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Comment. Math. Helvetici 39 (51) 343-368 Birkhâuser Verlag, Basel

Sur l&apos;algèbre de Lie des Champs de Vecteurs

André Lichnerowicz

(Version revue, Février 1976)

Introduction

Cet article appartient à une série ([2], [7], [8], [9], [3]) consacrée aux algèbres
de Lie infinies classiques. Les dérivations relatives à chacune de ces algèbres sont
désormais connues. En particulier, en ce qui concerne l&apos;algèbre de Lie L des

champs de vecteurs d&apos;une variété différentiable, F. Takens [10] a montré
récemment que toutes les dérivations sont intérieures.

Le but principal de cet article est la détermination des déformations formelles
différentiables de l&apos;algèbre de Lie L. Cette détermination nécessite l&apos;étude

partielle de ce que nous nommons la cohomologie m-différentiable de Chevalley de

cette algèbre de Lie. La cohomologie envisagée est la cohomologie relative à la
représentation adjointe à valeurs dans l&apos;algèbre de Lie elle-même, les cochaînes
étant supposées ici différentiables. Le complexe est le complexe standard de

Chevalley-Eilenberg.
On sait l&apos;intérêt porté actuellement, à la suite des travaux de Gelfand-Fuks et

de Losik à la cohomologie des algèbres de Lie infinies. Dans les principaux
travaux de Gelfand-Fuks, la cohomologie est soit à coefficients triviaux, soit
relative à une représentation générale; les cochaînes sont supposées continues

pour une topologie convenable définie algébriquement et le complexe diagonal
joue un rôle fondamental. Nos résultats partiels ne résultent pas non plus de
l&apos;approche de Losik.

Il n&apos;apparait pas que le cas étudié ici, motivé par l&apos;étude des déformations, ait
été traité. La méthode employée est tout-à-fait directe et élémentaire. On établit
principalement que la cohomologie 1-différentiable de L est toujours triviale, qu&apos;en

dimensions 1 et 2 la cohomologie m&apos;différentiable est triviale pour tout entier m ^ 1,

que toute Ucochaîne de L à cobord m&apos;différentiable est définie par un opérateur
différentiel d&apos;ordre m (ce qui généralise le résultat de Takens), que toutes les

déformations formelles différentiables de V algèbre de Lie L sont différentiablement
triviales.
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344 ANDRÉ LICHNEROWICZ

Dans un but de complétude, on a rappelé les propriétés des idéaux de L qui
sont communes aux quatre algèbres de Lie infinies classiques, en apportant
quelques compléments à [12].

Certains résultats ont été annoncés dans une note aux Comptes rendus [11].

.1. Sur la Cohomologie Différentiable de l&apos;algèbre de Lie L

1. Cohomologie de Chevalley-Eilenberg

Soit W une variété différentiable connexe, paracompacte, de dimension n ^ 2

et classe C°°. Tous les éléments introduits sont supposés de classe C°°. Nous
notons L(W) L l&apos;algèbre de Lie des champs de vecteurs de la variété W. Nous
introduirons éventuellement sur W une métrique riemanienne auxiliaire g et
désignerons par V l&apos;opérateur de dérivation covariante pour la connexion rieman-
nienne définie par g.

Soit {x1} (i, tout indice latin 1,..., n) une carte locale de W de domaine L/;

on désigne par L(U) l&apos;algèbre de Lie des champs de vecteurs sur U.

(a) Par définition, les p-cochaînes C(p) sur L sont ici les applications p-
linéaires alternées de LF dans L, les O-cochaînes s&apos;identifiant aux éléments de L.
L&apos;opérateur cobord d sur ces p-cochaînes est l&apos;opérateur usuel correspondant à la

représentation adjointe est donnée par:

dC(p)(Xo,..., Xp) —
j 8o?..p {X^, C(P)(Xai,..., Xap)J

&quot;&quot;07 _ i\f £o-p pMp)(LXao, XaJ, Xtt2,..., Xttp) (1-1)

où e est l&apos;indicateur antisymétrique de Kronecker et où Xa e L. Les 1-cocycles ne
sont autres que les dérivations de L et les 1-cocycles exacts les dérivations
intérieures.

(b) Une p-cochaîne C(p) de L est dite locale si, pour tout élément XteL tel

que XiJlt 0 pour un domaine l/, on a C(p)(Xi,..., Xp)!^ 0. Si C(p) est locale,
dC(P) est locale.

Une p-cochaîne C(p) de L est dite m-différentiable (m** 1) si elle est locale et
si sa restriction à tout domaine U est une p-cochaîne m-différentiable de L(U) en

un sens évident. Une telle p-cochaîne est définie à partir d&apos;opérateurs p fois
différentiels d&apos;ordre m sur L. Ces opérateurs peuvent être exprimés au moyen
de?.
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Un calcul élémentaire direct montre que, si C((™)} est une p-cochaîne m-
différentiable, son cobord dCffi est aussi ra-différentiable. Nous notons Hfm)(L)
le pe espace de cohomologie m-différentiable de l&apos;algèbre de Lie L, quotient de

l&apos;espace des p-cocycles m-différentiables par l&apos;espace des cobords de (p-1)-
cochaînes m-diflférentiables.

Nous nous proposons dans cette section d&apos;évaluer d&apos;une part les H(pd(L) pour
tout p, d&apos;autre part les H*m)(L) pour tout m; ces derniers espaces interviennent
dans l&apos;étude des déformations différentiables de l&apos;algèbre de Lie L.

