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Comment. Math. Helvetici 39 (51) 319-331 Birkhéuser Verlag, Basel

Isometrische und Konforme Verheftung

ALFRED HUBER

Seien {2; und (2, einfach zusammenhingende Gebiete in der komplexen
Ebene. Ihre Réander I'y und I'; seien rektifizierbare Jordankurven gleicher Lange.
Wir sagen, {2, und (2, seien lidngs dieser Rinder isometrisch verheftet, falls die
Randpunkte derart miteinander identifiziert werden, dass zugeordnete Randbogen
stetsdieselbe Lange aufweisen. Sind I'; und I'; von beschrinkter Drehung und besitzen
sie keine Nullwinkel, so ist diese Verheftung—wie in [2] bewiesen wurde—im Sinne
von Pfluger [6] iiberall konform zuldssig, d.h. sie hat eine Verheftung der konformen
Strukturen von (2, und von (2, zur Folge. In der vorliegenden Note wird durch
Konstruktion eines Gegenbeispiels gezeigt, dass nicht jede isometrische Verheftung
konform zuldssig ist.

SATZ. Es gibt isometrische Verheftungen, welche nicht iiberall konform zu-
ldssig sind.

Bemerkung. Es liegt nahe zu vermuten, dass man durch Iteration der nun
folgenden Konstruktion—durch eine ‘“Verdichtung der singuldren Punkte’—zu
rektifizierbaren Jordankurven gelangen kann, deren isometrische Verheftung mit
Kreisen gleicher Lange in keinem Punkte konform zulassig ist. Dies werden wir
jedoch hier nicht beweisen.

Beweis des Satzes. Sei G ein einfach zusammenhidngendes Gebiet in einer
{-Ebene, dessen Rand einen freistehenden analytischen Bogen R enthilt, und sei
a ein innerer Punkt von R. Sei ferner D ein einfach zusammenhingendes Gebiet
in einer w-Ebene, dessen Rand einen freistehenden analytischen Bogen B
enthdlt, und sei b ein innerer Punkt von B.

Die isometrische Verheftung von G mit D lings R und B unter Identifikation
von a mit b ist trivialerweise (konform) zuldssig. In der nun folgenden Konstruk-
tion zerstoren wir diese Zuléssigkeit in a (bezw. b), indem wir R ersetzen durch
ein abgeédndertes Kurvenstiick I, das in der Umgebung von a immer noch
rektifizierbar ist. Ausserhalb des Punktes a wird die isometrische Verheftung des
abgednderten—nun von I’ anstelle von R begrenzten—Gebietes {2 mit D
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320 ALFRED HUBER

weiterhin zuldssig sein. In a wird dies jedoch nicht mehr zutreffen, und zwar wird
sich dies daraus ergeben, dass die durch die Verheftung ausserhalb a entstehende
Riemannsche Fliache gegen diesen Punkt hin ein hyperbolisches Ende besitzt.
(Wire die Fortsetzung der Verheftung nach a hinein zuldssig, so miisste dieses
Ende parabolisch sein).

Sei f diejenige konforme Abbildung von G auf H'={z|Imz >0}, deren
Laurententwicklung um a mit

a_i

Z=f(§)={

—tagta(f-a)+ -, ()

wobei |a_;|=1, Re a,=0, beginnt. Sei g diejenige konforme Abbildung von D
auf H™ ={z | Imz <0}, deren Laurententwicklung um b mit

b_,
w—b>b

z=g(w)= +bo+by(w=b)+- -+, (2)

wobei |b_;| =1, Re by =0, beginnt. (Die Punkte a und b werden also durch die
stetigen Erweiterungen von f und g auf R und B auf den Punkt « abgebildet).

