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Comment. Math. Helvetici 39 (51) 343-368 Birkhauser Verlag, Basel

Sur Palgebre de Lie des Champs de Vecteurs

ANDRE LICHNEROWICZ

(Version revue, Février 1976)

Introduction

Cet article appartient a une série ([2],[7], [8],[9], [3]) consacrée aux algébres
de Lie infinies classiques. Les dérivations relatives a chacune de ces algébres sont
désormais connues. En particulier, en ce qui concerne I'algébre de Lie L des
champs de vecteurs d’une variété différentiable, F. Takens [10] a montré
récemment que toutes les dérivations sont intérieures.

Le but principal de cet article est la détermination des déformations formelles
différentiables de I'algebre de Lie L. Cette détermination nécessite 1’étude par-
tielle de ce que nous nommons la cohomologie m-différentiable de Chevalley de
cette algebre de Lie. La cohomologie envisagée est la cohomologie relative a la
représentation adjointe a valeurs dans I’algébre de Lie elle-méme, les cochaines
€tant supposées ici différentiables. Le complexe est le complexe standard de
Chevalley-Eilenberg.

On sait I'intérét porté actuellement, a la suite des travaux de Gelfand-Fuks et
de Losik a la cohomologie des algébres de Lie infinies. Dans les principaux
travaux de Gelfand-Fuks, la cohomologie est soit a coefficients triviaux, soit
relative & une représentation générale; les cochaines sont supposées continues
pour une topologie convenable définie algébriquement et le complexe diagonal
joue un rdle fondamental. Nos résultats partiels ne résultent pas non plus de
I'approche de Losik. '

Il n’apparait pas que le cas étudié ici, motivé par I’étude des déformations, ait
¢té traité. La méthode employée est tout-a-fait directe et élémentaire. On établit
principalement que la cohomologie 1-différentiable de L est toujours triviale, qu’en
dimensions 1 et 2 la cohomologie m-différentiable est triviale pour tout entier m =1,
que toute 1-cochaine de L a cobord m-différentiable est définie par un opérateur
différentiel d’ordre m (ce qui généralise le résultat de Takens), que toutes les
déformations formelles différentiables de I’algébre de Lie L sont différentiablement
triviales.
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344 ANDRE LICHNEROWICZ

Dans un but de complétude, on a rappelé les propriétés des idéaux de L qui
sont communes aux quatre algebres de Lie infinies classiques, en apportant
quelques compléments a [12].

Certains résultats ont été annoncés dans une note aux Comptes rendus [11].

1. Sur la Cohomologie Différentiable de Palgebre de Lie L

1. Cohomologie de Chevalley—-Eilenberg

Soit W une variété différentiable connexe, paracompacte, de dimension n =2
et classe C~. Tous les éléments introduits sont supposés de classe C*. Nous
notons L(W) =L l’algebre de Lie des champs de vecteurs de la variété W. Nous
introduirons éventuellement sur W une métrique riemanienne auxiliaire g et
désignerons par V I’opérateur de dérivation covariante pour la connexion rieman-
nienne définie par g.

Soit {x'} (i, tout indice latin=1, ..., n) une carte locale d¢ W de domaine U;
on désigne par L(U) l'algebre de Lie des champs de vecteurs sur U.

(a) Par définition, les p-cochaines C, sur L sont ici les applications p-
linéaires alternées de L? dans L, les 0-cochaines s’identifiant aux éléments de L.
L’opérateur cobord d sur ces p-cochaines est ’opérateur usuel correspondant a la
représentation adjointe est donnée par:

|
aC(p)(Xo, “uis Xp) =;—; €0°%.p "[Xao, C(p)(Xals ceey Xap)]

1

_2(p —1)! 0% p "Cip) ([ Xaos Xauds X - - - 5 Xa,) (1-1)

ou ¢ est I'indicateur antisymétrique de Kronecker et ou X, € L. Les 1-cocycles ne
sont autres que les dérivations de L et les 1-cocycles exacts les dérivations
intérieures.

(b) Une p-cochaine C,, de L est dite locale si, pour tout élément X, € L tel
que X;|uy =0 pour un domaine U, on a Cy(Xj, ..., X,)|lu=0. Si Cg, est locale,
0C,) est locale.

Une p-cochaine C,) de L est dite m-différentiable (m =1) si elle est locale et
si sa restriction a tout domaine U est une p-cochaine m-différentiable de L(U) en
un sens évident. Une telle p-cochaine est définie a partir d’opérateurs p fois
différentiels d’ordre m sur L. Ces opérateurs peuvent étre exprimés au moyen
de V.
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Un calcul élémentaire direct montre que, si C(;} est une p-cochaine m-
différentiable, son cobord dC(;) est aussi m-différentiable. Nous notons H?%,.,(L)
le p° espace de cohomologie m-différentiable de I’algébre de Lie L, quotient de
I’espace des p-cocycles m-différentiables par I’espace des cobords de (p—1)-
cochaines m-différentiables.

Nous nous proposons dans cette section d’évaluer d’une part les H;,(L) pour
tout p, d’autre part les H¢,,,(L) pour tout m; ces derniers espaces interviennent
dans I’étude des déformations différentiables de 1’algebre de Lie L.

2. Cohomologie 1-différentiable de I’algébre de Lie L

(a) Une p-cochaine 1-différentiable C{})=C, de L peut s’écrire:

p

C(p) = Z A (2-1)

q=0

ou la p-cochaine 1-différentiable A(,,, dite de type (q, p—q) par rapport aux
dérivées premieres des vecteurs et aux vecteurs eux-mémes, est donnée sur U
par:

: 1 .
l — a,;" -« ir.---r
A(p,q)(Xl, P Xp)lU"“p""El.l..p pAsll---s:qu---kp

XV, X5 Vo X Xt - X (2-2)
Les coefficients A sont supposés antisymétriques par rapport aux couples
(ri,81), ..., (rysq), antisymétriques par rapport aux indices kqiq- - Kk, Ils
définissent sur W un tenseur noté encore A, 4. Une telle p-cochaine A, est
dite pure; V étant donnée, la décomposition (2-1) de C,, en somme de
p-cochaines pures est unique.