2. Cohomologie l-différentiable de Valgèbre de Lie L

(a) Une p-cochaîne l-différentiable C\p\=C(p) de L peut s&apos;écrire:

C(P)= I A(p,q) (2-1)

où la p-cochaîne l-différentiable A(p&gt;q) dite de type (q, p-q) par rapport aux
dérivées premières des vecteurs et aux vecteurs eux-mêmes, est donnée sur U
par:

A(P,q)(Xi,..., Xp)|u — e&quot;1 papAlsrï s*kq+l kp

x VriX&apos;a\ • • • VrqX%X%;; • • • X%. (2-2)

Les coefficients A sont supposés antisymétriques par rapport aux couples
(n, si),..., (rq, sq), antisymétriques par rapport aux indices kq+i • • • kp. Ils
définissent sur W un tenseur noté encore A(p,q). Une telle p-cochaîne A(p,q) est
dite pure; V étant donnée, la décomposition (2-1) de C(p) en somme de

p-cochaînes pures est unique.
Nous notons C(p,q) une p-cochaîne l-différentiable de degré maximum q{q^

p) en les dérivées premières des vecteurs. On a:

™(p,h) \^ D)

où A{pM est une p-cochaîne l-différentiable pure de type (h, p-h) (h^q)
(b) d opérant sur une p-cochaîne pure de type (q, p - q), on met en évidence à

partir de (1-1) par un calcul élémentaire un peu long, un opérateur d&apos; de type
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(1,0) donné explicitement par:

O&apos;A(p,q))(Xo,..., Xp) ™ eS° PaitAr^ ^ kp 8lso + qtA™ s£+l kp 8$

x VroX^o VriX^ • • • Vr,X^X5;:î &apos; &apos; &apos; *«; (2-4)

où £ désigne l&apos;antisymétrisation par rapport aux couples (r0, s0), (ri&gt;Si)&gt;...,

(rq, sq). On déduit de (1-1), (2-4) et de l&apos;identité de Ricci:

LEMME 1. L&apos;opérateur d admet une décomposition en somme de trois

opérateurs:

d d&apos; + A + M (2-5)

où les opérateurs d&apos;, À, M sont respectivement de type (1,0), (0,1), (—1,2); par
raison de type, d&apos; est aussi un opérateur de cohomologie (d&apos;2 0).

Etudions l&apos;exactitude de cette d&apos;-cohomologie. Soit A(p,q) une p-cochaîne pure
de type (q, p-q) (avec q^l) vérifiant

d&apos;A(p,q) 0 (2-6)

Introduisons le tenseur B((p_i)&gt;(q_i)) défini par:

Bri ra —A aT\ r&lt;*

s2 sqkq+1 kp f*as2 sqkq+1 kp

En explicitant d&apos;A(p,q) d&apos;après (2-4) et en contractant i et s0, il vient en substituant
à l&apos;indice r0 l&apos;indice i, après évaluation des antisymétrisations:

où 2 désigne l&apos;antisymétrisation par rapport aux couples (r1? Si),..., (rq, sq). En

comparant avec (2-4), il vient:

A(p,q) -— d&apos;J5((P-i)f(q-.i)) (2-7)

Supposons maintenant que (2-6) soit vérifié par A(p&gt;0):

d&apos;A(p,0) 0. (2-8)
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Soit x un point arbitraire de W, U un domaine de coordonnées contenant x
Choisissons pour Xo un vecteur nul en x II résulte de (2-8) qu&apos;au point x

{Aakl kpVaXt&gt;XÏ*--Xk/}(x) 0

Du choix arbitraire des valeurs en x de Xu Xp et de VX0, il résulte

A(pO)(x) 0 Ainsi

LEMME 2 La cohomologie définie sur les cochaînes l-différentiables de L par
Vopérateur df est triviale En particulier tout p-cocycle pur de type (p, 0) est

nécessairement nul

(c) Revenons à l&apos;étude de la cohomologie définie par d Des lemmes 1 et 2, on
déduit

LEMME 3 Soit C(pq) un p-cocycle (dC(pq) 0) l-différentiable de degré
maximum q en les dérivés premières II existe une (p- \)-cochaîne l-différentiable pure
B((p-i)(q-i)) de type (q-l,p-q) telle que

où C(pq_D est un p-cocycle de degré maximum (q — 1)

En effet, mettons en évidence dans C(pq) le terme de degré q en les dérivées

premières

A(pq)+ C(pq_i)

C(pq) étant un p-cocycle, il vient

II en résulte, par raison de type, d&apos;A(pq) 0 et d&apos;après (2-7), il existe £((P-d
telle que A(pq) d&apos;B((p_i)(q_1)) On en déduit d&apos;après le lemme 1 que

est un p-cocycle de degré maximum (q-1), ce qui démontre le lemme
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Soit C(p) un p-cocycle 1-différentiable sur L. Du lemme 3 on déduit
successivement:

puisque dA(PjO) 0 implique d&apos;A(p,O) 0 donc A(P)O) 0 (lemme 2). On en déduit

par addition que tout p-cocycle 1-différentiable de L est exact. On a

THÉORÈME 1. Pour tout p, le pe espace de cohomologie \-différentiable
Hfi)(L) de Valgèbre de Lie L est nul.

Ainsi la cohomologie 1-différentiable de l&apos;algèbre de Lie des champs de

vecteurs d&apos;une variété différentiable est toujours triviale.

3. Les 2-cocycles m-différentiables

Nous nous proposons d&apos;étudier les 2-cocycles m-différentiables sur L. Les
deux cocycles étant tous exacts pour m 1, nous pouvons prendre m ^2.

