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Comment. Math. Helvetici 39 (51) 395-410 Birkhâuser Verlag, Basel

Sur les Distributions Images Réciproques par une Fonction
analytique

par H.-M. Maire

Introduction

Soient F une fonction analytique réelle non constante définie sur une variété
analytique réelle X de dimension n et U un ouvert connexe, relativement
compact de X; désignons par ÇùF(U) l&apos;ensemble des distributions sur U qui sont
limites de fonctions continues sur U, constantes sur les fibres de F. Dans cet
article, nous montrons que 2)f(L0 est facteur direct de l&apos;espace 2&gt;&apos;([/) des

distributions sur U et qu&apos;il s&apos;identifie à un espace de fonctions généralisées sdF(J)
sur l&apos;intervalle J F(U); l&apos;identification se fait par le prolongement naturel de
l&apos;image réciproque F*:C°°(J)-+ C°°(U) à siUJ).

Plus précisément, soit^Nn(/) l&apos;espace des 1-formes différentielles impaires de
classe C°° sur /\{0}, à support compact dans J, qui admettent en 0 un double
développement asymptotique dans l&apos;échelle de comparaison

+1/N (log (±t))k&apos;1 dt, /€N*, 0&lt;k^n, ±f&gt;0, N&gt;0.

Notons 2)(17) l&apos;espace des n-formes différentielles impaires de classe C°°, à

support compact sur U et supposons que 0 est la seule valeur critique de F dans
U. Alors, le prolongement analytique de la distribution F+ (cf. Atiyah [1]) permet
de montrer que l&apos;intégration sur les fibres non singulières de F, des éléments de

3(17), définit une application linéaire continue F*: 3(17) -&gt;dN&apos;n(J), pour N entier
convenable. Ce résultat, dû à P. Jeanquartier [5], repose sur une version du
théorème de résolution des singularités de H. Hironaka.

Soit stF(J) F*(9)(U)); nous montrons que dF{J) est fermé dans dN&apos;n(J) et

que l&apos;application F*:®(U)-*stF(J) admet une section linéaire continue. La
transposée de F* est alors un isomorphisme de siF(J) sur 9&amp;([/).

Nous considérons aussi un autre sous-espace fermé de 3)&apos;{U) lié à F, 9&gt;&apos;{U; F)
formé des distributions sur U qui sont invariantes par tout difféomorphisme local
de 17 conservant F. L&apos;inclusion %(U)cÇb&apos;(U; F) résulte des définitions; si F n&apos;a

pas de singularités dans U, alors &lt;3)F(U) Çiï(U;F) et le même résultat est vrai
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396 H-M MAIRE

lorsque F est une forme quadratique non dégénérée sur IRn (cf. Methée [9],
Tengstrand [12]). Mais, en général, %(U)*®(U;F) (cf. l&apos;exemple (4.6)) et
3)&apos;(l/; F) n&apos;est pas facteur direct de 3T([/) (même exemple).

Les résultats présentés ici ont fait l&apos;objet de ma thèse et ont été annoncés dans

[8]; je remercie vivement le Professeur P. Jeanquartier de m&apos;avoir guidé dans mes
recherches et utilement conseillé pendant la rédaction du manuscrit.

1. Fonctions Test Singulières et Fonctions Généralisées

Dans ce paragraphe, p (p,)jeN* désignera une suite strictement croissante de
nombres réels tendant vers l&apos;infini et m (mJ)jGN* une suite de nombres entiers
positifs. Au couple (p, m), nous associerons l&apos;ensemble P {p}; je N *} et l&apos;application

M:P-&gt;N*, telle que M(p}) mr
Pour / et k entiers positifs, soit XjM p(t)tp&gt; (\og t)k~\ f &gt;0, où pe3(R) vaut

1 au voisinage de 0 et a son support dans un intervalle précisé ultérieurement; les

fonctions \]k forment une échelle de comparaison au voisinage de 0. Nous
désignerons par s£p&apos;m([0, j3]), ]3&gt;0, l&apos;espace des fonctions complexes /gC°°(RÎ),
nulles pour t ^ /3, admettant en 0 un développement asymptotique

(1)

indéfiniment dérivable terme à terme. Pour heN et /erfp&apos;m([0, j3]), soit Ahf la

somme de (1) limitée aux entiers / tels que p}^h; ainsi, f-Ahfe Ch(M+).

L&apos;espace que nous venons de définir sera muni de la topologie engendrée par les

semi-normes /»-» \a}k\ et /?-» sup \Dl(f- Ahf)\, pour 0^1^ h entiers.
Si p est un nombre positif, fini ou non, nous noterons s£p&apos;m([0, j8[) la réunion

des ,s4p&apos;m([0, 7]), pour 0&lt;y&lt;/3, munie de la topologie limite inductive. Pour
-00^ a &lt;0, soit ^pm(]a, 0]) l&apos;espace des fonctions complexes définies sur RÎ, dont
les symétriques appartiennent à s&amp;p&apos;m([0, —a[). Finalement, nous poserons
dp&apos;mQ&lt;*, PD ^p&apos;wCk 0]) x dp&gt;m([o, 0D.

