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On the Sum of a Zonotope and an Ellipsoid

G. R. BurTON

1. Introduction

It is well known that, for d =3, a d-dimensional convex body, all of whose
(d —1)-dimensional sections are centrally symmetric, is an ellipsoid. P. W. Aitchi-
son [1] has recently shown that a 3-dimensional strictly convex body, having all
2-dimensional sections ‘“‘sufficiently close to the boundary” centrally symmetric, is
an ellipsoid. However, this result does not extend to convex bodies. In this paper,
we show that for d=3, a d-dimensional convex body K has all its (d—1)-
dimensional sections ‘“‘sufficiently close to the boundary” centrally symmetric if
and only if K is the sum of a zonotope and an ellipsoid.

2. Definitions and Statement of the Theorem

A convex body in E? is a compact convex set having interior points. If C< E¢
is a closed convex set, the support function he of C is defined by

he(u) =sup {u * x:xe C}
for non-zero ue E%. If he(u) < and « is real, we define

Hce(o,u)={xe€ E*:u+x = hc(u)—a},
and then Hc(0, u} is a support hyperplane of C; Hc(0,w) N C is called the face of
C in direction w, is denoted f-(u) and may be empty. These definitions extend in

an obvious way to convex surfaces. We denote by S?”' the unit sphere {xe
E“:|lx|| =1}, and we shall use it as an index set for directions.

The author is grateful to D. G. Larman for his advice and encouragement, to the referee for his
suggestions, particularly regarding Lemma 17, and to the Science Research Council of the U K. for its
financial support. This research forms part of the author’s Ph.D. thesis.
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370 G. R. BURTON

A convex body K< E? (d=3) is said to have property (A) if (A) for each
ue S there exists e(w)>0 such that Hx(a,w)NK is centrally symmetric for
0<a<e(u). ‘

A zonotope is a convex polytope of which all faces, of all dimensions, are
centrally symmetric.

THEOREM. Let K< E* (d=3) be a convex body. Then K has property (A) if
and only if K is the sum of a (not necessarily d-dimensional) zonotope and a
(d-dimensional) ellipsoid.

COROLLARY. Let K< E? (d=3) be a convex body. If K is strictly convex
and K has property (A), then K is an ellipsoid.

3. The 3-dimensional Case

Throughout this section, K will be a fixed 3-dimensional convex body which
has property (A). Using methods which extend those of Aitchison, we will show
that K is the sum of a polytope and an ellipsoid.

A quadric surface in E” is (the surface of) a paraboloid, an ellipsoid or one
branch of a hyperboloid of two sheets. A quadric curve is a parabola, an ellipse or
one branch of a hyperbola. A cylindrical surface in E> is the Minkowski sum of a
quadric curve and a line which is not parallel to the affine hull of that curve. A
conical surface in E> is the surface of an elliptical cone. A quadric (respectively
cylindrical, conical) piece is a non-empty open connected subset of a quadric
(respectively cylindrical, conical) surface which is contained in bd K and which is
maximal in the sense of set inclusion; additionally, we require that a conical piece
should contain its apex. Whenever P is a non-empty open subset of a quadric,
cylindrical or conical surface, we denote by P the unique quadric, cylindrical or
conical surface which contains P.

A disc in S with centre a€ S? is the intersection of S* with an open ball with
center a and radius less than 1. When A is a subset of a convex surface C, we
shall denote by dA the boundary of A in the topology of C.

When C is a closed convex set and w is a unit vector with hc(u) <o, for
positive real numbers a we write

Nc(a,w) ={x€ bdC:x - u> hc(u)— a}

which is an open cap cut off from bd C by Hc(a, w). This definition extends to
convex surfaces.
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Consider we S?, and write

e(w)=sup{B>0:Hk(a,w)N K is centrally symmetric and non-empty for 0<
a < B}

Observe that fx(uw) is centrally symmetric, and that for 0<a <e(u) the centre
c(a,w) of Hix(a,w)NK is a continuous function of a. If xe Nx(e(u), w) then
x€ Hg(hkx(u)—u - x,u)N K, which has centre ¢(hx(u)—u - x, u), and we write

Q,(x)=2¢(hgx(a)—u-x,a)—x,

which is the reflection of x in that centre. Then (), is a homeomorphism, called
the w-opposite map, of Nk(e(u), w) onto itself, and QJ is the identity map.
We shall make use of a result of S. P. Olovjanischnikoff [5]:

LEMMA 1. Let C< E’ be a convex body, A an open connected subset of bd C
and D a non-empty open set in S* such that fc(w)< A for each u in D. Suppose
that for each we D, every plane H which is parallel to Hc(0,m) and with
HNA#J has the property that HN C is centrally symmetric. Then A is a subset
either of a quadric surface or of a conical surface whose apex lies in A.

LEMMA 2. There are no conical pieces in bd K.

Proof. Suppose false, and let P be a conical piece, whose apex we assume to
be o€ P. Consider an edge of P, which must intersect P in a half-closed line
segment [o, a). There is a unique outer unit normal u to K at 3a, and fx(u) is an
edge. Given 0<8<1, let H" and H™ be the half-spaces of points x for which
x -a—(1—8) ||lal]* is non-negative and non-positive respectively. For all sufficiently
small positive a, H™ N Hx(a, w) N bd K is contained in P and is therefore an arc of
a parabola; since the outer unit normals of a parabola lie in a semi-circle of S',
the centre k(a) of Hx(a,w)NK does not lie in (int H )N Hx(a,w)N K, so
k(a)e H*. For all small a>0, Hkx(a,w)NK contains a point x(a) with
x(a)- a< & |||, and then (2k(a) —x(a)) - a=(2—38) |a]*. By letting & — 0 we see
that (2—36)ae bd K, and hence 2aebd K. Thus 2Pc bd K, contradicting the
maximality of P. This proves the Lemma.

After, observing that the set of centrally symmetric compact convex sets is
closed in the Hausdorff metric, the reader may prove:

LEMMA 3. Let 71>0. Then {ue S*:e(w)=1} is closed.
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LEMMA 4. The set of we S* such that fx(w) is not contained in any quadric
piece is nowhere dense in S>.