Sei N eine natiirliche Zahl, gross genug, so dass f '(N—1)e R. Sei {€,}, n=N,
N+1, N+2,..., eine Nullfolge von positiven Zahlen, an welche spéter noch
verschiedentlich Bedingungen gestellt werden; auf jeden Fall sei 0 < ¢, <g fiir alle
n. Wir definieren

an:zftl(n-sn)’ bn:zf_l(n'}'en),

n=N, N+1, N+2,.... Es bezeichne C eine (beliebig wihlbare) positive Zahl.
Wir ersetzen den Teilbogen ayby von R durch eine ins Aussengebiet von G
hinausragende Polygonschleife der Linge CN~>?, den Teilbogen an.1bn+; durch
eine ebensolche Schleife der Linge C(N+1)7?, usf. (Diese Schleifen sollen
weder den Rand von G noch einander noch sich selber iiberschneiden oder
berithren. Wir setzen hier voraus, dass die Zahl ¢, fiir alle n derart klein gewahlt
sei, dass der Teilbogen a,b, kiirzer als Cn™> ist). Durch das Ersetzen der Bogen
anb, durch solche Schleifen der Linge Cn™>? (n=N, N+1, N+2,...), entsteht
aus R ein rektifizierbares Kurvenstiick I, welches ausserhalb einer jeden
Umgebung von a stiickweise analytisch ist.

Es bezeichne Gy das Vereinigungsgebiet von G mit dem Innern der ersten
Schleife (incl. Inneres des Bogens anbn). Sei fy die ‘“normierte” (d.h. in
ihrer Laurententwicklung um a auf dieselbe Art wie (1) beginnende) konforme '



Isometrische und Konforme Verheftung 321

Abbildung von Gy auf H™. Die Zahl ey soll so klein sein, dass
|fn ()= f(2)| <76 (3)

fur die ausserhalb des Bogens anbn liegenden (€ R. Sei ferner Gyn.; das
Vereinigungsgebiet von Gy mit dem Innern der zweiten Schleife, und sei fy.; die
normierte konforme Abbildung von Gn.; auf H'. Die Zahl ex.; soll so klein
sein, dass

[fue1(D) = in (D <32 (4)

fur die ausserhalb der Bogen anby und an.1bn+; liegenden ¢ € R, usf. Die in
Q) = |J%-~ G, definierte Funktion F =1lim, _,.. f, bildet dieses Gebiet konform ab
auf H™, wobei sich aus (3), (4) usf. ergibt, dass

IF({)-f(O)l<s (5)

fir diejenigen ¢ € R, welche ausserhalb der durch Schleifen ersetzten Bogenstiicke
liegen.

Sei nun V:we {=V(w) die von b (bezw. a) ausgehende isometrische
Verheftung von D mit (2 lings B und I'. Wir ziehen es vor, anstelle von V die
induzierte Verheftung a =F°Vog™' von H™ mit H* zu untersuchen, welche
dieselbe (abstrakte) Riemannsche Flache erzeugt. Unser Ziel ist es nun also zu
zeigen, dass die durch die Verheftung a hervorgerufene Riemannsche Fléiche
S(a) im Unendlichen hyperbolisch ist.

Sei x eine grosse positive Zahl, die wir als Randpunkt von H ™~ auffassen. Fiir
die Linge L™ (x) des Kurvenstiicks g~ "([x, +]) gilt

L (=3, 6)

wobei B = Bo+ O(1/x), mit positiver Konstante B,.
Sei a eine grosse positive Zahl, die wir als Randpunkt von H™ auffassen. Fir
die Linge I"(a) des Kurvenstiicks f ([, +]) gilt

I*(a) = g (7)

wobei C= Cy+ O(1/a), mit positiver Konstante C,. Daraus folgt mit Hilfe von
Beziehung (5) und unter Beriicksichtigung der hinzutretenden Schleifenldngen
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sowie der Annahme, dass &, —> 0 fiir n—>o, fir die Linge L*(a) von
F7'([a, +]) die Aussage

D E
L+(a)=:/—a+;, (8)

wobei D = Do+ O(1/a), E = Eo+ O(1/a), mit positiven Konstanten D, und E,.
Die Voraussetzung der Isometrie der Verheftung V besagt, dass L (a(x))=
L™ (x) fur alle x, also zufolge (6) und (8)

9)

Daraus folgt zunachst sofort die Existenz von positiven Zahlen C; und C, mit der
Eigenschaft, dass C;x’><a(x)< C,x? fiir grosse positive x. Nach einiger Re-
chnung erhilt man aus (9) die priziseren Resultate

a(x)= Ax*+ O(x) fir x — oo, (10)

x(a)=ava+0(1) fir a— o (11)
Dabei bezeichnen A und a positive Konstante (A - a®>=1).