(a) Soit U le domaine d&apos;un carte locale {x1} de W. Nous notons R un indice

multiple de différentiation défini par un ensemble de h entiers (rt,..., rh) dont
chacun prend des valeurs de 1 à n et indique la coordonnée sur laquelle porte la

différentiation. Nous posons |jR| h et convenons que h=0 signifie l&apos;absence de

différentiation.
Une 2-cochaîne C^}=C(m), m-différentiable peut s&apos;écrire sur U, pour X,

YeL:

C(m)l(X, Y)|u Alk?sVRXh VsYl (3-1)

où JR (ri,..., rh), S (si,..., sh&gt;) sont des indices de différentiation vérifiant
m. Les coefficients

sont supposés symétriques par rapport aux indices ru..., rh, symétriques par
rapport aux indices sl9..., shs antisymétriques par rapport aux couples (R, k) et
(S, /). Ils définissent sur W des tenseurs. La connexion V étant donnée, la

décomposition (3-1) de C(m) est unique.
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Si dC(m) O, on a sur U:

SZa Va(A$sVRXk VsYl)-SAak?sVRXk VsYl VaZl

- ïSA$s VR(Za VaXk - Xa VaZk) VsYl

+ ïSAfi5VRYk Vs(Za VaXl - Xa VaZl) 0. (3-2)

(b) Au premier membre de (3-2), considérons les termes comportant des

opérateurs différentiels d&apos;ordre maximum qui sera (m, m&apos;, 1) (avec ra&apos;^m) par
rapport aux trois arguments vectoriels. Supposons m&apos;&gt; 1. Etant donné un point x
de 17, choisissons des vecteurs X, Y, Z nuls en x et tels que (VX)(x) (VY)(x)
0. Les termes considérés sont obtenus pour \R\ ou |S| m, \S\ ou |JR| m&apos;&gt; 1 et
l&apos;on a au point x en termes de dérivées ordinaires:

l dZl + AlT(dXk dYa ~dYk dXa) dZl- A akr dRXk ds Y1 daZ&apos; + A ÏÏs(dRXk ds Y&quot; -dR Yk dsXa) daZl

h h&apos; \

On en déduit, compte-tenu de l&apos;arbitraire existant sur les vecteurs X, Y, Z:

h
a aRS c i _ a iRS pu _ a iRS e&gt;a V a irx a rhS ora

a l

+ Za£s&apos; a v«îr=o (3-4)

Dans (3-4) contractons les indices a et b. Il vient après simplifications:

c&apos;est à dire

AiRS __ rk
kl ~ VJ

pour |jR| ou \S\ m, |S| ou |K|= m&apos;&gt;l. Nous avons établi

LEMME 4. Soir C(m) un 2-cocyde m-différentiable, où m est ^2. On a

£&quot;(m) _ p(m) ^i(m-l)
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où C(m-1) est une 2-cochaîne (m-l)-differentiable et F(m) une 2-cochaîne m-
différentiable ne comportant que des opérateurs bidifférentiels d&apos;ordre maximum
(m, 1).

Pour X, Y € L, la partie T(m) d&apos;ordre m de C(m) peut s&apos;écrire sur U

T(m)l(X, Y)\v AlkRs(VRXk VsYl~VRYk VsXl) + B$(VRXkYl-VRYkXl)
(3-5)

où JR (rl5..., rm). Les coefficients

AiRs A iri r s niR d &quot;ï r»,
ki Ak/1 m Bkl-Bkl

sont supposés symétriques par rapport aux indices ri,..., rm. Ils définissent sur W
des tenseurs.

4. Exactitude des 2-cocycles m-difflérentiables

(a) Prenons pour C(m) le cobord d&apos;une 1-cochaîne T(m) m-différentiable.
Nous posons sur U:

T(m)l(X)|[/=nRVRXk (\R\=m)

on a pour cette 1-cochaîne T(m):

ôT(m)1(x, y)|u xa va(nRvRyk)- y&quot; va(nRvRxk)

+ nR(vRxk v.y - vH yk vax&apos;)

- Tf VR(Xa Va Y&quot; - Ya VaXk).

Les opérateurs d&apos;ordre m ne figurent dans dT(m) que par:

VaT&apos;kR(Xa VRY&quot; - Y° VRXk)

Rk VaY&apos; -VRYk VaX&apos;)- Tf(VRXa VaYk - VRY&quot; VaXk)

nfi(vrrvri..,..vyfc-v,yav,,.., .rmaxk) (4-i)

où A
est le signe d&apos;omission. Posons:

ki =Tk 5i-T| ok+ 2^ Tk1 ~8|«; (4-2)
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Avec les notations de (3-5), on voit que la 2-cochaîne F&apos;(m) donnée par

T(m)(X, Y)\u Afk\Rs(VRXk VsYl-VRYk VsXl) + Bkf(VRXkYl-VRYkXl)

ne diffère de (4-1) que par des termes inférieurs en ordre à m. Ainsi

est une 2-cochaîne diffèrentiable d&apos;ordre inférieur à m.
(b) Soit maintenant C(m) un 2-cocycle m-différentiable quelconque, F(m) sa

partie d&apos;ordre m. On a avec les notations de (3-5):

ar(m)I(x, y, z)\v sza va{Alkf(vRxk vsYl-vRYk vsx1)}

- SAak?s(VRXk VsYl -VRYk VsXl) V«Z&apos;

lkf VRYk Vs(Za VaXl-Xa VaZl)

+ SZa Va{BlkRAVRXk - YI-VRYk • X1)}

- SBlR(VRXkYl - VRYkXl)VaZl

~SBkRVR(ZaVaXk-XaVaZk)Yl

+ SB$(Za VaXl -Xa VaZl) VRYk (4-3)

dont la partie d&apos;ordre m doit être nulle. Au second membre de (4-3) considérons
les termes comportant des opérateurs différentiels d&apos;ordre (m, 1,1) par rapport
aux trois arguments vectoriels. Etant donné un point x de U, choisissons les

vecteurs X, Y, Z nuls en x, le (m-l)-jet de X en x étant nul. Il vient au point x
en annulant les termes obtenus et compte-tenu de l&apos;identité de Ricci:

- AakRsVRXk(VsYl VaZl-VsZl Vayl)

-Af VRXû(VaYk VsZ&apos;-VaZ&apos; VsYl)

+ Al£sVRXk(VsYaVaZl-VsZaVaYl)

On en déduit, compte-tenu de l&apos;arbitraire existant sur les vecteurs X, Y, Z:

S s r-a8[- 0. (4-4)
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Dans (4-4), contractons les indices a et b et posons:

A£a=mTf. (4-5)

II vient après simplifications:

m

w =Tk 0|-T| ok + 2^ iy môr. (4-6)
a l

II en résulte d&apos;après (4-2) que, T(m) étant défini par (4-5), le 2-cocycle m-
différentiable c(m)-dTim) peut s&apos;écrire:

où C(m~1} est (m-l)-différentiable et où f(m) ne comporte que des opérateurs
bidifférentiels d&apos;ordre (m, 0):

f(m)&apos;(X, Y)|u Blk?(VRXk - Yl-VRYk - X1).

