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Comment. Math. Helvetici 39 (51) 411-433 Birkhâuser Verlag, Basel

Théorie de Galois pour une W*-Algèbre

P.-L. AUBERT

Introduction

Soient M une W*-algèbre et G un groupe d&apos;automorphismes de M. Peut-on
décrire la sous-algèbre MG des points fixes de M par G? Existe-t-il entre les

sous-groupes de G et les sous-algèbres de M contenant MG une correspondance
galoisienne? M. Nakamura et Z. Takeda [1] ont obtenu une réponse affirmative
lorsque M est un facteur de type IIi et G un groupe fini d&apos;automorphismes

extérieurs. Nous avons cherché à étendre leurs résultats en assouplissant les

conditions sur M et sur G.

Le produit croisé W*(M, G) joue ici un rôle important. Au chapitre I, nous en
donnons une construction nouvelle, sans passer par une représentation de M
comme algèbre de von Neumann dans un espace de Hilbert; à l&apos;aide de la norme
réduite sur L\G,M), nous définissions directement le prédual de W*(M,G).
L&apos;étude des représentations de W*(M, G) permet alors de retrouver la définition
classique.

Le résultat de Nakamura et Takeda repose sur le fait que le commutant de
MG peut s&apos;identifier à un produit croisé. Pour généraliser ce résultat nous devions

pouvoir prolonger aux W*-algèbres un isomorphisme défini entre des sous-

algèbres involutives o--denses. Pearcy et Ringrose [1] ont obtenu, pour des

W*-algèbres finies, un résultat permettant de prolonger les isomorphismes qui
conservent les applications ^. Enomoto et Tamaki [1] ont généralisé ce résultat,
mais ils gardent une condition de finitude. Au chapitre II, nous obtenons un
résultat plus fort: on peut prolonger les isomorphismes qui conservent des

projections positives normales fidèles. On peut alors utiliser ce théorème pour la

correspondance galoisienne: il nous permet d&apos;obtenir, sous certaines hypothèses,

Pinjectivité de l&apos;application &quot;sous-groupe &gt;-» sous-algèbre&quot;.

En algèbre, S. U. Chase, D. K. Harrison et A. Rosenberg [1] ont obtenu une
théorie de Galois pour les anneaux commutatifs. En essayant d&apos;appliquer les

méthodes algébriques à l&apos;étude d&apos;un groupe fini G d&apos;automorphismes d&apos;une

W*-algèbre M, nous avons vu que la notion importante était celle d&apos;action presque
libre de G sur M. Au chapitre III, sous cette seule hypothèse, nous démontrons le
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412 P-L AUBERT

&quot;théorème fondamental de la théorie de Galois&quot; qui établit une correspondence
biunivoque entre les sous-groupes de G et certaines sous-algèbres, dites G-libres,
de M. On peut considérer ce résultat comme complémentaire de celui de

Nakamura et Takeda: leurs automorphismes sont extérieurs sur un facteur alors

que les nôtres ont une action importante sur le centre de M.
Ce travail est extrait de la thèse que j&apos;ai soutenue à l&apos;Université de

Neuchâtel.t Je tiens à remercier ici M. R. Bader qui m&apos;a aidé et encouragé
pendant son élaboration.

I. Une Construction Intrinsèque du W*-Produit Croisé

1.1. Produit croisé réduit (cf. Zeller-Meier [1] §4)

Soient A une C*-algèbre à élément unité, G un groupe discret et &lt;r:G—&gt;

Aut(A) un homomorphisme. Le produit croisé réduit B Cf(G,A) est le

complété de l&apos;algèbre normée involutive LX{G, A) des fonctions sommables / de

G dans A, la structure algébrique étant donnée par

et la norme ||/|| étant la norme réduite. Il n&apos;est pas difficile de voir que la norme
réduite est la plus petite C*-norme sur LX(G, A) qui rende continues les formes
linéaires &lt;p:feL1(G,A)*-*&lt;p(f(e))eC où &lt;p parcourt A*. B est une C*-algèbre
contenant A comme sous-C*-algèbre et K(G, A) l&apos;ensemble des fonctions de

G dans A à support fini) comme sous-algèbre involutive dense. B peut être
considérée comme une algèbre de fonctions de G dans A, le produit et l&apos;involu-

tion étant définis comme dans LX(G,A)\ les applications feB&gt;-+f(s)eA sont
linéaires et diminuent les normes; de plus l&apos;application

est positive fidèle. Enfin pour &lt;peA*+ et feB on a &lt;p(/) ç(f(e)).
Pour tout se G nous noterons us l&apos;élément de K(G, A) défini par us(t) 0 si

5 7e t et us(s) 1; on a usauf as(a) pour tout a g A. A toute représentation tt de

A dans un espace de Hilbert Ht on associe une représentation tt Ind tt de B

t polycopié de l&apos;Institut de mathématiques, Neuchâtel.
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dans É=L2(G, X) définie, pour fe £, |e &lt;k et te G, par

sŒG

Pour £e3€ et se G nous noterons |s l&apos;élément de % défini par |s(r) 0 si f7*s,
Is(^) £ Si £e2£ est totalisateur pour tt alors |e est totalisateur pour tt; si tt et £

définissent la forme positive cp sur A alors tt et |c définissent &lt;p. Nous dirons que
G opère quasi librement sur A si pour tout se G, s¥^e, on a l&apos;implication

suivante:

aeA, ab as(b)a pour tout kA^a 0.

