OO, O], C0=6A0
Al =3N Vx[l, +°°), C1=6A1.

Considérons une £-orientation ¢ de 3, et ses restrictions ¢; 4 C. On a
@i = aa@a, et il s’agit de démontrer que:

Ap, = A4p,. (1)

Il existe une ¢-orientation ¢’ de 3 telle que ¢’ | Co= @4, €t @' | C1=aa, * ¢1.
En effet 3, a le type d’homotopie d’un bouquet de cercles dans lequel la somme
connexe de C, et C; représente un commutateur; alors I’abélianité de ,(0(n —1))
fait que ’on peut construire ¢’ i partir de ¢ en faisant agir aj, sur @, €t ¢; €t en
conservant ¢ au-dessus d’un systéme de courbes représentant un systéme libre de
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générateurs de m(Zo). D’ailleurs le méme argument prouve que ¢'|C; est
enticrement déterminé par 'unique donnée de 3,U A, Deés lors, ’égalité (1)
revient a montrer que 3 est £-orientable.

Puisque 3 est stablement parallélisable, on a stablement un isomorphisme:
v(Z, VX[0,1])=*(V x[0,1]) | 3 et d’autre part £x[0,1]| 3 B >=*(VQO, 1]).
Si n—1>2, on peut déstabiliser I'isomorphisme pour construire une £-orientation
de 3.

Maintenant si (C, ¢)~ (94, aa@a), on peut définir T :Ker p — 7(0(n—1)) par
(G, ¢)=> aa. Par construction méme T est injectif. cqfd.

Remarque. Dans le cas n=3 (cas non stable), Ker p est isomorphe a un
quotient de 7,(0(2))-comparer a l’ir}détermination de la seconde obstruction. Cela
tient au fait que si S parcourt les sphéres plongées de V, la classe d’Euler ¢|S
peut étre n’importe quel entier multiple de 2, tandis que si V est orientable toute
surface orientable 3 dans V X[0, 1] a un fibré normal trivial car la théorie des
anses montre qu’a isotopie prés 3 reléve une surface immergée dans V.

1.4. Le groupe de cobordisme &o-orienté et la théorie d’obstruction

En 1.2, a une section s en position générale par rapport a sy, nous avons
associé une courbe caractéristique &p-orientée (C, ¢); une homotopie générique
de s modifie (C, ¢) par cobordisme &-orienté. Nous avons donc une application
bien définie

O(&0): S — Q(V)

ou & désigne ’ensemble des classes d’homotopie de sections sans zéro, ensemble
pointé arbitrairement par la section so. D’autre part si {s, te[0, 1]} est une
homotopie générique de s a so, le lieu des zéros de cette homotopie est une
courbe de V x[0, 1], r*-orientée, dont la classe dans 27 (Vx[0, 1]) ne dépend
que de celle de s dans &. D’ou une application

O(so, *): L — 07 (VX[0, 1]).

PROPOSITION. 1° 0(&,) est une bijection.
2° Si n>3, 0(&)=0(so, ) via I’isomorphisme de stabilisation; le groupe 7 (V X
[0, 1]) agit alors simplement transitivement sur &.

Démonstration. La surjectivité de 0(&) se prouve par une construction de
Thom-Pontrjagin. D’autre part chaque modification sphérique des courbes
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caractéristiques par cobordisme élémentaire £p-orienté se reléve en une
homotopie de la section selon les constructions classiques de chirurgie plongée, ce
qui prouve l'injectivité. cqfd.

Identification de la premiére obstruction

De facon précise pO(&o)(s1)€ Hi(V;Z) s’identifie a la “premiere différence”
d(so,.sl)e H" YV; m,_1(S" ")) via la dualité de Poincaré. On observera d’abord
que la dualité de Poincaré est bien un isomorphisme d’un groupe sur P’autre
puisque 7,_1(S"") est un systtme de coefficients Z, tordu par l’orientation du
fibré 7*. Pour se convaincre de I'identification de pO(&)(s1) avec d(so, s1), on se
contentera d’observer que si pO(&o)(s;1) =0 on peut trouver une homotopie de s, a
s; sur le (n—1)-squelette. En effet, si la courbe caractéristique de (sq, s;) est
homologue a zéro, elle est équivalente au bord d’un 2-disque, par un cobordisme
&o-orienté qui modifie s; par homotopie. Cette premiere homotopie conduit donc
a une situation ou la courbe caractéristique ne rencontre pas le (n — 1)-squelette;
alors '’homotopie barycentrique entre s €t s, est permise sur le (n — 1)-squelette.