Nous notons C,,) une p-cochaine 1-différentiable de degré maximum q(q <
p) en les dérivées premiéres des vecteurs. On a:

q
Con= hZoA(p’h) (2-3)

ol A, est une p-cochaine 1-différentiable pure de type (h,p—h) (h<gq)
(b) o opérant sur une p-cochaine pure de type (g, p—q), on met en évidence a
partir de (1-1) par un calcul élémentaire un peu long, un opérateur d' de type
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(1, 0) donné explicitement par:

1 . .
&' A )Xo, - - ., X,) = -p ol (B AL g, L F QAT L 8
XV, XV, X5V, Xia Xk X (2-4)

Qg +1

ou 3 désigne I’antisymétrisation par rapport aux couples (ro, So), (71, s1),...,
(rg Sq). On déduit de (1-1), (2-4) et de I'identité de Ricci:

LEMME 1. L’opérateur d admet une décomposition en somme de trois
opérateurs:

3=d+A+M (2-5)

ou les opérateurs 3', A, M sont respectivement de type (1,0), (0,1), (—1,2); par
raison de type, &' est aussi un opérateur de cohomologie (9’ =0).

Etudions I’exactitude de cette 3’-cohomologie. Soit A, ) une p-cochaine pure
de type (q, p—q) (avec q=1) vérifiant

a’A(p,q) =0 (2‘6)
Introduisons le tenseur B -1),q-1) défini par:
By

= Aas; sq q+1° " kp

sq q+1°

En explicitant 8'A , 4) d’aprés (2-4) et en contractant i et so, il vient en substituant
a P'indice ry I'indice i, aprés évaluation des antisymétrisations:

qA;'; b =SB, 85, (g - DB Ly 82

ou 3 désigne I’antisymétrisation par rapport aux couples (rq, §1), ..., (74 sq). En
comparant avec (2-4), il vient:

q .,
Apa= ";;I;a B (p-1).(g-1) (2-7)

Supposons maintenant que (2-6) soit vérifi€ par A, q):

' A poy = 0. (2-8)
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Soit x un point arbitraire de W, U un domaine de coordonnées contenant x.
Choisissons pour X, un vecteur nul en x. Il résulte de (2-8) qu’au point x:

{AR ., VaXo X1 - X (x) =0.

Du choix arbitraire des valeurs en x de X;,...,X, et de VX, il résulte
Apo(x)=0. Ainsi

LEMME 2. La cohomologie définie sur les cochaines 1-différentiables de L par
I’opérateur d' est triviale. En particulier tout p-cocycle pur de type (p,0) est
nécessairement nul.

(c) Revenons a I’étude de la cohomologie définie par 4. Des lemmes 1 et 2, on
déduit

LEMME 3. Soit C, 4 un p-cocycle (0C, 4 =0) 1-différentiable de degré max-
imum q en les dérivés premiéres. Il existe une (p— 1)-cochaine 1-différentiable pure
B ((p-1).q-1y de type (q—1,p—q) telle que:

Cipay=0B(p-1.a-19F Cipg-1) (2-9)

ott Cpq-1) st un p-cocycle de degré maximum (q—1).

En effet, mettons en évidence dans C,, le terme de degré q en les dérivées
premieéres:

Cpq étant un p-cocycle, il vient:
aA(p,q)+aC(p,q_1) =(.

Il en résulte, par raison de type, 3'A,q =0 et d’apres (2-7), il existe B p-1),q-1)
telle que A(,.q)= 9" B(p-1)(q-1)- On en déduit d’apres le lemme 1 que:

Cipay— 9B ((p-1)..a-1)

est un p-cocycle de degré maximum (q—1), ce qui démontre le lemme.
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Soit C(,) un p-cocycle 1-différentiable sur L. Du lemme 3 on déduit succes-
sivement:

Cipy=0Bp-1).p-1»Ft Cipp—1)s - -+
Co.)=9B(p-1)q-1)T Cipg-1)* " * Cpty =3B p-1.0)

puisque dA 0 =0 implique 9'A ,0)=0 donc A, =0 (lemme 2). On en déduit
par addition que tout p-cocycle 1-différentiable de L est exact. On a

THEOREME 1. Pour tout p, le p® espace de cohomologie 1-différentiable
HUy(L) de I’algebre de Lie L est nul.

Ainsi la cohomologie 1-différentiable de I’algebre de Lie des champs de
vecteurs d’une variété différentiable est toujours triviale.

3. Les 2-cocycles m-différentiables

Nous nous proposons d’étudier les 2-cocycles m-différentiables sur L. Les
deux cocycles étant tous exacts pour m =1, nous pouvons prendre m=2.

(a) Soit U le domaine d’un carte locale {x‘} de W. Nous notons R un indice
multiple de différentiation défini par un ensemble de h entiers (ry,..., r,) dont
chacun prend des valeurs de 1 a2 n et indique la coordonnée sur laquelle porte la
différentiation. Nous posons |R|=h et convenons que h =0 signifie ’absence de
différentiation.