Si A est un facteur cela revient à dire que tout as, s ¥=¦ e, est un automorphisme
extérieur et si A est abélienne on retrouve la notion de &quot;free action&quot; de von
Neumann (tout projecteur ¥¦ 0 de A majore un projecteur ¥=¦ 0 de A qui est

orthogonal à son image par as). Notons que si G opère presque librement sur A
(i.e. opère quasi librement sur Z(A), voir Zeller-Meier [1], définition 1.13) alors
G opère quasi librement sur A. L&apos;intérêt de la notion d&apos;action quasi libre est
qu&apos;elle englobe le cas des automorphismes extérieurs d&apos;un facteur. Pour tout cela

voir Kallman [1].

1.2. W*-produit croisé.

Conservons les notations du paragraphe 1 mais supposons maintenant que A
est une W*-algèbre; nous noterons A* [resp. Aj] son prédual [resp. la partie
positive de son prédual].

Soit E la fermeture en norme dans B* du sous-espace engendré par les formes
linéaires

où geK(G,A) et &lt;peA%. E est un espace de Banach.
Pour heB et &lt;oeB* les translatés à gauche et à droite Lha) et Rh(o sont

définis par

et

pour tout feB.
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LEMME 1. E est stable par les translations à gauche et à droite.

Démonstration. Il faut voir que si &lt;a g E on a Lha&gt; e E, Rhù) e E, quel que soit
h g B. Par continuité (pour la norme) et linéarité des applications Lh et Rh, il suffit
de le démontrer pour un &lt;o de la forme û)g)&lt;p(ge K(G, A), ç e A*). Soient alors tt
et £ la représentation de A et le vecteur de 3fw définis par &lt;p ; on sait que tt et £,

sont définis (à isomorphisme près) par &lt;p, donc pour tout feB

&lt;*W hf) &lt;P(g*hfg)

$((h*g)*fg) (*((fc*g)*/g)6 I le)

Posons t) ir(g)ie et f=7r(h*g)i; on a

(Uai^/&gt; (îr(/)îj |f)

i/) | t} + ii) - î(*(/)(tï - 0 11? - if».

Ainsi Lh(ogy(p est combinaison linéaire de quatre formes associées à tt; mais ces

dernières sont toutes limites en norme de cok&gt;&lt;p, k e K(G, A), (cf. Dixmier [1] Prop.
2.4.8.) donc appartiennent à E. Donc on a bien Lhù)g&lt;f&gt; g E; de même pour

On sait que B** est une W*-algèbre; soit E° le polaire de E dans B** i.e.

LEMME 2. E° esf un idéal bilatère a(B**;B*)~ fermé de B**.

Démonstration. Soit x g E°. Pour tout h g B et tout o) e E on a vu que LHcu g E
et Rh(o g E, donc

&lt;hx,a)) (x,Lho&gt;) 0 et (xh, &lt;o) &lt;x, Rha&gt;) 0,

d&apos;où hjc g E° et xh g E°. Si maintenant y g B** il existe une suite généralisée {ha}
d&apos;éléments de B telle que ha —? x pour la topologie cr(B**, B*). Comme E° est

o-(B**, B*)-fermé et que la multiplication par un élément fixe dans B** est

cr(B**, B*)-continue, on a

yx lim hax e E° et xy lim xha e E°
a a

d&apos;où le résultat.
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E° étant un idéal bilatère uniformément fermé de B**, le quotient B**/E° est

une C*-algèbre; comme B**/E° E* avec E espace de Banach, B**/£° est une
W*-algèbre, de prédual E. Posons M B**/E° et

LEMME 3. B est une sous-C*-algèbre cr(M, M*)-dense de M.

Démonstration. On a un homomorphisme (d&apos;algèbres involutives) canonique

fe B •-» [f]e M; il suffit de montrer qu&apos;il est injectif (il sera alors isométrique et on

pourra identifier B à son image dans M). Soit donc fe B tel que [/] 0 i.e. fe E°;
on a (a), /) 0 pour tout o&gt; e E. Prenons en particulier o&gt; Rh&lt;p où &lt;p e A* et
h useB; on a alors

0 &lt;&lt;o, /&gt; (Rh$, f) &lt;&lt;p, fus) (&lt;p, (fus)(e))

Mais

(fus)(e)= I 1

donc &lt;&lt;p, fis&apos;1)) 0. Ceci étant vrai pour tout &lt;p e Ai et tout s e G on a / 0. La
cr-densité de B dans M provient de la cr-densité de B dans B** et de la
o--continuité de l&apos;application canonique de B** sur M.

DÉFINITION. La W*-algèbre M B**/E° sera appelée W*-produit croisé
de A par G selon a et notée W*(A, G, o-).

1.3. Représentations de W*(A, G, a)

Nous conservons les notations A, G, o-, B, £, et M W*(A, G, a) du
paragraphe 2. Rappelons qu&apos;une W*-représentation tt de A dans W est une
représentation de A dans M continue pour les topologies a(A, A*) et

THÉORÈME 1.1. Soient tt wne W*-représentation de A dans X et tt la

représentation de B dans *k associée à tt.
(1) tt se prolonge de façon unique en une W*-représentation {notée encore tt) de M

dans 1t.

(2) Si tt est injective sur A alors tt est injective sur M.