1.5. La premiére obstruction et les classes d’Euler

Lorsque n est impair, il y a une obstruction évidente a homotoper la section s,
jusqu’a so: I’égalité des classes d’Euler vy, et y; des fibrés supplémentaires &, &;;
elles habitent aussi dans le groupe H" '(V; Z), ou les coefficients sont tordus par
l’orientation.

PROPOSITION. Les classes d’Euler vy, et vy, sont congrues modulo 2 et on a
la formule 2d(so, 1) = Yo— ¥1.

Démonstration. Notons i, j deux indices distincts de {0, 1} et =; la projection
naturelle de 7* sur &. Dans le fibré &, ms; est une section générique qui s’annule
sur les courbes C, et C_ (notations de 1.1). Le dual de Poincaré de v; est donné
par le cycle [C_]—[C.] pour la ¢ -orientation définie sur ces courbes et d’un autre
coté d(so,s;) est le dual de [C_] pour la &p-orientation. On a dit que la
£o-orientation de C_ est 'opposée de sa &;-orientation, alors que, pour n impair,
les deux orientations coincident sur C,. Ainsi si 'on calcule tout avec la
£y-orientation, y; est dual de —[C_]—[C,]. La formule s’en suit par combinaison
linéaire. [

' Les paragraphes 1.5 et 1.6 ne sont pas nécessaires pour la démonstration du théoréme II.
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Remarque. D’apreés 1.4, on peut aussi calculer d(so, s;) en induisant la classe
de Thom de 7* par une homotopie (avec zéros) joignant s, et s; (voir 1.6). Cette
méthode conduit a la formule

d(s0, —So0) = Yo

qui, dans ce cas, est plus précise que la précédente. Il s’en suit un exemple
(essentiellement le seul que je connaisse) de deux formes fermées non singuliéres
non homotopes: soit F->V — S' une fibration ou F est une variété de
caractéristique d’Euler non nulle; alors la classe d’Euler du fibré tangent aux
fibres est non nulle; aussi la premiére différence entre p*(d@) et p*(—d@) est elle
non nulle.

1.6. Calculs riemanniens sur le tore

D’une fagon tres générale, si U est une n-forme sur I’espace total E du
cotangent 7*, & support concentré dans un petit tube autour de la section nulle
j(V), représentant la classe de Thom et si h est une homotopie entre deux
sections o et s;, h*U est une forme relative sur V X [0, 1] et I'intégration de cette
forme le long des segments [0, 1] fournit une (n—1)-forme fermée fy 11 h*U qui
représente la premiere différence d(so, s;); cette intégration induit en
cohomologie I'isomorphisme

H"(Vx[0,1], Vx{0,1)=H""'(V).

Si on change I’homotopie, on change ce représentant par un cobord. On
conviendra de choisir pour h ’homotopie (x, t) = (1—2t)so(x) pour ¢ € [0, 3] suivie
de (x, t) = (2t —1)s4(x) pour te[3, 1]. Faisons ’hypothése

(*) U est nulle en tout point de la section nulle.

Alors, si c(s) désigne la classe de 0,17 S*U, avec S(x, t) =ts(x), xe V, t€[0, 1],
on a:

d(so, 51) = c(51) — c(s0).

Rappelons que le choix d’une connexion riemannienne détermine, selon un
calcul établi par Bott—Chern [1] et repris pas Marry-Verdier [9] une (n —1)-forme
o sur E—j(V), appelée par ces derniers I’élément d’aire relatif canonique, dont

les propriétés sont les suivantes: .
1° Soit E, I'espace total d’un quelconque fibré en spheres dans E; si F est une

fibre de Eo, IFO'= 1.
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2° Si 7 est la projection du fibré ¥, on a do = 7w*y, ol x est une forme d’Euler.
3° Sur le fibré en boules B bordé par E,, il existe une forme de Thom U reliée a
x et o de la fagon suivante:

i)y x=j*U.
ii) soit q I’application naturelle E, %[0, 1]— B qui identifie E;x 0 au bord de
B et projette Eox 1 sur j(V) par w; alors o = §j0,1;9™*U.