Une 2-cochaine C3)= C", m-différentiable peut s’écrire sur U, pour X,
YelL:

C™ (X, Y)|u = Ak VrX" VsY' (3-1)

ol R=(ry,...,m), S=(s1,...,sy) sont des indices de différentiation vérifiant
0<|R|<m 0<|S|<m. Les coefficients

A;:}S""A'rl TS TS,

sont supposés symétriques par rapport aux indices rq,..., r, symétriques par
rapport aux indices si, ..., sy, antisymétriques par rapport aux couples (R, k) et
(S, ). Ils définissent sur W des tenseurs. La connexion V étant donnée, la
décomposition (3-1) de C™ est unique.
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Si 9C"™ =0, on a sur U:
SZ° V(A VX VYY) - SAS Ve X  VsY' 'V, Z!
—3SATSVR(Z2V X - XV, Z*) VsY!
+3SASVRY  Vg(Z2°V X' - XV, Z")=0. (3-2)
(b) Au premier membre de (3-2), considerons les termes comportant des
opérateurs différentiels d’ordre maximum qui sera (m, m’, 1) (avec m'<m) par
rapport aux trois arguments vectoriels. Supposons m'>1. Etant donné un point x
de U, choisissons des vecteurs X, Y, Z nuls en x et tels que (VX)(x)=(VY)(x)=

0. Les termes considérés sont obtenus pour |R| ou |S|=m, |S| ou |[R|=m'>1 et
I’on a au point x en termes de dérivées ordinaires:

— A 0rX  05Y' 0,2+ ARS(0r X"  9sY* =R Y" 05X?) 3,2Z'

h h'
+( Y A nSgny Y A;;‘}sl"'“"*waf,e)aRx" 3sY'9,.2°=0 (3-3)
a=1 g=1

On en déduit, compte-tenu de I’arbitraire existant sur les vecteurs X, Y, Z:

h
aRS i iRS «a iRS ca irp---a*--rS ar
Ari 0, —Ap 8k — Ay 87+ Z Al " o

a=1

+ ZA;IFS""a"'S“'SB‘*:O (3_4)

Dans (3-4) contractons les indices a et b. Il vient apres simplifications:
(m+m'-1)AK=

C’est a dire
ARS =

pour |R| ou |S|=m, |S| ou |R|=m'>1. Nous avons établi
LEMME 4. Soir C™ un 2-cocycle m-différentiable, ot m est =2. On a

Cm — F(m) S C(m-l)
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ou C™V est une 2-cochaine (m—1)-differentiable et T'™ une 2-cochaine m-

différentiable ne comportant que des opérateurs bidifférentiels d’ordre maximum
(m, 1).

Pour X, Ye L, la partie '™ d’ordre m de i peut s’écrire sur U

I (X, Y)|u = A (VeX* V,Y' -V Y* V.X") + Bif (Ve X*Y' - VR Y*X')

(3-5)
ou R=(ry,...,r,). Les coefficients

A iRs __ A iry---r,s B B ir -

sont supposés symétriques par rapport aux indices ry, . . ., I, Ils définissent sur W
des tenseurs.

4. Exactitude des 2-cocycles m-diffiérentiables

(a) Prenons pour C™ le cobord d’une 1-cochaine T‘™ m-différentiable.
Nous posons sur U:

T™'(X)|uv=TiEVrX* (R|=
on a pour cette 1-cochaine T'™:

AT ™ (X, YV)|lu=X*Vo(TEVRY") = Y® V (TEVrX¥)
+ TRVRrX*V, Y -VRrY* VX
~TRVR(X*V, Y- Y* V. X").

Les opérateurs d’ordre m ne figurent dans dT"™ que par:

TRX*VrY* -Y*VrX") .
+ TER(VRX*V, Y =VrY* V. X)) - TRVLX*V,Y*-VrY* VX"

—Z TRV, XV, osoraY =V, YOV, o X)) (4-1)

ou ~est le signe d’omission. Posons:

AT = TR B TR 85+ 3 T 8 (4-2)

a=1

= “V;TLR.
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Avec les notations de (3-5), on voit que la 2-cochaine I'""™ donnée par
I'"™(X, Y)|u = A (VeX V.Y = Ve Y* V. X') + B (Ve X* Y - VR Y*X!)

ne differe de (4-1) que par des termes inférieurs en ordre a m. Ainsi

a T(m ) l'v( m)

est une 2-cochaine différentiable d’ordre inférieur a m.
(b) Soit maintenant C™ un 2-cocycle m-différentiable quelconque, I'™ sa
partie d’ordre m. On a avec les notations de (3-5):

AL NX, Y, Z)|lu=SZ° VAT (VX  V,Y' - Vo Y* V. X")}

—SAMP(VRX  V,Y'-VeY* V. X"V, Z'

—-SA VR(ZA VX - XV, Z)V,Y'

+SA VY V(Z2°V X' - XV, Z"

+8Z° Vo{Bii(VeX" - Y' -V Y" - X")}

~ SBi{(VeX"Y' -VrY*X)V,Z'

~SBii Vr(Z° V X - X*V,Z")Y'

+SBii(Z° VX' - X* V,Z' ) VR Y" (4-3)
dont la partie d’ordre m doit étre nulle. Au second membre de (4-3) considérons
les termes comportant des opérateurs différentiels d’ordre (m, 1, 1) par rapport
aux trois arguments vectoriels. Etant donné un point x de U, choisissons les

vecteurs X, Y, Z nuls en x, le (m—1)-jet de X en x étant nul. Il vient au point x
en annulant les termes obtenus et compte-tenu de I'identité de Ricci:

— AV X (V,Y'V,Z2'-V.Z'V,Y)
—-ABRsy X"V, Y*V,Z'-V,Z*V.Y)
+ ARy XV, YV, Z' -V, Z°V, Y

- z (Alrl--~a-~-rms 8b A:r,---s-—-rma 8;"‘) VRXk VSY‘ VaZb =0.
On en déduit, compte-tenu de Parbitraire existant sur les vecteurs X, Y, Z:
AaRs 6b+AsRa 8! AxRa 8k+Ale 8a+Ale 8:1 AtRa 6;

—ZAni? ...... e +ZA"' ...... e §=0. (4-4)
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Dans (4-4), contractons les indices a et b et posons:
ARt=mT" (4-5)
Il vient apres simplifications:

A= TR 8{— TR 5+ 3, T+ 87 (@-6)
a=1

Il en résulte d’aprés (4-2) que, T™™ étant défini par (4-5), le 2-cocycle m-
différentiable C™ —aT™ peut s’écrire:

C™ _T™ = l'-“(m) + M-

ot C™V est (m— 1)-différentiable et ou I'™ ne comporte que des opérateurs
bidifférentiels d’ordre (m, 0):

I™YX, Y)|lu=BE(VeX* - Y'-VrY* - X").