Si / est l&apos;un des intervalles ci-dessus, on montre, en utilisant le théorème
d&apos;Ascoli, que s&amp;p&apos;m(J) est un espace de Montel complet. Les éléments de dp&apos;m(J)

sont appelés des fonctions test singulières de type (p, m) sur J.

Lorsque g est une fonction complexe définie sur ]0,&lt;»[ et qu&apos;il existe reU tel

que trg(t)e l/QO, oo[)9 nous poserons, pour À eC, Re À r,

/* 00

txg(t)dt.
Jo
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La fonction Mg ainsi définie sur la verticale Re À r, sera appelée transformée de

Mellin de g (il y a un décalage de 1 avec la définition classique). Si gi et g2 sont
comme cidessus, alors la convolée gi v g2 définie par

gi v g2(0 I gi(f/s)g2(s) ds/s

satisfait M(gi v g2)(À) Mgt(k) • itg2(A), pour Re A r (cf. Titchmarsh [13]).
Tout élément / de ^pm([0, ]8]) a une transformée de Mellin définie et

holomorphe dans le demi-plan ReA&gt;-pi~l; de plus, l&apos;existence du
développement asymptotique de / au voisinage de 0 permet de prolonger Mf en
un fonction méromorphe dans C avec des pôles éventuels aux points q} — p} — 1,

/ 1, 2,... ; il suffit en effect de remarquer que

W (-ir1 7: nr + fonction entière.
vA q,)

Soit Mpm l&apos;espace des fonctions méromorphes dans le plan complexe,
holomorphes dans C\{qu q2,...}, l&apos;ordre du pôle au point qi étant =^mr Pour
G g Mpm, nous avons donc un développement de Laurent

G(À)= I &amp;;k(À-4rk
Jc*sm,

au voisinage de chaque point q,, avec b&apos;]keC Pour heN, nous poserons BhG
Z fykXjk, la somme portant sur les couples (/, k) tels que p}^h et 0&lt; k^ m7, où
fcik (-l)k~1fcJ&apos;k/(fc-1)!; ainsi G-BhG est holomorphe dans le demi-plan Re A ^
-h-1.

Dans Mpm, considérons le sous-espace itpm(j8) formé des fonctions F qui
jouissent de la propriété suivante:

pour tous h et I€ N, il existe CKi&gt;0 tel que ,„,

(On choisit peSb(R) nulle pour f ^ j8, dans la définition des xJk.) L&apos;espace jHp&apos;m(j8)

sera muni de la topologie engendrée par les semi-normes F«-»|fcjk| et F»-»

^-,,-! |AI/3-A(F-BhF)(A)|, pour /, h 0,1, 2,...

PROPOSITION (1.1). La transformation de Mellin établit un isomorphisme
vectoriel topologique de s£pm([0, ]8]) sur itp&apos;m(j3).
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En employant les résultats de Doetsch [4], p. 115, on obtient que il est une

bijection de ,s4pm([0, j3]) sur jtip&apos;m(j3) et le fait que les semi-normes f&gt;-*\a,k\ et
/^-&gt;supo&lt;r&lt;0 t~h+1\Dl(f-Ahf)(t)l I heN engendrent aussi la topologie de

,s4pm([0, j3]), montre la partie topologique.

COROLLAIRE (1.2). Si 0&apos;, j3&quot; sont positifs, la convolution sur RÎ induit une

application bilinéaire continue

sip&apos;-m&apos;&amp;Of (S&apos;])x^p&quot;&apos;m&quot;([0, 0&quot;])-&gt;d*m([0, p&apos; • j3&quot;])

où la suite p correspond à Vensemble Pf U P&quot; et m correspond à la fonction M&apos; + M&quot;,

étant entendu que M&apos; [resp. M&quot;] est prolongée par 0 sur P&quot;\P&apos; [resp. P&apos;\P&quot;].

Nous aurons encore besoin du résultat suivant au paragraphe 3.

LEMME (1.3). Soit (aJk)l)keEN* une famille quelconque de nombres complexes.

Alors, il existe une fonction foe C°°(R), à support dans Vintervalle [0,1], telle que

DkMf0(qj) ajk, pour tous jeN* et 0

Démonstration. Soient E l&apos;espace de Fréchet des fonctions de classe C°° sur R

à support dans [0,1] et £ le sous-espace vectoriel du dual E&apos; de E engendré par
les formes linéairement indépendantes

•I tH\oët)kf(t)dt, j

L&apos;énoncé revient à dire que toute forme linéaire sur X admet un prolongement
linéaire continu à E\ puisque E est réflexif. Or, il découle d&apos;un théorème de

Banach sur les convexes faiblement fermés du dual d&apos;un Fréchet (Bourbaki [3])

que tout sous-espace vectoriel de £ est fermé dans E&apos;; en effet, pour tout heN,
l&apos;intersection de X avec le sous-espace E&apos;h de E&apos; des formes linéaires sur E,
continues pour la norme /«-*sup|Dh/|, est de dimension finie.

