Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 51 (1976)

Artikel: Théorie de Galois pour une W*-Algebre
Autor: Aubert, P.-L.

DOl: https://doi.org/10.5169/seals-39452

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-39452
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 39 (51) 411-433 Birkhduser Verlag, Basel

Théorie de Galois pour une W*-Algébre

P.-L. AUBERT

Introduction

Soient M une W*-algébre et G un groupe d’automorphismes de M. Peut-on
décrire la sous-algtbre M® des points fixes de M par G? Existe-t-il entre les
sous-groupes de G et les sous-algeébres de M contenant M une correspondance
galoisienne? M. Nakamura et Z. Takeda [1] ont obtenu une réponse affirmative
lorsque M est un facteur de type II; et G un groupe fini d’automorphismes
extérieurs. Nous avons cherché a étendre leurs résultats en assouplissant les
conditions sur M et sur G.

Le produit croisé W*(M, G) joue ici un rdle important. Au chapitre I, nous en
donnons une construction nouvelle, sans passer par une représentation de M
comme algebre de von Neumann dans un espace de Hilbert; a I’aide de la norme
réduite sur L'(G, M), nous définissions directement le prédual de W*(M, G).
L’étude des représentations de W*(M, G) permet alors de retrouver la définition
classique.

Le résultat de Nakamura et Takeda repose sur le fait que le commutant de
M€ peut s’identifier & un produit croisé. Pour généraliser ce résultat nous devions
pouvoir prolonger aux W®*-algébres un isomorphisme défini entre des sous-
algébres involutives o-denses. Pearcy et Ringrose [1] ont obtenu, pour des
W*-algebres finies, un résultat permettant de prolonger les isomorphismes qui
conservent les applications 5. Enomoto et Tamaki [1] ont généralisé ce résultat,
mais ils gardent une condition de finitude. Au chapitre II, nous obtenons un
résultat plus fort: on peut prolonger les isomorphismes qui conservent des
projections positives normales fidéles. On peut alors utiliser ce théoréme pour la
correspondance galoisienne: il nous permet d’obtenir, sous certaines hypotheses,
I'injectivité de I’application “sous-groupe +> sous-algebre”.

En algebre, S. U. Chase, D. K. Harrison et A. Rosenberg [1] ont obtenu une
théorie de Galois pour les anneaux commutatifs. En essayant d’appliquer les

méthodes algébriques a I’étude d’un groupe fini G d’automorphismes d’une
W*.algébre M, nous avons vu que la notion importante était celle d’action presque

libre de G sur M. Au chapitre III, sous cette seule hypothése, nous démontrons le
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412 P.-L. AUBERT

“théoréme fondamental de la théorie de Galois” qui établit une correspondence
biunivoque entre les sous-groupes de G et certaines sous-algeébres, dites G-libres,
de M. On peut considérer ce résultat comme complémentaire de celui de
Nakamura et Takeda: leurs automorphismes sont extérieurs sur un facteur alors
que les ndtres ont une action importante sur le centre de M.

Ce travail est extrait de la theése que j’ai soutenue a I’Université de
Neuchétel.t Je tiens a remercier ici M. R. Bader -qui m’a aidé et encouragé
pendant son élaboration.

I. Une Construction Intrinséque du W*-Produit Croisé

1.1. Produit croisé réduit (cf. Zeller-Meier [1] §4)

Soient A une C*-algébre a élément unité, G un groupe discret et o:G —
Aut (A) un homomorphisme. Le produit croisé réduit B =C¥(G, A) est le
complété de I’algeébre normée involutive L'(G, A) des fonctions sommables f de
G dans A, la structure algébrique étant donnée par

(fo)(s) = 2, f(Dalg(r™ s)]

teG

f*(9)=alf(s™)*]

et la norme ||f|| étant la norme réduite. Il n’est pas difficile de voir que la norme
réduite est la plus petite C*-norme sur L'(G, A) qui rende continues les formes
linéaires ¢:fe L'(G, A)— ¢(f(e))e C ou ¢ parcourt A*. B est une C*-algebre
contenant A comme sous-C*-algébre et K(G, A) (=1’ensemble des fonctions de
G dans A a support fini) comme sous-algébre involutive dense. B peut étre
considérée comme une algebre de fonctions de G dans A, le produit et I'involu-
tion étant définis comme dans L'(G, A); les applications fe B — f(s)e A sont
linéaires et diminuent les normes; de plus I’application

¢:feB—fle)e A

est positive fidele. Enfin pour o€ A*" et fe B on a ¢(f) = ¢(f(e)).

Pour tout s € G nous noterons u, I’élément de K(G, A) défini par u,(t)=0 si
s#t et us(s)=1; on a uau® = o,(a) pour tout a € A. A toute représentation 7 de
A dans un espace de Hilbert # on associe une représentation 7 =Ind = de B

T polycopié de I'Institut de mathématiques, Neuchitel.
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dans 9 = L*(G, ¥) définie, pour fe B, £ ¥ et te G, par

[#(NENN =2, mlom(f(s)IEs™ ).

s€eG

Pour £€# et se€ G nous noterons és I’élément de ¥ défini par §~s(t)=0 Si t#s,
£,(s)= £ Si £€ ¥ est totalisateur pour 7 alors £ est totalisateur pour 7; si et &
définissent la forme positive ¢ sur A alors 7 et & définissent ¢. Nous dirons que
G opere quasi librement sur A si pour tout s€ G, s#e, on a I'implication
suivante:

a€ A, ab=oy(b)a pour tout be A > a=0.