Betrachten wir nun die zu a inverse Abbildung B:=a '=geV 'oF~'. Auf

der (hier als Rand von H" aufzufassenden) reellen Achse fiihren wir folgende
Punktmengenbezeichnungen ein:

U:=(—w9 xO]a
I.:=[N+n+3 N+n+3] (n=1,2,3,..)),

I:= | I.
n=1

Dabei sei xo eine derart kleine negative Zahl, dass U durch f~' in einen samt
Rand im Innern von R liegenden Teilbogen von R abgebildet wird. Wir behaup-
ten: Konvergiert die Folge {¢,} geniigend rasch gegen 0, so gibt es eine Zahl k > 1
mit der Eigenschaft, dass die (auf U U I analytische) Funktion B fiir alle x € U die
Bedingung

%< B'(x)<k (12)
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und fir alle x € I die Ungleichung

1_xB(x)_

KSR X (13)

erfiillt.

Zum Beweis betrachten wir vorerst die von b (bezw. a) ausgehende
“ungestorte” isometrische Verheftung V, von D mit G sowie die durch sie
induzierte Verheftung Bo:=goVoof ' von H" mit H™. Die vorausgesetzte
Isometrie besagt, dass

val'(x)l dx=lg“'(Bo)| dpBo, (14)

wobei zufolge (1) und (2)

| ()= 1+O(1) (15)

X
fur x = +% und

B3lg™" (Bo)l = 1+O(Bi) (16)

0

fir Bo— £. Aus (14), (15) und (16) schliessen wir auf die Existenz einer Zahl
ko>1 mit der Eigenschaft, dass

1 _x*- Bolx)
—<——"<k (17)
ko~ B3(x)
fir alle x mit genigend grossem Betrag. Bei der “‘gestorten” Verheftung V
bleiben die Beziehungen (14) und (16) (f durch F ersetzt, Index 0 weggelassen)
bestehen. Entsprechend (15) gilt zunéchst

. 1
2 |f 0| = 1+ o,.(-;), (18)
n=N, N+1, N+2,.... Lassen wir die Folge {e,} geniigend rasch gegen 0

streben, und beschrinken wir uns auf xe UU I, so gelingt unter Zuhilfenahme
von (5) eine gleichmissige Abschidtzung der Grossenordnung: es gibt dann ein
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K <0 derart, dass

%212 () -1 <|x£| (19)

firn=N,N+1, N+2,...,und alle xe UU I. Firr solche x bleibt somit auch (15)
(f durch F ersetzt) bestehen, und es gilt (13) fiir ein k > ko und alle x, welche im
Durchschnitt von U U I mit einer geeigneten Umgebung von « liegen. Durch ein
Anheben von k ergibt sich schliesslich die Giiltigkeit von (13) fur alle xe UU L
Aus (2), (1) und (5) schliessen wir dass ausserdem lim,_, . B(x)/x=1. Aus (13)
folgt damit (12) fir alle x € U (nicht notwendigerweise fiir dasselbe k).

In einer Umgebung von o« definieren wir nun eine Modifikation B* der
Verheftung B. Es bezeichne

1 1
K, : [N+n+———— N+n+- +—-——]
2 Jn 2 n

(n=16,17,18,...), K:= | K.

Die Verheftung B* sei definiert, stetig und stiickweise stetig differenzierbar auf
UU X, wobei X:=[N+16,x), und erfiille dazu folgende Bedingungen:

(1) B*(x)=x fir alle xe U,

(2) B*(N+16)=B(N+16),

(3) B*¥(x)=p'(x) fiir diejenigen x aux X\K, in welchen B’ existiert,

(4) B*(x)=3, falls x innerer Punkt von K ist.