En appliquant (4-3) a al'™™, considérons dans ol'"™ les termes comportant des
opérateurs différentiels d’ordre (m, 1,0) par rapport aux trois arguments vec-
toriels. Etant donné un point x de U, choisissons les vecteurs X, Y, Z tels que X
et Y soient nuls en x et que le (m—1)-jet de X en x soit nul. Il vient au point x
en annulant les termes obtenus, compte-tenu de I'identité de Ricci:

BRV.X*V,Y'Z*+ BiRV X"V, Y'Z'-BRV XV, Y*Z'
—BRVX*V,Y'Z+ ), Bi s VX V,Y=Z' = 0.

a=1

Il vient, compte-tenu de I’arbitraire des vecteurs:
A . A . A . A . o A .
BR6:+BiRsi-BiRsi—BiRss+ ), Biy > ™ 8k=0. (4-7)

Contractons les indices s et I dans (4-7). Il vient aprés simplifications BR=0;
donc I'™ =0. Ainsi si C"™ est un 2-cocycle m-différentiable (m=2), il existe une
1-cochaine T m-différentiable telle que:

C™=9T™+C"P (4-8)

ot C™ P est un 2-cocycle (m —1)-différentiable.
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On sait que les 2-cocycles 1-différentiables sont tous exacts. Il résulte de (4-8)
par récurrence que, pour tout m=1, les 2-cocycles m-différentiables sont tous
exacts. Nous énongons:

THEOREME 2. Pour tout entier m=1, le second espace de cohomologie
m-différentiable HZ,,(L) de I’algébre de Lie est nul.

II. 1-Cochaines a cobord m-différentiable

5. 1-Cochaine de L(U) a cobord m-différentiable et opérateur différentiel

Nous avons établi dans [3] une proposition concernant, pour l'algébre de Lie
dynamique d’une variété symplectique (algébre de Lie définie sur C*(W; R) par
le crochet de Poisson), les 1-cochaines a cobord m-différentiable. Nous nous
proposons dans cette section d’établir une propriété analogue pour l'algebre de
Lie L des champs de vecteurs d’une variété différentiable. En dehors de son
intérét propre, une telle proposition intervient de maniere essentielle dans la
théorie de la trivialité des déformations différentiables de L.

Les énoncés correspondant aux deux cas ne different que par le statut de la
localité des 1-cochaines envisagées. Les méthodes de preuve sont trés proches
'une de I’autre, mais le cas envisagé ici présente, par rapport au cas symplectique,
des difficultés supplémentaires dues principalement au caractére vectoriel des
valeurs des 1-cochaines. Nous ne développons ici que celles des démonstrations
qui nécessitent, par rapport au cas symplectique, un certain effort.

(a) Soit U le domaine d’une carte locale {x*} de W. Cette carte détermine en
chaque point x de U une base naturelle {e)(x)} de I’espace tangent. Nous nous
donnons un endomorphisme Ty de L(U) tel que 9Ty soit une 2-cochaine
m-différentiable (m=1): pour X, Ye L(U) on a sur U

TU[X, Y]*[TUX’ Y]—[Xs TUY]= C(m)(X’ Y) (5'1)
la 2-cochaine C'™ s’exprimant par
C™ (X, Y)= Aii%0rX" 0sY'—0r Y " 3sX")

ol R, S sont des indices multiples de différentiation vérifiant 0<|R|<m, 0=<|S|=<
m.

LEMME 5. Ty et la carte {x*} de domaine U étant donnés, il existe un
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opérateur différentiel unique Py d’ordre m sur L(U) tel que:
T(M) = TU - PU

annule tous les vecteurs dont les composantes sont des polynomes de degré m en les
coordonnées; Py, vérifie (5-1) pour une 2-cochaine m-différentiable convenable et
est invariant par translation de la carte.

En effet posons sur U:
Ploy= T'(ew) Po)(X) = PioyX “es).

On définit ainsi sur U un opérateur P, tel que I’endomorphisme:
TO:Xe L(U)— (Ty—Pe)X e L(U)

annule les vecteurs a composantes constantes et vérifie (5-1). En procedant par
récurrence, on part d’un endomorphisme T{™" annulant les vecteurs a com-
posantes polyndmes de degré (h—1) et vérifiant (5-1) pour m =(h —1). On pose
alors:

h! Pl n= TGV (xh -« - xieqry)

Py (X) = Pl 9j, ... X “ey.

1°°

On définit sur U un opérateur différentiel P, qui satisfait (5-1) avec un second
membre h-différentiable. L’endomorphisme

TH:Xe L(U)—= (T$ P —Pu)XeL(U)
annule les. vecteurs 2 composantes polyndmes de degré h et vérifie (5-1) pour

m = h. On aboutit ainsi 2 I’endomorphisme T = Ty, — Py, avec Py =Yn—o P
On établit comme dans [3] que Py vérifie les conditions énoncées dans le lemme.

(b) LEMME 6. L’endomorphisme T¢” du lemme 5 annule les vecteurs a
composantes polynomes de degré (m + 1) en les coordonnées choisies.

Soit xo€ U le point de coordonnées nulles dans la carte envisagée. Nous
posons:

X=(x"re o (x"Yrew (5-2)
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avec

htpt o Fhp=m+1=2 (5-3)
On a:

Lew, X] =jl(x1)j’ e (xhi e (x") e

En appliquant (5-1) a T{” pour les vecteurs eg, et X, on voit qu’en xo, On a
dT{"(X)=0. Par translation, cela est vrai en tout point de U et T{(X) a des

composantes constantes:
TG’ (X)=a'e;,  (a' =const.)