Proof. Let D be a disc in S>. Then for each natural number n, by Lemma 3,
F,={aeD:e(w)=2/n} is closed in D, and D= |J,- F,. Since D is a locally
compact metric space, by the Baire Category Theorem we can choose n so that F,
contains a disc D; < D. Choose an element w, € D,, and let A = Ng(1/n, w;) which
is open and connected in bd K. Using the continuity of hx we can find a disc
D, < D, with centre uw; such that A < Nx(2/n,u) for all we D,. Then we can
choose a disc D3;< D, with centre w; such that fx(w)< A for all me D;. It now
follows from Lemmas 1 and 2 that A is a subset of a quadric surface, which
establishes the Lemma.

LEMMA 5. Let ue S e(u)>71>0 and suppose F is a compact subset of
Nk(7,u)\fx(u). Then for each 6§ >0 there is a neighbourhood D of u in S* so that
for all ve D satisfying €(v)>7 we have F< Nk(t, v)\ fk(v) and the Hausdorff
distance of Q,(F) from Q,(F) is less than é.

The proof, which is omitted, is a simple compactness and continuity argument,
and uses the fact that the map (a, v) = Hk(a, v)N K is continuous in the Haus-
dorff metric at (B, w) if Hx(B, w) intersects int K.

LEMMA 6. Let X, and X, be quadric surfaces in E*> and let A be a fixed plane
such that for every plane A’ parallel to A, the sections A'N X, and A'N X, are
translates of the same ellipse, or are both empty, and for some planes I1,, II, not
parallel to A or to one another, each of 11,, I, intersects X, and X, in non-empty
sections which are translates of one another. Then X, is a translate of X;.

Proof. We may suppose that A is the x,x; plane and that X; has equation
x3+x3=@(x1)

where ¢ is a quadratic form. Let | be the line of centres of the sections of X,
which are parallel to A, and let m;, m, be the lines through o parallel to ANII,,
ANTII, respectively. For i =1, 2 we may choose m; to be the x5 axis, so that II;
has equation x, = &x, + n;. For some constants w,, ws, a,, as, the equation of X,
is

(X2— waxy+az)” +(x3— wax; + a3)’ = @(xy)

and | has equations

X2 = WXy — Ay, X3 = W3X1— Q4s.
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By comparing the equations of II;NX; and II;NX, we find ws=0 and
wa(wy—2&)=0. If m;=m,, then wy(w,—2&)=0 for i=1, 2 with & # &, so
wi=w,=0. If m; # m,, the condition w;=0 holds in two different coordinate

systems, showing that [ is perpendicular to A. In each of these cases, we find that
X; 1s a translate of X,.

LEMMA 7. Let X, be a paraboloid, X, a quadric surface in E>, and let A4, A,
A5 be pairwise non-parallel planes parallel to the axis of X,, such that fori=1, 2, 3

the section A; N X, is a central reflection of A; N X,. Then X, is a central reflection
Of Xl.

Proof. The sections of X, by A;, A, and A; are parabolas, so X, is a
paraboloid whose axis is parallel to that of X;. We can assume that X,; has
equation x;= x3+ x1, that the sections of X, perpendicular to its axis have their
principal axes parallel to the x; and x, axes and that the x,x; plane is not parallel
to any of A;, A, and A; unless the x;x; plane is also parallel to one of these
planes. The remainder of the proof is left to the reader.

LEMMA 8. Let X be a paraboloid and Y a cylindrical surface. Then there do
not exist three pairwise non-parallel planes I1,, 11, I15 all parallel to the axis of X,
such that for i=1, 2, 3, I[1, N X is a central reflection of 11, N Y.

The proof is left to the reader.

LEMMA 9. Let T be a set in S*, vi€ T a limit point of T and let >0 be such
that e(m)> 71 for all we T. Suppose that P is a quadric piece which intersects
Nx(t,v1), and let Q=Q, (Nk(t, v,) N P).

If (i) every member of T is an outer normal to P at some point, then Q is a subset
of a quadric surface and Q =y + P for some ye E* having y *u=0 for all ue T
sufficiently close to v,.

If (i) P is a paraboloid and every member u of T has lin{u} perpendicular to the
axis of P then Q is a subset of a central reflection of P.

Proof. We remark that the significance of the positive lower bound for £(u) on
T is that it ensures that every point of Q lies in infinitely many centrally
symmetric sections of K. Let us suppose that either (i) or (ii) holds. We first
consider a component Q* of Q, so that P*=Q,(Q*) is a component of
Nk (7, v;)N P. For any ueT, all sections of P perpendicular to lin {u} are directly
homothetic quadric curves. We may suppose T to have suﬂic:lently small diameter
that there exists a positive B such that Hk(B, u) intersects Pina proper section
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for each we T. Then for each me T there is an open interval €,, which we take to
be maximal, with

Hx(a, w) N P = ¢(a, u)(Hx(B, ) N P)+a(a, u)

for all a €4,, where a(a, w) is a vector and ¥(a,w) is a positive scalar function
having one of the forms A(a+«)"?, A(u—(a+k))"?, A(u+(a+«)*)"? in case
(i), where A, k, u depend on u, or ¢ is identically 1 in case (ii).

If Hk(a, w) intersects PN (Nk(t, w)\ fx(a)), where ue T, then a €%, and the
u-opposite set of Hx(a,w)N P lies on a unique quadric curve G(a,u). Then
G(a, u) is a central reflection of Hx(a, )N P and satisfies

G(a, w) = — (e, w)(Hk(B, 8) N P)+ b(a, u)

for some vector b(a, u).

We show that Q* contains an exposed point of K. Suppose this is false. Since
for 0<a <, every point of Q* in Hx(a, v;) is an exposed point of Hx(a, v;)N K,
it follows that every point of Q* belongs to an exposed edge of K which is not
perpendicular to lin{v;}. We can choose an open interval £< (0, r) and two
distinct exposed edges I, and I, of K, such that for a€¥, Hk(a,v;) N Q*
intersects I; and I, at relatively interior points d;(a) and d,(a) respectively, and
hence

di(a)—dy(a)=ag+k (1)

where g and k are constant vectors. Let H;, H, be support planes of K with
H,NK=I fori=1, 2. If i=1 or 2, then the lines Hx(a, v;) N H; are all parallel
and support G(a, v;) in the same sense at the unique points d;(«), for « € £. Then
d;(a)—dy(a)=yY(a, v,)g for all a € L, where g’ is a constant vector, not zero. This
contradicts (1) in case (i). In case (ii), for all a € £, Hx(a, v;)N Q* lies in the
cylindrical surface Y which has G(, v,) as a section and aff I; as a generator. By
using Lemma 5, we may pick planes intersecting Y and P in a fashion which
contradicts Lemma 8. Hence in both cases (i) and (ii) the assumption that Q*
contains no exposed points is false.