Auf demselben Bereich definieren wir zwei weitere Funktionen ¢ und ¢ : ¢ sei
die Identitdt, Y(x)=x fiir alle xe UU X, und ¢ werde festgelegt durch

{cp(x) = B(x), falls xe U,
e(x)=B(x)—B*(x)+x, falls x € X.

Diese Funktionen sind quasisymmetrisch auf der Menge UU[M, »), falls M
geniugend gross gewidhlt wird. (Fiir die hier verwendeten Begriffe und Resultate
aus der Theorie der quasikonformen Abbildungen sei auf das Lehrbuch von
Lehto und Virtanen [4] verwiesen). Die Funktion ¢ ist namlich stiickweise stetig
differenzierbar. Ferner gilt ¢'(x)=p'(x) fir alle xe€ U, also vermoge (12) die
Ungleichung (1/k)< ¢'(x)<k fiir ein k>1. In denjenigen Punkten x € X\K, in
welchen B’ existiert, ist ¢'(x)=pB'(x)—B*(x)+1=1. Ist schliesslich x innerer
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Punkt von K, ergibt sich aus der Definition von ¢, Eigenschaft (4) von B* und
Ungleichung (13) fiir ein k>1 die Abschétzung

B (2x)<<p’(x)<—1-+k B (2X)- (20)
X 2 X

LS
2k

Da nach (11) B(x)=O(~/x), folgt daraus die Existenz von Zahlen K>1 und
M >0 derart, dass

1
E< (p'(X)< K

fir alle x=M.

Die Funktionen B, B+¢, B* und B*+ ¢ definieren auf W:= UU[M, +x)
Verheftungen von H" mit H™, welche im Endlichen iiberall zulissig sind und
Riemannsche Flichen vom Typus des Kreisrings S(B), S(B+¢), S(B*) und
S(B*+ ¢) erzeugen. Wir beweisen nun, dass diese Riemannschen Flichen im
Unendlichen im konformen Typ iibereinstimmen. Da B+ ¢ = B*+ ¢, ist nur zu
zeigen, dass dies einerseits fiir S(8*) und S(B* + ¢) und andrerseits fiir S(8) und
S(B + ¢) zutrifft.

Seien P und P, konform aequivalente Kreisringe zu S(B*) und S(B*+ o).
Dann existieren konforme Abbildungen g:H"— P und h:H™ — P derart, dass
h(B*(x)) = g(x) fiir alle x e W. (Hier bezeichnen H* und H ™ nicht wie frither die
obere und untere Halbebene, sondern vielmehr deren Durchschnitt mit einer ge-
eigneten—nicht immer derselben—Umgebung von ). Ebenso gibt es Abbil-
dungen go: H" — P, und ho: H™ — P, derart, dass ho(B*(x)+ ¢(x)) = go(x) fiir alle
x€ W. Da ¢ quasisymmetrisch ist, existiert eine quasikonforme Abbildung
®:H™ — H" mit der Eigenschaft, dass ®@(x)= ¢(x) fiir alle x€ W (Ahlfors und
Beurling [1]). Die Abbildungen hoe®oh™' und goog™' erginzen sich zu einer
quasikonformen Abbildung, aus welcher ersichtlich ist, dass P und P, in den-
jenigen Enden vom gleichen konformen Typ sind, welche bei S(B*) und S(B*+
¢) dem Unendlichen entsprechen. Dieselbe Schlussweise kann bei S(B8) und
S(B + ¢) angewandt werden.