Il résulte de (5-3) qu’ou bien deux des indices j sont =1, ou bien I’'un d’entre eux
est =2. Nous sommes ainsi conduits a étudier soit le cas j; =1, k# 1, soit le cas
j1=2, k=1.

Dans le premier cas, consideérons les vecteurs xle(,) et

(xl);ﬁ-l

Y=(x")""1 =
]1+1

<o (x")Yreq, pour I#1, Y=X/j; pour I=1
Pour tout [:
[x'eq, YI=X
En appliquant (5-1) & Ty et aux vecteurs x'e, et Y, il vient en xo:
a'eny==TE (Y)(x0) * eqy
et d’aprés I’arbitraire de I, on a a’' =0 pour tout i.
Dans le second cas, on procéde de méme pour les vecteurs x'eq) et Y =
X/(j1—1) de sorte que
[x'eqw, Y]=X
On obtient:
a'eqy=—a'eqw/(ji—1)

et 'on a encore a' =0 pour tout i, ce qui démontre le lemme.
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6. Détermination des 1-cochaines de L(U) a cobord m-différentiable

(a) Nous voulons établir le lemme suivant:

LEMME 7. Si T est I’endomorphisme défini par le lemme 5 et si X € L(U)
admet un (m+1)-jet j™*(X)(xo) nul en xo€ U, TG (X) est nul en x,.

Soit xo€ U le point de coordonnées nulles. Si j™"'(X)(xo,) =0, X peut étre pris
égal a:

X=0x" e (x") x(xem (6-1)
avec
hi+---+h,=m+2=3, (6-2)

Il résulte de (6-2) qu’on a I’'une des hypothéses suivantes:

a —deux des indices hy, ..., h,_; sont =1

B —I’'un des indices hy, ..., h,_; est =2, les autres étant nuls

v - h,=2, I'un des indices hq,..., h,_; valant 1 et les autres 0
6 — h, =3, les autres indices étant nuls.

Dans les deux premicres hypotheses (soit a —hy;=1, h,=1,1,2#n, ou B—h,;=2,
h,=-+-=h,_,=0) développons x(x’) selon les puissances de x' par la formule de
Taylor:

x(x) = x0(x) +x x1(x®) +- - -+ ()X (x)+ ()  xa(x’),  (a#1).

Dans les deux dernieres hypotheses (soit y—h,=2, hy=1, hy=---=h,_; =0,
ou 6—h,=3, hy=---=h,_;=0) procedons de méme selon les puissances de
x". Si nous échangeons le nom des indices 1 et n, nous sommes amenés a étudier
les éléments X des deux grands types suivants:

M X=(x"H(x?=- - (x")Ve(x*)ew, (a#1; k=nou 1)
avec

j1+j2+‘ . -+],‘2m+223
et

D X =(x)""P(x")ew), (k=n ou 1).
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En analysant le type (I) comme il vient d’étre fait pour (6-1), nous distinguons les
cas suivants:

(1) X=0x - (e(xew,  (h=1,j=1)

2) X=(x)(x*)= - (Ve (xVew,  (1=2)

(3) X=(x)(x?=- ;- (" Vo(xVeq,  (1=2,j=1)

(4) X=(x")p(x"eq,

(5) X =(x)e(x")en), (j1=4)
Quant au type 1I, il donne naissance aux deux cas:

(6) X =(x")""¢(x)ew

(7) X =(x")"""¢(x")eq,

ce dernier étant obtenu par développement de II (avec k =1) par la formule de
Taylor, développement qui fournit (7), compte-tenu de (5).

(b) Il convient d’étudier successivement ces cas. Nous notons que, d’apres le
lemme 6, T} annule certainement les vecteurs dont les composantes sont des
polynomes du second degré en les coordonnées.

CAS (1). X=(x"Yu(x?)- - (x")Yrp(xewm); 1=1, = 1.
Considérons les deux vecteurs x'x’e(, et

(x )

Y="—(x%"""- ‘(xn)j”<P(xa)e(n)

pour lequel:
hit(—D+- - +j,=m+1.
On vérifie immédiatement que:
[xlxze(l), Y]=X

En appliquant (5-1) & T et aux vecteurs x'x’eq et Y, il vient inmédiatement
en Xo:

(T(L'J")X)(xo) =0.
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CAS (2). X=(x")(x?)=- -+ (x"Yrp(x)em; j1=2.
Méme raisonnement appliqué aux deux vecteurs (x')’e, et

y =80 )“ T 2y (e (x) e,

h—
CAS (3). X =(x")i(x?)2 - (x")p(x")eqy; j1=2, 2= 1.
Méme raisonnement appliqué aux deux vecteurs x'x%eg, et

xH

Y=
ji—1

——(x) (x) e (x ) e

CAS (4). X=(x")’@(x*)eq), avec nécessairement m = 1.

On peut développer ¢(x?) selon la formule de Taylor a plusieurs variables, au
voisinage du point de coordonnées nulles et écrire:

e(x?) = Qo+ x°@a(x) +- - -+ x"@n(x?)

ou ¢o est une constante et ¢, ..., ¢, des fonctions convenables des variables x°.
Nous sommes ainsi ramenés a envisager soit le vecteur X =(x')’e,, soit le
vecteur X =(x")’x*p(x*)eq, qui releve du cas (3). Etudions donc T{VX (avec
m=1) pour X =(x")’eq). On a:

[x'eq), X]1=2X.

En appliquant (5-1) & T{ et aux vecteurs x'eq, et X, il vient en xo:
2(TEX)(x0) = —(TE" X)(x0)eq)

On en déduit (T X)(x0) = 0.
CAS (5). X=(x"p(x%)eqwy; j1=4.

Méme raisonnement que pour le cas (1), appliqué aux deux vecteurs (x')’e,
et:
(x')ys!