Dans le cadre de I’hypothése (*), o est une forme fermée et on a la formule
s*o = J S*U
[0.1]

forme que nous appellerons la forme de o-enlacement de la section s avec la
section nulle. Si V= T", ’hypothése (*) est satisfaite si I’on calcule la forme de
Thom a partir de la connexion plate des coordonnées canoniques. De plus, si s
est une forme linéaire, on a sgo=0; donc d(so, s) est la classe de s*o. Le
théoreme 1 affirme que si s est une section lagrangienne ne s’annulant pas,
d(so, s) =0, autrement dit, pour tout (n—1)-cycle vy

J' s*o=0.
8

Cet énoncé est peut-€tre plus intéressant sous la forme suivante:

PROPOSITION. Soit une section largangienne du cotangent de T"; soit o
I’élément d’aire canonique du cotangent pour la connexion plate. Si le long d’un
certain (n—1)-cycle v, s ne s’annule pas et y a un o-enlacement non trivial, alors il
existe un zéro de s sur T".

A titre d’exemple explicitons le cas n=2. Utilisant les coordonnées canoni-
ques x, y de T> et x, p=49/0x, y, q=49/dy du cotangent, on a

s=39p—pdq
p2+q2

Pour toute forme sans zéro p(x,y)dx+q(x, y)dy, on peut construire par
substitution dans o la forme qdp—pdg/p>’+q> qui est fermée sur T?; si
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p(x, y) dx +q(x, y) dy est fermée, le théoréme affirme que qdp—pdq/p’>+q°> est
une forme exacte.

2. Fibrations sur le Cercle avec une Fibre-base Donnée

2.0. THEOREME. Soient deux fibrations po, p;:V— S? définies sur une
variété fermée V de dimension n =6. On suppose que pour un point-base 6, sur S*,
on a I’égalité des sous-variétés transversalement orientées py ' (6o) = p1*(6,). Alors, d6

désignant la 1-forme canonique du cercle, les champs Ker pg(d6) et Ker pT(d6)
sont homotopes.

2.1. Nullité de la premiere différence

Si 'on coupe V le long de la fibre commune, on obtient un cobordisme
(trivial) W équipé de deux fonctions sans point critique fo, f;: W — R, induites
respectivement par p, et p;. Soit F: Wx[0,1]— RX[0, 1] une famille 4 un
parametre de fonctions, joignant f, et f;, c’est-a-dire que F(x, t) est de la forme
(F(x, t), t) avec F(x,0)= fo(x) et F(x, 1) = fi(x). Si la famille est générique, le lieu
singulier 3 est une courbe 7*-orientée donnée par df.(x)=0, ou f,=F| Wx{t}.
D’apres 1.4 Proposition 2°, 3 est équivalente a la courbe caractéristique de la
paire (pd(de), p’f(d@)). La nullité de la premiere différence résulte du lemme
ci-dessous.

LEMME. Si dim W =6 les fonctions f, et f; sont joignables par un chemin de
fonctions f,, t [0, 1], équipées de champs de pseudo-gradient' X,, ayant la propriété
suivante:

1° Les points critiques nés ensemble s’éliminent ensemble;

2° Si (c, c}) est une telle paire de points critiques, il existe une sélection continue «,
de lignes des champs X, reliant c, et c;

3° Lorsque c, et c; sont des points de Morse, le long de a, les variétés stables et
instables de X, se coupent transversalement.

Démonstration. Commengons par le cas ou W= T" 'x[0,1], le seul utile
pour le théoréme I. Puisque Why(Z" ')=0, d’aprés Hatcher-Wagoner [5], on
peut choisir le chemin f, avec un graphique (lieu des valeurs critiques dans
R %[0, 1]) du type indiqué sur la figure 2.

! Voir la définition des champs de pseudo-gradient dans [5].
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Figure 2

D’apres la classification des chemins ayant un graphique de ce type (voir [3]),
il existe une sélection continue de lignes de pseudo-gradient joignant a chaque
instant les deux points critiques et satisfaisant a la condition de transversalité 3°).