L&apos;espace dual de ,s4pm(J) sera noté sfp&apos;m(J); nous le munirons de la topologie
forte et appellerons ses éléments fonctions généralisées de type (p, m) sur J. Les

coefficients ajk de la relation (1) définissent des fonctions généralisées de type
(p, m) sur R+. Lorsque p (0,1,2,...) et m (1,1,...), l&apos;espace s&amp;&apos;p&apos;m(M+) est

identique à l&apos;espace 2&gt;&apos;(R+) des distributions sur R+.
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On dira que Tes£tp&apos;m(M+) est nulle sur un ouvert U de R+, si T12&gt;(U\{0}) est
nulle et s&apos;il existe j3&gt;0 avec [0, /3[&lt;=t/, tel que T | ,s#p&apos;m([0, j3[) est nulle. Le
support de Tesâ&apos;p&apos;m(M+) sera, par définition, le complémentaire, dans M+, du plus
grand ouvert dans lequel T s&apos;annule; cet ensemble sera noté supp T. Lorsque
Tes&amp;&apos;p&apos;m( on posera supp T supp TU supp T+, où T=(T-,T+) avec T±€
,s4&apos;p&apos;m([R±) et supp T_ défini par symétrie.

Une fonction généralisée Tesl&apos;Ptm(R+) est dite d&apos;ordre fini s&apos;il existe un entier
h^O tel que, pour tout /3&gt;0, T|rfp&gt;m([0, j3]) est continue pour la norme

ff» maxsup|D&apos;(/-AH/)|+ £ |a|fc|.

Le plus petit entier ayant cette propriété sera Yordre de T. Par symétrie, on
définit l&apos;ordre d&apos;une fonction généralisée sur R_, et l&apos;ordre de Tes&amp;fp&apos;m(ÏÏ) sera le
maximum des ordres de T+ et T_. Il découle immédiatement des définitions que
toute fonction généralisée à support compact sur R est d&apos;ordre fini.

PROPOSITION (1.4). Si Tes&amp;tp&apos;m(M+) a son support réduit à 0, alors T est

combinaison linéaire des éléments a]k, j 1, 2,..., k 1,..., mr

La proposition est une conséquence immédiate du fait que, pour toute
fedlp&apos;m(M+), f—Ahf est limite, dans la topologie Ch, d&apos;une suite d&apos;éléments de
2)(RÏ).

La dérivation des fonctions généralisées est définie comme suit: pour Te
sfp&apos;m((R), on pose

où p + l (p1 + l,p2+l,...). L&apos;application D de d&apos;p&apos;m(M) dans sfp+1&apos;m(IR) ainsi
obtenue est linéaire continue.

Le produit d&apos;une fonction généralisée de type (p, m) par une fonction g e
C°°(R) est commode à définir lorsque (p, m) satisfait les conditions P+lcP et

mj^m]+u pour ;^1; dans ce cas, le produit par g est une application linéaire
continue de sfp&apos;m(R) dans lui-même définie par:

Pour p quelconque et reU, l eN, on définit le produit de Tes&amp;&apos;{H&apos;r&apos;m+l(M+) et de
la fonction fr(log t)1 par la même formule.



400 H-M MAIRE

II résulte de ces définitions que l&apos;opérateur dittérentiel tD donne une application

linéaire continue de s&amp;&apos;p&apos;m(U) dans lui-même.
Il est possible de définir la convolée de deux fonctions généralisées de type

(p, m) sur R+ à supports limités à droite; on pose {SvT,f) (S, h) où h(s) (T, /s)
et fs(t) f(st), lorsque fes&amp;p&gt;m(M+). La convolution est alors associative et com-
mutative mais ne permet pas de régulariser les fonctions généralisées, car si le

support de T est réduit à 0, on montre que le support de S v T est aussi réduit à 0,

quelle que soit Ses&amp;&apos;p&apos;m(M+). Toutefois, on a le résultat suivant:

PROPOSITION (1.5). L&apos;espace 9)(R*) est partout dense dans s&amp;&apos;p&apos;m(U).

Démonstration. D&apos;après la réflexivité de s&amp;p&apos;m(U), il suffit de montrer que si

fes&amp;p&apos;m(U) est telle que (g, f) 0, pour toute g e 3(R*), alors / 0. Cette propriété
a lieu puisque / est de classe C°° sur R*.

2. Image Directe des Formes C°°.

Soit F une fonction analytique réelle non constante sur une variété analytique
réelle X connexe de dimension n. Fixons un ouvert connexe, relativement

compact U de X, tel que F~1(0)D U^ 0, sur lequel F n&apos;a que la valeur critique 0

et notons / F(U). L&apos;image réciproque par F des fonctions C°° sur J donne une
application linéaire continue F*:C°(J)-^ C°°(U); par transposition, on en déduit
une application linéaire continue F*: c&apos;est l&apos;image directe, par F, des n-courants
impairs à support compact sur U. Remarquons que, si T est un tel courant, on a:

F*(F*gT) gF*T, où geC~(J).