En appliquant (4-3) à df(m), considérons dans df(m) les termes comportant des

opérateurs différentiels d&apos;ordre (m, 1,0) par rapport aux trois arguments
vectoriels. Etant donné un point x de [/, choisissons les vecteurs X, Y, Z tels que X
et Y soient nuls en x et que le (m-l)-jet de X en x soit nul. Il vient au point x

en annulant les termes obtenus, compte-tenu de l&apos;identité de Ricci:

kl VRA \aY Z +iJki VRA VayZ-i5k[VRA VaI Z

II vient, compte-tenu de l&apos;arbitraire des vecteurs:

Contractons les indices 5 et / dans (4-7). Il vient après simplifications Bi£ Û;

donc f(m) 0. Ainsi si C(m) est un 2-cçcycle m-différentiable (m ^2), il existe une
1-cochaine T(m) m-différentiable telle que:

C(m) dT(

où C{m~l) est un 2-cocycle (m-i)-différentiable.
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On sait que les 2-cocycles 1-différentiables sont tous exacts. Il résulte de (4-8)

par récurrence que, pour tout m^l, les 2-cocycles m-différentiables sont tous
exacts. Nous énonçons:

THÉORÈME 2. Pour tout entier m^l, le second espace de cohomologie
m-différentiable H^iL) de Valgèbre de Lie est nul

II. 1-Cochaines à cobord m-différentiable

5. 1-Cochaîne de L(U) à cobord m-différentiable et opérateur différentiel

Nous avons établi dans [3] une proposition concernant, pour l&apos;algèbre de Lie
dynamique d&apos;une variété symplectique (algèbre de Lie définie sur C°°(W; R) par
le crochet de Poisson), les 1-cochaînes à cobord m-différentiable. Nous nous

proposons dans cette section d&apos;établir une propriété analogue pour l&apos;algèbre de
Lie L des champs de vecteurs d&apos;une variété différentiable. En dehors de son
intérêt propre, une telle proposition intervient de manière essentielle dans la
théorie de la trivialité des déformations différentiables de L.

Les énoncés correspondant aux deux cas ne diffèrent que par le statut de la
localité des 1-cochaînes envisagées. Les méthodes de preuve sont très proches
l&apos;une de l&apos;autre, mais le cas envisagé ici présente, par rapport au cas symplectique,
des difficultés supplémentaires dues principalement au caractère vectoriel des

valeurs des 1-cochaînes. Nous ne développons ici que celles des démonstrations

qui nécessitent, par rapport au cas symplectique, un certain effort.
(a) Soit U le domaine d&apos;une carte locale {xk} de W. Cette carte détermine en

chaque point x de U une base naturelle {e(k)(x)} de l&apos;espace tangent. Nous nous
donnons un endomorphisme Tu de L(U) tel que dTu soit une 2-cochaîne

m-différentiable (m^l): pour X, YeL(U) on a sur U

7UX, Y]-[TuX, Y]-[X, TVY]= C(m)(X, Y) (5-1)

la 2-cochaîne C(m) s&apos;exprimant par

C(m)&apos;(X, Y) AlkT(dRXk dsYl-dRYk dsXl)

où R, S sont des indices multiples de différentiation vérifiant 0^ \R\^ m, O^s \S\ ^
m.

LEMME 5. Ta et la carte {xk} de domaine U étant donnés, il existe un
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opérateur différentiel unique Pv d&apos;ordre m sur L(U) tel que:

T(m) t&gt; pV ~ * U ~ *U

annule tous les vecteurs dont les composantes sont des polynômes de degré m en les

coordonnées; Pu vérifie (5-1) pour une 2-cochaîne m-différentiable convenable et

est invariant par translation de la carte.

En effet posons sur U:

On définit ainsi sur U un opérateur Pi0) tel que l&apos;endomorphisme:

Tig:XeL(U)-*(Tu-Pm)XeL(U)

annule les vecteurs à composantes constantes et vérifie (5-1). En procédant par
récurrence, on part d&apos;un endomorphisme T(lJ~1} annulant les vecteurs à

composantes polynômes de degré (h-1) et vérifiant (5-1) pour m^(h-l). On pose
alors:

On définit sur U un opérateur différentiel Pih) qui satisfait (5-1) avec un second
membre h-différentiable. L&apos;endomorphisme

annule les vecteurs à composantes polynômes de degré h et vérifie (5-1) pour
m ^ h. On aboutit ainsi à l&apos;endomorphisme 7^?°= Tv-Pv, avec Pv £r=o P(h).

On établit comme dans [3] que Pu vérifie les conditions énoncées dans le lemme.

(b) LEMME 6. Uendomorphisme T(Jl) du lemme 5 annule les vecteurs à

composantes polynômes de degré (m + 1) en les coordonnées choisies.

Soit xoeU le point de coordonnées nulles dans la carte envisagée. Nous

posons:

X (xY---(xnY*eik) (5-2)
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avec

7i+72 + - -+jn m + \^2 (5-3)

On a:

En appliquant (5-1) à T(Jl) pour les vecteurs e(0 et X, on voit qu&apos;en x0, on a

dT^XX) 0. Par translation, cela est vrai en tout point de U et T(J°(X) a des

composantes constantes:

T(iïXX) ale(l) (a&apos; const.)

