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Comment. Math. Helvetici 39 (51) 301-318 Birkhduser Verlag, Basel

Konvergenzbetrachtungen bei quasikonformen Abbildungen im R®
mittels Satzen von K. Strebel

NikLAUS BUHLMANN

1. Einleitung

Bei einer Folge (f,) von konformen Abbildungen der Ebene, welche in einem
Gebiet D lokal gleichmissig gegen die konforme Abbildung f konvergiert,
konvergiert bekanntlich auch die Folge der Ableitungen (f}) lokal gleichmassig
gegen f'.

Da die K-quasikonformen Abbildungen f.i. differenzierbar sind, ist es sinn-
voll, das obige Problem auch fiir Folgen von K-quasikonformen Abbildungen zu
untersuchen. Einfachste Beispiele zeigen allerdings, dass wir keine Konvergenz
f.i. der partiellen Ableitungen erwarten diirfen.

Das Motiv dieser Arbeit besteht deshalb darin, zu untersuchen, wieviel
Information iiber die Ableitungen der Folge auf die Grenzabbildung iibertragen
wird. Dabei werden die partiellen Ableitungen durch Grossen ersetzt, welche vom
Koordinatensystem unabhéngig sind.

Wir beschrianken uns hier auf die dussere und die innere Dilatation; gelegent-
lich kommt noch die lineare Dilatation hinzu. Diese Grossen konvergieren i.A.
nicht. Hingegen kann eine Reihe von Ungleichungen fiir den Limes superior und
den Limes inferior bewiesen werden. Diese Ungleichungen gelten teilweise ohne
zusitzliche Bedingungen, so die Aussagen iiber den Limes superior der Di-
latationen. Um hingegen Sétze iliber den Limes inferior der Dilatationen zu
erhalten, muss man weitere ‘Bedingungen an die Folge (f.) und den Limes f
stellen (S-Approximation).

In der Ebene wurden dhnliche Probleme von K. Strebel untersucht [1] und [2].
Einige Ergebnisse meiner Arbeit sind Verallgemeinerungen von Sitzen von
Strebel in den R®. Fiir Ungleichungen iiber den Limes inferior und den Limes
superior der Funktionaldeterminanten mochte ich auf die Arbeiten von K.
Leschinger [3] und [4] verweisen.

Diese Dissertation entstand unter der Betreuung meines Lehrers, Professor
Dr. Kurt Strebel, von dem ich auch in diese Problemkreise eingefiihrt wurde. Fiir
seine wertvollen Anregungen und Ermutigungen mochte ich ihm vielmals danken.
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302 NIKLAUS BUHLMANN

2. Bezeichnungen und Hilfssatze

Ein Homéomorphismus f(x) heisst K-quasikonform (1<K <) in einem
Gebiet D R?, falls er absolut stetig auf Geraden, {.ii. differenzierbar ist und falls
gilt:

1 ' 3 . ' 3 .
K [max |f'(x) Ax| s]f(x)lsKlglgll If'(x) Ax|> f.4.in D

(Caraman [5], pg. 83)

Dabei ist #(x) die Funktionaldeterminante im Punkte x. Sei xo€ D ein regulédrer
Punkt, d.h. ein Punkt, wo f'(xo) existiert und |$(xo)|>0 ist. f'(xo) ist also eine
lineare Abbildung, welche die Einheitskugel B*(x,) mit Zentrum x, auf ein
Ellipsoid E’(xo,) mit den Halbachsenvektoren ai(xo), a(xo), as(xo) abbildet,
wobei wir voraussetzen, dass |a;(xo)| > |a2(xo)| > |as(xo)| > 0 sei. Auf die ausgearte-
ten Fille von Kugeln und Rotationsellipsoiden werden wir spiter zu sprechen
kommen. e;(xo), e2(xp) und es(xo) seien jene drei paarweise orthogonalen
Einheitsvektoren, fiir welche gilt: f'(xo)e;(xo0) = ai(xo) (i=1,2,3). Die ent-
sprechenden Grossen der Funktion f, bezeichnen wir mit a;,(xo), ein(xo),
fi(x0)em(xo). Die Koordinaten des R? seien &;, & und &;.
In reguldren Punkten lassen sich die folgenden Grossen definieren:

_|lai(xo))® : die dussere Dilatation von f

Ho(xo) := |$(xo)] im Punkte xo
Holx) 1= |#(xo)| : die innere Dilatation von f
1(%0) := las(xo))?  im Punkte xo
ai(x : die lineare Dilatation von
Hixy := [1020) f

las(xo)]  im Punkte xo.
Da f K-quasikonform ist, gilt f.i. in D:
Ho(Xo) = K, H](Xo) <K and H(xo) = K2/3.