Let w' be an outer unit normal to K at an exposed point in Q*. Then
fx(w)< Q* for all we S sufficiently close to w'. From Lemma 4 we deduce that
Q* intersects a quadric piece R say. We prove Q* < R. Suppose this is false, and
choose a boundary point e of RN Q* (in the topology of Q*). We must have
e £ fx(vy), for otherwise {1, (e) € fx(v;) N P* and so fx(v;) would be a point of P*;
this would imply e€ P* and R = P* which is impossible as e € aR. Therefore we
can choose an open connected set B<bdK with eeB and clBc
Nk (7, v1i)\ fk(v1). Using Lemma 5 we can choose v, in T\{v;, —v;} such that
Q,.(B)< P* and B < Nk(7, v5)\ fx(v2). Let R; be a component of RN B. Fori=1,
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2, the set of a for which Hk(a, v;) intersects R, is an open interval ;, and for
a € M;, Hx(a, v;)N Q < G(a, v;) < R by analytic continuation. Thus for i = 1, 2 the
boundary A of R; in the topology of B lies in the union of 2 planes. Hence A lies
in the union of 4 lines, and so by the strict convexity of R, A is finite. If R, # B,
we can choose xe€ B\cl R, (by the maximality of R), z€ R, and infinitely many
disjoint paths from z to x in B, so that A is infinite. We conclude that R, = B, but
this contradicts the choice of ecdR, so Q* < R.

Now suppose that Q is not connected, and let Q;, Q, be two of its
components. Then P contains a point outside Nk (7, v,), and so for some positive
o<1, Hg(a,vy) intersects Q; and Q, for o<a<rt For o<a<r
Hx(a,v))N Q< G(a, v;) so O, and O, have an open subset in common and are
therefore equal. Hence Q is contained in a quadric piece.

From the fact that ¢(u)=7>0 for wue T we deduce that for all we T close to
vy, there is an interval &, such that for a € ¥,, Hx(a, u) intersects P and Q in
non-empty sections which are central reflections of one another. In case (ii),
applying analytic continuation and Lemma 7, we conclude that Q is a central
reflection of P. Let us suppose that case (i) holds. Then for we T close to v;, for
a€ N, Hx(a,u)NP and Hg(a,u)NQ are ellipses and are translates of one
another. Applying analytic continuation and Lemma 6, we find Q=y+P for
some vector y. For me T close to v,, Hx(0, w) supports P and therefore supports
Q (by comparing sizes of sections), so y-u=0. This completes the proof of
Lemma 9.

Now that we have given some preliminary results, we pause to summarize our
methods. Lemma 10 will show that much of the boundary of a quadric piece
adjoins cylindrical pieces. From Lemma 11 it follows that shadow boundaries of K
which contain cylindrical pieces cannot cross quadric pieces; Lemma 15 shows
that there are only finitely many such shadow boundaries, using Lemmas 12 and
13 (the necessity for Lemma 14 arises from the exceptional behaviour of
parabolic cylinders in Lemma 13). It then follows that there are only finitely many
quadric pieces, and these are all parts of translates of the same ellipsoid by
Lemma 10. Lemma 16 then follows easily.

LEMMA 10. Let P be a quadric piece in bd K, and let R be the set of unit outer
normals to K at points of P. Suppose that an open set G intersects dR. Then there
exists ve GNAR, >0, ye E>, a cylindrical surface € and distinct closed half-
spaces H*, H™ bounded by a plane H, satisfying:

(i) y#o and y - v=0,

(i) HN P is the shadow boundary of P in direction y,

(iti) €= (HN P)+lin {y},

(iv) Nx(r,v)\< (H NPYU(y+(H " NP)UH " N(y+H)NYD).
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Proof. The set R is open and connected in S?, and for each we R, Hk(0, u)
supports P. Also R is maximal (under set inclusion) with these properties. This
maximality ensures that R is not dense in any neighbourhood of a point of dR.
Hence every point of dR is a limit point of dR.

Applying the Baire Category Theorem to G NAJR, we can choose a disc
D, < G with centre ve dR and o >0 such that £(u)> o for all we D;NJR. For
ue D;NIR let Q,=Q,(Nk(o,u)NP), and by Lemma 5 choose a disc D,< D,
with centre v such that Q, N Q,#Yfor all we D,NJR. Then by Lemma 9 (i), for
each we D,N4R, Q, must be a subset of a quadric surface with Q, = Q,=y+P
for some y € E?, and there is a disc Ds < D, with centre v such that y -u=0 for all
ue D;NoR.

We prove y #o. Suppose this is false, so that Q, < P for all we D;NaR. Let
0<w <o and choose a disc D,< D3 with centre v such that fx(u)< Ng(w, v)<
Nk (o, u) for all we D,; then choose x' € D,N R. Let x>, x> be unit vectors such
that x', x°, x> are mutually orthogonal, and for 0<0<2m, 0< ¢ < let z(0, ) =
cos ¢x' +sin ¢p(cos x> +sin 0x°)e S?, and 1(8) =sin x> —cos x> € S>2. Then
fx(z(6, ¢)) is contained in the shadow boundary ¥, of K in direction 1(8). Since
D, cl R, there is a proper interval [8, n] such that for each 6 €[, ], there is a
¢ €[0, 7] with 2(6, ¢)€ D,NIR; for 0 €[5, n]let v(8) =inf{d=0:2(0, p)€0R}>
0. For each real a the set {0 €[§, n]:v(8)<a} is closed since dR is closed. If
0=<¢ <wv(6) then fx(z(6, ¢)) is an exposed point of K contained in ¥, N P; since
we have fx(z(6, ¢)) = Nx(o, z(0, v(8))), the z(0, v(8))-opposite point of fx(z(6, ¢))
lies in $4 N Q0,000 < Fo N P. Hence Hx(0,z(6, ¢)) supports P for 0<¢p=<g(0),
where g(0) is a number greater than v(0). We suppose g(0) is maximal with these
properties; then, since xZdR, there exists a >0 such that g(6) > v(0)+a for all
0€[8, n]. Choose v, &', n' to satisfy § <8'<y<m'<n and v(8)>v(y)—a/2 for
8'<0<n'. For 8 <6<n' and |¢ —v(y)|<a/2 we have ¢ <a/2+v(y)< a+v(0),
which shows that some neighbourhood of z(y, v(y)) is contained in R, contradict-
ing the definition of z(vy, v(y))€dR. We conclude that y #o.