Y=
ji—3

o(x%)eq).
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CAS (6). X=(x")""¢(x")ec).
Méme raisonnement appliqué aux deux vecteurs (x')’e,, et
Y=(x")""W(x"ew,
ou ¥(x') est une primitive en x" de (x'), définie sur U.
CAS (7). X=(x"Y""y(x")eq.
Consideérons les deux vecteurs (xl)ze(n) et
Y= Yle(nz(xl):"n‘l’(xi)e(n
ou ¥ a la méme signification que dans le cas (6). On vérifie que:
[(x')Yem), YI=X-2x"Y"ew

ot le vecteur x'Y ‘e, =(x")""W(x')e, releve du cas (6). En appliquant (5-1) a
T et aux vecteurs (x')%e, et Y, on obtient en xo:

(TE"X)(x0) =2{TT (x" Y "em)H(x0) = 0.

Notre lemme est établi.
(c) Des lemmes 6 et 7, on déduit par un raisonnement identique a celui de [3]

(p- 57) la proposition suivante:
PROPOSITION 1. Si Ty est un endomorphisme de L(U) tel que 0Ty soit une
2-cochaine m-différentiable (m = 1) de L(U), on a Ty = Py, ou Py est un opérateur

différentiel d’ordre m sur L(U).

Py peut s’exprimer explicitement par:
Pu(X) ( Z A(ql)s 71 ..,-qu) e(i) (6-3)

ou les coefficients A, symétriques en ry,..., r, définissent, relativement aux
changements de cartes sur U, des tenseurs.

7. 1-cochaines de L a cobord m-différentiable

(a) On a d’abord
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PROPOSITION 2. Une 1-cochaine T sur L telle que oT soit une 2-cochaine
locale est nécessairement locale.

En effet supposons que:
T[X, Y]-[TX Y]-[X, TY]=C(X, Y) (7-1)

ou C est une 2-cochaine locale. Soit U un domaine de W, {x'} une carte de
domaine U. Donnons X € L tel que X|y =0. Choisissons un vecteur Y a support
compact S(Y)< U. On a [X, Y]=0 et il résulte de (7-1)

[TX’ Y]|U =0

soit dans la carte {x'}
T(X) 9;Y'—Y' 9, T(X)' =0. (7-2)

Etant donné un point x de U, on peut choisir Y tel que Y(x) =0 et que le 1-jet
j'Y soit régulier en x; (7-2) donne (TX)(x)=0. Ainsi TX|y,=0 et T est
nécessairement locale.

(b) Soit T une 1-cochaine de L telle que 4T soit une 2-cochaine m-
différentiable. 11 résulte de la propriété précédente que T est nécessairement
locale.

Soit U un domaine de W; si Xy e L(U), il existe des vecteurs X € L tels que
X|u = Xu. L’endomorphisme local T de L induit sur U par Ty(Xy) = T(X)|y un
endomorphisme Ty bien déterminé de L(U), qui est tel que dTy soit une
2-cochaine m-différentiable de L(U). D’apres la proposition 1(§6), Ty est défini
par un opérateur différentiel Py d’ordre m.

En introduisant un recouvrement localement fini de W, on en déduit par un
raisonnement standard.

THEOREME 3. Si T est une 1-cochaine de L telle que 3T soit une 2-cochaine
m-différentiable (m =1), la 1-cochaine T est m-différentiable.

(c) Désignons par T une dérivation de L:0T étant nulle, T est nécessairement
1-différentiable d’apres le théoreme précédent. Il résulte du théoréme 1 que le
1-cocycle 1-différentiable T est nécessairement exact. Ainsi T est une dérivation
intérieure de L. Il vient

COROLLAIRE (Takens). Toute dérivation de L est 1-différentiable, donc
intérieure.
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IIl. Déformations différentiables de P’algebre de Lie L

8. Déformations de I’algébre de Lie L

Rappelons, en les adaptant a notre but, les éléments de la théorie algébrique
des déformations [4]

(a) Soit E(L; A) 'espace des fonctions formelles en A a coefficients dans L.
Consideérons une application bilinéaire alternée L X L — E(L; A) qui donne une
série formelle en A:

[X, Y] = ) AMC(XY) (8-1)

r

ou Co(X,Y)=[X, Y] et ou les C, (r=1) sont des 2-cochaines sur L. Ces
cochaines s’étendent naturellement 8 E(L;A). Si S est la sommation apres
permutation circulaire sur X, Y, Ze€ L, on a immédiatement:

S[[X, Y]u Zh= Y A'D(X, Y, 2) (8-2)

t=0

ou l’on a introduit les 3-cochaines:

D(X,Y,Z)= ), SC(C.(X, Y),Z), (r,s=0). (8-3)

r+s=t

(8-1) définit une déformation formelle de I’algebre de Lie L si I'identité de Jacobi
correspondante est formellement satisfaite, soit

SI[X, Y1, Z1, =0,

D, étant nul, cette condition peut se traduire par
D,=0, (t=1,2,...)

Posons selon Gerstenhaber [4]:

E(X, Y,Z)= ), SC.(C(X,Y),Z), (rs=1). (8-4)

r+S=t
On vérifie immédiatement que:

Dt = Et _aCt. (8-5)
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Si (8-1) est tronquée a 'ordre g, nous dirons que c’est une déformation a I’ordre g
si 'identité de Jacobi.correspondante est satisfaite a I’ordre (q+ 1) prés. S’il en est
ainsi, on sait, d’aprés Gerstenhaber, que E,.; est un 3-cocycle de L. On peut
trouver une 2-cochaine C,,; vérifiant:

si et seulement si E,.; est exact. La classe définie par E, ., est I’obstruction a
Pordre (q+1) a la construction d’une déformation formelle de L.

Pour t=1, on a seulement 6C; =0.