Si A est un facteur cela revient a dire que tout o, s# e, est un automorphisme
extérieur et si A est abélienne on retrouve la notion de “free action” de von
Neumann (tout projecteur # 0 de A majore un projecteur # 0 de A qui est
orthogonal a son image par o,). Notons que si G opére presque librement sur A
(i.e. opere quasi librement sur Z(A), voir Zeller-Meier [1], définition 1.13) alors
G opere quasi librement sur A. L’intérét de la notion d’action quasi libre est
qu’elle englobe le cas des automorphismes extérieurs d’un facteur. Pour tout cela
voir Kallman [1].

1.2. W*-produit croisé.

Conservons les notations du paragraphe 1 mais supposons maintenant que A
est une W*-algébre; nous noterons Ay [resp. Ax] son prédual [resp. la partie
positive de son prédual].

Soit E la fermeture en norme dans B* du sous-espace engendré par les formes
linéaires

weo:feB > $(g*fg)eC

ou ge K(G, A) et pe Ax. E est un espace de Banach.
Pour he B et we B* les translatés a gauche et a droite L,w et R,w sont
définis par '

<Lhw, f) = <0), hf> et <Rhw’ f) = <w’ fh>

pour tout fe B.
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LEMME 1. E est stable par les translations a gauche et a droite.

Démonstration. 11 faut voir que si w€e E on a L,w € E, R,w € E, quel que soit
h € B. Par continuité (pour la norme) et linéarité des applications L, et R, il suffit
de le démontrer pour un w de la forme w, (g€ K(G, A), ¢ € A¥). Soient alors 7
et ¢ la représentation de A et le vecteur de ¥, définis par ¢; on sait que 7 et &,
sont définis (a isomorphisme prés) par ¢, donc pour tout fe B
<Lhwg,<p’ f) = (wg,w hf) = ‘E’(g*hfg)
= @((h*)*fg) = (#((h*g)*fg)&. | &)
=(7(f)7(g)& | w(h*g)&.).

Posons 7 = #(g)& et {=w(h*g)é.; on a

(Lawges f)=(7(f)7 | )
=HFO@R+) |7+ D)= F(HH-) |79
+i(7(f)(A +id) | 7 +iD) - i(#(H) (A —if) | 7—i)}.

Ainsi L,w,, est combinaison linéaire de quatre formes associées a 7r; mais ces
derniéres sont toutes limites en norme de wy , k € K(G, A), (cf. Dixmier [1] Prop.
2.4.8.) donc appartiennent a E. Donc on a bien L,w, , € E; de méme pour R,w, .

On sait que B** est une W*-algebre; soit E° le polaire de E dans B** i.e.
E°={xe B**|(w, x)=0,Vwe E}.

LEMME 2. E° est un idéal bilatére o(B**; B*)— fermé de B**.

Démonstration. Soit x € E°. Pour tout he B et tout w€ E on a vu que Ly,w€ E
et R,we€ E, donc

(hx, w)=(x, Lhw)=0 et (xh, w)=(x, R,w)=0,

d’ou hx € E° et xh € E°. Si maintenant y € B** il existe une suite généralisée {h,}
d’éléments de B telle que h, — x pour la topologie o(B**, B¥). Comme E° est
o(B**, B*)-fermé et que la multiplication par un élément fixe dans B** est
o(B**, B*)-continue, on a

yx =lim h,x€ E® et xy=Ilim xh, € E°

d’ou le résultat.
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E° étant un idéal bilatére uniformément fermé de B**, le quotient B**/E° est

une C*-algébre; comme B**/E°= E* avec E espace de Banach, B**/E° est une
W*-algebre, de prédual E. Posons M = B**/E° et My=E.

LEMME 3. B est une sous-C*-algébre o(M, Mx)-dense de M.

Démonstration. On a un homomorphisme (d’algebres involutives) canonique
fe B [f]le M; il suffit de montrer qu’il est injectif (il sera alors isométrique et on
pourra identifier B a son image dans M). Soit donc f€ B tel que [f]=01i.e. fe E®;
on a {(w, f)=0 pour tout we E. Prenons en particulier o = R,$ ou o€ Ax et
h=u,€ B; on a alors

0=(o, f)=(Ru&, ) =(&, fus) = (e, (fu;)(e))
Mais

(fu)(e)= 2 f(tolu(t"e)]=f(s7),

teG

donc (@, f(s ")) =0. Ceci étant vrai pour tout p€ A% et tout se Gona f=0. La
o-densité de B dans M provient de la o-densité de B dans B** et de la
o-continuité de I’application canonique de B** sur M.

DEFINITION. La W*-algébre M = B**/E° sera appelée W*-produit croisé
de A par G selon o et notée W*(A, G, o).

1.3. Représentations de W*(A, G, o)

Nous conservons les notations A, G, o, B, E, et M= W*(A, G, o) du para-
graphe 2. Rappelons qu’une W?¥*-représentation = de A dans ¥ est une

représentation de A dans # continue pour les topologies o(A, Ag) et
o (L (%), L(X)s).

THEOREME 1.1. Soient m une W*-représentation de A dans ¥ et 7 la
représentation de B dans ¥ associée a .

(1) 7 se prolonge de facon unique en une W*-représentation (notée encore ) de M
dans %.
(2) Si m est injective sur A alors 7 est injective sur M.