Since y - u=0 for we D;NaR, it follows that D;N AR is contained in a great
circle C of S§* which divides D; into two regions D3 and D35. Suppose R
intersects D3. Then D35 < R since D;sNAR<C, and so D3;NIR = as D5« R.
Thus DsNaR=D;NC. Let H be the plane such that HN P is the shadow
boundary of P in direction y, and let H", H™ be the closed half-spaces bounded
by H. Then the outer unit normals to P at points of HNP form an arc (or
possibly the whole) of C, and the points of P with outer unit normals in D5 lie
in H™. Since ve D;N C we may choose >0 such that <o and H™ N Nk(r,v)=
H™ N Njs(7,v). Then

(y + H") N Nk (7, v) =Q,(H™ N Nk(7, v)) =y +(H" N Np(r, v)).
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For any outer unit normal m to K at a point x of (P) N Nx(, v) we have ue C and
fx(m) contains the line segment [x, x+y]. Hence

H" N (y+H)N Nk(r,v) =4 =lin{y}+(HN P).

This completes the proof of the Lemma.

For a unit vector m we write ¥, for the shadow boundary of K in direction u.
A band is a shadow boundary which contains a cylindrical piece.

LEMMA 11. Let &, be a band. Then for some B >0, for every point xe &, the
line x+1lin {u} intersects K in a segment of length at least B.

Proof. Choose orthogonal unit vectors x', x° which are orthogonal to u, and
write x(8) = cos 6x' +sin x” for real 8. For 8> 0, we say a convex set C is B-wide
if for each ye C, CN(y+lin{u}) has length at least 8. By hypothesis there is a
B >0, a cylindrical piece Q< ¥, and a closed interval, which we suppose to be
[0, a], such that for 0< 6 <a, fx(x(6)) is B-wide and is contained in O. Let

o' =sup {y € (0, 2m):fx(x(6)) is B-wide for 0<6<v}>0, y=a'.

Then fk(x(a')) is either a line segment of length at least B, or a centrally
symmetric facet having an edge parallel to lin {u} of length at least 8; in either
case, fx(x(a')) is B-wide. When 6 > y is sufficiently small, fx(x(6)) is contained in
Nk(e(x(7)), x(y)) and then Q,(,,fx(x(8)) is the union of line segments parallel to
lin {u} of length at least B, so fx(x(9)) is B-wide. We conclude that o’ =27 and the
Lemma follows.

LEMMA 12. Let T< S” be a set with a limit point ve T, and suppose >0 is
such that e(w)> 7 for all we T. If C is a cylindrical piece whose generators are not
parallel to Hk (0, v), then Q = Q,(C N Nk(7, v)) is a subset of a cylindrical surface.

Proof. We first show that Q contains no extreme points of K. Suppose this is
false. Then Q must contain an exposed point of K, so fx(u)< Q for all u in some
disc on S?, and then by Lemma 4 Q intersects a quadric piece P. By using Lemma
5 and analytic continuation, there exists a disc D in S> with centre v such that for
each we D N T, there is an interval N, such that Hx(a, )N P is non-empty and is
a central reflection of Hy(a,w)N C for all a€N,. Since parallel section‘s of a
cylindrical surface are translates of one another, we conclude that P is a
paraboloid whose axis is parallel to Hx(0, w) for all we DN T. Applying analytic
continuation again, we have a contradiction to Lemma 8. Hence Q contains no
extreme points.
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Consider any point xe Q. Then x is relatively interior to a line segment
IcbdK, and x€ Hx(hk(v)—v-x,v)N Q <%, where € is some quadric curve.
Then a neighbourhood of x in Q lies in the cylindrical surface with generators
parallel to I which has € as a section. We conclude that Q is contained in a
cylindrical surface if Q is connected; when Q is not connected we compare
components as in Lemma 9.

LEMMA 13. Let Yy, Y, be two cylindrical surfaces in E> and let T1,, I1,, I1; be
three planes parallel to a line 1, such that no two of I1,, I1,, I1; are parallel, and 1
is not parallel to the generators of Y.. Suppose that fori=1, 2, 3, I1, is not a tangent
to Yy, and II;NY, is a non-empty central reflection of II,NY,. Then the
generators of Y, and Y, are parallel, except possibly when Y, is parabolic and | is
parallel to its plane of axes, in which case | and the generators of Y, and Y, are all
parallel to a single plane.

Proof. We may suppose that I1; NII,NII; =1, and we may assume [ to pass
through an arbitrary point. Thus we take [ to be the x; axis and I, to be the x,x;
plane. We suppose II,, II; to meet Y; in proper quadric curves and to have
equations x, = £,X;, X, = &3, respectively with &, # &;. For i =2, 3 the orthogonal
projections on the x;x; plane of II; N Y; and II; N y, are reflections of one another
in a point (b1, 0, b3).

First suppose [ is neither parallel to an asymptote plane if Y, is hyperbolic nor
parallel to the plane of axes if Y; is parabolic. We take Y, to have equation

x§= a +Bx2+'yx§
where either a =y =0 or ay#0 and B8 =0. Then Y, has equation

(C3+ wsxi—x3)* = a+ B(ca+ waxy — X2) + y(C2 + wax; — X5)°
say. Hence w;=0. If y# 0 then y(w,—&)*= £ for i=2, 3, while if y=0 and
B# 0 then —B¢& = B(wy—§&) for i=2, 3; in either case w,=w;=0.

Next suppose Y, is hyperbolic and [ is parallel to an asymptote plane. Then
Y, has equation x,x;=1 say, and Y, has equation

(c2+ waxi— x2)(c3+ wax;—x3)=1

say, and for some A# 0 we find

W3(W2""1)=0, (W3—1)=—.As C2=2Ab§;
C3(W2‘—1)= -—2)\b§, C3C2'—1 = A(4b%b§'—1)
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which shows that w, = w;=0.
Lastly we take Y; to be parabolic cylinder x;=x3, so Y, has equation

c3+ Wi3X1— X3 = (C2+ WyX1— x2)2.