Die Riemannschen Flichen S(B8) und S(B*)—und somit auch S(a)=S(8™")
und S(B* ')—sind vom gleichen konformen Typ. Es bleibt zu zeigen, dass die
Verheftung a*:=B*""' im Unendlichen ein hyperbolisches Ende erzeugt. Diese
besitzt folgende Eigenschaften:

(A) a™(x)=x fiir geniigend kleine x.
(B) a*(x)=Bx*+ O(x) fiir x — ©, wobei B eine positive Zahl bezeichnet. Dies
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folgt unmittelbar daraus, dass eine Zahl b > 0 existiert mit der Eigenschaft, dass
B*(x)=bvx+O(1) fiir x > . (21)

Zum Beweis von (21) stiitzt man sich einerseits auf (11), andrerseits darauf, dass
zufolge der Definition von B*, (20) und (11) bei geniigend grossem x,

r [B¥()—B'()]dt= L [1-¢'(t)]dt=const. - Vx+O(1)  fiir x - o,

n[xo,x]

(C) Es gibt Zahlen k, C; und C, (mit 0 <k <1 und C,> C,>0), eine Zahlfolge
{D,} sowie eine Intervallfolge {T,}={[s.—(k/n),s,+(k/n)]}, n=1,2,3,..., de-
rart, dass Folgendes gilt:

T.NT,,=® fur n# m; Co<Spi1— S < Cy

fiir alle n; a®*(x)=2x+D, firalle xe T, (n=1,2,3,...).
Zur Konstruktion einer derartigen Intervallfolge fithren wir eine natirliche
Zahl p ein, welche fiir geniligend grosse x die Ungleichung

p>3|B*(x)—bvx] (22)

erfullen soll, wobei b die in (21) auftretende Zahl bezeichnet. Dann besitzt die
Intervallfolge {B*(K,z,2)}, n=1, 2, 3,..., wobei die Intervalle K; wie bei
Einfiihrung der Verheftung B* definiert sind, von einem gewissen Index an alle
von {T,} geforderten Eigenschaften bis auf die vorgeschriebenen Léngen-
proportionen. Letztere konnen aber nachtraglich durch eine geeignete Verk-
leinerung der Intervalle erreicht werden.

Wir haben nun also einen Kreisring {z | R <|z|<®}, R>0, zu betrachten,
diesen liangs der positiven reellen Achse aufzuschneiden, ihn nach der Vorschrift
a* wiederzuverheften und zu zeigen, dass die entstehende Riemannsche Flache
im Unendlichen hyperbolisch ist. Wir verwenden dabei die Methode der Extre-
malldngen (vgl. Jenkins [3], Pfluger [S] u.a.). Von nun an bezeichnen wir die
modifizierte Verheftung a* mit den Eigenschaften (B) und (C) kurz mit a.

Zunichst zerschneiden wir die zu untersuchende Riemannsche Flache in
Teilbereiche. Sei R >2. Wir definieren

A:={z||z|>R, Re z=0}
U{z | |z| > R, |Imz|> 2},
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B,:={z||z|>R, s, <Re z <s,41, —2<Imz =0}

U{z ||z|> R, a(s,) <Re z < a(s,+1), 0= Imz <2}, n=1,2,3,....

(Auf der positiven reellen Achse gelegene Punkte haben wir in dieser Definition
bald zum untern, bald zum obern Verheftungsufer gezahlt. Die Bedeutung von s,
ist aus der Eigenschaft (C) der Verheftung ersichtlich). Fiir geniigend grosse n ist
B, ein einfach zusammenhidngendes Gebiet auf S(a).

Nun fithren wir auf dieser Riemannschen Flache eine Metrik p(z) |dz| ein. Wir
definieren

1

———  fir alle z, |z|>R,
|z| - log 2|

p(z)=

mit folgenden Ausnahmen: Es sei

1
p(z) =B—g——’;, falls ze V,,
= fall w.,,
p(z) logn’ alls z €
(2)= ! falls z € X,
F Re z -logRe z’ i
1

p(z)= , falls ze Y,.
vRe z-logRe z

Dabei bezeichnen

Vn:={z sn—-lféRezésn+E, —-2§Imz§0},
n n
k k
W,:=1z]| a $n =Rez=a s,,+;1— ,0=Imz=2{,

Xn:={z Sn+"E<RCZ<Sn+1—“"£“, _2§Im2§—'1},
n n+1

k
Yn::_—{z a(s,,+—’f)<Re z<a(s,.+1~——
n n+1

), 1=Imz §2},
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n=1, 2, 3,.... Jedes Gebiet B, wird so durch einen ‘“‘Rahmen mit stirkerer
Metrik” begrenzt. Man verifiziert leicht, dass