Démonstration. (1) Nous supposerons d’abord que = possede un vecteur
totalisateur £ € ¥; la forme positive ¢ définie par 7 et £ appartient a Ax. On sait
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alors que £, est totalisateur pour # et que # et £ définissent ¢, et on peut
admettre que 7 est la représentation définie par ¢; les formes linéaires

feB—(w(f)i|DeCc  #,leHk

sont donc des limites en norme de combinaisons linéaires de w,,, g€ K(G, A),

donc appartiennent a E. La représentation 7 :B — L(¥) est continue (pour la
norme); soit

7*: L(%)* — B*

son adjointe. Montrons que #*(L(#)s) < E: si we L(H)x il existe ne¥k Lek,
i=1,2,...avec

Ll <o, LIiP<e et o= (Tild),
i=1 . i= i=
pour tout Te L(%); on a donc

(#*(@), fy=(@o, ) =(o, 7)) = L G| L),

pour tout fe B. Par ce qui précéde on voit donc que #*(w)e E. Notons #¢ la
restriction de #* 3 L(H#)x et # I’adjoint de e, @ est donc une application
linéaire continue (pour la norme) de E*= M dans L(#)%= L(%); # est également
continue pour les topologies o (M, My) et o (L(¥), L(¥#)%). Si f€ B, #(f) est défini
par

(#(f), 0)=(f, 75(w)) = {7 (f), ®)

pour tout w € L(¥)x, donc # = 4 sur B i.e. # prolonge #. On en déduit alors que
# est un homomorphisme (d’algébres involutives) de M dans L(%), donc une
W*-représentation. En effet si x, ye M il existe deux suites généralisées {f.} et
{ge} d’éléments de B telles que f, — x et g, — y pour la topologie o(M, My); on
a donc

w(xy)= w(x lim gﬁ) = -Fr(li;n ng) = lién (xgs)

B

= lign lim 7(f.gg) =lim 7(f,) ligl 7(gg)
= 7 (x)7(y)

et de méme pout #(x*)= 7 (x)*.
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Le cas d’'une W*-représentation quelconque 7 se raméne au cas précédent;
on peut supposer 7 non dégénérée et alors w= @ m ou chaque m; est une
W*-représentation possédant un vecteur totalisateur; on a = @ 7; et en posant
# =@ #; on obtient la W*-représentation de M dans ¥ cherchée.

L’unicité de prolongement 7 provient de la o-densité de B dans M et de la
o-continuité de 7. Dans la suite, nous noterons simplement 7 pour 7.

(2) Soit = une W*-représentation injective de A. On peut supposer 7 non
dégénérée; w(A) est alors une algebre de von Neumann dans #. Soit ¢ € Ax;
comme 7 ' est o-continu on a gow '€ w(A)x: il existe alors &€, i=1, 2, ...
tel que

LIElP <o et gon(T)= X (T&| &)

pour tout T e w(A), donc

oo

¢(a)= 2, (n(a)& | &)

i=1

pour tout a € A. Passons a ¢; on a ¢ € E = My et, pour tout f€ B,

&N = e(f(e) = L (m(f(eD& | &)= L (F(HE). | E)o)
la derniere égalité provenant de

(#(NE &)= L (#(HEND | EW)=#(HENe) | &)

teG

et de

[#(f)ENe) = Y mlo._s(f(s)]IE(s ') = m(f(e))&

seG
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Quel que soit ge K(G, A), on a, pour tout fe B,

wso(f) = $(g*R) = L (7(g*fe)é)e | (E).)

L (#N)é)e | (@)@

8

(# () | )

i=1

en posant 7; = 7(g)(&).; on a X, || <. Par o-continuité on en déduit

oo

wgo(X) =2, (F(X)7 | )

i=1

pour tout x € M. L’injectivité de 7+ en découle: si 7(x)=0 on a w,(x)=0 pour
tout g€ K(G, A) et tout ¢ € Ak, donc w(x) =0 pour tout w € E = My, d’ou x =0.
Le théoréme est ainsi démontré.

Remarque -1.1. Ce résultat montre que notre définition du produit croisé
coincide avec la définition classique lorsque A est une algebre de von Neumann
dans un espace de Hilbert # et s — U, une représentation unitaire de G dans %,
telle que o,(a) = U,aU¥ pour tout s € G et tout a € A. En effet désignons par = la
représentation identité de A dans ¥; alors M= W*(A, G, o) est isomorphe a
#(M), qui est I'algébre de von Neumann dans % engendrée par #(K(G, A)). Soit
W Popérateur unitaire sur % défini par

(Wé)(s) = U,é(s)
pour tout £€ ¥ et tout se G. Par un simple calcul on obtient alors

[W#(a) W*E](s) = aé(s),
[WV,W*El(s) = u, - £(t7's),

ce qui montre que le produit croisé (classique) de A par G (selon la
représentation U) est I’algébre de von Neumann engendrée par W (K(G, A)) W*
(Dixmier [2] p. 130, Suzuki [1]), donc W (M) W*, qui est bien isomorphe & M.
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1.4. Structure A-préhilbertienne sur W*(A, G, o)

La représentation matricielle des éléments de M = W*(A, G, o) (identifié au
produit croisé habituel) est bien connue. On obtient un résultat plus intrinséque,
du méme type que celui de Suzuki [1] (voir aussi Zeller-Meier [1], Remarque
8.17), en introduisant une topologie adéquate sur M. Les démonstrations sont
laissées au lecteur.

On montre tout d’abord que l'application ¢:B—> A se prolonge en une
projection (toujours notée ¢) de M sur A, o et s-continue, positive et fidele. Pour
X, y€ M on pose (x| y)= @d(xy*); les propriétés de ce “produit scalaire a valeurs
dans A” découlent des propriétés de ¢:

(1) sesquilinéarité;

(2) (ax|y)=a(x|y) et (x|ay)=(x]|y)a* pour x,ye M, ac A;

(3) (y|x)=(x|y)* pour x, ye M;

(4) (x| x)=0 pour tout xe M et (x| x)=0& x=0.