We find (w,—&)*= ¢ for i=2, 3, so w3=0. This completes the proof.
LEMMA 14. No quadric piece in bd K is a subset of a paraboloid.

Proof. Suppose P is a quadric piece such that P is a paraboloid, and let % be
the set of quadric pieces Q such that Q is a translate of P. Write T=
int cl {ue S*: fx(w) = Q for some Q€ ¥}. Then T is contained in a hemisphere of
S?, so aT# &, it easily follows that every point of 8T is a limit point of 9T.
Applying the Baire Category Theorem to 8T, we can find a disc D = $*> whose
centre v lies in 9T, and >0, such that e(w)> 7 for allue DNJT. Let a be a unit
vector parallel to the axis of P.

We first consider the case when w+a=0 for all ue DNAT. Then DNIT =
D N C where C is some great circle of S, and DN T=D", where D" and D™ are
the components of D\ C. Choose o with 0<o <7 and a disc D; = D with centre v
such that fx(u) = Nx(o, v) < Nk(7, u) for all we D, N C. Since D, intersects D* we
may choose Q€ ¥ which intersects Nx(o, u). We have dQ# .

We construct a closed convex cylinder 6 with generators parallel to lin {8} such
that Q = QO Nint%¢ and 4Q = Q N bd 4. Consider a plane A such that AN Q is the
shadow boundary of O in the direction of a unit vector w, and suppose AN Q
contains an arc I' which is common to dQ and to the boundary of some cylindrical
piece whose generators are parallel to lin {w}. (Here we envisage the situation
which arises in Lemma 10). Then &,, is a band, and so from Lemma 11 &, does
not intersect Q. Consequently AN Q =, and Q lies in a closed half-space A™
bounded by A. By Lemma 10, such arcs I' (for various A) are dense in dQ. We
take ¢ to be the intersection of all such half-spaces A*, and ¢ has the required
properties. Notice that € has a bounded cross-section, and its facets are dense in
bd €. :

We may choose a disc D, < D, with centre v so that He(0, w)N3dQ < Nk(o, v)
for all me D,N C. We can then choose ue D, N C, non-parallel planes A; and A,
which intersect € in facets, and numbers B, y with 0<B<y<7 such that
Hg(a, w) intersects A;N% and A,N% for B<a<y. For i=1, 2 there is a unit
vector w; such that A; N O is the shadow boundary of O in direction w,. By
Lemma 10 we can find numbers B, y; with B <B;<vy:<v and cylindrical pieces
Z,, Z, having generators parallel to lin{w,} and lin {w} respectively, such that
Hg(a,w) intersects I'; =(3Z;)NA;N3Q for i=1, 2 when B;<a<Yy. By slight
alterations of w, B;, y; we may suppose that u - w; and u - w, are both non-zero.
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For sets A < bd K write A'=Q,(A N Nk(7,u)). By Lemma 9, Q' is a subset of
a central reflection of Q. By Lemmas 12 and 13, for i=1, 2 Z] is a subset of a
cylindrical surface whose generators are parallel to a unit vector g; €lin {a, w,}.
Thus the shadow boundary of Q' in direction g; lies in a plane A} parallel to A..
Applying Lemma 10, we find that I';= Al. For B, <a<wy,, i=1, 2 let s;(a)=
I'i N Hg(a, w), si(a) =T';N Hx(a, w) so that s;(a)+si(a)=2c(a), where c(a) is the
centre of Hx(a,w)N K. Let 7 be the orthogonal projection on (lin{a})*. Since
s;(a), si(a) move in planes parallel to lin {a}, there are constant vectors k;, t;, t;
with ws;(a) = ak; +t;, wsi(a)=ak;+t;. Thus 27c(a)=2ak;+t;+t; for i=1, 2,
B1< a<v,;. Hence k; =k,, which implies that A, is parallel to A,, contrary to the
way they were chosen.

We may therefore suppose that P has an outer normal in some direction
ve DNAT. Then there is a disc D; < D with centre v such that every point of D;
is an outer normal to P. Let 0<o <7 and choose a disc D,< D; with centre v
such that fx(u)< Nk(o, v) < Nkg(7,u) for all we D,. Then we can choose Q;€ ¥
such that the open connected set U; of outer unit normals to K at points of Q;
satisfies U;ND,NT# J. By Lemma 10 we may choose we D,NoU,;, »>0 and
a member Q,€ ¥ with O, =y+ 0, (y #0) such that Ng(v, w) is contained in the
union of Q;, Q; a cylindrical piece Z with generators parallel to lin {y}, and two
arcs 'y, T, of the shadow boundaries of Q;, Q, respectively in direction y. Notice
that U,N D,N T# J where U, is the set of outer unit normals to K at points of
Q.. Since fx(w)< Nk(o, v) we may also suppose that Nk(v, w)< Nk(o,v). For
sets A< bd K, write A'=Q,(Nx(v,w)N A). From Lemma 9, Q; and Q; are
contained in translates of Q, and O, respectively, so Qi= y + Q| for some vector

’

y'.

We wish to choose i€ {1,2} such that Q’# Q.. Suppose this is impossible, so
y =Y'. First consider the possibility that v -y =0. Then we may choose a € (0, )
such that H = Hk(a, v) intersects Q1 and Q5. Let ¢ be the centre of HN K. Then
HNQ'=2¢c—(HNQ,) for i=1, 2, HNQ,=y+(HNQOQ,) and HNQ}=
y+(HN Q}), which is impossible as y #o.

It remains to consider the possibility that v-y # 0, in which case m-y #0 for
all we §? close to v. Lemma 12 then shows that Z’ is contained in a cylindrical
surface, and by Lemma 10 the generators of Z' are parallel to lin {y'} = lin {y}.
Since Hk(0,v) is not parallel to affI';, there is an interval £< (0, ) such that
Hk(a,v) intersects Qi and Z' for all ae¥. Let ¢(a) be the centre of
Hg(a,v)N K; then since Hk(a, v) intersects Q; and Q; in v-opposite arcs of
Hx(a, v)N Q4, ¢(a) is the centre of Hy(a, v)N Q; for a € L. Hence {c(a):a € £}
lies in a line parallel to lin{a}. Choose a generator | of Z. Then (INZ) is
contained in a generator I’ of Z', so {c(a):a € &} lies on a line parallel to I This
shows that y is a scalar multiple of a, which is impossible since a paraboloid has
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no support lines parallel to its axis. Hence we may make the requisite choice of i.

