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Comment. Math. Helvetici 39 (51) 395-410 Birkhduser Verlag, Basel

Sur les Distributions Images Réciproques par une Fonction
analytique

par H.-M. MAIRE

Introduction

Soient F une fonction analytique réelle non constante définie sur une variété
analytique réelle X de dimension n et U un ouvert connexe, relativement
compact de X; désignons par @x(U) I’ensemble des distributions sur U qui sont
limites de fonctions continues sur U, constantes sur les fibres de F. Dans cet
article, nous montrons que D(U) est facteur direct de l'espace @'(U) des
distributions sur U et qu’il s’identifie a un espace de fonctions généralisées s{5(J)
sur l'intervalle J= F(U); I'identification se fait par le prolongement naturel de
I'image réciproque F*:C”(J)— C™(U) a «%(J).

Plus précisément, soit """ (J) espace des 1-formes différentielles impaires de
classe C” sur J\{0}, a support compact dans J, qui admettent en 0 un double
développement asymptotique dans I’échelle de comparaison

() "N(og () 'dt, jeN*, 0<k<sn, £t>0, N>0.

Notons B(U) I’espace des n-formes différentielles impaires de classe C~, a
support compact sur U et supposons que 0 est la seule valeur critique de F dans
U. Alors, le prolongement analytique de la distribution F% (cf. Atiyah [1]) permet
de montrer que l'intégration sur les fibres non singuliéres de F, des €léments de
BD(U), définit une application linéaire continue Fx:@(U) — A4™"(J), pour N entier
convenable. Ce résultat, di a P. Jeanquartier [5], repose sur une version du
théoreme de résolution des singularités de H. Hironaka.

Soit Hx(J) = F(®(U)); nous montrons que #x(J) est fermé dans £™"(J) et
que l’application Fx:@(U)— A(J) admet une section linéaire continue. La
transposée de Fy est alors un isomorphisme de #£(J) sur DE(U).

Nous considérons aussi un autre sous-espace fermé de 2'(U) lié a F, @'(U; F)
formé des distributions sur U qui sont invariantes par tout difféomorphisme local
de U conservant F. L’inclusion @x(U) < @'(U,; F) résulte des définitions; si F n’a
pas de singularités dans U, alors @(U)=2'(U; F) et le méme résultat est vrai
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396 H.-M. MAIRE

lorsque F est une forme quadratique non dégénérée sur R" (cf. Methée [9],
Tengstrand [12]). Mais, en général, D (U)#D'(U; F) (cf. ’exemple (4.6)) et
@'(U; F) n’est pas facteur direct de 9'(U) (méme exemple).

Les résultats présentés ici ont fait ’'objet de ma thése et ont été annoncés dans
[8]; je remercie vivement le Professeur P. Jeanquartier de m’avoir guidé dans mes
recherches et utilement conseillé pendant la rédaction du manuscrit.

1. Fonctions Test Singuliéres et Fonctions Généralisées

Dans ce paragraphe, p = (p;);en* désignera une suite strictement croissante de
nombres réels tendant vers I'infini et m =(m;);en+ une suite de nombres entiers
positifs. Au couple (p, m), nous associerons I’ensemble P ={p;; j€ N *} et I'applica-
tion M: P — N*, telle que M(p;)=m;.

Pour j et k entiers positifs, soit x;(t) = p(t)t?(log t) ", t>0, ou p € D(R) vaut
1 au voisinage de 0 et a son support dans un intervalle précisé ultérieurement; les
fonctions x; forment une échelle de comparaison au voisinage de 0. Nous
désignerons par 4*™([0, B8]), B>0, I'espace des fonctions complexes fe C*(RY),
nulles pour ¢t= B, admettant en 0 un développement asymptotique

f~ Z Z Ao A €C, (1)

j=1 0<k=m;

indéfiniment dérivable terme a terme. Pour h eN et fe 47 ([0, B]), soit A,f la
somme de (1) limitée aux entiers j tels que p;<h; ainsi, f—A,fe C"(R.,).
L’espace que nous venons de définir sera muni de la topologie engendrée par les
semi-normes f+> |a;| et f+> sup |D'(f— Anf)|, pour 0<I< h entiers.

Si B est un nombre positif, fini ou non, nous noterons ™ ([0, B[) la réunion
des P™([0, v]), pour 0<y<p, munie de la topologie limite inductive. Pour
—o< a <0, soit Z”™(Ja, 0]) 'espace des fonctions complexes-définies sur R¥*, dont
les symétriques appartiennent a #”™([0, —a[). Finalement, nous poserons
A”™ (Ja, B[) = 47" (Jer, 0]) x 4*™ ([0, BD).