Pour tout ¢ € A, nous noterons B, la semi-norme sur M définie par B,(x)=
@(P(xx*))? = g(xx*)""* pour tout xe M (B, est la semi-norme « de Sakai [1],
page 20), puis 7 la topologie d’espace localement convexe séparé définie sur M
par les B,, ¢ € Ax (cf. D. Bures [1]). On montre facilement que pour tout y € M,
tout ac A et tout se G les applications xe M—>xyeM, xe M—> axeM et
x € M — u,x € M sont continues pour 7; Papplication (x, y)e MXM— (x| y)e A
est continue si M est muni de la topologie = et A de la topologie (A, Ax). Puis
on obtient:

THEOREME 1.2. (1) Pour tout xe M, la famille {(x | us)us)}sec est sommable
pour la topologie 7 et x =Y e (X | us)Us.

(2) Si x=Y,ec asus avec a; € A et sommabilité pour 7, alors a; = (x | us) pour
tout se G.

Identifiant alors x & ’application s€ G—(x | u;)€ A on voit que I’adjoint et le
produit sont donnés par les mémes égalités que dans L'(G, A) (dans I'égalité
définissant le produit, la somme converge pour la topologie o(A, Ax)).

II. Un Théoreme de Prolongement et ses Applications

II.1. Prolongement de certains isomorphismes.

Soient M [resp. M] une W*-algebre, N [resp. N7 une sous- VY*-algébre de M
[resp. M] contenant ’élément unité de M [resp. M], et ¢ [resp. ¢] une projection
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positive normale et fidéle de M sur N [resp. de M sur NJ. Soient M, [resp. Mo]
une sous-algebre involutive de M [resp. M], contenant N [resp. N] et o-dense
dans M [resp. M] et Ay un isomorphisme (d’algébres involutives) de M, sur M,
qui vérifie les deux conditions suivantes:

(1) Ao(N)=N; on notera A la restriction de Ao & N;

(2) ¢oAo=Ac(d|Mo).

On peut illustrer cette situation par le diagramme suivant:

THEOREME I1.1. Dans ces conditions A, se prolonge de maniére unique en un
isomorphisme A de M sur M, qui vérifie

$poA=Acd

Démonstration.

(a) Soit we Ng; on a wep € Mx. L’ensemble I, ={xe M| wed(x*x) =0} est
un idéal a gauche fermé pour la norme et M/I, est un espace préhilbertien pour le
produit scalaire (x, | yo)o = @°d(y*x) [x,, désigne la classe de x € M dans M/L,].
Soit ¥, ’espace de Hilbert complété de M/L,.

Montrons que My/MyN 1, est dense dans . Pour cela il suffit de voir que
My/ M, I, est dense dans M/IL,; soient x € M et € >0; comme M, est s(M, My)-
dense dans M, il existe un xo€ M, tel que wo°d[(x—x0)*(x —xo)]<e; mais
w o d[(x = x0)*(x — x0)] = || %0, — (x0)w||> d’0U I’affirmation.

D’autre part 3 o correspond un @e Ni unique par la relation w=@o°A
[A:N— N étant un isomorphisme est o-bicontinu]. On construit comme ci-
dessus les objets a”wd;, f‘;,, M/, et # ;. Montrons que Ao(MoNL,) = Moﬂ IZ;. Pour
tout xe My on a

&0 P[Ao(x)* Ag(x)]= @ o o Ag(x*x)
=woA o Aogp(x*x)
= wod(x*x)

d’ou I'affirmation.
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Donc A, induit une application linéaire biunivoque
u,:My/MyN1I, —> 1\710/1\710 N I~,;,

définie par u,(x,)=(A¢(x))s L’égalité ci-dessus s’écrit encore
s (eIl = 1%l

donc u, se prolonge en une isométrie, notée encore u,, entre ¥, et H..

(b) Soit maintenant m,:M — L(¥,) la représentation associée a wo¢ [i.e.
pour tout xe M, =,(x) est le prolongé a ¥, de l'opérateur y,— (xy).,]; on
construit de méme 7 : M — L(¥;). Montrons que, pour tout x € My, on a

H u
. =

@

— X

Uy © Mo (X) = g (Ao(X))ou, ™ 7a(Ao()

%o

R
&

Ue

Il suffit de vérifier cette égalité sur My/M,N I,; or, pour tout y, € Mo/MoN I, on
a

Lo, ° 7o (x)]y0 = Ua(xy)w = (Ao(xy))s

et

[ 75 (Ao(X))ua]ye = s (Ao(x))(Ao(y))s = (Ao(x)Ao(y))s

d’ou I’égalité cherchée.
Donc I'isomorphisme spatial

TeL(%,)~ u,°Tou,'e L(¥s)

envoie w,(M,) sur #;(M,). Comme m, et 7, sont des W*-représentations,
7. (M,) et 7s(M,) sont ultrafaiblement denses dans m,(M) et 7z (M) respective-
ment, et I'isomorphisme ci-dessus envoie m,,(M) sur s (M).

(c) Considérons enfin I'espace de Hilbert #= @, (weNy) et la W*-
représentation 7 = @ =, (w e N3) de M dans L(¥); w(M) est une W*-algébre et
comme ¢ est fidele, 7 est un isomorphisme de M sur w(M). On construit de
méme #=DH; (we Nj) et 7#=@ 7;(we N5) et on a le méme résultat. Soit u
I'isométrie de ¥ sur % définie par u(&,) = (u,é,); il est clair que I'isomorphisme
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spatial
TeL(¥)—> uoTou e L(%)

envoie w(M) sur #(M). Alors en posant, pour tout x € M,
Ax)=a7 " umr(x)u™)

on a défini le prolongement cherché. L’unicité étant évidente, le théoréme est
démontré.