We therefore suppose that Q| =z+ Q, with z#o. Then by Lemma 9 there is a
disc Ds< D, with centre v such that u-z=0 for all ue DsNA3T. Then there is a
great circle Cc $? which divides Ds into two open components D3, D5 with
DsN3aT=DsNC and DsN T= D43, '

We may choose w € (0, 7) such that the set V of outer unit normals to P at
points of Ng(w, v) is contained in Ds. Then V is open and contains v, so we may
choose a non-empty open connected subset R < bd K of a translate of P, such that
the outer unit normals to K at points of R lie in D;N V. It follows that
R © Ni(w, v) and that Q,(R) is a translate of a subset of R by a vector orthogonal
to v (from Lemma 9), so (},(R) is a translate of a subset of Ng(w, v). Therefore
the outer unit normals to K at the points of (2, (R) are contained in D5 N V which
is impossible as DsN T = Dy5. This contradiction proves the Lemma.

LEMMA 15. There are only finitely many y € S* for which ¥, is a band.

Proof. Let a€ S* and let C be the great circle {ue S>:u-a=0}. Then ¥, =
U fx(C). By applying the Baire Category Theorem to C, there is a closed arc
Ci< C and 7>0 such that £(u)> 7 for all we C,. We claim there is a § >0 and
ve C; such that no two points of Nk(§,v) belong to distinct parallel support
planes of K.

Suppose this is false, so that, since K has a positive minimum width w, for
each ve C;, K has distinct parallel support planes H,, H 2 which intersect fx(v).
The orthogonal projection of K on lin C has at most countably many edges. Thus
there is a countable set F< C; such that fx(u) is contained in a line parallel to
lin {a}, for each we C,\ F. By rechoosing C; to be a small closed neighbourhood of
an interior point of C; not in F, we can ensure that for no ve C,; are the outer unit
normals to H. or H2 members of C. Then for each ve C,, all lines parallel to
lin {a} intersect the region bounded by H, and H, in segments of equal finite
length B(v)= w; when for some v there is more than one possible choice for H,
and H?, we choose these planes to minimize B(v). Define B =inf {B(v):ve C;}, so
that B=w and there exists v* e C; with B(v*)=pB. For ve C,\F, fx(v) is a line
segment with end points in Hi and H2, so fx(v) has length B(v). But fx(v) lies
between Hi+ and H2+, so B(v)=p and fx(v) has end points in H,~ and H3». It
then follows that fi(v) intersects H,+ and H» for all ve C;. Let u* be the unit
outer normal to H.«. Then w*¢& C;, and for ve C;, 0<A <1 we have

freAu*®+(1=21)v) = fi(@®) N fi (v)

so that the set of outer normals to K at points of fx(a*) contains a disc on S2. This
contradicts Lemma 4.
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Hence there exist 8 and v as claimed, and we suppose §<rt. Let %=
Nk(8,v)NP,. Then Nk(§,v)\3 is the union of two dijoint open connected sets
A,, A;in bd K with Q,(A;)= A,. We have fx(u) = Nx(8, v) for all ue S? close to
v, so by Lemma 4 Ng(§,v) intersects a quadric piece P. We may assume
PNA,# . We claim that (dP) N Nk(8, v)< 3.

Suppose this is false, so that by Lemma 10 Ng(§, v) intersects a cylindrical
piece Z whose generators are not parallel to lin {a}, and such that some section of
Z is a shadow boundary of P. By Lemma 14 P is not a paraboloid, so Z is not
parabolic. The generators of Z are orthogonal to at most two elements of C;, so
by Lemma 5 we may choose an arc C,<= C; and a non-empty open set Z, <
Z N Nk(8, v) such that Q,(Z;)< Nk(8,v) and Hg(0,v) is not parallel to the
generators of Z, when ue C,. Fix w'€ C,. Then by Lemmas 12 and 13, Z'=
Q.(Z,) is a subset of a cylindrical surface with generators parallel to those of Z.
Choose a so that Hx(a, u') N Z, contains a point x, and let A be the support plane
of Z at x. Then A contains a generator | of Z and a support line m of
Hg(a,w)N Z; then m is not parallel to I. The support plane A’ to K at Q,.(x)
contains lines parallel to | and m, so A’ is parallel to A, contrary to our choice of &
and v. We conclude that (8Z) N Ng(§, v)< 2.

Hence A, < P. If (0P)N X = J then A, intersects P, and by the same argument
as above A, < P, so that Nx(8,v)< P. If (9P)N 2 # J then there exist xe (P)N 2,
an outer unit normal u to P at x and »>0, such that Ng(, u) has the form
described in Lemma 10; in this case x is a smooth point of K, so me C and the
cylindrical piece which intersects Nk(v,w) has generators parallel to lin {a}. In
either of these cases, there exist 8 >0 and v’ € C such that Nx(é', v') contains no
line segments which are not parallel to lin {a}.

But if y € $? is close to a, then &, intersects Nk (6, v') so ¥, cannot be a band
unless y = +a, by Lemma 11. This shows that {y € $>:¥, is a band} has no limit
points, and is therefore finite.

LEMMA 16. K is the sum of a polytope and an ellipsoid.