Si J est 'un des intervalles ci-dessus, on montre, en utilisant le théoréme
d’Ascoli, que ™™ (J) est un espace de Montel complet. Les éléments de 4™ (J)
sont appelés des fonctions test singuliéres de type (p, m) sur J.

Lorsque g est une fonction complexe définie sur ]0, [ et qu’il existe reR tel
que t'g(t)e L'(]0, <[), nous poserons, pour A €C, Re A =r,

Mg(A) = J‘wt"g(t) dt.
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La fonction Mg ainsi définie sur la verticale Re A =r, sera appelée transformée de
Mellin de g (il y a un décalage de 1 avec la définition classique). Si g; et g, sont
comme cidessus, alors la convolée g;v g, définie par

e <]

g1V ga(t) = J g:1(t/s)ga(s) ds/s
0
satisfait M(g; Vv g2)(A)=Mgy(A) - Mga(A), pour Re A =r (cf. Titchmarsh [13]).
Tout élément f de «A”™([0,B]) a une transformée de Mellin définie et
holomorphe dans le demi-plan ReA>-p;—1; de plus, lexistence du

développement asymptotique de f au voisinage de 0 permet de prolonger Mf en
un fonction méromorphe dans C avec des pdles éventuels aux points q; = —p; — 1,
j=1, 2,...; 1l suffit en effect de remarquer que

k—1 (k - 1)!
(A—g;)"

X (A)=Mxp(A)=(-1) +fonction entiére.

Soit MP™ Tespace des fonctions méromorphes dans le plan complexe,
holomorphes dans C\{qy, g5, ...}, Pordre du péle au point q; étant <m; Pour
G € MP™, nous avons donc un développement de Laurent

G(\)= 2, bi(A—q)*

k=m,

au voisinage de chaque point g;, avec bj,eC. Pour h €N, nous poserons B,G =
Y. bux;, la somme portant sur les couples (j, k) tels que p;<h et 0<k<m;, ou
by = (—1)"_1b,’-k/(k —1)!; ainsi G — B;,G est holomorphe dans le demi-plan Re A =
—h—1.

Dans MP™, considérons le sous-espace M”™(B) formé des fonctions F qui
jouissent de la propriété suivante:

pour tous h et le N, il existe C;,; >0 tel que

(2)
|IA\'(F— ByF)(A\)|<Cy,,|B"|, pour ReA=—-h-1.

(On choisit p € @(R) nulle pour ¢t = B, dans la définition des x;..) L’espace MP™(B)

sera muni de la topologie engendrée par les semi-normes F > |by| et F—>

SUPRer=—h_1 |A' B (F—B,F)(A)|, pour I, h=0,1,2,...

PROPOSITION (1.1). La transformation de Mellin établit un isomorphisme
vectoriel topologique de ”™([0, B]) sur MP™(B).
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En employant les résultats de Doetsch [4], p. 115, on obtient que M est une
bijection de 4™ ([0, B]) sur MP™(B) et le fait que les semi-normes f+> |a;| et
fr> supoci<p t "D (f- ALf)#)|, I, heN engendrent aussi la topologie de
A”™([0, B]), montre la partie topologique.

COROLLAIRE (1.2). Si B’, B” sont positifs, la convolution sur R* induit une
application bilinéaire continue

47 ([0, B x 47" ([0, B"]) — 4*™ ([0, B’ - B"])

ou la suite p correspond a I’ensemble P' U P" et m correspond a la fonction M'+ M",
étant entendu que M’ [resp. M"] est prolongée par O sur P"\'P' [resp. P'\ P"].

Nous aurons encore besoin du résultat suivant au paragraphe 3.

LEMME (1.3). Soit (aj);xen une famille quelconque de nombres complexes.
Alors, il existe une fonction foe C™(R), a support dans I’intervalle [0, 1], telle que

D*Mfo(q;) = ajx, pourtous jeN* et O0sk<m;

Démonstration. Soient E I'espace de Fréchet des fonctions de classe C* sur R
a support dans [0, 1] et Y’ le sous-espace vectoriel du dual E’' de E engendré par
les formes linéairement indépendantes

1
frs j t4(log )f(t) dt, jeN*, O<k<=m,

0

L’énoncé revient a dire que toute forme linéaire sur ), admet un prolongement
linéaire continu a E’, puisque E est réflexif. Or, il découle d’un théor¢me de
Banach sur les convexes faiblement fermés du dual d’un Fréchet (Bourbaki [3])
que tout sous-espace vectoriel de ). est fermé dans E’; en effet, pour tout heN,
'intersection de ) avec le sous-espace Ej} de E’' des formes linéaires sur E,
continues pour la norme f+~ sup |D"f|, est de dimension finie.