Le corollaire suivant est une généralisation d’un théoréme de C. Pearcy et J.
R. Ringrose [1] ainsi que de son extension par M. Enomoto et K. Tamaki [1].

COROLLAIRE. Soient M une W*-algébre, N une sous-W*-algébre de M
contenant I’élément unité de M et ¢ une projection positive normale et fidele de M
sur N. Soient A et B deux sous-algebres involutives de M dont les éléments
commutent avec ceux de N. Notons A et B les W*-algébres engendrées par A et N,
B et N respectivement. Si un isomorphisme ¥ de A sur B vérifie la condition
& (¥(x)) = d(x) pour tout x € A, il se prolonge en un isomorphisme ¥ de A sur B tel
que

(1) ¥(a)=¥(a) pour tout a€ A,

(2) ¥(x)=x pour tout x € N,

(3) ¢(¥(x))= ¢(x) pour tout x€ A,

(4) ¥(A)=B[A, B: o-fermetures de A, B].

Démonstration. Notons A, [resp. By] les sous-algebres involutives de M
engendrées par A et N [resp. B et N]. Comme les éléments de A et N
commutent, A, est I’ensemble des sommes finies xo+)i=1 a;x; avec a;€ A et
x; € N. De méme pour B,. On aimerait prolonger ¥ a A, en posant

q’()(Xo"’ Z aixi> = Xo+ Z ‘I’(a,-)xi.
i=1 i=1
Pour que cette relation définisse W, il suffit que

n
Xo+ Z ax; =0

i=1
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soit €quivalent a

x0+ Z ‘I’(ai)x,- =O.
i=1

Or en utilisant les propriétés algébriques de ¢, on voit facilement que
dl(xo+X aixi)*(x0+ X aix)]= &l (xo+ X ¥(a:)x)*(xo+ X ¥(ai)x)]

ce qui, compte tenu de la fidélité de ¢, établit I’équivalance ci-dessus; ¥, est donc
bien défini. 1l est alors facile de voir que ¥, est un isomorphisme d’algebres
involutives de A, sur By, que ¥o(a)= ¥(a) pour tout a€ A, ¥y(x)=x pour tout
xe€N et ¢oWo(x)= ¢(x) pour tout x € Ao. Le théoréme II.1. affirme alors qu’on
peut prolonger ¥, en un isomorphisme de A (=o-fermeture de A,) sur B
(= o-fermeture de Bo) qui vérifie (1) (2) (3) et (4).

Remarque 11.1. Ajoutons aux hypotheéses du théoréme II.1. les conditions
N=N et A=idy et considérons sur M [resp. M] la structure “N-
préhilbertienne” définie par ¢ [resp. ¢] (voir §1.4.). A, est alors un homomor-
phisme de N-modules et la condition ¢°Ao=¢ | M, est équivalente 2

(Ao(x) | Ao(y)) = (x|y)
pour x, ye M, i.e. Ay conserve le ‘“‘produit scalaire’.

I1.2. Application 1: Compléments sur le produit croisé.

(1) Soit M= W*(A, G, o) le produit crois¢é d’'une W*-algébre A par un
groupe G selon la représentation o. Si H est un sous-groupe de G on peut

considérer I’homomorphisme oy, restriction de o a H, et le produit croisé
W*(A, Hs c,-H)

PROPOSITION I1.1. W*(A, H, oy) est canoniquement isomorphe a la sous-
W*-algébre N de M= W*(A, G, o) formée des x € M tels que (x | u;) =0 pour tout
se€ G\H.

Démonstration. On voit facilement que N est une algébre involutive (pour le
produit et Iinvolution voir le § 1.4.); elle est o-fermée dans M car égale a
Iintersection des ensembles o-fermés {x € M | (x | u;) =0} pour se G\H. D’autre
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part la sous-algebre involutive Ny des sommes finies Y .y asus, as € A, est o-dense
dans N car si xe N et J est une partie finie de G, on a

Z (x l Us)Us = Z (x I us)us € No

seJ seJNH

Soit maintenant, pour tout s€ H, v,: H— A la fonction caractéristique de s. On
sait, par construction du produit croisé, que I’algebre involutive P, des sommes
finies Y en asv; est o-dense dans W*(A, H, o). L’application Ao:Y a,v, € Po—>
Y. asus € Ny est un isomorphisme d’algébres involutives tels que Ag| A = ida. Les
projections canoniques ¢: W*(A, G,0)— A et V:W*(A, H,oy4) > A vérifient
¢oAo= ¥ |P,. Par le théoréme II.1. A, se prolonge de maniére unique en un
isomorphisme A de W*(A, H, oy) sur N.

(2) Notons M, I’algébre involutive des sommes finies } ;e asUs, as € A ; My est
o-dense dans M. Soit a un automorphisme de G. L’application Ag:) asus —
Y, GslUa sy est un automorphisme de M, (pour la structure d’algébre involutive); on
aAo| A=ids et ¢oAg= ¢ | My, donc par le théoréme II.1. A, se prolonge en un
automorphisme A, de M. Kallman [1] a étudié certaines propriétés de ces
automorphismes dans le cas ou A =C et G est un groupe ICC (i.e. les classes
d’éléments conjugués des éléments # e sont infinies). Nous généralisons ici un de
ses résultats:

PROPOSITION I1.2. Supposons que A soit G-finie. Une condition suffisante
pour que A, opére quasi librement sur M est que, pour tout s€ G, I’ensemble
{a(t)"" st| te G} soit infini.