Il résulte de (5-3) qu&apos;où bien deux des indices j sont ^1, ou bien l&apos;un d&apos;entre eux
est 5=2. Nous sommes ainsi conduits à étudier soit le cas /i^ 1, k# 1, soit le cas

/i^2, fc l.
Dans le premier cas, considérons les vecteurs x1e(l) et

(xl)h+1
Y (x1y&gt;-l&apos;-^-J- (xn)}»e{k) pour l*l,Y=Xljt pour / 1

Pour tout l:

[xle(lhY] X

En appliquant (5-1) à T(Jl) et aux vecteurs x1e(i) et Y, il vient en x0:

et d&apos;après l&apos;arbitraire de /, on a a1 0 pour tout i.

Dans le second cas, on procède de même pour les vecteurs x1e{i) et Y
X/(/i-l) de sorte que

On obtient:

et l&apos;on a encore a1 0 pour tout i, ce qui démontre le lemme.
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6. Détermination des l-cochaînes de L(U) à cobord m-différentiable

(a) Nous voulons établir le lemme suivant:

LEMME 7. Si T(Jl) est Vendomorphisme défini par le lemme 5 et si XeL(U)
admet un (m + l)-/ef /m+1(X)(jt0) nul en xoe U, T(u\X) est nul en x0.

Soit xog U le point de coordonnées nulles. Si /m+1(X)(x0) 0, X peut être pris
égal à:

(n) (6-1)

3. (6-2)

II résulte de (6-2) qu&apos;on a l&apos;une des hypothèses suivantes:

a -deux des indices fii,..., fin-i sont ^1
/3 -l&apos;un des indices hu • • •, ^n-i est ^2, les autres étant nuls

7- hn^2, l&apos;un des indices hi,..., hn-i valant 1 et les autres 0

8-hn^3, les autres indices étant nuls.

Dans les deux premières hypothèses (soit a — hi^l, h2^ 1,1,2 # n, ou /3 - hi ^2,
h2 • • • hM_i 0) développons x(x%) selon les puissances de x1 par la formule de

Taylor:

x(xl~Xo(xa) + x1Xi(xa) + -&apos;- + (x1yXr(xa) + (xly+1Xr+i(xl), (a* 1).

Dans les deux dernières hypothèses (soit y-hn^2, hi l, h2 • • • hn_i 0,

ou ô — hn ^ 3, fii • • • fin_i 0) procédons de même selon les puissances de

xn. Si nous échangeons le nom des indices 1 et n, nous sommes amenés à étudier
les éléments X des deux grands types suivants:

(I) X (xY(x2)h • • • (xn)&apos;»&lt;p(xa)e{kh (a* 1; k n ou 1)

avec

et

(II) X (xT+3*(xl)e(ky9 (k n ou 1).
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En analysant le type (I) comme il vient d&apos;être fait pour (6-1), nous distinguons les

cas suivants:

(1) X (x&apos;

(2) X (x1

(3) X (x

(4) X (x1

(5) X (x1

Quant au type II, il donne naissance aux deux cas:

(7) X (x1)m+V(

ce dernier étant obtenu par développement de II (avec k 1) par la formule de

Taylor, développement qui fournit (7), compte-tenu de (5).
(b) II convient d&apos;étudier successivement ces cas. Nous notons que, d&apos;après le

lemme 6, TlT) annule certainement les vecteurs dont les composantes sont des

polynômes du second degré en les coordonnées.

CAS (1). X (xY(x2)h-&apos;(xn

Considérons les deux vecteurs jc1x2e(i) et

il

pour lequel:

On vérifie immédiatement que:

En appliquant (5-1) à T^ et aux vecteurs x1x2e(i) et Y, il vient immédiatement
en x0:
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CAS (2). X (xY(x2)&gt;&gt; ¦ ¦ ¦ (x&quot;)Mx°)e&lt;n&gt;; j.*2.

Même raisonnement appliqué aux deux vecteurs (x1)2e(i) et

V ^V(x2)&apos;- • • (x&quot;)Sp(xa)e(n).

CAS (3). X (x&gt;(x&gt; • • • (x&quot;)Mx&gt;(1); U&amp;2, j2^ 1.

Même raisonnement appliqué aux deux vecteurs xlx2em et

CAS (4). X (x1)3&lt;p(xa)e(i), avec nécessairement m l.

On peut développer &lt;p(xa) selon la formule de Taylor à plusieurs variables, au

voisinage du point de coordonnées nulles et écrire:

ç(xa) &lt;p0 + x2ç2(xa) + - - + xn&lt;pn(xa)

où ço est une constante et cp2, • • • » &lt;Pn des fonctions convenables des variables xa.

Nous sommes ainsi ramenés à envisager soit le vecteur X (x1)3e(i), soit le

vecteur X (x1)3x2&lt;p(xa)e(i) qui relève du cas (3). Etudions donc T(u}X (avec

m l) pour X (x1)3e(i). On a:

En appliquant (5-1) à Tu0 et aux vecteurs x1ea) et X, il vient en x0:

On en déduit (T(Jl)X)(xo) 0.

CAS (5). X (x1)Jl&lt;pUa)e(1);

Même raisonnement que pour le cas (1), appliqué aux deux vecteurs (x1)

et:
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CAS (6). X (xT+3

Même raisonnement appliqué aux deux vecteurs (x1)2e(n) et

où ^(x1) est une primitive en xn de i/&gt;(x&apos;), définie sur U.

CAS (7). X (x1)m+&gt;(xIk(1).

Considérons les deux vecteurs (x1)2e(n) et

où V a la même signification que dans le cas (6). On vérifie que:

[(x1)2^), Y] X-2xlYle(n)

où le vecteur x1y1e(n) (x1)m+3^(xl)e(n) relève du cas (6). En appliquant (5-1) à

TlJ0 et aux vecteurs (x1)2e(n) et Y, on obtient en x0:

(Tt^XXxo) 2{T(l7)(x1 Y le{n))}{*o) 0.