Dans le cas général, on peut prendre le chemin de fonctions dans I’espace %;
des fonctions ordonnées a deux indices critiques i et i+1, 2<i=n-3,
commengant par les naissances de points critiques, t € [0, 3], se poursuivant par les
croisements de valeurs critiques, te[3,3] et se terminant par I’élimination des
paires de points critiques, te[3, 1]. Puis on modifie le chemin de sorte que les
points critiques nés ensemble meurent ensemble; pour cela on utilise la procédure
suivante, schématisée par des déformations de graphique: si un point critique c,
d’indice i+1 nait avec un point critique c7 et meurt avec c¢5# ¢}, on repousse
I’élimination de c} au-dela de celle de c5; alors le graphique a la configuration (1),
déformable en (2) par apparition de queue d’aronde, puis en (3) par unicité des
naissances (voir Fig. 3; les lemmes sont prouvés dans [2]).

Maintenant on cherche une sélection continue de lignes de pseudo-gradient.
Pour cela on munit le chemin de fonctions d’une famille de champs de pseudo-
gradient X, telle que les naissances et les morts soient indépendantes au sens de
Hatcher-Wagoner; la numérotation des points critiques et I’orientation des nap-
pes sont faites de sorte que la matrice d’intersection de f;,; soit I'identité; alors
celle de f,;; est une matrice diagonale dont les coefficients sont des unités
triviales eg de Z[w], ou =m est le groupe fondamental, ec{+, —}, gem. Si le
k-iéme terine de la diagonale n’est pas +1, alors la courbe décrite par la k-ieme
paire de points critiques n’est pas homotope a zéro. Heureusement, on peut
gréffer sur le chemin de fonctions un lacet convenable d’origine f,/; et ainsi se
ramener au cas ou la matrice de f,;; est I'identité (voir [4] ou [5]; I’hypothese

@ @
3)

Figure 3

0y
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dimensionnelle intervient ici, la construction d’un tel lacet nécessitant le lemme de
la queue d’aronde; l'interprétation algébrique de ce lacet est la suivante: une
matrice diagonale dont les coefficients sont des unités triviales de Z[ 7] et qui est
produit de matrices élémentaires peut se relever dans le groupe de Steinberg
St(Z[7]) en un élément dont la classe est nulle dans Why()).

Suivant la terminologie de Hatcher-Wagoner, appelons j/i-intersection toute
ligne de X, descendant d’un point critique d’indice j jusqu’a un point critique
d’indice i. Génériquement les i+ 1/i+ 1-intersections et les i/i-intersections n’ex-
istent qu’a des instants isolés t;,..., &, ..., t; €[3,3]; au franchissement de ces
instants, la structure des i+ 1/i-intersections est modifiée selon la regle expliquée
dans [5] p. 249 et suivantes; mais, comme 1<i=<n-—2, on peut déformer la
famille X, pour que toute i+ 1/i-intersection transversale existant juste avant f
persiste apres .. Ainsi la sélection continue qui est évidente et unique pour
te[0, 3], se prolonge naturellement pour t€[3, 3] avec la condition de transversa-
lité 3°).

Soit (c, ¢’) une paire de points critiques a éliminer de la fonction f,/3; soient
ag,...,aq les i+1/i-intersections les joignant. Disons que «a, est Iarc
sélectionné. Puisque la matrice d’intersection est l'identité, on peut, par le
procédé de Whitney déformer X,;; jusqu’a éliminer ay,..., a, €t ne conserver
que ao; ce nouveau champ X5%,; de pseudo-gradient de f,,; permet de construire
une élimination de (c, ¢’) pour laquelle la sélection continue se prolonge. Si cette
élimination n’est pas celle indiquée par le chemin f, te[3, 1], on utilise comme
dans le cas du tore la classification des chemins d’élimination pour constater que
la sélection continue, compatible avec un chemin d’élimination, est compatible
avec tous les chemins d’élimination. cqfd.