L’espace dual de 7™ (J) sera noté {'>™(J); nous le munirons de la topologie
forte et appellerons ses éléments fonctions généralisées de type (p, m) sur J. Les
coefficients a; de la relation (1) définissent des fonctions généralisées de type
(p, m) sur R.. Lorsque p=(0,1,2,...) et m=(1,1,...), ’espace 4'">™(R.) est
identique a P'espace @'(R.) des distributions sur R..
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On dira que Te ™™ (R,) est nulle sur un ouvert U de R, si T |D(U\{0}) est
nulle et s’il existe >0 avec [0, B[< U, tel que T|«A>™([0, B[) est nulle. Le
support de T € 4™ (R.) sera, par définition, le complémentaire, dans R,, du plus
grand ouvert dans lequel T s’annule; cet ensemble sera noté supp T. Lorsque
TesdA'"™™( ), on posera supp T=supp TUsupp T, ou T=(T_, T,) avec T.€
AP (R.) et supp T- défini par symétrie.

Une fonction généralisée T € A'"™(R,) est dite d’ordre fini s’il existe un entier
h=0 tel que, pour tout >0, T |«4”™([0, B]) est continue pour la norme

fr> max sup|D'(f~ Auf)l+ L lal.

p<H

Le plus petit entier ayant cette propriété sera I'ordre de T. Par symétrie, on
définit I'ordre d’une fonction généralisée sur R_, et ’ordre de T e A’™™(R) sera le
maximum des ordres de T, et T_. Il découle immédiatement des définitions que
toute fonction généralisée a support compact sur R est d’ordre fini.

PROPOSITION (1.4). Si TedA'™™(R+) a son support réduit a 0, alors T est
combinaison linéaire des éléments ay, j=1,2,...,k=1,..., m;

La proposition est une conséquence immédiate du fait que, pour toute
fedAP™R,), f— Anf est limite, dans la topologie C", d’une suite d’éléments de
P(RY).

La dérivation des fonctions généralisées est définie comme suit: pour Te
A'"™(R), on pose

<DT, f) = _<T» Df>’ fE 'ﬂp+1,m(R)a

ol p+1=(p;+1,p,+1,...). L'application D de 4™ (R) dans #’**"™(R) ainsi
obtenue est linéaire continue.

Le produit d’'une fonction généralisée de type (p, m) par une fonction ge
C”(R) est commode a définir lorsque (p, m) satisfait les conditions P+1< P et
m; < m;,1, pour j=1; dans ce cas, le produit par g est une application linéaire
continue de #'™(R) dans lui-méme définie par:

(g T,./=(T,g-f)y, TedA”"R), [fedA""R).

Pour p quelconque et reR, €N, on définit le produit de Te 4" '(R,) et de
la fonction t'(log t)' par la méme formule.
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Il résulte de ces définitions que 'opérateur dittérentiel tD donne une applica-
tion linéaire continue de #{'”™(R) dans lui-méme.

Il est possible de définir la convolée de deux fonctions généralisées de type
(p, m) sur R, a supports limités a droite; on pose (Sv T, f) =(S, h) ou h(s) =(T, f)
et f,(t) = f(st), lorsque fe 4”™(R,). La convolution est alors associative et com-
mutative mais ne permet pas de régulariser les fonctions généralisées, car si le
support de T est réduit a 0, on montre que le support de Sv T est aussi réduit a 0,
quelle que soit S € A'™™(R.). Toutefois, on a le résultat suivant:

PROPOSITION (1.5). L’espace 9(R*) est partout dense dans si'"™(R).

Démonstration. D’aprés la réflexivité de (7™ (R), il suffit de montrer que si
fe A”™(R) est telle que (g, f) =0, pour toute g € BR*), alors f = 0. Cette propriété
a lieu puisque f est de classe C” sur R*.