Notre lemme est établi.
(c) Des lemmes 6 et 7, on déduit par un raisonnement identique à celui de [3]

(p. 57) la proposition suivante:

PROPOSITION 1. Si Tv est un endomorphisme de L(U) tel que dTv soit une
2-cochaîne m-différentiable (m ^ 1) de L(U), on aTv Pv, où Pv est un opérateur
différentiel d&apos;ordre m sur L(U).

Pu peut s&apos;exprimer explicitement par:

Pu(X) £ AU, ¦
r&lt; Vri...r Xs) e(l) (6-3)

\q=O /

où les coefficients A(q), symétriques en ru..., rq, définissent, relativement aux

changements de cartes sur U, des tenseurs.

7. l-cochaînes de L à cobord m-différentiable

(a) On a d&apos;abord
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PROPOSITION 2. Une 1-cochaîne T sur L telle que dT soit une 2-cochaîne
locale est nécessairement locale.

En effet supposons que:

T[X, Y]-[TX, Y]-[X, TY]=C(X, Y) (7-1)

où C est une 2-cochaîne locale. Soit U un domaine de W, {jc1} une carte de

domaine U. Donnons XeL tel que X|u 0. Choisissons un vecteur Y à support
compact S(Y)a U. On a [X, Y] 0 et il résulte de (7-1)

[IX, Y]|u 0

soit dans la carte {x1}

T(X)1 d,Yl - YJ d,T(X)1 0. (7-2)

Etant donné un point x de 17, on peut choisir Y tel que Y(x) 0 et que le l-jet
y1 Y soit régulier en x; (7-2) donne (TX)(jc) 0. Ainsi TX\v 0 et T est
nécessairement locale.

(b) Soit T une 1-cochaîne de L telle que dT soit une 2-cochaîne m-
différentiable. Il résulte de la propriété précédente que T est nécessairement
locale.

Soit U un domaine de W; si XveL(U), il existe des vecteurs XeL tels que
X\u Xv. L&apos;endomorphisme local T de L induit sur U par TV(XV) T(X)\V un
endomorphisme T^ bien déterminé de L(U), qui est tel que dTv soit une
2-cochaîne m-différentiable de L(U). D&apos;après la proposition 1(§6), Tv est défini

par un opérateur différentiel Pv d&apos;ordre m.

En introduisant un recouvrement localement fini de W, on en déduit par un
raisonnement standard.

THÉORÈME 3. Si Test une 1-cochaîne de L telle que dT soit une 2-cochaîne
m-différentiable (m^l), la 1-cochaîne T est m-différentiable.

(c) Désignons par T une dérivation de L.dT étant nulle, T est nécessairement
1-différentiable d&apos;après le théorème précédent. Il résulte du théorème 1 que le

1-cocycle 1-différentiable T est nécessairement exact. Ainsi T est une dérivation
intérieure de L. Il vient

COROLLAIRE (Takens). Toute dérivation de L est 1-différentiable, donc
intérieure.
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III. Déformations différentiables de l&apos;algèbre de Lie L

8. Déformations de Valgèbre de Lie L

Rappelons, en les adaptant à notre but, les éléments de la théorie algébrique
des déformations [4]

(a) Soit E(L; A) l&apos;espace des fonctions formelles en A à coefficients dans L.
Considérons une application bilinéaire alternée LxL-^&gt; E(L; À) qui donne une
série formelle en A:

[X, Y], I ÀrCr(X, Y) (8-1)

oùù C0(X, Y) [X, Y] et où les Cr (r^l) sont des 2-cochaînes sur L. Ces

cochaînes s&apos;étendent naturellement à E(L;A). Si S est la sommation après

permutation circulaire sur X, Y, ZeL, on a immédiatement:

oo

S[[X, Y]A, Z\ X À&apos;Df(X, Y, Z) (8-2)

où l&apos;on a introduit les 3-cochaînes:

Dt(X, Y, Z) I SCs(Cr(X, Y), Z), (r, 5 ^ 0). (8-3)
r+s t

(8-1) définit une déformation formelle de l&apos;algèbre de Lie L si l&apos;identité de Jacobi

correspondante est formellement satisfaite, soit

S[[X, Y]A,Z]A=0,

Do étant nul, cette condition peut se traduire par

Posons selon Gerstenhaber [4]:

E,(X, Y, Z) s I SCs(Cr(X, Y), Z), (r, s ^ 1). (8-4)
r+S t

On vérifie immédiatement que:

Dt^Et-dQ. (8-5)
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Si (8-1) est tronquée à l&apos;ordre g, nous dirons que c&apos;est une déformation à l&apos;ordre q
si l&apos;identité de Jacobi correspondante est satisfaite à l&apos;ordre (q +1) près. S&apos;il en est
ainsi, on sait, d&apos;après Gerstenhaber, que Eq+X est un 3-cocycle de L. On peut
trouver une 2-cochaîne Cq+Î vérifiant:

Dq+{ Eq+1— dCq+i — 0

si et seulement si Eq+i est exact. La classe définie par Eq+1 est /&apos;&apos;obstruction à

Vordre (g + 1) à la construction d&apos;une déformation formelle de L.
Pour t— 1, on a seulement dCi 0.