Fiir zwei Geraden g;(xo) und g»(xo), welche sich im Punkte xo unter dem Winkel
< (g1(x0), g2(x0)) schneiden, gilt f.ii.:

K22 < (f'(x0)81(x0), f'(x0)82(x0)) < < (g1, 82)
< K> < (f'(x0) g1(x0), f'(x0)g2(x0)). (2.1)
(Caraman [5], pg. 255)

Eine Folge von beschrinkten messbaren Mengen E, konvergiert reguldar gegen
einen Punkt x, falls gilt: (1) x € E, fiir alle n. (2) m(E,)/q>= a >0 fiir alle n und
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ein a>0. (3) g.— 0 fiir n—>o. Dabei ist q, die Seitenlinge des kleinsten
abgeschlossenen Wiirfels mit Zentrum x, welcher E, enthilt. ([6], pg. 183).

LEMMA 2.1. ([6], pg.- 189). Sei h eine reellwertige integrierbare Funktion im
R>. Dann gilt fiir fast alle xo:

lim — L |h(x) = h(xo)| dm =0 (2.2)

fiir jede Folge von Mengen E,, welche reguldr gegen den Punkt x, konvergiert.

LEMMA 2.2. (K. Strebel [1]). Sei E eine Menge von endlichem Mass und
(h.) eine Folge von reellwertigen integrierbaren Funktionen. Die folgenden drei
Bedingungen sind hinreichend dafiir, dass

limJ |h,(x)| dm =0 ist: (2.3)
n—=xJg

(1) lim h,(x)<0 f.i. auf E

(2) Fiir fast alle xo€ E existiert zu jedem £ >0 ein beliebig kleiner Wiirfel Q,(xo)
mit Zentrum x, und Seitenldnge q, sodass gilt:

n—oc

lim I h,(x) dm>—¢q’
Q,NE

q

(3) Es gibt eine integrierbare Funktion h auf E, sodass: |h,(x)|< h(x) fiir alle n ist.

3. Der Limes superior der Dilatationen

Nach K. Strebel [2], S. 469, kann der Limes inferior der Dilatationen f.u.
kleiner als die Dilatation der Grenzabbildung sein. Die Dilatationen konnen sogar
konvergieren und trotzdem kann ihr Limes grosser als die Dilatation der Grenz-
abbildung sein, wie die folgende 3-dimensionale Variante eines Beispiels von K.
Strebel [1] zeigt.

BEISPIEL 3.1. Wir betrachten eine Folge (f,(x)) von K-quasikonformen
Abbildungen des Einheitswiirfels Q, welche gegen jene Streckung f konvergiert,
die Q auf den Quader mit den Seiten 1,1,4 abbildet. Dabei seien die f, stetige,
stiickweise affine Abbildungen, welche wie folgt definiert sind: Q wird durch n—1
parallele Ebenen, welche senkrecht zur 3-Achse stehen, in n kongruente Teil-
quader unterteilt. Durch f, werde jeder Teilquader affin auf ein Parallelepiped
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mit den rechtwinklig aufeinanderstehenden Seiten 1,1 und der Hohe 4/n abgebil-
det. Dabei soll f, auf den Parallelebenen &;=c/n mit geradem Zahler ¢ mit f
tibereinstimmen. Wenn fir alle n die Bilder der Teilquaderseiten, welche zur
3-Achse parallel sind, dem Betrag nach die gleiche Neigung gegenuber den
Parallelebenen haben, so gilt lim, _,» H,,(x) > Hy(x) f.i. auf Q.

Auch fiir die Fille, in welchen nicht beide Eigenvektoren e;(x) und es(x)
ausgezeichnet sind, wollen wir diese nun festlegen:

1. FALL. Hy(x)= H(x) und H;(x)> H(x). Hier ist nur e;(x) ausgezeichnet. Wir
wihlen e;(x) L e3(x) beliebig und wie iiberall im folgenden e,(x) = e3(x) X e;(x).

2. FALL. Hy(x)> H(x) und Hp(x)=H(x). Da nur e;(x) ausgezeichnet ist,
wiahlen wir e3(x) L e;(x) beliebig.

3. FALL. Hy(x)= H;(x) = H(x). Weder e;(x) noch e;(x) ist ausgezeichnet. Des-
halb legen wir zuerst e;(x) willkiirlich fest und wahlen dann e;(x) L e;(x) beliebig.

LEMMA 3.1. Sei (f.(x)) eine Folge von K-quasikonformen Abbildungen,
welche im Gebiet D c R> lokal gleichmdssig gegen die quasikonforme Abbildung
f(x) konvergiert. xo€ D sei ein reguldrer Punkt fiir alle f, sowie fiir f. Dann existiert
zu jedem € >0 ein 8(¢, xo) >0, sodass gilt:

L &

1 1 a1, () = |fulx)er(x0)]?
H —Es—3 H,, d _“J
ol¥o) ~ ¢ q JQ.(x0) (x) dm q3 Qq(x0) Wn(x)l am

1 o
=3 H,,(x) dm (3.1)
q Jo,xo

i

fiir alle q<&(e, xo) und n>n, Dabei ist n, eine natiirliche Zahl, welche von q
abhdngt und Q,(x,) ein abgeschlossener Wiirfel mit Zentrum x, und Seitenldnge q,
dessen Achsen die Richtungen e;(xo), e2(xo) und es(xo) haben.