Démonstration. Soit xe M tel que xy= A,(y)x pour tout ye M. Posons
(x| u;)=a, pour tout s€ G; en égalant les coefficients de u, dans I'égalité
XUy = Ao (U)X = Ug)X, ON Obtient a; = 0y y(au)-1s), d’0l

(*) asa’: = O'a(:)[aa(z)*s:af(z)-*sz]

pour s, te G. Pour sommabilité pour la topologie (A, Ax) de ¢p(xx*)=Y s,a¥
implique, pour tout @€ Ay, la sommabilit¢ de ¥ ¢(a,a¥). La condition
“{a(t™")st| te G} est infini pour tout s € G” et la relation (*) impliquent alors que
cp(a,af)=0 pour tout s€ G et toute forme G-invariante ¢ € Ax. Comme A est
G-finie on a a, =0 pour tout s€ G, donc x =0 et A, opére quasi librement.
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Il n’est pas difficile de trouver un exemple qui montre que I’hypohtése “A est
G-finie” est essentielle. On peut étendre sans restriction un autre résultat de
Kallman:

PROPOSITION I1.2'. Pour que A, ne laisse que les éléments de A fixes il faut
et il suffit que pour tout s€ G, s# e, I’ensemble {a"(s) | ne€ Z} soit infini.

Démonstration. Soit x € M; posons a,= (x | u;) pour tout s€ G. Si A,(x)=x on
voit facilement que, pour tout s€ G et tout n€ Z, on a a, = a,~y), donc pour tout
¢ €-Ax, ¢[a:0F]= @[auns)a¥)]; 1a sommabilité de ¥ ¢(a,a¥) montre alors que la
condition est suffisante. Inversément s’il existe s# e tel que F={a"(s) | ne Z} soit
fini, alors I’élément x =) ,cr u, € M vérifie x€ A et A, (x) = x.

I1.3. Application 2: Sous-algébre des invariants par un groupe d’ automorphismes.

Soient M une W*-algébre, G un groupe discret et o:s€ G > o,€ Aut M un
homomorphisme. En appliquant le théoréme I.1. on voit qu’il existe un espace de
Hilbert #, une W*-représentation (non dégénérée) fidéle m de M dans ¥ et une
représentation unitaire V de G dans ¥ tels que, pour tout s€ G et tout xe M, on
ait

7 (0y(x)) = V,m(x) VE.

Dans ce paragraphe, pour simplifier les notations, nous identifierons M et w(M)
de sorte que nous sommes placés dans les conditions suivantes: M est une algébre
de von Neumann dans ¥ et V une représentation unitaire de G dans ¥ telle que
pour tout s€ G, V.MV¥=M; nous posons o, (x)=VxV¥* pour tout se G et
Vo={V,|se G}.

Soit N=M?¢ la sous-algébre de von Neumann de M formée des éléments
x€M qui sont laissés fixes par G; on a N=MN Vg (Vg=commutant de
Vs dans L(¥)), donc N’ est I’algébre de von Neumann engendrée par M’ et Vg.
Constatons d’autre part que G opére par automorphismes dans M’; en effet, si
x'e M' et s€ G on a, pour tout xe M,

Vx'V¥x = Vx'oo(x) V¥ = Vo,-1(x)x' VF
= szx'Vf,

donc V.x'V¥e M'. Posons o(x') = V.x' V¥; o’ est un homomorphisme de G dans
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Aut (M'). On voit donc que
(N')o= { Y X1V, | xle M'}
i=1

est une algebre involutive dont la fermeture faible est N'. Nous allons chercher a
identifier N’ et le produit crois¢ W*(M’, G, o’). Nous aurons besoin de la
remarque suivante:

LEMME. Si I'action o de G dans M est quasi libre, il en est de méme de
I'action o' de G dans M'.

Démonstration. Soient s# e et x'e M’ tel que x'y' = o%(y')x" pour tout y'e M’;
il faut voir que x’=0. On a x'y'= V,y' V¥x’, donc V¥x'y’=y'V¥x', pour tout
y'e M'; dou V¥x'e M et

VEX'y = V¥yx' = a-1(y) VEx'

pour tout y € M. Comme I’action o de G dans M est quasi libre on a V¥x'=0,
x'=0.

Nous traiterons d’abord le cas particulier ou G est un groupe fini.

1° cas. G est un groupe fini.

Lorsque G est fini on a W*(M', G, o') = K(G, M’) et tout élément s’écrit de
fagon unique sous la forme Y,cg xiu, (somme finie). On définit donc une
application

A:W*M', G,o0")—> N’

en posant A} xiu,) =Y. x;V,. Comme les relations qui lient I’action ¢’ de G dans
M’ et les représentations unitaires u et V sont les mémes [i.e.

a(x") = ux'u¥=vx' v¥

pour tout x'e M’ et tout s€ G] on voit que A est un homomorphisme
d’algebres involutives. Montrons que A est o-continu: soient 7 la représentation
identité de M’ dans ¥ et 7 la représentation de W*(M', G, ¢') dans ¥ = L(G, %)
qui lui est associée; 'image P=a(W*(M’, G, c')) est une algébre de von
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Neumann et 7 un isomorphisme (théoréme 1.1.); il nous suffit donc de démontrer
que ’homomorphisme A7 ':P — N’ est ultrafaiblement continu; étant donné £
n € ¥, définissons & n e X par

& si s=e (
&(s) ={ , A(s)= V¥n pour tout se G;
0 sinon

si y=Y xtu,e W*(M', G, ¢'), on a, pour tout te G,

(#E) =Y, ai-(x)E(s ™ 1) = oli(x]) €

et

(#(Y)E|R) =2 (oh(xE]| Vn)

=Y (x/V.| 1)
=(A(y)¢| m),

d’ou on déduit la continuité ultrafailble de A. On voit ainsi que A est surjectif
(A(P) est une algébre de von Neumann qui contient (N')o) et que son noyau est un
idéal bilatére o-fermé. On a démontré:

PROPOSITION I1.3. A est un homomorphisme o-continu de W*(M', G, o)
sur N'; il existe un projecteur p du centre de W*(M', G, o') tel que A induise un
isomorphisme de pW*(M', G, a') sur N'.