(b) Considérons une série formelle en À

Ta=IàsTs W+XasTs (8-6)
s=0 s l

où T0 Id. est l&apos;opérateur identité et les Ts (s^l) des endomorphismes de

l&apos;espace vectoriel L; TA opère naturellement sur l&apos;espace E(L;À).
A partir de l&apos;application bilinéaire (8-1) et de (8-6), formons:

oo

Tx[X, Y]x - [TxX, TA Y] X A&apos;F,(X, Y) (8-7)

où l&apos;on introduit les 2-cochaînes:

F,(X, Y)= I TsCr(X, Y)- X [TrX, TSY\ (r, s^O). (8-8)

Posons:

G,(X, Y) I TsCr(X, Y)- I [T^, T.Y], (r, 5 ^ 1). (8-9)
r-f-s

On obtient immédiatement:

Ft Q-dTt + Gt. (8-10)

On a le lemme suivant:

LEMME 8. Pour toute application bilinéaire (8-1) et série formelle (8-6), on a:

Dt(X, Y,Z)+ I TsDr(X, V,Z)= -aFt(X, Y,Z)+ I S{Fr(Cs(X, Y)Z)
r+s=r r+s=t

+[Fr(X, Y), TSZ]} (8-11)

avec r, s&gt;l, f 1,2,
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En effet d&apos;une part

OO

ST&amp;X, y]x, Z]A 7\S[[X, y]x Z A&apos; Z TsDr(X, y, Z), (r, s 3= 0).
t=O r + s r

II vient d&apos;autre part:

STA[[X, Y]A, Z]A S[[TÀX, TAY], TAZ]
CX)

+ I ArS{Fr([X, Y]x, Z) + [Fr(X, Y), 7\Z]}

où le premier terme du second membre est nul d&apos;après l&apos;identité de Jacobi. On
note que Do 0, Fo 0. Le second membre s&apos;écrit donc:

I À&apos; I S{Fr(Cs(X, Y), Z) + [Fr(X, Y), TSZ]}, (r, s^O).

En distinguant lea termes en s 0 dans

Z TsDr(X, Y,Z)= I S{Fr(Cs(X, Y),Z) + [Fr(X, Y),TSZ]}

; r=l,2,...)
on obtient (8-11).

(c) Supposons (8-1) et (8-6) telles que l&apos;identité

TÀ[X, Y]x-[TXX, TAY] 0 (8-12)

soit formellement satisfaite. On a Ft 0 (t 1, 2,...), soit

Il en résulte que (8-6) détermine (8-1) vérifiant (8-12) de manière unique. Pour
cette application (8-1), les relations (8-11) se réduisent à:

Dt(X, Y,Z)+ I TsDr(X, Y,Z) 0, (r,s^l;r=l,2,...).
r+s=r &apos;

et entraînent par récurrence Dt 0 (t= 1,2,.. .)• L&apos;identité de Jacobi relative à

(8-1) est formellement satisfaite.
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PROPOSITION 3. Toute série formelle en A du type (8-6) engendre une
application bilinéaire unique [X, Y]k du type (8-1) vérifiant Videntité (8-12). Cette

application est une déformation formelle de Valgèbre de Lie L.

Nous sommes conduits à la définition suivante:

DÉFINITION. Une déformation formelle de l&apos;algèbre de Lie L est dite
triviale s&apos;il existe (8-6) telle que l&apos;identité (8-12) soit formellement satisfaite.

(d) Considérons une déformation formelle de L (Dt 0 pour f 1, 2,...) et

supposons la triviale jusqu&apos;à l&apos;ordre q: par hypothèse Ft 0 pour t 1, 2,..., q\
c&apos;est-à-dire:

Cf + Gf aTt, (r=l,2,...,q). (8-13)

Pour t (q + l) la relation (8-11) se réduit à:

1 + Gq+1) 0. (8-14)

La déformation est triviale à l&apos;ordre (q + 1) si et seulement si le 2-cocycle
(Cq+1 + Gq+1) est exact. La classe définie par ce 2-cocycle est Vobstruction à la
trivialité à Vordre (q + 1) de cette déformation

9. Déformations formelles différentiables de Valgèbre de Lie L

Une déformation formelle (8-1) de l&apos;algèbre de Lie est dite différentiable si les

2-cochaînes Cr sur L sont différentiables pour tout r.

Supposons que le 2-cocycle Ci soit m-différentiable. D&apos;après le théorème 3, si

la déformation envisagée est triviale à l&apos;ordre 1, 7\ est nécessairement un

opérateur différentiel d&apos;ordre m. Inversement, d&apos;après le théorème 2, tout 2-

cocycle Ci m-différentiable est le cobord d&apos;un opérateur différentiel T\ d&apos;ordre

m.

En procédant par récurrence, on démontre à partir de (8-9), (8-13) et du
théorème 2 que toute déformation formelle différentiable (8-1) est triviale et que
les termes de la série (8-6) qui engendre (8-1) sont nécessairement définis par des

opérateurs différentiels. C&apos;est ce dernier fait que nous traduirons en disant que
(8-1) est différentiablement triviale.

THÉORÈME 4. Toute déformation formelle différentiable de Valgèbre de Lie
des champs de vecteurs d&apos;une variété différentiable est différentiablement triviale.
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IV. Idéaux de L

10. Lemme principal et idéaux dérivés

(a) Nous nous proposons maintenant d&apos;étudier les idéaux de l&apos;algèbre de Lie L
(voir [12]) et notons Lo l&apos;idéal de L défini par les champs de vecteurs à supports
compacts. Dans l&apos;étude des idéaux, l&apos;instrument essentiel est fourni par ce que
nous nommons un lemme principal (pour les lemmes analogues voir [2], [7], [8]).
Les raisonnements sont parallèles à ceux concernant une structure unimodulaire
[8]. On a [12]:

LEMME 9. Soit U, U&apos; deux domaines contractiles de W tels que LJ&apos;cz JJ. Si

{x}} est une carte locale de domaine U\ on pose r]U= dx1 a- • -Adxn. Donnons-
nous n champs de vecteurs Z^eLq, à supports S(Z(j))^ U, tels que Zij)\U&apos; dr Si X
est un vecteur à support compact S(X)&lt;= U&apos; tel que:

XlT)Lr 0, (i 1,2,..., n).
JU&apos;

il existe n champs de vecteurs Y(j)eLo, à supports S(Y(/))c: JJ\ tels que:

(b) Pour n^3, on en déduit [12]:

LEMME PRINCIPAL 10. Soit L/, V deux domaines contractiles de W tels que
O&apos;ciJJ. Donnons-nous une carte locale arbitraire {x(0)j} de domaine U&apos; et n

vecteurs Z$eL09 à supports S(Z^)eU, tels que Z&lt;$\u&gt; d?\ On peut trouver
(n + 1) cartes locales {x(A)j} (A 0, 1,..., n) de domaine V et n(n + 1) vecteurs

Z^eLo, à supports SfZ^cl/, tels que Z$)\U&apos; d$\ vérifiant la condition
suivante: si XeL0 est à support S(X)&lt;= U\ il existe n(n + l) vecteurs Y^eLo, à

supports S(Y((A))c: JJ\ tels que:

[&amp;&amp;&gt;]. (10-1)
A

De plus, pour chaque A#0, on peut choisir Zi£] Z(fîl) pour un indice jA.