2. Image Directe des Formes C”.

Soit F une fonction analytique réelle non constante sur une variété analytique
réelle X connexe de dimension n. Fixons un ouvert connexe, relativement
compact U de X, tel que F~'(0)N U# O, sur lequel F n’a que la valeur critique 0
et notons J = F(U). L’image réciproque par F des fonctions C” sur J donne une
application linéaire continue F*: C™(J) - C*(U); par transposition, on en déduit
une application linéaire continue Fg:c’est I'image directe, par F, des n-courants
impairs a support compact sur U. Remarquons que, si T est un tel courant, on a:

F*(F*g’T):-g‘F*T, ou gECm(J)

Désignons par @(U) I'espace des n-formes différentielles impaires de classe
C™, a support compact sur U et par 4™"(J) I’espace s4*™(J) du paragraphe 1, ot
p=(-1+j/N)jen» €t m=(n, n,...), pour un entier N=1. A l'aide de la mesure
de Lebesgue sur R, nous identifierons s¢™"(J) a un sous-espace des 1-courants
impairs sur J. Dans [5], P. Jeanquartier a montré le résultat suivant:

PROPOSITION (2.1). Sous les hypothéses précédentes, il existe un entier N =1
tel que Fx(B(U)) soit contenu dans ™" (J). De plus, I’application Fy:D(U)—
AN (J) est linéaire continue.

La démonstration de P. Jeanquartier repose sur le théoreme de résolution des
singularités de H. Hironaka.
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Remarque. Dans certains cas particuliers, les travaux de I. N. Bernstein [2] et
M. Kashiwara [7] sur le prolongement analytique de la distribution F* permettent
d’obtenir la proposition (2.1) sans employer le théoreme de résolution. En effet,
comme conséquence de la propostion (1.1), il suffit de vérifier que, pour toute
¢ € D(U), la fonction

Ie)(A) = j F*¢, ReA=0

F=0

appartient 3 M"™"(B), ou B est la borne supéricure de F dans U et que
I’application I: @(U) — M""(B) est linéaire continue. Or, d’aprés [6], il existe
localement un opérateur différentiel Q(A, x, D,) a coefficients polynomiaux en A,
analytiques en x et un polynéme beC[A], tels que

Q(A, x, D,)F*"' = b(\)F.

On en déduit que I¢ admet un prolongement analytique méromorphe dans C avec
des pdles aux points §;—ji, ..., Sk —ji, OU S1,..., S sont les zéros de b et
jl,. ..,jkEN.

De plus, I'existence (cf. [7]) d’'un entier v et d’un opérateur différentiel
Qo(A, x, D,) de degré inférieur a v en A, tel que

QO()\’ X, Dx)FA = AVFA,

montre que la condition (2) du paragraphe 1 est satisfaite pour Ie.
Si ’on sait que les zéros de b sont rationnels négatifs, par exemple lorsque F a
des singularités isolées dans U, on a démontré la proposition (2.1).

En vue de décrire 'image de I’application Fy:9(U) — A™N"(J), introduisons le
sous-espace A..(J) de 4™"(J) formé des éléments dont le développement asymp-
totique est identiquement nul en 0; la notation s’explique par le fait que les
formes de #..(J) sont C”-plates en O.

LEMME (2.2). Il existe une n-forme impaire ¢ € d(U) telle que Fy@g sd(J).

Démonstration. Si X=R" et U contient un voisinage V de 0 de la forme
V'XV" V'cRY V'<cR"Y, tel que F '(0)NV=V'x{0}, on peut procéder
comme suit. Lorsque q=n—1, on a F(x)=xk- G(x), ou G est analytique, non
divisible par x,; quitte a changer l'origine dans V, on peut supposer que
F(x)=+x* et, dans ce cas, le lemme est banal.
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Lorsque q<n—1, F ne change pas de signe dans V, par exemple F=0.
Choisissons w = ¢'A¢@", ou ¢'eB(V’) et ¢” est une forme différentielle de degré
q —1 a support compact dans V”, qui s’écrit x,41 dx42A - * - Adx,, au voisinage de
0. D’apres la formule de Stokes, on a:

J w=J w=J dow, ou V,={xeV,; F(x)<t}, t>0.
F(t) oV, ¢

En employant I'inégalité de Lojasiewicz et la formule de Taylor, on sait qu’il
existe 6=1, C et D >0, tels que

Clx"°’<F(x',x")<D|x", (x',x")eV.

Si on choisit ¢’ telle que [y ¢’ =(—1)% ces inégalirés entrainent que:

C't" 1 sj w<D't"® avec C', D'>0.
F7i(1)

Ces dernieres estimations montrent que si ¢ =dFAw, Fge n’a pas un
développement asymptotique nul en 0.