COROLLAIRE. Soient M un facteur et G un groupe fini opérant par automor-
phismes extérieurs dans M. Alors N = MC est un facteur, MOAN'=C1 et toute
sous-W*-algébre L telle que Nc L< M est un facteur. Si H, et H, sont deux
sous-groupes de G tels que M™ = M"™ alors H, = H,.

Démonstration. En effet, dans ces conditions W*(M', G, ¢') est un facteur et A
un isomorphisme de W*(M’', G,o’) sur N’; les deux premicres affirmations
découlent alors de résultats connus. Enfin L est un facteur car LN L'« MNN'=
C1 et si H est un sous-groupe de G, (M™)' est I'image par A de la sous-algébre
{ye W¥(M', G, o") | (y | us) =0 pour tout s¢ H} isomorphe a W*(M', H, o%).
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Remarque I1.2. Lorsque M est un facteur II,, ce corollaire se trouve dans un
article de M. Nakamura et Z. Takeda [1], dont nous avons ici quelque peu
généralisé la méthode. En utilisant des propriétés attachées plus étroitement aux
facteurs II; (la trace finie ou la simplicité algébrique) les auteurs montrent que
toute sous-algébre de M contenant N est de la forme M™ ou H est un
sous-groupe de G, établissant ainsi une correspondance galoisienne entre les:
sous-groupes de G ct les sous-algebres de M contenant N. Nous n’avons pas pu
établir, pour un facteur quelconque, la surjectivité de P’application H — M".

Remarque 11.3. Les hypothéses faites par Nakamura et Takeda [1] leur
interdisaient de considérer des groupes G infinis. Nous pouvons affaiblir ces
hypothéses et établir un isomorphisme A entre N’ et W*(M', G, ¢') sans restric-
tion sur G.

2°" cas:G groupe quelconque.

Nous ne supposerons plus que G est fini mais nous ferons les deux hypotheses
suivantes:

(hy): G opére quasi librement (par o) dans M;

(hy): il existe une projection positive normale fidele ¥ de N’ sur M'.
Considérons sur W*(M’', G, 0’) et sur N’ les structures ‘M’-préhilbertiennes”
définies par ¢ et ¥ respectivement (¢ désigne la projection positive normale
fidele de W*(M', G, o') sur M'; voir § 1.4.); nous noterons 7, et 74 les topologies
associées. Notons que {V;} est un systéme orthonormé dans N'; en effet, pour tout
x'eM et tout se G, s#e, on a

V(V,)x'= ¥(Vx') = ¥(o,(x") V) = o, (x") ¥ (V)

d’ot ¥(V)=0 a cause de I’hypothése (h;); on a donc (V,| V)=¥ (V,VH =
Y(Vy1)=0sis#tet (V| V)= ¥(1)= 1. Considérons les sous-algebres involutives
o-denses K(G, M') et (N')o de W*(M', G, o') et N’ respectivement; on définit un
homomorphisme d’algébres involutives A, de K(G, M’) sur (N'), en posant

Ao( Z x;us) = Z x'V, (somme finie)

s€EG seG

on voit immédiatement que Ao | M' = idyy et Wo A= ¢ | K(G, M’) d’ou, pour y,,
y2€ K(G, M'), Pégalité

(Ao(y1) | Ao(y2)) = (y; | y2);
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Ao est donc injectif et se prolonge de fagon unique en un isomorphisme A de
W*(M', G, ¢') sur N', qui vérifie ¥°A =¢. On a démontré:

PROPOSITION I1.4. Avec les hypothéses (h,) et (h,) ci-dessus il existe un
isomorphisme

A:W*M', G,c')—> N’
tel que

A( Z x;us> = Z x5V

se€G s€G
(les sommes convergent pour les topologies 74 et T, respectivement).
On en déduit, comme pour la proposition I1.3., le corollaire suivant:

COROLLAIRE. Dans les conditions ci-dessus on a MNN'=Z(M), Z(N)=
Z(M)® donc N est un facteur si et seulement si G opére ergodiquement dans Z(M).
Si H, et H, sont deux sous-groupes de G tels que M™:= M™ alors H, = H.,.

IIIl. Une Correspondance Galoisienne

Dans toute la suite M désignera une W*-algébre, Z le centre de M et G un
groupe fini d’automorphismes de M. Rappelons que G opére presque librement
dans M si, pour tout 0 € G, o#1, et tout projecteur pe Z, p#0, il existe un
projecteur g€ Z tel que 0<q=<p et o(q)q=0.

DEFINITION. Une sous- W*-algébre L de M sera dite G-libre si pour tout
o€ G, ou bien o | L =1, ou bien, pour tout projecteur pe ZN L, p#0, il existe un
projecteur ge ZNL tel que 0<q=<p et o(q)q=0.