(b) Considérons une série formelle en A

oo a0

T,= ) AT, =Id+ ), A'T, (8-6)

s=0 s=1

ou To=1Id. est 'opérateur identité et les T, (s=1) des endomorphismes de
I’espace vectoriel L; T, opére naturellement sur I’espace E(L; A).
A partir de I’application bilinéaire (8-1) et de (8-6), formons:

TIX YL -[TX T.Y]= i MF(X,Y) (8-7)

t=0

ou I’on introduit les 2-cochaines:

F(X,Y)= ), T.CAX,Y)- ) [TX, T.Y], (r,s=0). (8-8)
r+s=t r+s=t
Posons:
G(X,Y)= ) T.C/(X,Y)- X, [TX, T.Y, (rs=1). (8-9)
r+s=t r+s=t

On obtient immédiatement:
F,=C,-9T,+G.. (8-10)

On a le lemme suivant:

LEMME 8. Pour toute application bilinéaire (8-1) et série formelle (8-6), on a:

D(X, Y, Z)+ ), T.D(X,Y,Z)=-3F(X,Y,Z)+ ), S{F.(C.(X,Y)Z)

+[F(X, Y), T,.Z} (8-11)

avecr,s=1,t=1,2,....
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En effet d’'une part

ST\[X, Y], Z], = TLSI[X, Y]\ = i A Z T.D.(X, Y, Z), (r,s=0).

t=0 r+s=1t
Il vient d’autre part:

ST)\[[X’ Y]M Z]A = S[[TAX’ TA Y]a TAZ]
+ X N'S{E(X, Y]y, Z)+[FAX, Y), T,Z]}

r=0

ou le premier terme du second membre est nul d’apres I'identité de Jacobi. On
note que Dy=0, Fy=0. Le second membre s’écrit donc:

SA Y SIE(GX, Y), 2)+HE(X, ), T.Z},  (r5=0).

r+s=t¢

En distinguant les termes en s =0 dans

Y T.D.(X,Y,Z)= . S{F.(C.(X,Y),Z)+[F.(X,Y), T.Z}}

r+s=t r+s=t
(rhs=0;t=1,2,..))

on obtient (8-11).
(c) Supposons (8-1) et (8-6) telles que I'identité

T\.[X, YL - [T\ X, T,Y]=0 (8-12)
soit formellement satisfaite. On a F,=0 (t=1,2,...), soit
C=0T,—-G, (t=1,2,...).

Il en résulte que (8-6) détermine (8-1) vérifiant (8-12) de maniere unique. Pour
cette application (8-1), les relations (8-11) se réduisent a:

D(X,Y,2)+ ) T.D(X,Y,2)=0, (rns=1;t=1,2,..)).

r+s=t

et entrainent par récurrence D,=0 (t=1,2,...). L’identité de Jacobi relative a
(8-1) est formellement satisfaite.
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PROPOSITION 3. Toute série formelle en A du type (8-6) engendre une
application bilinéaire unique [ X, Y]\ du type (8-1) vérifiant I’identité (8-12). Cette
application est une déformation formelle de I’algébre de Lie L.

Nous sommes conduits a la définition suivante:

DEFINITION. Une déformation formelle de I’algebre de Lie L est dite
triviale s’il existe (8-6) telle que I'identité (8-12) soit formellement satisfaite.

(d) Considerons une déformation formelle de L (D, =0 pour t=1, 2,...) et
supposons la triviale jusqu’a 'ordre q: par hypothese F,=0 pour t=1, 2,..., q;
c’est-a-dire:

C+G,=9T, . (t=1,2,...,9). (8-13)
Pour t=(q+1) la relation (8-11) se réduit a:
a(Cq+1+Gq+1)=0. (8'14)

La déformation est triviale a l'ordre (q+1) si et seulement si le 2-cocycle
(Cq+11 G4+1) est exact. La classe définie par ce 2-cocycle est I’obstruction a la
trivialité a I’ordre (q+ 1) de cette déformation

9. Déformations formelles différentiables de I’algebre de Lie L

Une déformation formelle (8-1) de I’algébre de Lie est dite différentiable si les
2-cochaines C, sur L sont différentiables pour tout r.

Supposons que le 2-cocycle C; soit m-différentiable. D’apres le théoréme 3, si
la déformation envisagée est triviale a l'ordre 1, T; est nécessairement un
opérateur différentiel d’ordre m. Inversement, d’apres le théoreme 2, tout 2-
cocycle C; m-différentiable est le cobord d’un opérateur différentiel T, d’ordre
m.

En procédant par récurrence, on démontre a partir de (8-9), (8-13) et du
théoréme 2 que toute déformation formelle différentiable (8-1) est triviale et que
les termes de la série (8-6) qui engendre (8-1) sont nécessairement définis par des
opérateurs différentiels. C’est ce dernier fait que nous traduirons en disant que
(8-1) est différentiablement triviale.

THEOREME 4. Toute déformation formelle différentiable de I’algébre de Lie
des champs de vecteurs d’une variété différentiable est différentiablement triviale.
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IV. Idéaux de L

10. Lemme principal et idéaux dérivés

(a) Nous nous proposons maintenant d’étudier les idéaux de I’algébre de Lie L
(voir [12]) et notons L, 'idéal de L défini par les champs de vecteurs a supports
compacts. Dans I’étude des idéaux, 'instrument essentiel est fourni par ce que
nous nommons un lemme principal (pour les lemmes analogues voir [2], [7], [8]).

Les raisonnements sont paralleles a ceux concernant une structure unimodulaire
[8]. On a [12]:

LEMME 9. Soit U, U’ deux domaines contractiles de W tels que U'< U. Si
{x'} est une carte locale de domaine U’, on pose ny=dx"A---Adx". Donnons-
nous n champs de vecteurs Zj € Ly, a supports S(Z)) < U, tels que Z ;)| =9;. Si X
est un vecteur a support compact S(X)< U’ tel que:

jx‘nuso, (i=1,2,...,n).
.

il existe n champs de vecteurs Y € Lo, a supports S(Y;) < U’, tels que:

X= Z [Yo), Zp)
]
(b) Pour n=3, on en déduit [12]:

LEMME PRINCIPAL 10. Soit U, U’ deux domaines contractiles de W tels que
U’'< U. Donnons-nous une carte locale arbitraire {x®’} de domaine U’ et n
vecteurs Z() € Lo, a supports S(ZQ) e U, tels que Z)|u-=9". On peut trouver
(n+1) cartes locales {x**’} (A=0, 1,...,n) de domaine U’ et n(n+1) vecteurs
Z{Y €L, a supports S(ZY < U, tels que Z{)|u =24, vérifiant la condition
suivante: si X € Lq est a support S(X)< U’, il existe n(n+1) vecteurs Y{;’€ Lo, a
supports S(Y{) < U, tels que:

X=Y LYY, ZH1 (10-1)
A j

De plus, pour chaque A# 0, on peut choisir Z{\)= Z{), pour un indice ja.