Proof. Leta(1),...,a(n) be distinct points of S, no pair being antipodal, such
that $,a1), ..., Fam are all the bands in bd K. Write C; for the great circle
{ue S*:u-a(i)=0} so that L,;,=U fx(C) (i=1,...,n). Let Ry,..., R; be the
components of S\ U7~ C, and let P,={J fx(R)) (i=1,...,k). Consider je
{1,..., k}. From Lemma 4, P; intersects a quadric piece P}"; let R}" be the set of
outer unit normals to K at points of P}". Lemma 10 shows that aR;"C Ui-1 G, so
R; < R}, while Lemma 11 shows that P¥ intersects no band, which ensures that
RFN Ui C=3. Hence R;=R} and P,=P¥. This shows that P,,..., P, are
the quadric pieces in bd K. '
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Let C be a great circle on S? which is not one of Cy,...,C, and which
contains no points which belong to more than one of Ci, . .., C,. After relabelling
we may suppose that C is contained in the union of R;, ..., R, with a finite set,
and that for i=1,..., s—1, RRNC and R,,;NC are arcs with an end in
common, so that (dR;) N (dR;.,) contains an arc of C; for some j. Then by Lemma
10 P, is a translate of Pm fori=1,..., s—1. Since such a great circle C may be
chosen to intersect any given pair of Ry,..., Ry, all quadric pieces must be
translates of subsets of the same quadric surface, which must be an ellipsoid, since
this is the only quadric surface with outer normals in all directions. Hence there
exist a solid ellipsoid E with centre o and points X1, . . ., x, with P, =x, + bd E for
i=1,...,k

Write X =conv {x,,...,xx}. We shall prove K=X+E. If UcbdK is a
neighbourhood of an exposed point of K, the set of outer unit normals to K at

points of U contains a disc in S*, so U intersects a quadric piece. Thus (see for
example [4])

k
K =convclexp (K)=convcl |J P, X+E.
i=1

1=

To prove K= X+E it will be sufficient to prove x;,+ E<K for i=1,..., k. For
ue S*> we write H*(u) for the closed half-space bounded by Hg(0,w) which
contains K. Let R, R’ be two of R, ..., Ry, and let me R. Choose a great circle
D < S* with we D and DN R’ # &, such that D contains no point belonging to
more than one of C,,..., C,. Let we R'N D and choose ve D such that v-a=0
and v-w=0. Write z(0) =cos fu+sin dve D for 0<6<m, and let R,,..., R, be
those members of R,,..., R, (relabelled if necessary) which intersect z[0, 7],
ordered so that z(6)e R, for 6,_,<6<6; (i=1,...,t) where 0=60,<8;<---<
6= We fix ie{2,...,t} and prove x; *u<x;_; -u. Writing ¢= fg(z(6;—,)) we
find that Hg(0,z(6;_,)) intersects ¢l P,_, and cl P; in the points x;_;+¢ and x; +¢
respectively. For 6, _,<a<,_;<B<6; let

p(a)=fx(@(@))e Py,  q(B)=fx(z(B))€ P, so that

lim p(a)=x;_,+c¢, ﬁlir£1+ q(B)=x; +c.

[ 4 "’9{11

We have q(B) - z(a)<p(a)-z(a) and p(a)-z(B)<gq(B) - z(B); writing z(a) and
z(B) out in full and combining the inequalities we find (q(8)—p(a)) - usin (8 —
a)<0. Hence (x;—x;_;)-u=<O0 as required. This shows that x; -u<x,-u for
i=2,...,t Hence for i=1,..., k we have x; + E < H"(u) for a set of u dense in
S?, so x;+E < K. This completes the Lemma, since K=X+E where X is a
polytope and E is an ellipsoid.
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4. Preliminaries for the Higher Dimensional Cases

LEMMA 17. Let C< E? (d=4) be a convex body with ecint C, and let A be
a non-empty open connected set in bd C. If for every 3-dimensional orthogonal
projection m, (wA)N (relbd wC) is contained in the surface of a 3-dimensional
ellipsoid having o in its relative interior, then A is contained in the boundary of an
ellipsoid.

Proof. Writing C* for the polar dual of C and letting
A*={yebd C*:x-y=1 for some xe A},

we see that A* is open and connected in bd C* (since the points of A are smooth
and exposed on C), and for every 3-flat A containing 0, AN A* is contained in the
relative boundary of a 3-dimensional ellipsoid whose relative interior contains o.
It will be sufficient to show that A* is contained in the boundary of an ellipsoid
whose interior contains o.

Every point of A* is a smooth exposed point of C*. Let H, be a support
hyperplane of C* at a point pe A* and let H, be a translate of H; with
H,Nint C*# & and so that, writing B =(bd C*)Nconv (H, U H,) we have Bc
A*. Let H; and H, be distinct translates of H; which lie strictly between H; and
H,. Then all 2-dimensional sections of H;N C* and H,N C* are ellipses, being
sections of 3-dimensional ellipsoids containing 0. Hence H;N C* and H,N C* are
ellipsoids (see for example [2]). Further, by choosing parallel 2-dimensional
sections of H3N C* and H,N C* which lie in the same 3-flat through e, and using
the fact that parallel sections of an ellipsoid are homothetic, we can show that
parallel central 2-dimensional sections of HsNC* and H,N C* are directly
homothetic. Hence H3;N C* is directly homothetic to H,N C* by a result of
Rogers [6].

Let | be the line through p and the centre of H;N C*. When 0 is a 2-flat
containing I, ® N A* lies on an ellipse E(0®), and the chords of E(®) parallel to H,
are bisected by I. Hence the centre of E(®) lies on L It now follows that the centre
of H,N C* lies on I. Consequently all the ellipses E(®), for 2-flats ® containing I,
have the same centre be l. It is now clear that B < bd E, where E is the unique
ellipsoid with centre b supported by H; at p and having H; N C* as a section. By
analytic continuation, A* < bd E, which completes the proof.

LEMMA 18. Let C< E? (d=4) be a convex body and suppose that every
3-dimensional orthogonal projection of C is the sum of a polytope and a 3-
dimensional ellipsoid. Then C is the sum of a polytope and a d-dimensional
ellipsoid.
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Proof. Clearly C is smooth. Consider a unit vector m and let F=f-(u),
H=Hc(0,u). Let S be the intersection of S~ ! with the hyperplane through o
parallel to H, and for ve S let w(v) =lin {u, v}, ®, be the orthogonal projection on
m(v). For ve S, ®,(C) has an expression as E(v)+ P(v) where E(v) is an ellipse in
m(v) with centre o and P(v) is a polytope in m(v). Further, the expression of
®,(C) as the sum of an ellipse with centre o and a non-smooth compact convex
set is unique. For ve S, let t(v) =sup {0 €[0, 7]: fpo)(@) N fpw)(cos Bu+sin Ov) # &
}. By the non-smoothness of polytopes, t(v) >0 for each v. We show that for >0,
the set G ={ve S:t(v) =1} is closed. Let {v(i)};-, be a sequence in G with limit v.
The bodies E(v(i)), P(v(i)), i=1, 2, ... are contained in a bounded region, and so
there is an infinite set N of natural numbers so that E(v(i)) and P(v(i)) converge
to limits E and P respectively as i — o through N, from Blaschke’s Selection
Theorem. Then E is an ellipsoid with centre o having dimension at most 2, and
fe(@) N fp(cos u+sin Ov) # I for 0< 0 <1, so that P is non-smooth. Also E+ P =
®,(C) which is smooth, so E must have dimension 2. Then by the uniqueness of
expression, E = E(v) and P = P(v), so ve G as required.