J-J pi(z) dxdy<o - (z=x+iy).

|z|I>R

Nun soll gezeigt werden, dass eine positive Zahl u existiert mit der
Eigenschaft, dass

J p(z)|dz|z n (23)

fir jede “Trennende” <y (d.h. fiir jede stuckweise glatte, das Unendliche vom
endlichen Rand trennende, geschlossene Kurve y auf S(a)). Bekanntlich darf
man dann schliessen, dass S(«) hyperbolisch ist. Beim Nachweis von (23) diirfen
wir uns auf Kurven y beschrinken, welche ‘‘nahe bei ®”, d.h. in der z-Ebene
ausserhalb eines beliebig grossen Kreises liegen.

Wir betrachten zunichst folgende spezielle Verheftung: Der Kreisring {z | R <
|z] <} werde lings der positiven reellen Achse aufgeschnitten und nach der
Vorschrift a:x — Bx? (vgl. Eigenschaft (B) der Verheftung a) wiederverheftet.
Die so entstehende Riemannsche Fliche S(a) ist bekanntlich im Unendlichen
hyperbolisch. Zum Beweis kann man die Metrik po(z) |dz|, wobei

1

pO(Z) = |Zl . log ‘Z‘,

verwenden. Offensichtlich ist

” po(z) dx dy <o,

|z|I>R

und man kann ferner zeigen, dass eine positive Zahl po existiert mit der
Eigenschaft, dass

J po(z) |dz|Z po (24)

Yo

fir jede Trennende 7y, auf S(ap). (Z.B. werden durch konforme Verpflanzung
vom aufgeschnittenen Kreisring auf einen Halbstreifen Verheftung a, und Metrik
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po(z) |dz| in einen Spezialfall eines von Sutter [7, §1] behandelten Problems iiber-
gefiihrt, woraus sich die Giiltigkeit von (24) sofort ergibt).
Nun behaupten wir die Existenz einer positiven Zahl p mit folgender Eigen-

schaft: Zu jeder Trennenden y auf S(a) gibt es eine Trennende vy, auf S(ao)
derart, dass

| por1azizo| pote ez 25)
Y Yo

In Kombination mit (24) ergibt sich daraus unmittelbar die zu beweisende
Eigenschaft (23) der Metrik p(z)|dz]|.

Sei nun vy eine vorgegebene Trennende auf S(a). Wir ordnen ihr eine
Trennende vy, auf S(ap) zu nach folgender Konstruktion: Zuerst zerlegen wir vy in
Teilbogen, welche ganz in einer der Mengen A (:= abgeschlossene Hiille von A),
B, B, ... , enthalten sind und Randpunkte eines solchen Bereichs miteinander
verbinden.

Ist ¥’ ein solcher Teilbogen, und schneidet y' die Verheftungskante nicht, so
betrachten wir vy’ (in der z-Ebene) auch als Teilbogen <y, der zugeordneten Kurve
Yo- Ist |z| geniigend gross, so gilt p(z) = po(z). Wir diirfen also annehmen, dass

J' p(z) |dZ|§I, po(z) |dz|. (26)

Y Y

Bei einem in B, liegenden Teilbogen ", welcher die Verheftungskante
schneidet, unterscheiden wir zwei Fille:

(1) Ist y" ‘“‘euklidisch” (dies soll hier bedeuten: gemessen unterhalb der
Verheftungskante in der Metrik |dz|, oberhalb der Verheftungskante in der
Metrik 3|dz|) kiirzer als k/n+1, so liegen die Endpunkte von y” entweder beide
auf B,_,N B, oder beide auf B, N B,.,. Ersetzen wir y" durch die kiirzeste (bis
auf den Verheftungssprung euklidisch geradlinige) Verbindung ¥" seiner End-
punkte, so entsteht aus y eine (in der Metrik p(z)|dz| gemessen) kiirzere
Trennende. Mit dieser neuen Trennenden arbeiten wir weiter, wobei wir y” mit
den daran anschliessenden Teilbogen aus B,_; oder B,.; zusammenhingen.