PROPOSITION II1.1. Soit L une sous- W*-algébre G-libre de M. Il existe une
famille {q;};c: de projecteurs de Z N L, orthogonaux deux a deux et de somme 1, telle
que, si c€ G et o | L#1, on ait o(q:)q: =0 pour tout i€ L.

Démonstration. Soient o4, 0, . . ., 0, les éléments de G dont la restriction a L
n’est pas P'identité. Il suffit de voir que tout projecteur p#0 de ZN L majore un
projecteur g#0 de ZN L tel que 0:(q)q =0 pour tout i=1, 2, ...,s.0r, L étant
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G-libre, il existe une suite de projecteurs # 0 de ZNL telle que p=f,=f,=
<+-=f>0 et o:i(f))f; =0 pour tout i=1, 2,..., s. Le projecteur q=f, répond
alors a la question car o:(q)q = 0:(fiq)f.q = o:(f)f: 0:(q)q=0.

COROLLAIRE. Si G opére presque librement dans M, il existe une famille
{p:}ier de projecteurs de Z, orthogonaux deux a deux et de somme 1, telle que, pour
tout ie I on ait

_ Di si o=1
o(p)p {0 si o#1
Nous pouvons maintenant démontrer le “théoréme fondamental de la théorie de
Galois”’; nous noterons N = M€ la sous- W*-algébre des points fixes de M par G.

THEOREME 1I1.1. Supposons que G opére presque librement dans M. Il y a
correspondance biunivoque entre les sous-groupes H de G et les sous- W*-algébres
G-libres L de M qui contiennent N. Cette correspondance est donnée par

H->M"={xeM|o(x)=x, Voe H}
L G.={oceG|o(x)=x, VxeL}.

Démonstration.

(a) Soit L une sous- W*-algebre G-libre de M, contenant N. Posons H = G, =
{ce G|a(x)=x, VxeL}; H est un sous-groupe de G. Montrons que M7 =L. Il
est clair que L<M"™ Comme L est G-libre il existe (Proposition III.1.) une
famille {q;};c; de projecteurs de ZN L, orthogonaux deux a deux et de somme 1,
telle que,

_)g si oeH
“(q")q’_»{o si. o¢H

pour tout jeJ. Soit xe M, on a x =1/|H|Y;exn 7(x), oi |H| désigne le nombre
d’éléments de H. Donc, pour tout jeJ, on a

1 1
e l—I‘ﬂ +€H T(x)qj B rﬁ_‘ r€H T(x)T(qj)qi

1.
LY o)e(q)q == L. olxg)as

—lHl oceG ]_I'_flo-e(}
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Mais 1/|H|Y,ec0o(xq;) appartient 3 N =M€, donc xg; € L. Comme x =Y, xq; on
a xeL. Donc MY c L.

(b) Soit H un sous-groupe de G. Posons L=M" et H'=G,. ={oce G| o(x)=
x,Vx € L}. Montrons que H=H’ et que L est G-libre. Tout d’abord il est clair
que Hc H' et que M™'=M" =L. Considérons les deux applications suivantes:

¢:M— M" =L définie par ¢(x)=— !

.4, ™

et

¢':M — M™ =L définie par ¢’(x)=—1;— Y p(x).
|H| pEH’

¢ [resp.¢'] est une projection H-invariante [resp. H'-invariante] de M sur L.
Comme Hc H', ¢' est H-invariante et on a, pour tout x € M,

2 T(x>)= ¢'(x).

d'(d(x)) = ¢(|H| L

D’autre part ¢'(¢d(x))=¢(x) car ¢p(x)eL, donc on a ¢=¢'. Soit p un des
projecteurs de la famille {p;} définie dans le corollaire de la proposition III.1; on a

¢(p)p = ¢'(p)p;
mais d’autre part:

1
o(p)p= H H‘ o T(p)p= I 2

. 1
¢ =1gy L PEP={p

p,
|H|
d’ou |H|=|H'| et donc H=H'.
Montrons maintenant que L est G-libre. Soit {p:}ic; la famille de projecteurs
de Z définie dans le corollaire de la proposition II1.1. Posons, pour tout i€ I,

pi= Z 7(p:);

reH
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p! appartient 3 ZNM"” =ZNL et comme

oi(pi)ox(pi) = 0'2[0';10'1(Pi)Pi] =0

si 0y, 02€ G, 01 # 02, on voit que p! est un projecteur. Pour tout o€ G, on a

o(phpi= Z ot(p:) Z p(p:)

reH pEH
= Y or(p)e(p);
pEH

mais o7r(p;)p(p:) =0 sauf si o7 =p. On voit donc que

si oeH

A
o(po)p: {0 si ogH

Soient 0 € G tel que o | L#1 et ee€ ZN L un projecteur non nul. Il faut trouver
un projecteur fe ZNL tel que 0<f<e et o(f)f=0. Comme e#0, il existe i€l
tel que ep; # 0; on a aussi ep} # 0 car p; < p!. Posons f = ep!; f est un projecteur de
ZNL, 0<f<e et

a(f)f = o(eplep;=o(e)ea(p)pi=0

car o |L#1 est équivalent 4 o H. Ainsi L est G-libre et le théoréme est
démontré.

Le cas des sous-groupes distingués est réglé par la proposition suivante, dont
la démonstration est facile:

PROPOSITION II1.2. Plagons-nous dans les hypothéses du théoréme 1I1.1.
Pour qu’un sous-groupe H de G soit distingué il faut et il suffit que L =M" soit
globalement fixe par G. Alors G/H peut étre considéré comme un groupe d’au-
tomorphismes de L; G/H opére presque librement sur L et L% =N,

Remarque. Les résultats de ce chapitre restent valables si on prend pour M
une AW*-aqlgébre.
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