Désignons par 3(1/) l&apos;espace des n-formes différentielles impaires de classe

C°°, à support compact sur U et par s&amp;N&apos;n(J) l&apos;espace s&amp;p&apos;m(J) du paragraphe 1, où

p (-1 +//N)jeN* et m (n, n,...), pour un entier N** 1. A l&apos;aide de la mesure
de Lebesgue sur U, nous identifierons s&amp;N&apos;n(J) à un sous-espace des 1-courants

impairs sur J. Dans [5], P. Jeanquartier a montré le résultat suivant:

PROPOSITION (2.1). Sous les hypothèses précédentes, il existe un entier
tel que F*(3(l/)) soit contenu dans dN&apos;n(J). De plus, Vapplication F#:
$&amp;N&apos;n(J) est linéaire continue.

La démonstration de P. Jeanquartier repose sur le théorème de résolution des

singularités de H. Hironaka.
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Remarque. Dans certains cas particuliers, les travaux de I. N. Bernstein [2] et
M. Kashiwara [7] sur le prolongement analytique de la distribution Fx permettent
d&apos;obtenir la proposition (2.1) sans employer le théorème de résolution. En effet,
comme conséquence de la propostion (1.1), il suffit de vérifier que, pour toute

9 e 25(17), la fonction

(I&lt;p)(À)=f FK&lt;p, ReÀ^O

appartient à MNn(P), où /3 est la borne supérieure de F dans U et que
l&apos;application I: Q)(l/)-^itN&apos;n(j8) est linéaire continue. Or, d&apos;après [6], il existe
localement un opérateur différentiel Q(À, x, Dx) à coefficients polynomiaux en À,

analytiques en x et un polynôme beC[\], tels que

On en déduit que Iq&gt; admet un prolongement analytique méromorphe dans C avec
des pôles aux points Si~/i,..., sk-jk, où Si,..., sk sont les zéros de b et

/i,. .,/keN.
De plus, l&apos;existence (cf. [7]) d&apos;un entier v et d&apos;un opérateur différentiel

Qo(À, jc, Dx) de degré inférieur à v en À, tel que

montre que la condition (2) du paragraphe 1 est satisfaite pour I&lt;p.

Si l&apos;on sait que les zéros de b sont rationnels négatifs, par exemple lorsque F a

des singularités isolées dans U, on a démontré la proposition (2.1).

En vue de décrire l&apos;image de l&apos;application F#:35(L0 -&gt; dN&apos;n(J), introduisons le

sous-espace ^.(J) de s&amp;N&apos;n(J) formé des éléments dont le développement asymp-
totique est identiquement nul en 0; la notation s&apos;explique par le fait que les

formes de $îoo(J) sont C°°-plates en 0.

LEMME (2.2). Il existe une n-forme impaire &lt;pe2&gt;(l/) telle que F*&lt;p£sUJ).

Démonstration. Si X Un et U contient un voisinage V de 0 de la forme
V&apos;xV&quot;, V&apos;c=Rq, V&quot;ann~q, tel que F&quot;1^)!! V= V&apos;x{0}, on peut procéder

comme suit. Lorsque q n-l, on a F(x) Xn-G(x), où G est analytique, non
divisible par xn\ quitte à changer l&apos;origine dans V, on peut supposer que

±Xn, et, dans ce cas, le lemme est banal.
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Lorsque q&lt;n — l, F ne change pas de signe dans V, par exemple
Choisissons &lt;o &lt;p&apos;A&lt;p&quot;, où &lt;p&apos;€2)(V) et ç&quot; est une forme différentielle de degré

q -1 à support compact dans V&quot;, qui s&apos;écrit xq+1 dxq+2 a • • • a dxn, au voisinage de
0. D&apos;après la formule de Stokes, on a:

I &lt;u=| w=[ do&gt;, où Vt {xeV;F(x)^t], f&gt;0.
Jf Ht) Jdvt Jvt

En employant l&apos;inégalité de Lojasiewicz et la formule de Taylor, on sait qu&apos;il

existe fl^l, C et D&gt;0, tels que

C |jt&apos;f ^ F(x\ x&quot;) ^ D l*&quot;!, (x\ x&quot;) € V.

Si on choisit &lt;p&apos; telle que JV &lt;p&apos; (-l)q, ces inégalirés entraînent que:

e, avecC, D&apos;&gt;0.

Ces dernières estimations montrent que si &lt;p dFAû&gt;, FHe&lt;p n&apos;a pas un
développement asymptotique nul en 0.

Le cas général se ramène à ce cas particulier en considérant la dimension q du
sous-ensemble analytique F&quot;1^) H U.

PROPOSITION (2.3). Il existe une application linéaire continue
3)(U) telle que F*°&lt;t= 1. En particulier, s&amp;*&gt;(J) est contenu dans

Démonstration. Soit &lt;p e 2)( t/) telle que le développement asymptotique de

± ne soit pas identiquement nul lorsque JnR± ^ 0 ; le lemme (2.2) permet
de construire une telle forme. En modifiant &lt;p hors d&apos;un voisinage de F~1(0)fl U,

on peut supposer que F*&lt;p(0^0, pour tout fe J\{0} (&lt;p ne sera plus à support
compact, mais le support de &lt;p coupe l&apos;image réciproque de tout compact de J
suivant un compact de U). Pour toute fesâoo(J), le quotient flF^ç, prolongé par 0

en 0, est de classe C°° sur /. Il suffit de choisir af=&lt;p&apos;F*(f/F%&lt;p).