By taking 7=1,3,3,... and applying the Baire Category Theorem to S, we
can choose 7>0 and a non-empty open cap D < § such that t(v)> 7 for all ve D.
We may assume that D lies in a hemisphere of S. Write U=
{cos Bu+sin Ov:ve D, 0< § < 7}, which is an open connected set in S*”', and has
the property that w(v)N U is an arc with w as an end point for all ve S. Let
V= fc(U), which by smoothness is an open connected set in bd C, and which
has a limit point in F. If I is a line segment contained in V then ®,(I) is an
exposed point of ®,(C) for some ve D, so that I is perpendicular to 7(v). Hence I
is parallel to H. Notice that we can rechoose V to lie within an arbitrarily small
distance of F by intersecting U with a sufficiently small ball with centre u.

By successive application of constructions similar to the one given above, we
can choose support hyperplanes H,,..., H; with H= H,, having outer unit
normals u=wuy,...,uy and open sets U=U;,..., Uy in g1 open sets V=
Vi,..., Vg in bdC satisfying U, < U,_;, w;e Ui \linfuy,..., w1} for i=
2,...,d, Vi=U fc(U;) and every line segment in V; is parallel to H; for
j=1,...,d. Then V,<V and every point of V, is an exposed point of C. Let
UcU,; be a cap on S, and let V'=UJ fc(U')= V,. Then for every 3-
dimensional orthogonal projection ¥, (¥ V')Nrelbd ¥C is a connected subset of
exp WC, and is therefore contained in the relative boundary of a 3-dimensional
ellipsoid; by a change of origin and by further reducing V' we may suppose that o
lies in the relative interiors of all ellipsoids arising in this manner. It now follows
from Lemma 17 that V' lies in the boundary of a d-dimensional ellipsoid € say.
Let U”=UN | {lin {u, v}:ve U’} which is an open connected set in S, and let
V"= fc(U"). For each w e U” the support plane of C with outer normal w also
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supports €. Since U" is open this ensures that V"< bd €. Notice that F contains a
limit point of V". We have now shown that every face of C intersects the closure
of an open subset of bd C which is contained in the surface of an ellipsoid.

Let ¥ be the family of maximal open connected non-empty subsets of bd C
which are contained in the surfaces of ellipsoids; for Pe ¥ let P be the ellipsoid
surface which contains P. If P, Q € ¥ then there is an open non-empty set & of
3-dimensional orthogonal projections such that relbd @P and relbd ¢Q contain
open non-empty subsets of relbd ¢C for all ¢ € £. Hence oP is a translate of ¢Q
for all € ¥, so P is a translate of Q. Let X be the set of centres of ellipsoids P
with Pe ¥ and let € be the solid ellipsoid with centre o such that bd € is a
translate of P for each Pe ¥. Write K =convcl X.

Every exposed point of C is a face of C, and so must be contained in the
closure of a member of #. Thus C =conv clexp C< K +€. Consider any q € X, let
Q€ ¥ be a subset of q+bd €, and let H be a hyperplane which supports C at a
point of Q. Let H' be any other support hyperplane of C and let H’, be the closed
half-space bounded by H' which contains C. Consider a 3-dimensional orthogonal
projection ¥ in a (d —3)-dimensional direction parallel to HN H’, and let € be
the cylinder ¥~'WC which is supported by H and H'. Then relbd ¥ C contains a
non-empty open subset of relbd VQ, so ¥C=Y +W¥¢ where Y is some polytope
with ¥q as a vertex. Hence ¥(q+%) <V, so q+¢< €< H’. This holds for all
such H', so q+%< C. Hence K+%¢=C.

It remains to show that K is a polytope. Let ¢ be any 3-dimensional
orthogonal projection. Choose a non-empty open set M crelbd ¢C which is
contained in the surface of a 3-dimensional ellipsoid W. For each xe M,
CN ¢ '(x) is a face of C which meets the closure of some P(x)€ . Since ¥ is
countable, we can apply the Baire Category Theorem to choose a non-empty
open subset M'c M and Pe ¥ with ¢ '(x)Ncl P# & for all xe M'. Thus ¢P =
W. But P=bd(y+%) for some ye X and ¢C is expressible as ¢C=Z+ W for
some polytope Z, so py+ ¢€+2Z = ¢C. Now ¢C = ¢K + ¢%, so by comparing the
support functions, we see that @K is a polytope. Hence every 3-dimensional
orthogonal projection of K is a polytope. By a result of Klee [3], K is a polytope
as required.

5. Proof of the Theorem

Let K< E? (d=3) have property (A). We first show that K is the sum of a
polytope and an ellipsoid. This was established for d =3 by Lemma 16. If d =4,
then every 3-dimensional orthogonal projection of K has property (A), and is
therefore the sum of a polytope and an ellipsoid; hence by Lemma 18 K is the
sum of a polytope and an ellipsoid. Thus we can write K= X+ E where X is a
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polytope and E is an ellipsoid. Every face of X (including X itself if dim X <d) is
a translate of a face of K, and is therefore centrally symmetric, since every face of
K is a limit of centrally symmetric sections of K. Hence X is a zonotope.

Suppose K< E® (d=3) is a convex body with K=X+E, where X is a
zonotope and E is an ellipsoid. Then fx(u) is centrally symmetric for each
ue $Y7', even when fx(u)=X, for every zonotope is centrally symhetric (see
Shephard [7]). By an elementary calculus argument we can show that for each
we S¢7! there exists £(u)>0 such that

Hx(a,u)N K = fx(w) +(Hg(a, w) N E)

for 0<a <e(u), from which it follows that K has property (A).

6. Proof of the Corollary

If K< E? (d=3) is a strictly convex body which has property (A), then from
the Theorem K= X+E where X is some zonotope and E is some ellipsoid.
Every face of X is a translate of a face of K and so is a single point by strict
convexity. Hence X is reduced to a point and K is an ellipsoid.
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