Démonstration. (1) Nous supposerons d&apos;abord que tt possède un vecteur
totalisateur f eW; la forme positive &lt;p définie par tt et % appartient à A*. On sait
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alors que |e est totalisateur pour tt et que à et |e définissent &lt;p, et on peut
admettre que tt est la représentation définie par &lt;p; les formes linéaires

sont donc des limites en norme de combinaisons linéaires de &lt;ogyip, ge K(G, A),
donc appartiennent à E. La représentation rr:B-+ Lffl) est continue (pour la

norme); soit

son adjointe. Montrons que 7r*(L(^)*)cE: si co eL(S^)# il existe rj, e 9€, £t e É,
i 1, 2,... avec

Z ltôiH.2&lt;°°, Z ll£l|2&lt;00 et W(T) Z (Tri, | £,),
1=1 i=i 1=1

pour tout TeLffl); on a donc
oc

&lt;*•(«), /&gt;=&lt;» ° *, f)=&lt;«. *(/)&gt; I (*(/)* I è).
1=1

pour tout /gB. Par ce qui précède on voit donc que 7r*((o)eE. Notons tt* la
restriction de tt* à L(ffi)* et tt l&apos;adjoint de tt*; à est donc une application
linéaire continue (pour la norme) de E* M dans L(fC)% — L0k); tt est également
continue pour les topologies cr(M, M*) et cr(L(^), L(3fe)*). Si /e B, #(/) est défini

par

&lt;#(/),«&gt; &lt;/, *?(»)&gt; &lt;*(/),«&gt;

pour tout û&gt; g L(%)*9 donc tt tt sur B i.e. tt prolonge tt. On en déduit alors que

tt est un homomorphisme (d&apos;algèbres involutives) de M dans L($C), donc une

W*-représentation. En effet si x, yeM il existe deux suites généralisées {/«} et

{gp} d&apos;éléments de B telles que fa -* jc et g^-^ y pour la topologie a(M, M*); on

a donc

ir(jcy) tt[ x lim gJ tt( lim xg^ lim &apos;7^(xg^)

lim &apos;n-((lim/a)gb) lim ttilim/tt g^ 1

P \\ ot / / &amp; \ a f

lim lim ^(/«g^) lim tt(/«) lim 7r(gp)
0 a a P

et de même pout tt(x*) w
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Le cas d&apos;une W*-représentation quelconque tt se ramène au cas précédent;
on peut supposer tt non dégénérée et alors tt © tt, où chaque 7rt est une

^-représentation possédant un vecteur totalisateur; on a tt- ©tt, et en posant
tt ©7T, on obtient la W*-représentation de M dans ft cherchée.

L&apos;unicité de prolongement tt provient de la cr-densité de B dans M et de la
o--continuité de tt. Dans la suite, nous noterons simplement tt pour tt.

(2) Soit 7t une W*-représentation injective de A. On peut supposer tt non
dégénérée; rr(A) est alors une algèbre de von Neumann dans M. Soit ce A*;
comme ir~l est cr-continu on a (p°7r~~1e ir(A)i: il existe alors £ e%C, i 1, 2,
tel que

et

pour tout Te tt(A), donc

pour tout aeA. Passons à&lt;p;ona&lt;peE M* et, pour tout fe B,

I (w(/(e))è | fi) £ (#(/)(£)« | (fi).),
1 1

la dernière égalité provenant de

tGG

et de
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Quel que soit geK(G,A), on a, pour tout feB,

«**(/) &lt;P(g*/g) Z (*(g*/g)(fi)« I (6)e)

Z (#(
i=i

«x OO

en posant tj, 7r(g)(é)e; on a £ ||t},|| &lt;&lt;». Par (j-continuité on en déduit

«g,&lt;pU)= Z (*(

pour tout xeM. L&apos;injectivité de tt en découle: si ir(x) O on a (ogf(p(x) 0 pour
tout g € K(G, A) et tout &lt;p € A*, donc &lt;*)(x) 0 pour tout eo 6 E M#, d&apos;où x 0.

Le théorème est ainsi démontré.

Remarque 1.1. Ce résultat montre que notre définition du produit croisé
coïncide avec la définition classique lorsque A est une algèbre de von Neumann
dans un espace de Hilbert 3£ et s &gt;-* 17, une représentation unitaire de G dans ft9
telle que crs(a) UsaUf pour tout s e G et tout a g A. En effet désignons par tt la

représentation identité de A dans M; alors M= W*(A, G, cr) est isomorphe a

tt(M), qui est l&apos;algèbre de von Neumann dans % engendrée par ir(K(G, A)). Soit
W l&apos;opérateur unitaire sur ft défini par

pour tout ietit et tout s€ G. Par un simple calcul on obtient alors

ce qui montre que le produit croisé (classique) de A par G (selon la

représentation 17) est l&apos;algèbre de von Neumann engendrée par Wir(K(Gy A))W*
(Dixmier [2] p. 130, Suzuki [1]), donc Wif(Af) W*, qui est bien isomorphe à M.
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1.4. Structure A-préhilbertienne sur W*(A, G, a)

La représentation matricielle des éléments de M W*(A, G, a) (identifié au
produit croisé habituel) est bien connue. On obtient un résultat plus intrinsèque,
du même type que celui de Suzuki [1] (voir aussi Zeller-Meier [1], Remarque
8.17), en introduisant une topologie adéquate sur M. Les démonstrations sont
laissées au lecteur.

On montre tout d&apos;abord que l&apos;application &lt;j):B-*A se prolonge en une
projection (toujours notée &lt;f&gt;) de M sur A, a et s-continue, positive et fidèle. Pour
x, y € M on pose (x \ y) &lt;£(xy*); les propriétés de ce &quot;produit scalaire à valeurs
dans A&quot; découlent des propriétés de $:

(1) sesquilinéarité;
(2) (ax | y) a(x \ y) et (x \ ay) (x | y)a* pour x, y g M, a e A ;

(3) (y | x) (x | y)* pour x, y g M;
(4) (x |x)^0 pour tout xeM et (x | x) 0&lt;=&gt;x 0.