On a posé dans cet énoncé d,(A) d/dx(A)J dans la carte {x(A)j}.
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(c) De ce lemme, on déduit d&apos;abord, selon un raisonnement standard mettant
en oeuvre un recouvrement de Palais, la proposition suivante:

PROPOSITION 4. Les algèbres de Lie et Lo coïncident avec leurs idéaux
dérivés respectifs.

11. Idéaux et idéaux canoniques

(a) Soit M un sous-espace vectoriel de L. Le fermé de nullité n(M) est
l&apos;ensemble fermé / des points x de W tels que X(x) 0 pour tout Xe M; C/ est
l&apos;ouvert complémentaire. L&apos;espace M est transitif en xoeCf si les valeurs en x0
des éléments de M engendrent l&apos;espace tangent en x0.

Etant donné un fermé de W, considérons l&apos;espace Ic(f) des vecteurs XeL0
tels que S(X)c C/; Jc(/) est un idéal de L admettant / comme fermé de nullité,
transitif sur C/; il est appelé Vidéal canonique associé à /. On a

LEMME 11. Soit M [avec n(M) f] un sous-espace de L invariant par /c(/).
Si xoeC/, on peut trouver des domaines contractiles U, V de W, avec xoe U\
Û&apos;cz [JcC/ tels que si {xj} est une carte de domaine U&apos;, [M, Ic(/)] contienne n
vecteurs Zi})eL0, à supports S(Z(]})&lt;= L/, tels que Z(l)|i/&apos; dr

Si xo£ C/, soit Te M tel que T(x0) ^ 0; il existe une carte {x1} de domaine Ur

contenant x0, telle que T\u&gt; di. Choisissons un domaine contractile U tel que
l/&apos;c[/cC/. Soit X(J)€LO un vecteur à support S(X(j))c=L/ tel que X(j)|Lr
x1 dj (y l,..., n). Le vecteur Z0) [T, X(/)] appartient à [M, Jc(/)], est tel que
S(Z(j))c: U et vérifie Zju^d,.

Des lemmes 10 et 11 on déduit:

THÉORÈME 5. Si M est un sous-espace de L tel que n(M) / et est invariant

par Ic(f), on a

En particulier M# {0} ne peut être de dimension finie.

Soit xoe C/, U et Uf les domaines introduits par le lemme 11. Dans le lemme

10, prenons {x(0)j} {x/} et Z^ Zo) g [M, Ic(/)], les notations étant celles du

lemme 10. Pour A#0 fixé, les vecteurs Z&lt;^} introduits par le lemme 10 sont tels
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que l&apos;un d&apos;entre eux Z(£&gt; peut être choisi appartenant à [M, Ic(/)]. En prenant
T=Z&lt;(*)) dans le lemme 11 et en adoptant la carte {x(A)i}, on déduit du
raisonnement du lemme que les Z{A) du lemme 10 peuvent tous être choisis

appartenant à [M, Ic(/)].
Soit X un élément de Lo tel que S(X)&lt;= [/&apos;. D&apos;après le lemme 10, il existe

n(n + \) vecteurs Y^eLq à supports dans U&apos; tels que

A ;

où Y[A)€ Ic(f)- Ainsi X appartient à [M, Jc(/)]. Si Xe Ic(/), on établit au moyen
d&apos;un recouvrement fini convenable d&apos;un voisinage ouvert de S(X) que Xe
[M,IC(/)]. Ainsi

/r(/)c [M,/&lt;(/)]

ce qui démontre le théorème.
(b) Soit A une sous-algèbre de Lie de L contenant Lo. En prenant pour M un

idéal I de A, on déduit du théorème précédent:

PROPOSITION 4. Si I est un idéal de A tel que n(/) /, on a:

En particulier I^{0} ne peut être de dimension finie.

Des résultats semblables sont valables pour un idéal J de /. En prenant /
abélien, on obtient:

PROPOSITION 5. Tout idéal I d&apos;une sous-algèbre A de L contenant Lo est

semi-simple. En particulier L, Lo et tous leurs idéaux sont semisimples.

(c) Soit I (avec n(I) f) un idéal de A. On vérifie immédiatement que le

centralisateur Z(I) de I dans A coïncide avec l&apos;espace des éléments de A qui
s&apos;annulent en tout point de Cf. Il vient:

PROPOSITION 6. Un idéal I non trivial de A n&apos;admet jamais un idéal
supplémentaire dans A.

Si I admet un idéal supplémentaire, celui-ci est nécessairement^/) et l&apos;on a

LocA I(BZ(J). Chaque élément de A devant être nul sur /H C/on a /H C/=
&lt;f&gt; et soit / &lt;£, soit C/= &lt;f&gt;.
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(d) Soit Go le groupe des difféomorphismes de W à supports compacts.
Considérons un idéal I^{0} de Lo supposé stable par Go (c&apos;est-à-dire par la

représentation adjointe de Go dans Lo); n(I) est nécessairement vide car, pour
tout élément g de Go, il doit vérifier gCn(I)&lt;= Cn(I). Il résulte alors de la

proposition 4:

PROPOSITION 7. Tout idéal I#{0} de Lo stable par le groupe Go, coïncide

avec Lo.

Cette proposition peut apparaître comme une version très faible du théorème

d&apos;Epstein-Herman-Mather-Thurston.
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