4 2 ’ A)j (A)j
On a posé dans cet énoncé 9\’ =8/9x* dans la carte {x"*}.
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(c) De ce lemme, on déduit d’abord, selon un raisonnement standard mettant
en oeuvre un recouvrement de Palais, la proposition suivante:

PROPOSITION 4. Les algébres de Lie et L, coincident avec leurs idéaux
dérivés respectifs.

[La L] = La [LO7 LO] = LO-

11. Idéaux et idéaux canoniques

(a) Soit M un sous-espace vectoriel de L. Le fermé de nullité n(M) est
’ensemble fermé f des points x de W tels que X(x)=0 pour tout X e M; Cf est
I’ouvert complémentaire. L’espace M est transitif en xo€ Cf si les valeurs en x,
des éléments de M engendrent I’espace tangent en Xxo.

Etant donné un fermé de W, considerons ’espace I.(f) des vecteurs X € L,
tels que S(X)< Cf; I.(f) est un idéal de L admettant f comme fermé de nullité,
transitif sur Cf; il est appelé ’idéal canonique associé a f. On a

LEMME 11. Soit M [avec n(M) = f] un sous-espace de L invariant par I.(f).
Si xoe Cf, on peut trouver des domaines contractiles U, U' de W, avec xo€ U’,
U'< U< Cf tels que si {x'} est une carte de domaine U', [M, I.(f)] contienne n
vecteurs Z € Lo, a supports S(Z;)) < U, tels que Z;)| v =9,

Si xo€ Cf, soit Te M tel que T(x,) #0; il existe une carte {x'} de domaine U’
contenant x,, telle que T]U:=61. Choisissons un domaine contractile U tel que
U'c UcCf. Soit X;€ Lo un vecteur a support S(X;)< U tel que Xl =
x'9; (j=1,...,n). Le vecteur Z;=[T, X;] appartient a [M, I.(f)], est tel que
S(Z(j))c U et vérifie Z(,-)‘U'=a,-.

Des lemmes 10 et 11 on déduit:

THEOREME 5. Si M est un sous-espace de L tel que n(M) = f et est invariant
par I.(f), on a

L(fieM, [M, L(H]=L(f).
En particulier M# {0} ne peut étre de dimension finie.
Soit xo€ Cf, U et U’ les domaines introduits par le lemme 11. Dans le lemme

10, prenons {x©}={x'} et Z{) = Z;e[M, L.(f)], les notations étant celles du
lemme 10. Pour A # 0 fixé, les vecteurs Z{)’ introduits par le lemme 10 sont tels
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ue Pun d’entre eux Z{) peut étre choisi appartenant a [M, I.(f)]. En prenant
q Ga) P pp p

T=Z{} dans le lemme 11 et en adoptant la carte {x““7}, on déduit du
raisonnement du lemme que les Z{}’ du lemme 10 peuvent tous étre choisis
appartenant a [M, I.(f)].

Soit X un élément de L, tel que S(X)< U’. D’aprés le lemme 10, il existe
n(n+1) vecteurs Y{3 € L, a supports dans U’ tels que

X=X 3 v, 24y
]

ol Y()' € L.(f). Ainsi X appartient a [M, I.(f)]. Si X € I.(f), on établit au moyen
d’un recouvrement fini convenable d’un voisinage ouvert de S(X) que Xe
[M, I.(f)]. Ainsi

I.(f)e[M. 1(f)]

ce qui démontre le théoreme.
(b) Soit A une sous-algebre de Lie de L contenant L,. En prenant pour M un
idéal I de A, on déduit du théoréme précédent:

PROPOSITION 4. Si I est un idéal de A tel que n(I)=f, on a:

L(fyel, [ I(H)]=L(f).
En particulier I# {0} ne peut étre de dimension finie.

Des résultats semblables sont valables pour un idéal J de I. En prenant J
abélien, on obtient:

PROPOSITION 5. Tout idéal I d’une sous-algébre A de L contenant L, est
semi-simple. En particulier L, L, et tous leurs idéaux sont semisimples.

(c) Soit I (avec n(I)=f) un idéal de A. On vérifie immédiatement que le
centralisateur Z(I) de I dans A coincide avec I’espace des éléments de A qui
s’annulent en tout point de Cf. Il vient:

PROPOSITION 6. Un idéal I non trivial de A n’admet jamais un idéal
supplémentaire dans A.

Si I admet un idéal supplémentaire, celui-ci est nécessairement Z(I) et I'on a
LocA=1BZ(J). Chaque élément de A devant étre nul sur fNCfon a fN Cf=
¢ et soit f= ¢, soit Cf= o.
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(d) Soit Go le groupe des difféomorphismes de W a supports compacts.
Considérons un idéal I#{0} de L, supposé stable par G, (c’est-a-dire par la
représentation adjointe de Gy dans Lo); n(I) est nécessairement vide car, pour
tout élément g de Go, il doit vérifier gCn(I)< Cn(I). Il résulte alors de la
proposition 4:

PROPOSITION 7. Tout idéal I#{0} de L, stable par le groupe Gy, coincide
avec L.

Cette proposition peut apparaitre comme une version trés faible du théoréme
d’Epstein-Herman-Mather-Thurston.
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