Pour tout ce Ai, nous noterons j3&lt;p la semi-norme sur M définie par j3&lt;p(x)

&lt;p(&lt;/&gt;(xx*))1/2 &lt;p(xx*)1/2 pour tout xeM (^ est la semi-norme a* de Sakai [1],
page 20), puis r la topologie d&apos;espace localement convexe séparé définie sur M
par les (3^, &lt;p e Aj (cf. D. Bures [1]). On montre facilement que pour tout y g M,
tout a g A et tout s g G les applications xGM«-»xyGM, xeM*-* axeM et
x g Mi-&gt; usx g M sont continues pour r; l&apos;application (x, y) g MxM*-* (x | y) g A
est continue si M est muni de la topologie t et A de la topologie cr(A, A*). Puis

on obtient:

THÉORÈME 1.2. (1) Pour tout xeM, la famille {(x | us)us)}s€EG est sommable

pour la topologie r et x Xsc=g(x | us)us.

(2) Si x XseGasws avec asGA et sommabilité pour r, alors as (x\ us) pour
tout se G.

Identifiant alors x à l&apos;application seG*-*(x\us)eA on voit que l&apos;adjoint et le

produit sont donnés par les mêmes égalités que dans LX(G,A) (dans l&apos;égalité

définissant le produit, la somme converge pour la topologie cr(A, A*)).

IL Un Théorème de Prolongement et ses Applications

II. 1. Prolongement de certains isomorphismes.

Soient M [resp. M] une W*-algèbre, N [resp. N] une sous- W*-algèbre de M
[resp. M] contenant l&apos;élément unité de M [resp. M], et &lt;f&gt; [resp. &lt;£] une projection
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positive normale et fidèle de M sur N [resp. de M sur N]. Soient Mo [resp. Mo]
une sous-algèbre involutive de M [resp. M], contenant N [resp. N] et or-dense

dans M [resp. M] et Ao un isomorphisme (d&apos;algèbres involutives) de Mo sur Mo
qui vérifie les deux conditions suivantes:

(1) A0(N) N; on notera A la restriction de Ao à N;

On peut illustrer cette situation par le diagramme suivant:

M M
U U

Mo

N —-Ç-+N

THÉORÈME II.l. Dans ces conditions Ao se prolonge de manière unique en un
isomorphisme Â de M sur M, qui vérifie

Démonstration.
(a) Soit (oeN%; on a a&gt;°&lt;f&gt;eMi. L&apos;ensemble /«, ={xeM\ a&gt;o&lt;^(jc*ac) 0} est

un idéal à gauche fermé pour la norme et M/I^ est un espace préhilbertien pour le

produit scalaire (xw | y*,)*, &lt;o°&lt;f&gt;(y*x) [x» désigne la classe de x e M dans M/Iw].
Soit 3KW l&apos;espace de Hilbert complété de M/4.

Montrons que M0IM0 H1^ est dense dans 3iC Pour cela il suffit de voir que
Mo/MoflL est dense dans M/Iw ; soient x € M et e &gt; 0; comme Mo est s (M, M*)-
dense dans M, il existe un xoeMo tel que ù)o&lt;t&gt;[(x-x0)*(x-x0)]^e; mais

w © &lt;f&gt;[(x - jco)*(x - Xo)] ||jc« - (jco)«||« d&apos;où l&apos;affirmation.

D&apos;autre part à eu correspond un ûeN* unique par la relation ù) â&gt;°A

[A:N-*N étant un isomorphisme est cr-bicontinu]. On construit comme ci-
dessus les objets &lt;ôo&lt;£, 1^, M/ï^ et %&amp;. Montrons que AoiMoHI^) M0Pi/^. Pour

tout jc g Mo on a

&lt;S © 4&gt;[Ao(x)*Ao(x)] ôi © $ o A0(x*x)

d&apos;où l&apos;affirmation.
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Donc Ao induit une application linéaire biunivoque

u^ : Mq/Mo ni»-&gt; Mo/Mo n 4

définie par uw(xw) (A0(x))ô. L&apos;égalité ci-dessus s&apos;écrit encore

donc mw se prolonge en une isométrie, notée encore uw entre %£„ et ^«.
(b) Soit maintenant Tr^rM-» H^t^) la représentation associée à co°&lt;£ [i.e.

pour tout xeM, tt^x) est le prolongé à Hi^ de l&apos;opérateur y,,, »-&gt;- (xy)^]; on
construit de même tt^ :M-» £,(%*). Montrons que, pour tout xeM0, on a

Il suffit de vérifier cette égalité sur Mo/Mo D1^ ; or, pour tout y^ e Mo/Mo H Iw, on
a

et

[*û(A0(x))uw]ya, fe(Ao(x))(Ao(y))â (A0(x)A0(y))«

d&apos;où l&apos;égalité cherchée.
Donc l&apos;isomorphisme spatial

envoie ^(Mo) sur ^(Mq)- Comme tt^ et 77^ sont des ^-représentations,
^(Mq) et ^(Mo) sont ultrafaiblement denses dans ir^M) et &apos;fc(M) respectivement,

et l&apos;isomorphisme ci-dessus envoie tt^M) sur ifei(Af).
(c) Considérons enfin l&apos;espace de Hilbert 3C=©3Cw(û&gt;€N*) et la W*-

représentation 7r ©^(cogN*) de M dans L(3€); tt(M) est une W*-algèbre et

comme &lt;j&gt; est fidèle, tt est un isomorphisme de M sur tt(M). On construit de

même &lt;k=®&lt;kS) (coeN*) et à (B tt«&gt;((d e N*) et on a le même résultat. Soit u

l&apos;isométrie de 3f sur W définie par u(^a)) (u^a)); il est clair que l&apos;isomorphisme
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spatial

envoie tt(M) sur tt(M). Alors en posant, pour tout xeM,

on a défini le prolongement cherché. L&apos;unicité étant évidente, le théorème est
démontré.