Le cas général se raméne a ce cas particulier en considérant la dimension q du
sous-ensemble analytique F~'(0)N U.

PROPOSITION (2.3). Il existe une application linéaire continue o :d(J) —
PD(U) telle que Fyoo = 1. En particulier, A.(J) est contenu dans Fy(2D(U)).

Démonstration. Soit ¢ € @(U) telle que le développement asymptotique de
Fxo | R. ne soit pas identiquement nul lorsque JNR. # &; le lemme (2.2) permet
de construire une telle forme. En modifiant ¢ hors d’un voisinage de F~'(0)N U,
on peut supposer que Fyo(f)#0, pour tout te€ J\{0} (¢ ne sera plus a support
compact, mais le support de ¢ coupe I'image réciproque de tout compact de J
suivant un compact de U). Pour toute fe d(J), le quotient f/Fx¢, prolongé par 0
en 0, est de classe C” sur J. Il suffit de choisir of = ¢ - F*(f/ Fxo).

3. Image Réciproque des Fonctions Généralisées

Nous reprenons les notations et hypothéses du paragraphe 2 pour X, F, U, J.
Nous poserons, pour simplifier, (J) =s4""(J) et Ar(J) = Fx(2(U)), ot N est un
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entier fixe donné par la proposition (2.1). L’application transposée de Fy sera
notée F*:s4'(J) = @'(U); nous I’appellerons image réciproque, par F, des fonctions
généralisées de type (N, n) sur J, puisqu’elle prolonge I'image réciproque des
fonctions C~.

Dans ce paragraphe, nous montrons que F*(s8'(J)) est facteur direct de @'(U);
il est donc fermé et, par conséquent, si B(U) est 'adhérence dans @'(U) des
fonctions continues sur U, constantes sur les fibres de F, on a D(U) = F*(«4'(J)),
d’apres la proposition (1.5).

Pour tout couple (j, k) eN*x[—n, n]*, ou [—n, n]* représente I'intervalle de
nombres entiers privé de 0, soit a; la fonction généralisée sur J définie par:

ap(f | R+) si k>0et JNRY# O,
(G =% ™Na, _(fIR,) sik<Oet INR*#Q, fesd())
0 sinon,

ol on a noté, pour geA™"([R,), a;(g) le coefficient de x;. (cf. le paragraphe 1)
dans le développement asymptotique de g au voisinage de 0 et f(t) = f(—t), pour
teR. Avec cette définition, on obtient que:

40 si j<N+1,
aj—N,k si ]>N+1

D’aprés la formule F*(gT)=F*g- F*T, pour ge C*(R) et Te«'(J), on a:

0 sij<N+1,
F'F*a]‘k"—"{ ] (0)
F*a;_n.x sij=N+1.

Pour (j, k) eN*x[—n, n]*, nous désignerons par J j le sous-espace vectoriel de
@'(U) engendré par F*a;, vk, q €N, et poserons J =+J, la somme portant sur
(i, k)e[1, N]1x[-n, n]*.

LEMME (3.1). Il existe un nombre fini de couples (ji, ki),...,(j» k)€
N*x[—n, n]* tels que les images réciproques par F des éléments by = a;qn .,
1<s=<r, qeN, forment une base de J.

Démonstration. Soit B un sous-ensemble de [1, N]x[—n, n]* et supposons
qu'on a déja construit une base de g =+J i, OU la somme porte sur (j', k") e B,
du type désiré. Si (j, k) €[1, N]1x[—n, n]* et T & T g, soit jo le plus petit entier de
la forme j+gN tel que F*a, . J s; alors, d’aprés (0), Tp @ Tk =Tp+T s et on
obtient une base de Iz +Jj en ajoutant a la base de T g les éléments F*a; .o 1,
q€N.
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Le lemme est démontré par récurrence sur B en commengant par B = .

Dans la suite, nous noterons Ty, la distribution F*b,,. Il existe un entier Q tel
que les distributions F b T, pour [eN, 1=<s=<r, sont combinaisons linéaires des
Ty .4 avec q'< Q. On aura alors que, pour tout (s, q)€[1, r]XN, 1N, la distribu-
tion F' - T,, est combinaison linéaire des Ty, avec q'<max (q—1, Q—1).