2.2. Nullité de la seconde obstruction

La 7*-orientation ¢ du lieu des points critiques est donnée en coordonnées
locales par la matrice

3*F 3°F )
(55050 0)

Regardons, comme (2.1) nous le permet, le lieu d’une paire de points critiques
(¢, ¢) d’indice respectif i + 1 et i, joints par une sélection continue a, de lignes des
champs X,. Dans W x[0, 1] la collection des a, engendre un 2-disque A. En tout
point (x, t)€dA, notons g, la forme quadratique définie par la fonction f, sur
T, W x {t}; elle est de rang n sauf aux deux sommets de 94, points critiques de la
t-projection de 8A; en ces points, correspondants aux valeurs f et t; du
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parametre, son rang est n—1 et son noyau est la tangente a dA. Pour (x, t) €94,
t# to, t;, on définit T, , W comme le sous-espace de dimension n—1 orthogonal a
a, par rapport a la forme quadratique q,. Lorsque t — ty, T(.nW et T(. W ont la
méme limite qui est un supplémentaire au noyau de g,,; il en est de méme lorsque
t— t;. On observe que pour tout (x,t)e€dd, g, induit sur T(, W une forme
quadratique non dégénérée d’indice i; d’autre part le champ T¢,,, W se prolonge a
A en un champ de (n—1)-plans tangents a W et supplémentaire a a,.

Pour montrer que la r*-orientation ¢ coincide a isotopie prés avec celle
induite pour A4, il suffit de montrer qu’il existe un champ de i-plans P, < T(,,W,
tels que, pour (x, t)€d4, g, soit définie négative sur P, .

On obtient le champ P, ,, de la fagon suivante: notons D, la nappe de X,
descendant de c,; I’hypothese de transversalité (2.1 3°) signifie que I'on peut
parler du i+ 1-plan tangent a D, au point c;. Alors on pose, pour tout (x, t)e A

P(x,t) = fo,,)wn T(x,t)Dt_-

si x = ¢, il est clair que g, est définie négative sur P, . Si x =c;, q, est d’indice i
sur T,,nD, et la tangente a «, est un sous-espace ‘‘positif’’ maximal; P, ,, est son
g.-orthogonal et est donc un sous-espace ‘“‘négatif”’. cqfd.

3. Démonstration du Théoreme II

Soient w, et w; deux formes de degré 1 fermées non singuliéres et
cohomologues sur une variété fermée V de dimension n. Si pour V=T", on sait
prouver que Ker wo~Ker w;, alors le théoréme I s’en suivra, car les formes
linéaires ont leurs noyaux tous homotopes (champs constants!). D’autre part la
classe d’homotopie du noyau étant inchangée par approximation et par multipli-
cation de la forme par un scalaire positif, on peut supposer que la classe de
cohomologie de w; est entiére. D’aprés Tischler [14], nous sommes alors dans la
situation de fibration sur le cercle: pour i =0, 1, il existe une fibration p;: V — S’
telle que p?‘(d()) = w;, ol dO est la forme canonique de S '; de plus p, et p; sont
deux applications homotopes. Désignons par H le groupe fondamental de la
fibre-base; comme sous-groupe de m(V), il est le méme dans les deux cas.

3.1. (THEOREME II). Si n=6 et si Why(H)=0, on a Ker w,~ Ker w;.

Le théoréme I est donc essentiellement un cas particulier de cette proposition
puisque Why(Z" ") =0.
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Démonstration. D’apres [8], il existe un diff€omorphisme G de V X][0, 1], tel
que Go=1Id et que p; G, ait une fibre en commun avec p,. D’apres le théoréme
2.0. Ker wo~Ker GFw;. Il ne reste donc plus qu’a démontrer qu’une pseudo-
isotopie a la source ne modifie pas la classe d’homotopie du champ de plans (voir
ci-dessous). cqfd.

3.2. PROPOSITION. Soient g un difléomorphisme de V, pseudo-isotope a
I’identité, et w une 1-forme fermée non singulieére sur V. Si dim V=5, on a
Ker v ~ Ker g*w.

Démonstration. Soit G une pseudo-isotopie de g a I'identité. Convenant de
considérer w aussi bien comme une forme sur V X[0, 1], la forme G*w fournit un
chemin de formes singuliéres w, joignant w et g*w: si j, est l'inclusion Vx{1} -
V x[0, 1], on prend w, = j¥G*w. Dans le cas générique, la courbe des zéros de ce
chemin est C=CU (",

C'={(x,1)| G*o(x,t)= A dt, A >0}
C"={(x,t)| G*w(x, t) = A dt, A <O}

Ces courbes ont des 7™*-orientations naturelles, respectivement ¢, ¢', ¢” (observer
que 7* est le fibré supplémentaire a la section dt dans le cotangent de V X[0, 1]).
La classe de (C, ¢) dans 27 (Vx[0, 1]), qui est I’obstruction a déformer Ker w
sur Ker g*w d’aprés 1.4, se décompose comme suit:

(G @)]=[(C", ")]-[(C', ¢)]

(voir une formule analogue dans la démonstration 1.5).