Le corollaire suivant est une généralisation d&apos;un théorème de C. Pearcy et J.

R. Ringrose [1] ainsi que de son extension par M. Enomoto et K. Tamaki [1],

COROLLAIRE. Soient M une W*-algèbre, N une sous-W*-algèbre de M
contenant Vêlement unité de M et &lt;j&gt; une projection positive normale et fidèle de M
sur N. Soient A et B deux sous-algèbres involutives de M dont les éléments

commutent avec ceux de N. Notons Â et Ê les W*-algèbres engendrées par A et N,
B et N respectivement. Si un isomorphisme W de A sur B vérifie la condition
(^(^(jc)) &lt;\&gt;(x) pour tout xeA, il se prolonge en un isomorphisme 4? de Â sur B tel

que
(1) #(a) W(a) pour tout aeA,
(2) V(x) x pour tout xeN,
(3) 4&gt;(V_(x)) &lt;£(jO pour tout x e Â,
(4) V(Â) È[Â,B: a-fermetures de A, £].

Démonstration. Notons Ao [resp. Bo] les sous-algèbres involutives de M
engendrées par A et N&quot; [resp. B et N]. Comme les éléments de A et N
commutent, Ao est l&apos;ensemble des sommes finies Xo + Xr-i^JCe avec ateA et

xt g N. De même pour Bo. On aimerait prolonger ^ à Ao en posant

(&apos;

Pour que cette relation définisse Wo il suffit que

1=1
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soit équivalent à

Or en utilisant les propriétés algébriques de &lt;£, on voit facilement que

ce qui, compte tenu de la fidélité de &lt;f&gt;, établit l&apos;équivalance ci-dessus; ^o est donc
bien défini. 11 est alors facile de voir que ^o est un isomorphisme d&apos;algèbres

involutives de Ao sur Bo, que ^(fl) V(a) pour tout aeA, W0(x) x pour tout
x e N et &lt;£&gt;° ^oM &lt;£(*) pour tout x e Ao. Le théorème II.l. affirme alors qu&apos;on

peut prolonger ^o en un isomorphisme de A cr-fermeture de Ao) sur Ê
o-fermeture de Bo) qui vérifie (1) (2) (3) et (4).

Remarque II.l. Ajoutons aux hypothèses du théorème II.l. les conditions
N N et A idN et considérons sur M [resp. M] la structure &quot;N-

préhilbertienne&quot; définie par 4&gt; [resp. &lt;£] (voir §1.4.). Ao est alors un homomor-
phisme de N-modules et la condition 4&gt;°Ao &lt;t&gt; \ Mo est équivalente à

(A0(x)|A0(y)) (x|y)

pour x, y e Mo i.e. Ao conserve le &quot;produit scalaire&quot;.

II.2. Application 1: Compléments sur le produit croisé.

(1) Soit M=W*(A,G,a) le produit croisé d&apos;une W*-algèbre A par un

groupe G selon la représentation a. Si H est un sous-groupe de G on peut
considérer l&apos;homomorphisme aH, restriction de a à H, et le produit croisé

W*(A, H, aH).

PROPOSITION II.l. W*{A,H,(TH) est canoniquement isomorphe à la sous-

W*~algèbre N de M W*(A, G, a) formée desxeM tels que {x \us) 0 pour tout

seG\H.

Démonstration. On voit facilement que N est une algèbre involutive (pour le

produit et l&apos;involution voir le § 1.4.) ; elle est or-fermée dans M car égale à

l&apos;intersection des ensembles cr-fermés {xeM| (x | us) 0} pour s€G\H. D&apos;autre
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part la sous-algèbre involutive No des sommes finies £sgh asus, as e A, est cr-dense
dans N car si x e N et / est une partie finie de G, on a

(x
seJ

Soit maintenant, pour tout se H, vs:H~* A la fonction caractéristique de s. On
sait, par construction du produit croisé, que l&apos;algèbre involutive Po des sommes
finies £seH asvs est or-dense dans W*(A,H,&lt;rH). L&apos;application Ao:YécisVsePo^f
£ asus e No est un isomorphisme d&apos;algèbres involutives tels que Ao | A idA. Les

projections canoniques &lt;j&gt; : W*(A, G, a) —» A et ¥: W*(A, H, crH)-&gt; A vérifient
(^°Ao=^r|Po- Par le théorème II. 1. Ao se prolonge de manière unique en un
isomorphisme A de W*(A, H, aH) sur N.

(2) Notons Mo l&apos;algèbre involutive des sommes finies Y*s&lt;=g ^sWs, ûs € A ; Mo est
cr-dense dans M. Soit a un automorphisme de G. L&apos;application A0:ZasMs»-»
Z ûsua(s) est un automorphisme de Mo (pour la structure d&apos;algèbre involutive); on
a Ao | A idA et &lt;f&gt;°A0 &lt;f&gt; \ Mo, donc par le théorème II. 1. Ao se prolonge en un
automorphisme Aa de M. Kallman [1] a étudié certaines propriétés de ces

automorphismes dans le cas où A C et G est un groupe ICC (i.e. les classes
d&apos;éléments conjugués des éléments # e sont infinies). Nous généralisons ici un de

ses résultats:

PROPOSITION II.2. Supposons que A soit G-finie. Une condition suffisante

pour que Aa opère quasi librement sur M est que, pour tout se G, Vensemble
{a(t)&quot;1 st | te G} soit infini