3. Image Réciproque des Fonctions Généralisées

Nous reprenons les notations et hypothèses du paragraphe 2 pour X, F, U, J.

Nous poserons, pour simplifier, 5i(J) 5iN&apos;n(/) et dF(J) F*(2}(1/)), où N est un
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entier fixe donné par la proposition (2.1). L&apos;application transposée de F* sera
notée F* :sl&apos;(J) -&gt; Çtf(U); nous l&apos;appellerons image réciproque, par F, des fonctions
généralisées de type (N, n) sur J, puisqu&apos;elle prolonge l&apos;image réciproque des

fonctions C°°.

Dans ce paragraphe, nous montrons que F*(,s4&apos;(J0) est facteur direct de 9&gt;&apos;(l/);

il est donc fermé et, par conséquent, si ^tfF(U) est l&apos;adhérence dans Çb&apos;(U) des

fonctions continues sur U, constantes sur les fibres de F, on a Çè&apos;F(U)- F*(s&amp;&apos;(J)),

d&apos;après la proposition (1.5).
Pour tout couple (/, k)eN*x[-n, n]*, où [-n, n]* représente l&apos;intervalle de

nombres entiers privé de 0, soit a]k la fonction généralisée sur J définie par:

si fc&gt;0et

sik&lt;Oet/nra?*0, fed(J)
sinon,

où on a noté, pour gesQ,N&apos;n(M+), a]k(g) le coefficient de Xjk (cf. le paragraphe 1)

dans le développement asymptotique de g au voisinage de 0 et f(t) f(—t), pour
teU. Avec cette définition, on obtient que:

_f0 si
t&apos;a&apos;k{al-N,k si

D&apos;après la formule F*(gT) F*g-F*T, pour geC°°(IR) et TesA&apos;(J), on a:

(0)

Pour (;, k)6N*x[-n, n]*, nous désignerons par 2Tjk le sous-espace vectoriel de

2&gt;&apos;(L0 engendré par F*aJ+qN)k, qeN, et poserons 2T +2Tjk, la somme portant sur

O&apos;,k)e[l,N]x[-n,n]*.

LEMME (3.1). Il existe un nombre fini de couples (ju kj,..., (/V, K)e
N*x[-n, n]* tels que les images réciproques par F des éléments bsq aJs+qN&gt;ks,

l^s^r, qeN, forment une base de 9&quot;.

Démonstration. Soit B un sous-ensemble de [1, N]x[-n, n]* et supposons
qu&apos;on a déjà construit une base de 3&quot;B +Vj&apos;x&gt; où la somme porte sur (/&apos;, k&apos;)eB,

du type désiré. Si (/, k)e [1, N]x[-n, n]* et V]k&lt;£8TB, soit ;0 le plus petit entier de

la forme ; + qN tel que F&quot;a]0,k^B; alors, d&apos;après (0), ÏÏB 0 9&quot;,0,k 2TB +2Tjk et on

obtient une base de 2TB +9&quot;jk en ajoutant à la base de 2TB les éléments F*a/0+qN&gt;k,

qeN.
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Le lemme est démontré par récurrence sur B en commençant par B 0.
Dans la suite, nous noterons Tsq la distribution F*fcsq. Il existe un entier Q tel

que les distributions F1 • Tso, pour le M, 1 ^ s ^ r, sont combinaisons linéaires des

Ts&gt;,q&gt;, avec q&apos; &lt; Q. On aura alors que, pour tout (s, q) e [1, r] xn, 1 € N, la distribution

F1 • Tsq est combinaison linéaire des Ts,q&apos;, avec q&apos;^max (q — l, Q — 1).

Pour l^s^retO^q^Q, choisissons &lt;psqe2)(l/) telles que, pour 1 ^s&apos;^r et
O^q&apos;^Q, &lt;Ts,q, &lt;psq)= 1 si (s&apos;, q&apos;) (s, q), 0 sinon. L&apos;existence de ces formes

provient de l&apos;indépendance linéaire des Tsq.

Soit K la réunion des supports des formes &lt;psq, pour l=^s^r et 0^q&lt;Q. Si

(s, q)e[l, r]x^j, il existe &lt;p€2&gt;(K) telle que, pour l^s&apos;^r et Q^q&apos;^q, on ait:

II suffit en effet de choisir &lt;p Fq~°&lt;psQ, pour q&gt;Q.

Notons SF\K l&apos;image de ïï par l&apos;application de restriction &lt;3b&apos;(U)-*(3!(K).

Comme conséquence de (1), on obtient que 2T~»^|K est un isomorphisme
d&apos;espaces vectoriels.

PROPOSITION (3.2). Toute forme linéaire sur ïï admet un prolongement
linéaire continu à Çb&apos;(U).