La famille {G*((1 - u)w + u dt); u€[0, 1]} fournit un cobordisme 7*-orienté de
C" avec la courbe

v ={(x, t) | G* dt(x, t) = A dt, A <O}
dont la 7*-orientation naturelle est notée ¥". Il faut remarquer que ce cobor-

disme reste a ’intérieur de V x[0, 1], car au voisinage du bord on a G* dt = dt.
On a donc

(C, ¢~ (v, ¥").
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De méme la famille {G*((1—u)w—udt); ue[0, 1]} fournit un cobordisme 7*-
orienté de C’ avec la courbe

v ={(x, t) | G¥(—dt)(x, t) = A dt, A > 0}
dont la 7*-orientation naturelle est notée ¥'. On a donc
(C, o)~ (v, V).

Bien siir, ensemblistement y’ = y”. Mais on déduit ’'une de I'autre via 'antipodie
radiale du cotangent de V X[0, 1] qui change I’orientation par (—1)"*'. Donc

[(v', ¥)]=(=D"" (", ¥")].

Pour n impair, la nullité de [(C, ¢)] est formelle. Pour n pair, on a [(C, ¢)]=
2[(y", ¥M]; or [(v", ¥")] n’est autre que l'obstruction a déformer Ker G* dt en
Ker dt par une homotopie fixe sur le bord; c’est donc la situation du paragraphe 2
et d’apres le théoréme 2.0, (v", ¥")~0. cqfd.

3.3. Démonstration du corollaire

Soit &% un feuilletage sans holonomie sur T", défini par une 1-forme w ne
vérifiant que la condition d’intégrabilité wAdw =0. Soit € la famille d’orbites
d’un champ de vecteurs transversal a &. D’aprés le théoréme de Sacksteder-
Imanishi [7], il existe un feuilletage &', défini par une forme fermée ', transver-
sale & 0, et un homoéomorphisme h conjugant ¥ et F'. Puisque F et ¥’ sont
transversaux a un méme champ de vecteurs, la combinaison barycentrique tw +
(1—t)w' ne s’annule jamais; donc on a Ker w ~Ker w'.

Je remercie Harold Rosenberg d’avoir attir€ mon attention sur ’article de
Imanishi. .

Appendice'’—Démonstration de A. Douady pour le théoréeme I
Si w et wo sont deux formes linéaires, la proposition est claire: les sections s,

et s,, qu’elles définissent dans le cotangent apparaissent comme constantes dans la
trivialisation canonique. On peut donc se limiter a w, linéaire et w cohomologue a

() Extrait d’'un exposé au séminaire d’Orsay sur le fibré cotangent (février 1976).
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wo; S1 @ et wo désignent les relevements sur R", @o=dL ou L:R" — R est une
fonction linéaire, @ = @o+dg ou g est une fonction périodique. Le théoréme
revient a démontrer:

(*) grad (L+g) est homotope & grad L parmi les champs de vecteurs
périodiques ne s’annulant pas sur R".

Evidemment si le produit scalaire (grad (L + g), grad L) est positif, le chemin
barycentrique donne I’homotopie. On se raméne a cette situation grice aux
déformations suivantes: on commence par une homothétie pour remplacer
grad (L +g) par X =grad (L + g)/|lgrad (L + g)|]*; puisque X est périodique, il
admet un flot global ¢ (x, ¢):

X(x)= %% (x,0), P(x, 0)=x.

On vérifie que (L+g)(¢(x,t))—(L+g)(x)=1t Puisque |(L+g)(x)—L(x)|=m=
max g, on voit que si t>2m, on a

L(g(x,t)—L(x)>0

c’est-a-dire t>2m=>(Y(x, t)—x, grad L)>0.

Posons Xi(x)=1/t[W¥(x, t)—x]; c’est un champ périodique qui ne s’annule
jamais; en effet X n’a pas d’orbite fermée puisque la fonction L + g est stricte-
ment croissante sur les orbites. Lorsque t— 0, X,—X et pour t>2m,
(X, grad L)>0.
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