Démonstration. Soit xeM tel que xy Aa(y)x pour tout y g M. Posons

(x\us) as pour tout se G; en égalant les coefficients de us dans l&apos;égalité

xut Aa(ut)x ua(t)x, on obtient as cra(t)(aa(0-lst), d&apos;où

(*) asaf cra(o[aa(o-isfaî(o-isf]

pour s, te G. Pour sommabilité pour la topologie a(A,A*) de &lt;t&gt;(xx*) Yt ssaf

implique, pour tout cpeA*, la sommabilité de X &lt;p(asaf). La condition
&quot;{aiC^st 11 e G} est infini pour tout s e G&quot; et la relation (*) impliquent alors que
&lt;p(asaf) 0 pour tout se G et toute forme G-invariante &lt;p6Aj. Comme A est
G-finie on a as 0 pour tout se G, donc x 0 et Aa opère quasi librement.
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II n&apos;est pas difficile de trouver un exemple qui montre que l&apos;hypohtèse &quot;A est
G-finie&quot; est essentielle. On peut étendre sans restriction un autre résultat de
Kallman:

PROPOSITION II.2&apos;. Pour que Aa ne laisse que les éléments de A fixes il faut
et il suffit que pour tout se G, s^ e, Vensemble {an(s) \ ne Z} soit infini.

Démonstration. Soit x e M; posons as= (x \ us) pour tout s g G. Si Aa(x) x on
voit facilement que, pour tout s g G et tout n e Z, on a as aa*(s), donc pour tout
(peA*, &lt;p[asaf] &lt;p[aa«(s)a*n(s)]; la sommabilité de £ &lt;p(asaf) montre alors que la
condition est suffisante. Inversement s&apos;il existe s# e tel que F {an(s) \ ne Z} soit
fini, alors l&apos;élément x Xf€EF uteM vérifie x&amp; A et Aa(x) x.

H.3. Application 2: Sous-algèbre des invariants par un groupe d&apos;automorphismes.

Soient M une W*-algèbre, G un groupe discret et a: s e G »-» &lt;ts e Aut M un
homomorphisme. En appliquant le théorème 1.1. on voit qu&apos;il existe un espace de

Hilbert 26, une Wr*-représentation (non dégénérée) fidèle ir de M dans Ht et une
représentation unitaire V de G dans M tels que, pour tout s g G et tout x g M, on
ait

7T(as(x))=Vs7r(x)Vf.

Dans ce paragraphe, pour simplifier les notations, nous identifierons M et tt(M)
de sorte que nous sommes placés dans les conditions suivantes: M est une algèbre
de von Neumann dans 3€ et V une représentation unitaire de G dans Vt telle que

pour tout se G, VsMVf M; nous posons as(x)=VsxVf pour tout se G et

VG={Vs\seG}.
Soit N MG la sous-algèbre de von Neumann de M formée des éléments

xeM qui sont laissés fixes par G; on a N MnVG (V&apos;G commutant de

VG dans L(3^)), donc Nf est l&apos;algèbre de von Neumann engendrée par M&apos; et VG.

Constatons d&apos;autre part que G opère par automorphismes dans M&apos;; en effet, si
x&apos; g M&apos; et 5 g G on a, pour tout xeM,

Vsx&apos;Vfx VsxVs-*(x) Vf VsaMx)x&apos; Vf
*Vsx&apos;Vf,

donc Vsx&apos;V? eM&apos;. Posons or&apos;s(x&apos;)= Vsx&apos;Vf; a&apos; est un homomorphisme de G dans
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Aut (M&apos;). On voit donc que

est une algèbre involutive dont la fermeture faible est N&apos;. Nous allons chercher à

identifier N&apos; et le produit croisé W*(M&apos;, G, a&apos;). Nous aurons besoin de la

remarque suivante:

LEMME. Si Vaction a de G dans M est quasi libre, il en est de même de

Vaction a&apos; de G dans M&apos;.

Démonstration. Soient s^e et x&apos;eM&apos; tel que x&apos;y&apos;= or&apos;s(y&apos;)x&apos; pour tout y&apos;g M&apos;;

il faut voir que x&apos; 0. On a x&apos;y&apos;= Vsy&apos;Vfx\ donc Vfx&apos;y&apos; y&apos;Vfx&apos;, pour tout
y&apos;eM&apos;; d&apos;où Vfx&apos;eM et

pour tout y g M. Comme l&apos;action a- de G dans M est quasi libre on a Vf x&apos; 0,

Nous traiterons d&apos;abord le cas particulier où G est un groupe fini.

1er cas. G est un groupe fini.

Lorsque G est fini on a W*(M&apos;, G, a&apos;) K(G, M&apos;) et tout élément s&apos;écrit de

façon unique sous la forme Y,sç=gXsUs (somme finie). On définit donc une
application

A:W*(Mf,G,&lt;r&apos;)-^N&apos;

en posant A(£ x&apos;sus) £ x&apos;sVs. Comme les relations qui lient l&apos;action a&apos; de G dans
M&apos; et les représentations unitaires m et V sont les mêmes [i.e.

pour tout x&apos;eM&apos; et tout se G] on voit que A est un homomorphisme
d&apos;algèbres involutives. Montrons que A est cr-continu: soient tt la représentation
identité de M&apos; dans Ht et iï la représentation de W*(M\ G, a&apos;) dans ?6 L2(G, X)
qui lui est associée; l&apos;image P if(W*(M&apos;, G, a&apos;)) est une algèbre de von
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Neumann et tt un isomorphisme (théorème I.I.); il nous suffit donc de démontrer
que l&apos;homomorphisme A°tt~x:P-* Nf est ultrafaiblement continu; étant donné £
rj g 3€, définissons |, t) g $? par

r? si s e

i(s) \ T}(s)=Vfî) pour tout s6 G;
0 sinon

si y =£ xjws € W*(M\ G, cr&apos;), on a, pour tout f g G,

(*(y)f)(O Z ^-(
s

et

d&apos;où on déduit la continuité ultrafailble de A. On voit ainsi que A est surjectif
(A(P) est une algèbre de von Neumann qui contient (N%) et que son noyau est un
idéal bilatère o--fermé. On a démontré:

PROPOSITION II.3. A est un homomorphisme a-continu de W*(M&apos;, G, a&apos;)

sur N&apos;; il existe un projecteur p du centre de W*(M&apos;, G, a&apos;) tel que A induise un
isomorphisme de pW*(M&apos;, G, a&apos;) sur N&apos;.

