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Erratum to ‘Rational Lie Algebras and p-Isomorphisms of Nilpo-
tent Groups and Homotopy Types’

JOSEPH ROITBERG

The author has noticed that the proof of Th. 3.2 of [R] contains a flaw. We
shall indicate how to modify the argument in [R] so as to set things right.

The trouble occurs on p. 5, 1. 12-13 where it is asserted that the homotopy
equivalence ho: W — W gives rise to a weak automorphism w:L — L of its
associated Lie algebra. However, it may only be asserted that w is an equivalence
in the category in which it lies; it need not be an actual DGL map. To remedy
this, we employ a theorem of Quillen ([Q1], [Q2; esp. pp. 263-264] which
provides an equivalence between the category of DGL algebras used in [R] and
the category whose objects are reduced, rational DGL algebras which are free as
graded Lie algebras and whose morphisms are homotopy classes (in an approp-
riate sense) of DGL maps. It is certainly the case that in this latter category, an
equivalence always contains a representative w which is a weak automorphism.
To complete the proof of Th. 3.2 of [R], it is only necessary to replace Th. 3.1 of
[R] (whose statement and proof are correct, except for a harmless misprint; in
formula (3.5), one should have a plus sign rather than a minus sign since
(aa)ab =2aaaab, not —2aaaab) by the following variant.

THEOREM 3.1'. There exists a rational, reduced DGL algebra L of finite type,
free as a graded Lie algebra, such that any weak automorphism w:L — L is
congruent, modulo L?, to the identity.

L may be chosen so that H(L) has totally finite dimension, but at the price of
possibly foregoing the relation w(x)=x(mod L?) for x of high degree.

Proof. Let L be the free, graded Lie algebra over Q generated by elements a,
b, c, e having degrees 1, 3, 2, 11 respectively and define a differential d:L — L by
setting

da=0, db = aa, dc=0, de = (ac)ccac + (ac)(ac)ab + (ab)cab.

Denote by F the (free) sub-Lie algebra generated by a, b, c. Writing for any weak
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automorphism w:L — L,
w(a) = ra, w(b) =sb+ u(ac), w(c) = tc +v(aa), w(e)=x-e+f,

wherer, s, t, u, v, x € Q, f € F, we easily conclude, as in the proof of Th. 3.1 of [R],
that r#0, t#0, s=r>. Further, we obtain w(de) =
r’t*((ac)ccac) + r’t*((ac)(ac)ab) + r°t((ab)cab) +g mod L’), where g lies in the
ideal I < F generated by aa. By a straightforward algebraic calculation, one shows
that the elements (ac)ccac, (ac)(ac)ab, (ab)cab are linearly independent modulo
I. Then using w(de)= dw(e), together with dfel, we conclude that r’t*=r’t*=
r’t=x so that r=s=t=x=1.

To obtain the final assertion of Th. 3.1', we take any integer n=11 and
successively attach elements of degree =n+1 to L so as to kill all homology
classes of degree =n.
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