Pour 1<s=<r et 0=<q=Q, choisissons ¢,, € D(U) telles que, pour 1<s'<r et
0<q'<Q, (Tyq, ¢s9)=1 si (s',q9')=(s, q), =0 sinon. L’existence de ces formes
provient de 'indépendance linéaire des T,

Soit K la réunion des supports des formes ¢, pour 1<s<ret 0<q=Q. Si
(s, @) €[1, r]XN, il existe eB(K) telle que, pour 1<s'<r et 0<g'<gq, on ait:

0 si(s,q)#(s q),

1 si(s,q)=(sq). (1)

(Tyq, @ ={

Il suffit en effet de choisir ¢ = F1~ 2¢,o, pour q> Q.

Notons J | K I'image de J par I'application de restriction @'(U) — @'(K).
Comme conséquence de (1), on obtient que ¥ — J | K est un isomorphisme
d’espaces vectoriels.

PROPOSITION (3.2). Toute forme linéaire sur § admet un prolongement
linéaire continu a @'(U).

Démonstration. Montrons d’abord que l'ordre de la distribution

T= Z Z Csq Ty g, OU Cog€C,

1=ss'=sr0=q'=q

sur K est minoré par q— Q, si (Cig, - - - Crq) #0. Pour g— Q >0, on a:

FO.T|K= Y {cyaTvol K+ 3 dvy|K},

1=s'sr 1=9'<Q

ol dy 4 €C. Donc F72-T | K#0. Comme T | K a son support dans F'(0)N K et
que, pour ¢ € A(K), F1%p est petite dans la topologie C*~ ™" au voisinage de
F'(0)NK, l’'ordre de T|K est =q— Q.

Soit @ une forme linéaire sur J; notons @ | K la forme linéaire sur J | K
qu’on en déduit. En procédant comme au lemme (1.3), on montre que le noyau
de @ | K est fermé. En prolongeant @ | K a @'(K) et par réflexivité de @(K), on
obtient une forme ¢ € @(K) telle que (T, ¢) = ®(T), pour toute T € JF. La proposi-
tion est démontrée.
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COROLLAIRE (3.3). On a dg(J)=(Ker F*)°. En particulier, Ar(J) est fermé
dans (J).

Démonstration. L’inclusion #r(J) < (Ker F*)° provient de la relation générale
(Im u)® =(Ker ‘u)° pour une application linéaire continue u.

Montrons ’inclusion inverse et choisissons fe (Ker F*)°; comme f définit une
forme linéaire sur ${'(J), nulle sur le noyau de F*, elle définit une forme linéaire
sur J. Cette derniére admet un prolongement linéaire continu a @'(U) d’apres la
proposition (3.2) et fournit donc ¢o€ D(U) telle que f— Fypoe A(J). Il reste a
employer la proposition (2.3) pour obtenir ¢ € d(U) telle que Fxo =f.

Fixons jeN*; I’existence d’une fonction foe C*(R) avec les propriétés du
lemme (1.3) permet, par convolution, de définir une application lin€aire continue o
de {™"(R,) dans lui-méme telle que

tO'ajq.qN,k = 0, si j, # j, Vq eN, Vke [1, n],

t —
Uaj+qN,n - aj+qN,m Vq eN.

La répétition de cet argument et un résultat de R. Seeley [11] conduit au
lemme ci-dessous, ou xj est un élément de AN (R) tel que (aj i, xju) =1 si
(j', k") =(j, k), =0 sinon.

LEMME (3.4). Soit (j, k) eN*x[—n, n]*. Alors il existe une application linéaire
continue py.:A™"(R) —> D(R) telle que, pour tous fe A™"R) et qeN:

(aj+qN,k, Xjkpjk(f» = (ai+qN,k, f)

THEOREME (3.5). L’application Fy:®(U)— sde(J) admet une section
linéaire continue.

Démonstration. D’aprés la proposition (3.2), il existe des formes ¢, e d(U),
pour 1<s<r, 0<q<Q, telles que (1) ait lieu pour tout (s’, q")€[1, r]XN. Soit
Ao(N)={gedr(J); (t'b, g)=0, 1<s=r, I=1}; définissons o :Hr(J) —> D(U)
par

Qo= Y Y, (b New fesdel).

1=ss<rq<Q

Si () 79) =F*OQQ, on a Im (l—wQ)C.sﬁQ(J).
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Pour 1<s<r, soit p, I'application p; .o~ du lemme (3.4), les entiers j;, k,
étant ceux du lemme (3.1). Définissons ..:do(J) = D(U) par

Q.g)= 2 F*p.(g)er gedoll).

l<s=<r

Si wo=Fg° N, on a Im (1 - w.) < A(J).
Posons enfin 2 =0,°(1-wg)+ 0 et w=Fgo L) Alors oc°(1—w)+ {2, ou o
est ’application de la proposition (2.3), est la section linéaire continue cherchée.