COROLLAIRE. Soient M un facteur et G un groupe fini opérant par automor-
phismes extérieurs dans M. Alors N MG est un facteur, MfliV&apos;=Cl et toute

sous-W*-algèbre L telle que NcLcM est un facteur. Si Ht et H2 sont deux

sous-groupes de G tels que MHl MH2 alors Ht H2.

Démonstration. En effet, dans ces conditions W*(M&apos;, G, cr&apos;) est un facteur et A
un isomorphisme de W*(M&apos;, G, a&apos;) sur N&apos;; les deux premières affirmations
découlent alors de résultats connus. Enfin L est un facteur car L 0 L&apos;cz MO N&apos;

C1 et si H est un sous-groupe de G, (MH)&apos; est l&apos;image par A de la sous-algèbre
{y g W*{M\ G, a&apos;) | (y | us) 0 pour tout sfÈ H) isomorphe à W*(M&apos;, H, ar&apos;H).
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Remarque 112. Lorsque M est un facteur II!, ce corollaire se trouve dans un
article de M. Nakamura et Z. Takeda [1], dont nous avons ici quelque peu
généralisé la méthode. En utilisant des propriétés attachées plus étroitement aux
facteurs II (la trace finie ou la simplicité algébrique) les auteurs montrent que
toute sous-algèbre de M contenant N est de la forme MH où H est un

sous-groupe de G, établissant ainsi une correspondance galoisienne entre les*

sous-groupes de G et les sous-algèbres de M contenant N. Nous n&apos;avons pas pu
établir, pour un facteur quelconque, la surjectivité de l&apos;application H »-&gt; MH.

Remarque II.3. Les hypothèses faites par Nakamura et Takeda [1] leur
interdisaient de considérer des groupes G infinis. Nous pouvons affaiblir ces

hypothèses et établir un isomorphisme A entre N&apos; et W*{M\ G, a&apos;) sans restriction

sur G.

2eme cas : G groupe quelconque.

Nous ne supposerons plus que G est fini mais nous ferons les deux hypothèses
suivantes:

(hi): G opère quasi librement (par a) dans M;
(h2): il existe une projection positive normale fidèle 9 de N&apos; sur M&apos;.

Considérons sur W*(M&apos;, G, a&apos;) et sur N&apos; les structures &quot;M&apos;-préhilbertiennes&quot;

définies par &lt;t&gt; et W respectivement (&lt;f&gt; désigne la projection positive normale
fidèle de W*(M&apos;9 G, a&apos;) sur M&apos;; voir § 1.4.); nous noterons t^&gt; et i&gt; les topologies
associées. Notons que {Vs} est un système orthonormé dans N&apos;; en effet, pour tout
x&apos;eM&apos; et tout se G, s^e, on a

tp( vs)x&apos; *&quot;( Vsx&apos;) V(&lt;ts(x&apos;) Vs) &lt;rs(x&apos;)V( Vs)

d&apos;où \P(VS) O à cause de l&apos;hypothèse (hO; on a donc (Vs| V,)=^(VsVf)
ï/(Vsr0=:Osis^ t et(Vs | Vs) ^(1) 1. Considérons les sous-algèbres involutives
cr-denses X(G, M&apos;) et (N% de W*(M&apos;, G, a&apos;) et Nf respectivement; on définit un
homomorphisme d&apos;algèbres involutives Ao de K(G9 M&apos;) sur (N% en posant

Ao( X x&apos;sUs)= X ^Vs (somme finifinie)

on voit immédiatement que Ao \ M&apos; idM&apos; et W0 Ao $ \ K(G, M&apos;) d&apos;où, pour yl9
y2eK(G9M&apos;), l&apos;égalité
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Ao est donc injectif et se prolonge de façon unique en un isomorphisme A de

W*(M\ G, or&apos;) sur N&apos;, qui vérifie *°A=(f&gt;.Ona démontré:

PROPOSITION II.4. Avec les hypothèses (hO et (h2) ci-dessus il existe un
isomorphisme

A : W*(M\ G, a&apos;) -+ N&apos;

tel que

(les sommes convergent pour les topologies t^ et r^ respectivement).

On en déduit, comme pour la proposition H.3., le corollaire suivant:

COROLLAIRE. Dans les conditions ci-dessus on a MflN&apos; Z(M), Z(N)
Z(M)G donc N est un facteur si et seulement si G opère ergodiquement dans Z(M).
Si Hi et H2 sont deux sous-groupes de G tels que MHl MH* alors Hx H2.

III. Une Correspondance Galoisienne

Dans toute la suite M désignera une W*-algèbre, Z le centre de M et G un

groupe fini d&apos;automorphismes de M. Rappelons que G opère presque librement
dans M si, pour tout aeG, cr^l, et tout projecteur peZ, p#0, il existe un
projecteur qeZ tel que 0&lt;q^p et or(q)q 0.