(2) Ist ¥" euklidisch gemessen nicht kurzer als k/n+1, so muss fir n=3 (und

folglich (k/n+1)<3%) mindestens eine der nachstehenden vier Aussagen giiltig
sein:

(a) y'N(V,UW,) ist nicht kiirzer als k/n+1,

(b) v"N(V,4+1U W,..,) ist nicht kiirzer als k/n+1,
(c) y"N X, ist nicht kiirzer als 3,

(d) y"NY, ist nicht kiirzer als 3.
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(Alle Langen sind “euklidisch” im oben definierten Sinn zu verstehen). Auf
Grund der Eigenschaften (B) und (C) der Verheftung a und der Definition der
Metrik p(z) |dz| iiberlegt man sich leicht, dass jede dieser Aussagen fiir geniigend
grosse n folgende Abschdtzung impliziert: Es gibt eine von n unabhidngige
positive Zahl K; mit der Eigenschaft, dass

K,
nlogn’

J" p(z)|dz|= 27)

Einem derartigen Bogen y"” auf S(«a) ordnen wir einen Bogen vyq auf S(ao) zu,
welcher dieselben Punkte (in der z-Ebene) miteinander verbindet, und der die
Eigenschaft besitzt, dass

K
I po(z) |dz| = —— (28)
e nlogn
fiir geniigend grosse n. (Alle K;, j=1, 2, 3,..., bezeichnen hier von n unab-

hingige positive Zahlen). Wie man dabei vorzugehen hat, zeigen wir am extremen
Fall: ¥" verbinde die beiden einander diametral gegeniiberliegenden Eckpunkte
s, —2i und a(s,,1)+2i von B, miteinander. Hier wihlen wir als erstes Teilstiick
T, von vy die (in der z-Ebene) geradlinige Verbindung von s, —2i mit s,. Aus
Eigenschaft (C) der Verheftung a schliessen wir, dass s, > Kj3n fiir geniigend
grosse n, und somit

J po(z) |dz|= (29)

log n’

Im Teilstiick 7, folgen wir dem untern Rand der Verheftungskante bis s,.;. Dabei
ist

J Po(2) |dz| = po($n)(Sus1— Sn) = ———. (30)

Nun iberschreiten wir die Verheftungskante von S(ap) und gelangen in den
Punkt Bs2., des obern Ufers. Im Abschnitt 7; folgen wir diesem Ufer von Bs2.,
bis a(n+1). Sei z.B. a(n+1)> BsZ,,. Auf Grund der Eigenschaften (B) und (C)
der Verheftung a gelten die Ungleichungen

K6n <S$p1 < K7n,

2
a(sn+1) —Bsp+1 < KgSn+1,
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und eine elementare Rechnung ergibt

K.n2
on2+K on dt Kll

< < ]
L polz) |dz| jxgnz tlogt nlogn (31)

Schliesslich fiihren wir das letzte Teilstiick 7, geradlinig von a(s,.;) bis a(s,+1)+
2i. Dabei gilt

K12
< .
| putorlazt< @

Aus (29) bis (32) folgt (28). Aus (27) und (28) schliessen wir, dass
K
J p(z) Idzlzflj po(z) |dz|. (33)
¥" 2 Jyg

Die so definierten Bogen vyg, Yo, - - . lassen sich zu einer Trennenden 7y, auf S(a)
zusammenfigen, welche nach (26) und (33) die Ungleichung (25) mit p=
min (1, K,/K>) erfiillt. Damit ist der Satz bewiesen.

Es kann natiirlich vorkommen, dass ein Zerlegungspunkt von y—also ein
Anfangs- bezw. Endpunkt der zu betrachtenden Teilbogen—auf der Verhef-
tungskante liegt. In diesem Falle hat man darauf zu achten, dass Anfangs- und
Endpunkt zum gleichen Ufer gezédhlt werden. Man hat also den Verheftungs-
sprung als zum einen Teilbogen zugehdrig—der dann vom Typ y” sein wird—auf-
zufassen.
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