COROLLAIRE (3.6). Le sous-espace F*(d'(J)) est facteur direct de @'(U); il
est isomorphe au dual de Ag(J).

Démonstration. Elle résulte du théoréme (3.5) dés qu’on a remarqué que F*
et la transposée de Fyx:D(U)— dAx(J) ont la méme image.

COROLLAIRE (3.7). @p(U)= F*A'(J)).

Démonstration. D’aprés le lemme (1.5), C°(J) est partout dense dans «'(J);
donc F*s{'(J) est contenu dans P'adhérence de F*C°(J) qui est par définition
Br(U).

D’autre part, D U) est contenu dans F*o'(J), car ce dernier espace est fermé
dans @'(U), d’apres le corollaire (3.6).

Remarques. 1. En modifiant de maniére évidente l’espace «™"(J), les
résultats de ce paragraphe restent valables pour un ouvert connexe, relativement
compact U de X, car F n’a qu’un nombre fini de valeurs critiques dans U.

2. Si U est un ouvert connexe quelconque de X et si I'inclusion Fg(@(U))<
AN (J) est vérifiée, alors les résultats ci-dessus sont aussi vrais. Ce cas se
présente, par exemple, lorsque X=R"=U et F polyndOme homogéne a n vari-
ables (cf. Rais [10]).

4. Questions d’Invariance

Dans ce paragraphe, nous faisons les mémes hypothéses que précédemment
pour X, F, U, J, sauf que U n’est plus nécessairement relativement compact (cf. la
remarque 2 ci-dessus.

Pour tout ouvert V< U, notons 4(V) ’ensemble des h € C*(V; U), tels que h
est un difféomorphisme de V sur h(V) qui conserve F. L’ensemble des distribu-
tions T sur U qui satisfont hg(T | V)=T | h(V), pour tous Vc U et he 4(V),
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sera noté @'(U; F). Nous désignerons par @'(U; dF) ’ensemble des distributions
sur U qui, sur tout ouvert V < U, sont annulées par les champs de vecteurs C” sur
V qui annulent F. La notation s’explique par le fait que dans le cas régulier,
dF # 0 partout, @'(U; dF) ={Te%'(U); dT AdF =0}.

En considérant le groupe a un paramétre engendré par un champ de vecteurs,
on vérifie que

@' (U; F)<cD'(U; dF).
D’autre part, il découle des définitions que
B (U)<=D'(U; F).

Ces trois espaces de distributions sur U peuvent étre différents comme le
montre I’exemple (4.6). Par contre, on a:

PROPOSITION (4.1). &'(U; F)N C°(U) = F*(C°(J)).

Démonstration. Si g est un élément du membre de gauche, alors g est constant
sur les fibres non singulieres de F. Définissons g:J—C, par g(t)=g(x,), ou
F(x,) =t et x, est tel que toute suite de J tendant vers 0 se reléve en une suite de
U tendant vers x,. Alors g est continue et goF=g, car on a I’égalité sur
U\F'(0).

Remarquons que, pour m>0, 2'(U; F)N C™(U)# F*(C™(J)), comme le
montre I'exemple F(x)=x*.

Le principe du recollement des morceaux a la conséquence suivante:

PROPOSITION (4.2). Si F n’a pas de points critiques dans U, alors @(U) =
@'(U; F).

Dans la suite, nous supposerons que F est un polyndme homogene de degré m
a n variables et U= X=R".

LEMME (4.3). Les conditions suivantes sont équivalentes:

(1) F est linéairement équivalent & un polynéme indépendant de x,;
(i) il existe un difféomorphisme défini au voisinage de 0 qui conserve F et déplace
P origine.
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Démonstration. Pour montrer que (ii) entraine (i), il suffit d’écrire le
difféomorphisme h en question sous la forme

h(x)=(0,...,0,a)+Dh(0)-x+0(r?), r’=xi+---+x,

car, si F(x)=F,,(x")+F,_1(x')x,, +- - - + Fo(x)x,;, on vérifie par récurrence sur k,
que F, =0, pour 0<k<m.

Si I'une des deux conditions du lemme (4.3) n’est pas satisfaite, nous dirons
que F dépend effectivement de n variables.