DÉFINITION. Une sous-W*-algèbre L de M sera dite G-libre si pour tout
aeG, ou bien a | L 1, ou bien, pour tout projecteur p e Z H L, p# 0, il existe un

projecteur qeZDL tel que 0&lt;q^p et a(q)q 0.

PROPOSITION III.1. Soit L une sous-W*-algèbre G-libre de M. Il existe une

famille {q,}iei de projecteurs de ZOL, orthogonaux deux à deux et de somme 1, telle

que, si creG et a\L^l, on ait a(ql)ql 0 pour tout i e L

Démonstration. Soient cru cr2,..., crs les éléments de G dont la restriction à L
n&apos;est pas l&apos;identité. Il suffit de voir que tout projecteur p#0 de ZflL majore un
projecteur q# 0 de Zfl L tel que at(q)q 0 pour tout i - 1, 2, s.Or, L étant
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G-libre, il existe une suite de projecteurs # 0 de ZCiL telle que
• • *^/s&gt;0 et cr,(/,)/, 0 pour tout i 1, 2,..., s. Le projecteur q =/s répond
alors à la question car at(q)q a&quot;,(/i&lt;ï)/i&lt;ï cr.C/,)/, cr^q 0.

COROLLAIRE. Si G opère presque librement dans M, il existe une famille
de projecteurs de Z, orthogonaux deux à deux et de somme 1, telle que, pour

tout iel on ait

si &lt;r=l

si **1

Nous pouvons maintenant démontrer le &quot;théorème fondamental de la théorie de
Galois&quot;; nous noterons N MG la sous- W*-algèbre des points fixes de M par G.

THÉORÈME III. 1. Supposons que G opère presque librement dans M. Il y a

correspondance biunivoque entre les sous-groupes H de G et les sous-W*-algèbres
G-libres L de M qui contiennent N. Cette correspondance est donnée par

Démonstration.
(a) Soit L une sous-W*-algèbre G-libre de M, contenant N. Posons H= GL

{ae G | cr(x) x, Vjc g L}; H est un sous-groupe de G. Montrons que MH L. Il
est clair que Lc=MH. Comme L est G-libre il existe (Proposition III.1.) une
famille {q,}iej de projecteurs de ZHL, orthogonaux deux à deux et de somme 1,

telle que,

si aeH
si afÉH

pour tout jeJ. Soit xeMH, on a x l/|H|£ieHT&quot;(jt), où |H| désigne le nombre
d&apos;éléments de H. Donc, pour tout / g J, on a

1 v
||| o-eG
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Mais l/lHlXo-eGcKxq,) appartient à N MG, donc xq} e L. Comme x Zjej*4 on
a x € L. Donc MH c L.

(b) Soit H un sous-groupe de G. Posons L MM et H&apos;= GL {aeG\ a(x)
x, VxeL}. Montrons que H H&apos; et que L est G-libre. Tout d&apos;abord il est clair

que H^H&apos; et que MH MH L. Considérons les deux applications suivantes:

&lt;f&gt;:M-*MH L définie par &lt;M*) 777ï S T(x)
|H|

et

&lt;f&gt;f : M -^MH&apos; L définie par 4&gt;&apos;(x) -^- X
I&quot; I

(/&gt; [resp.&lt;^&gt;&apos;] est une projection H-invariante [resp. H&apos;-invariante] de M sur L.
Comme Hcff&apos;, &lt;£&apos; est H-invariante et on a, pour tout xeM,

D&apos;autre part &lt;/&gt;&apos;($(*)) &lt;£&gt;(*) car &lt;£&gt;(x)eL, donc on a (t&gt; (j)&apos;. Soit p un des

projecteurs de la famille {pt} définie dans le corollaire de la proposition III. 1; on a

mais d&apos;autre part:

1 V2

=77771 I P(P)P [77m P»

|ri I 6H&apos; \ri I

d&apos;où |H| |H&apos;| et donc H H&apos;.

Montrons maintenant que L est G-libre. Soit {pt}iej la famille de projecteurs
de Z définie dans le corollaire de la proposition III. 1. Posons, pour tout iel,

p&apos;=

T€H
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p\ appartient à ZC\MH ZDL et comme

(Ti(pl)cr2(pl) &lt;r2[(T2 WpOPt] 0

si (tu cr2G G, cri ¥¦ a2, on voit que p[ est un projecteur. Pour tout a € G, on a

Z °&quot;T(P«) Z P(P»)

T,p6H

mais ar{pl)p{pl) 0 sauf si or p. On voit donc que

si aeH
si afé H

Soient creG tel que a\L^l et eeZDL un projecteur non nul. Il faut trouver
un projecteur feZDL tel que 0&lt;f^e et cr(f)f=O. Comme e#0, il existe iel
tel que epx ^ 0; on a aussi epî 5e 0 car pt ^ p\. Posons f&apos; epî; / est un projecteur de

ZflL, 0&lt;/^e et

cr(epO«p: &lt;r(«)ecr(pOpî 0

car (r\L¥&quot;\ est équivalent à af£H. Ainsi L est G-libre et le théorème est
démontré.

Le cas des sous-groupes distingués est réglé par la proposition suivante, dont
la démonstration est facile:

PROPOSITION III.2. Plaçons-nous dans les hypothèses du théorème III. 1.

Pour qu&apos;un sous-groupe H de G soit distingué il faut et il suffit que L MH soit

globalement fixe par G. Alors G/H peut être considéré comme un groupe d&apos;au-

tomorphismes de L; G/H opère presque librement sur L et LGIH N.

Remarque. Les résultats de ce chapitre restent valables si on prend pour M
une AW*-algèbre.
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