Démonstration. Montrons d&apos;abord que l&apos;ordre de la distribution

T= Z Z c*:q&apos;T*w&gt; oùcsW€C,

sur K est minoré par q — Q, si (ciq,..., crq) 7e 0. Pour q - Q &gt; 0, on a:

où ds,q&apos;gC. Donc Fq~°• T| X#0. Comme T| X a son support dans F~1(0)flXet
que, pour çe%(K), Fq~°&lt;p est petite dans la topologie c*1&quot;0&quot;1 au voisinage de

F^WDK, l&apos;ordre de T\K est ^q-Q.
Soit 0 une forme linéaire sur ST; notons $ | K la forme linéaire sur 2T | K

qu&apos;on en déduit. En procédant comme au lemme (1.3), on montre que le noyau
de &lt;P | K est fermé. En prolongeant $ | K à °èf(K) et par réflexivité de 2&gt;(K), on
obtient une forme &lt;p g 2&gt;(K) telle que (T, &lt;p) #(T), pour toute Te 3&quot;. La proposition

est démontrée.
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COROLLAIRE (3.3). On a dF(J) (Ker F*)0. En particulier, dF(J) est fermé
dans si(J).

Démonstration. L&apos;inclusion s&amp;F(J) c (Ker F*)0 provient de la relation générale
(Im u)00 (Ker fw)° pour une application linéaire continue u.

Montrons l&apos;inclusion inverse et choisissons /g (Ker F*)0; comme / définit une
forme linéaire sur si&apos;(J), nulle sur le noyau de F*, elle définit une forme linéaire
sur 2T. Cette dernière admet un prolongement linéaire continu à Çtf(U) d&apos;après la

proposition (3.2) et fournit donc &lt;poeÇb(U) telle que f-F^çoesi^J). Il reste à

employer la proposition (2.3) pour obtenir &lt;pe2&gt;(l/) telle que F*&lt;p=f.

Fixons jeN*; l&apos;existence d&apos;une fonction /ogC°°(R) avec les propriétés du
lemme (1.3) permet, par convolution, de définir une application linéaire continue a
de s4N&gt;n(R+) dans lui-même telle que

Wj&apos;+qN.k 0, si/V/, VqeN, Vfce[l, n],

W/+qN,n aJ+qN,n, Vq e N.

La répétition de cet argument et un résultat de R. Seeley [11] conduit au
lemme ci-dessous, où \jk est un élément de dN&apos;n(U) tel que (&lt;v,k\Xjfc)=l si

(j&apos;,k&apos;) (j,k\ =0 sinon.

LEMME (3.4). Soit (/, k)€N*x[-n, n]*. Alors il existe une application linéaire

continue p]k:s&amp;N&apos;n(U)^&gt;°è(M) telle que, pour tous fe&amp;N&apos;n(U) et qeN:

((lj+qN,k, X]kP,k(f)) (dj+qN,k, /)•

THÉORÈME (3.5). L&apos;application F*:(S&gt;(U)-*s&amp;F(J) admet une section

linéaire continue.

Démonstration. D&apos;après la proposition (3.2), il existe des formes &lt;psqe2)(L0,

pour l^s^r, O^q^Q, telles que (1) ait lieu pour tout (s&apos;,q&apos;)e[l,r]xN. Soit

dQ(J) {ges&amp;F(J); {tlbsQ,g) O, l^s^r, 1^1}; définissons nQ:sdF(J)-+ 3)(U)

par

Ûq(/)= I Z (bsq,f)&lt;psq, fedF(J).
l^s^r q&lt;Q

Si ù)q F* © 0o, on a Im (1 - &lt;oQ) c siQ(J).
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Pour l^s^r, soit ps l&apos;application ph+QN,k, du lemme (3.4), les entiers /s, ks

étant ceux du lemme (3.1). Définissons iXoi^oCJ)—»2)(l/) par

Oo(g) I F*(Ps(g))&lt;PsQ,
l*£s*sr

Si ù)oo F* ° fi», on a Im (1 - &lt;*&gt;«,)

Posons enfin il A» ° (1 - û&gt;q) + OQ et o&gt; F* ° /}. Alors cr ° (1 - o&gt;) + /3, où o-

est l&apos;application de la proposition (2.3), est la section linéaire continue cherchée.

COROLLAIRE (3.6). Le sous-espace F*(rf&apos;(J)) est facteur direct de 3&apos;(L0; il
est isomorphe au dual de s&amp;F{J).

Démonstration. Elle résulte du théorème (3.5) dès qu&apos;on a remarqué que F*
et la transposée de F* : 2&gt;( U) -» siF(J) ont la même image.

COROLLAIRE (3.7). %( U) JF*(d&apos;(J)).

Démonstration. D&apos;après le lemme (1.5), C°(J) est partout dense dans s&amp;&apos;(J)&apos;,

donc F*d&apos;(J) est contenu dans l&apos;adhérence de F*C°(J) qui est par définition

D&apos;autre part, 2&gt;f(L0 est contenu dans F*s&amp;&apos;(J), car ce dernier espace est fermé
dans Q&apos;iU), d&apos;après le corollaire (3.6).