PROPOSITION (4.4). Soient F un polynéme homogéne dépendant effec-
tivement de n variables et T une distribution a support 0 dans R". Alors Te
G'R"; F) si, et seulement si, Ted'([R";dF) et T est invariante par tout
difféomorphisme linéaire conservant F.

Démonstration. Soient V un ouvert de R" et he 4(V). Si0g V, alors 0g h(V)
d’aprés le lemme (4.3), et hy(T | V)= T| h(V), puisque les deux membres sont
nuls. Il suffit donc de vérivier I'invariance de T lorsque V est une boule centrée a
’origine.

Pour 0<r<1, soit h,: V—>R" l'application définie par h,(x)=71"'h(rx) et
ho= Dh(0). Alors (7, x)+> h,(x) est de classe C~ sur [0,1]XV et h, est un
difféomorphisme de V sur h,(V) qui conserve F.

Si &, est le champ de vecteurs défini par:

-—l_____q_ ° -1 ______f_i__ 00
(g'rf) ° h"r - do (f hc" ) do (ha)*,10'=1" fE C (V)7

o=T

on a ¢£F=0 et donc 0=(h,)x£T=(d/do)(h,)xT|o=.. Il s’ensuit que (hy)xT =
hsT = (ho)xT = T, d’aprés la seconde hypotheése sur T.

Remarque. Si’on suppose seulement que F est quasi-homogene et n =2, on
montre une proposition analogue a (4.4), ou difféomorphisme linéaire est
remplacé par difféomorphisme algébrique d’un type particulier.

PROPOSITION (4.5). Soient F un polynéme homogéne a n variables non
négatif et T € DHR") une distribution a support 0. Alors les composantes homogénes
de T appartiennent aussi a DE(R"); de plus, pour tout entier v=0, la dimension du
sous-espace vectoriel de DHR") formé des distributions a support 0 et homogénes
d’ordre v, est majprée par 1.
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Démonstration. Nous reprenons les notations du paragraphe 3 pour ay, jeN*
et 1<sk=n, puisque F est non négative. Pour r>0, soit h, ’homothétie de
rapport r.

Le développement de Laurent de | F*¢, ¢ € B(R"), au voisinage de —j/N et la
relation

J-F)\(hr)*(P e J(F - hr—l)k‘p — r——m)\JF/\(P

montrent qu’il existe des constantes ¢, # 0, telles que
) n—k
(h)x(F*az)=r""™ Y, cq(-mlogr) -F*a, .1, jeN*, l<k<n, (1)
: 1=0

Soit T=Y yjuF*a;, yjx €C, un élément quelconque de D4(R") a support 0. En
appliquant la formule (1) et en remarquant que T|R"=(h)sT|R"=0, R"=
R"\{0}, on montre que

‘ij?£0$ F*a,-k “Rn =0.

Considérons maintenant (j, k) tel que F*a;#0 et supp F*a; ={0}; alors,
puisque F*a; est combinaison linéaire de dérivées de la distribution de Dirac, la
formule (1) montre que (h,)xF™*a; = r"'"F*a;, et donc que F*a; est homogéne
d’ordre (mj/N)—n.

EXEMPLE (4.6). Pour U=R* et F(x,y)=x*+y*, on a DHU)#
D'(U; F) # D'(U; dF). De plus, D'(U; F) n’est pas facteur direct de D'(U).

D’apres la proposition (4.4), si T est une distribution a support 0, T e @'(U; F)
si, et seulement si,

LoT 0T
i ——:0 _—:T’ 2
y oo x % et hsT (2)

ou h est un élément quelconque du groupe du carré.
En écrivant T=7Y c,g 6“®, les conditions (2) deviennent:

Cap =0 si @ ou B est impair,
caB = CBow V(a’ B)’ (3)
(a+4)(a+3)(a+2)carsp=(B+4)(B+3)(B+2)Cap+sr V(o B).
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De (3), on déduit que @'(U; F)#%'(U; dF) et que la dimension du sous-
espace vectoriel de @'(U; F) des distributions homogénes d’ordre v vaut:

1 si v=0 ou 4u+2, w=0,
0 si v=2u+1, u=0,
2 si v=4u, u=0.

La proposition (4.5) montre que @'(U; F) # 2§(U).

Pour voir que @'(U; F) n’est pas facteur direct de @'(U), on proceéde par
’absurde et on aboutit a la contradiction classique suivante: il existe un sous-
espace de 9(K), K compact de U, qui est isomorphe au produit C".

EXEMPLE (47) Pour F(x) = x,f‘ .o x"in’ avec kl’ e kn entiers 20, on a
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