Remarques. 1. En modifiant de manière évidente l&apos;espace siN&apos;n(J), les

résultats de ce paragraphe restent valables pour un ouvert connexe, relativement

compact U de X, car F n&apos;a qu&apos;un nombre fini de valeurs critiques dans 17.

2. Si U est un ouvert connexe quelconque de X et si l&apos;inclusion F*(3)(U))^
s&amp;N&apos;n(J) est vérifiée, alors les résultats ci-dessus sont aussi vrais. Ce cas se

présente, par exemple, lorsque X Un=U et F polynôme homogène à n
variables (cf. Raïs [10]).

4. Questions d&apos;Invariance

Dans ce paragraphe, nous faisons les mêmes hypothèses que précédemment

pour X, F, [/, J, sauf que U n&apos;est plus nécessairement relativement compact (cf. la

remarque 2 ci-dessus.

Pour tout ouvert Vcl/, notons &lt;S(V) l&apos;ensemble des h 6 C°°( V; U), tels que h

est un difféomorphisme de V sur h(V) qui conserve F. L&apos;ensemble des distributions

T sur U qui satisfont h*(T| V) T\ h(V), pour tous Vc U et he
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sera noté 3&apos;(17; F). Nous désignerons par 3&apos;(17; dF) l&apos;ensemble des distributions
sur U qui, sur tout ouvert V &lt;= [/, sont annulées par les champs de vecteurs C°° sur
V qui annulent F. La notation s&apos;explique par le fait que dans le cas régulier,
dFïO partout, %&apos;{U\dF) {Te%&apos;{U)\ dT/\dF fy.

En considérant le groupe à un paramètre engendré par un champ de vecteurs,
on vérifie que

®&apos;(U;F)c:&lt;3)&apos;(U;dF).

D&apos;autre part, il découle des définitions que

Ces trois espaces de distributions sur U peuvent être différents comme le
montre l&apos;exemple (4.6). Par contre, on a:

PROPOSITION (4.1). W(U; F)D C°(U) F*(C°(J)).

Démonstration. Si g est un élément du membre de gauche, alors g est constant
sur les fibres non singulières de F. Définissons g:/—»C, par g(t) g(xt), où

F(xt) t et x0 est tel que toute suite de / tendant vers 0 se relève en une suite de

U tendant vers x0. Alors g est continue et g°F= g, car on a l&apos;égalité sur

U\F-\0).
Remarquons que, pour m&gt;0, 3&gt;&apos;(U; F)H Cm(L/)^F*(Cm(/)), comme le

montre l&apos;exemple F(x) x4.

Le principe du recollement des morceaux a la conséquence suivante:

PROPOSITION (4.2). Si F n&apos;a pas de points critiques dans U, alors %(U)

Dans la suite, nous supposerons que F est un polynôme homogène de degré m
à n variables et U X Un.

LEMME (4.3). Les conditions suivantes sont équivalentes:

(i) F est linéairement équivalent à un polynôme indépendant de xn;
(ii) il existe un difféomorphisme défini au voisinage de 0 qui conserve F et déplace

Vorigine.
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Démonstration. Pour montrer que (ii) entraîne (i), il suffit d&apos;écrire le

difféomorphisme h en question sous la forme

(0,... ,0, a) + Dh(0)-x+O(r\ r2

car, si F(x) Fm(x&apos;) + Fm-l(x&apos;)xn + &apos; • -H-Fo(x&apos;)x^, on vérifie par récurrence sur k,

que Fk 0, pour 0 ^ fc &lt; m.
Si l&apos;une des deux conditions du lemme (4.3) n&apos;est pas satisfaite, nous dirons

que F dépend effectivement de n variables.

PROPOSITION (4.4). Soient F un polynôme homogène dépendant
effectivement de n variables et T une distribution à support 0 dans Un. Alors Te
&lt;&amp;&apos;(Mn;F) si, et seulement si, TeW(Un;dF) et T est invariante par tout
difféomorphisme linéaire conservant F.

Démonstration. Soient V un ouvert de Rn et he «(V). Si 0£ V, alors 0£ h(V)
d&apos;après le lemme (4.3), et h*(T\ V) T| h(V), puisque les deux membres sont
nuls. Il suffit donc de vérivier l&apos;invariance de T lorsque V est une boule centrée à

l&apos;origine.

Pour 0&lt;r^l, soit hr:V-+Mn l&apos;application définie par hr(x) r~1h(rx) et
ho Dh(0). Alors (r, x) •-» hr(x) est de classe C°° sur [0, l]xV et hr est un
difféomorphisme de V sur hr(V) qui conserve F.

Si £T est le champ de vecteurs défini par:

on a &amp;F 0 et donc O (hT)*fTT (d/dcr)(h&lt;r)HcT|&lt;rï=T. Il s&apos;ensuit que (hi)*T
h*r (ho)*T= T, d&apos;après la seconde hypothèse sur T.

Remarque. Si l&apos;on suppose seulement que F est quasi-homogène et n 2, on
montre une proposition analogue à (4.4), où difféomorphisme linéaire est

remplacé par difféomorphisme algébrique d&apos;un type particulier.

PROPOSITION (4.5). Soient F un polynôme homogène à n variables non

négatif et Te2)f(Rri) une distribution à support 0. Alors les composantes homogènes
de T appartiennent aussi à 3}&apos;F(Rn); de plus, pour tout entier v^Q, la dimension du

sous-espace vectoriel de 3}p(f(n) formé des distributions à support 0 et homogènes
d&apos;ordre v, est majprée par 1.
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Démonstration. Nous reprenons les notations du paragraphe 3 pour ajky j e N*
et l^k^n, puisque F est non négative. Pour r&gt;0, soit hr l&apos;homothétie de

rapport r.

Le développement de Laurent de JF\p, &lt;p€2)(IRn), au voisinage de -j/N et la
relation

montrent qu&apos;il existe des constantes ckl # 0, telles que

^NZl l^fc^n. (1)

Soit T £ yjkF*ajk, y;k€C, un élément quelconque de SpClR11) à support 0. En
appliquant la formule (1) et en remarquant que T | Ûn (hr)*T | Mn 0, IRn

Rn\{0}, on montre que

Considérons maintenant (/, k) tel que F*a]k9^0 et supp F*a]k ={0}; alors,
puisque F*a]k est combinaison linéaire de dérivées de la distribution de Dirac, la
formule (1) montre que (hr)*F*aJk rm}/NF*a,k, et donc que F*a]k est homogène
d&apos;ordre (mj/N)-n.

EXEMPLE (4.6). Pour U=R2 et F(x,y) x4+y\ on a 2)&apos;F(U)Ï

3&gt;&apos;(U; F) ï 2)&apos;(U; dF). De plus, Sb\U\ F) n&apos;est pas facteur direct de 2)&apos;(U).

D&apos;après la proposition (4.4), si T est une distribution à support 0, Tg9)&apos;(1/; F)
si, et seulement si,

où h est un élément quelconque du groupe du carré.
En écrivant T £ caP8(a^\ les conditions (2) deviennent:

cap 0 si a ou ]8 est impair,

ca^c^ V(a,p), (3)

(a + 4)(a + 3)(a + 2)ca+4^ (j8 + 4)(j8 + 3)0 + 2)ca,^4, V(a, j3).
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De (3), on déduit que 3&apos;(l/; F)ï&lt;&amp;&apos;(U; dF) et que la dimension du sous-

espace vectoriel de 2J&apos;(l/; F) des distributions homogènes d&apos;ordre v vaut

1 si v 0 ou

0 si ï&gt;

2 si v

La proposition (4.5) montre que W(U
Pour voir que W(U;F) n&apos;est pas facteur direct de 0&gt;&apos;(U), on procède par

l&apos;absurde et on aboutit à la contradiction classique suivante: il existe un sous-

espace de 3)(K), K compact de U, qui est isomorphe au produit CN.

EXEMPLE (4.7). Pour F(x) xJ1 • • • xkn% avec ku...,kn entiers 5=0, on a

%(Un) 3&apos;(Rn ; F) 2&gt;&apos;(ir ; dF).

BIBLIOGRAPHIE

[1] Atiyah M F, Resolutions of smgulanties and division of distributions, Comm on pure and appl
Math 23, (1970), 145-150

[2] Bernstein I N The analytic continuation of generahsed functions with respect to a parameter,
Functwnal Anal Appl 6, (1972), 273-285

[3] Bourbaki N, Espaces vectoriels topologiques, ch 3-5, Hermann, Pans, 1967

[4] Doetsch G Handbuch der Laplace-Transformation H, Birkhauser Verlag, Basel, 1955

[5] Jeanquartier P, Développement asymptotique de la distribution de Dirac attachée à une
fonction analytique, C R Acàd Se Pans 271, (1970), 1159-1161

[6] Kashiwara M Sur la b-fonction, Séminaire Goulaouic -Lions -Schwartz 1974-75, exposé XXV
[7] à paraître
[8] Maire H -M Sur les distributions images réciproques par une fonction analytique, C R Acad

Se Pans 281, (1975), 427-430
[9] Methée P -D, Sur les distributions invariantes dans le groupe des rotations de Lorentz,

Comment Math Helv 28, (1954), 224-269
[10] Rais M, Solutions élémentaires des opérateurs différentiels bi-mvanants sur un groupe de Lie

nilpotent, C R Acad Se Pans 273, (1971), 495-498
[11] Seeley R T, Extension of C°° functions defined m a half space, Proc Amer Math Soc 15,

(1964), 625-626
[12] Tengstrand A Distributions invariant under an orthogonal group of arbitrary signature, Math

Scand 8, (1960), 201-212
[13] Titchmarsh E C Introduction to the theory ofFouner intégrais, Clarendon Press, Oxford, 1948

Section de mathématiques
Case postale 124
1211 GENEVE 24

Reçu Décembre, 1975


	Sur les Distributions Images Réciproques par une Fonction analytique