Beweis. In einem reguliren Punkt x, haben wir die Entwicklung f(x)=
f(xo)+ f'(x0) Ax + 0(|Ax]), x = xo+Ax. Also existiert zu einem beliebigen ¢ >0 ein
8(g, x0)>0, sodass |f(x)—(f(xo)+f'(x0) Ax)|<q- € ist fiir alle q<& und alle
x € Qu(xo). Halten wir q fest, so existiert ein n, € N, sodass gilt:

Ifa(x) = (f(x0)+ f'(x0) Ax)|<q- € firalle n>n;, und xe Q,(xo).
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Die Integration entlang einer Geraden parallel zu e;(x,) ergibt fiir n>n, und
x=Xxot & e+ &6+ &se; die folgende Abschatzung:

q/2

q(lal(xo)|—25)<J |fr(x)ei(xo)| d&; fur fast alle & und &

—~q/2

Nach Integration uber &, und &; erhalten wir aus der Holderungleichung:

Platol-2op=([| Uitz

Qq(x0) |~¢n(x)lm

SJ' If;(X)el(XO)P dm(j ljn(x)ll/z dm)2
Q Q

3
|2, ()| dm)

. Fa(x)] !
< 3 If;(x)el(xo)l3
<gq Io., | £ ()] de'Qq .00 dm

Die beiden letzten Integrale schiatzen wir folgendermassen ab:

3
1.0 dm < @* [ [ (ai(x0)|+2¢€) fiir n>n,
i=1

Jo,

[ lf:t(x)e1(x0)|3 =J‘

o, ) Am= ), Honx)dm
[ law@P-Ifax)exol’
L« [ ()] dm

Dies ergibt:

Ialn(x)l3— lf::(x)el(xo)P

q°(|a1(xo0)| —2¢)? -
| £ (x)]

dm

3 J‘ H,,.(x) dm——J’
qﬁ_l;ll(|ai<xo>|+2s) % .

Die linke Seite konnen wir schreiben als q>(Ho(xo) —(&)), wobei (¢) — 0 fiir e > 0
ist. Durch Umdefinieren von & und ¢ erhalten wir (3.1).

LEMMA 3.2. Unter den Voraussetzungen von Lemma 3.1 existiert zu jedem
>0 ein 8(e, xo) >0, sodass die Ungleichung

1 ( 1 lfn(X)l gn(xs x0)3/2
Hi(xo)—e<—5| Hpn(x)d —“‘J - dm
)= e = o, Hn O A b Tasn P 190
s;}s Hy,(x) dm G-2)
Jo,
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erfillt ist fir alle q<&(e,xo) und n>n, Dabei ist g,(x,x0)=
Ifn(x)e1(x0) X fr(x)e2(x0)|>, wobei x das Vektorprodukt bedeutet.

Beweis. Wir gehen ahnlich vor wie bei Lemma 3.1, bilden jedoch keine
Gerade ab, sondern ein Quadrat E, welches parallel zu e;(xo) und e,(xo) ist und
durch Q begrenzt wird. Sein Bild vermdge f,, sei E,. Da die f, absolut stetig auf
Geraden in Q sind, sind sie auch absolut stetig auf Geraden auf fast allen E. Nach
dem Satz von Tonelli (Saks [7], pg. 181) lassen sich daher die iiblichen Formeln
zur Flachenberechnung verwenden. Fiir n > n, erhalten wir fir fast alle E:

q*(Ja:(xo)| —2€)(|ax(x0)| —2&) < m(E,) = ” gn(x, x0)''? d¢, d&,,

E

und daraus durch Integration iiber &;

q’(la1]—2€)(|az]|—2¢) SJ g (x, x0)"* dm.

Qq

Die Holderungleichung ergibt:

r

1/2 3
9G0P BB X )
Q

q9(|a1|~2£)3(|a2|~28)3S< lﬁ (x)lz/s

o

i 2 3/2
< jn gn(x’ xO) d
(-‘Qq ' (X)I dm) JQ, ‘jn(x)‘Z m

Fir die beiden letzten Integrale haben wir die Abschitzungen:

2 3
(J |8, (x)| dm) <q°[1 (a|+2¢)
Q, i=1

g (x, x0)>? . J
J;;., |~¢n(x)|2 dm = Q

q

( [Fu () 8nlx, xo)”) im

Hun(x) "'"’j g |9.0F

Q,

Die erste Abschiatzung bringen wir auf die linke Seite, fiir welche wir dann
schreiben konnen: q°(H;(xo)—(e)), wobei (¢)— 0 geht fiir ¢ = 0. Durch Um-
definieren von & und & erhalten wir die linke Seite von (3.2). Die rechte Seite
erhalten wir aus der Beziehung

|fr(x)e1(x0) X fr(x)ex(x0)| < |a1n(x)] |a2n(x)],

welche geometrisch klar ist.
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LEMMA 3.3. Unter den gleichen Voraussetzungen wie bei Lemma 3.1 gilt fiir
die linearen Dilatationen: zu jedem € >0 existiert ein 8(g, xo)>0, sodass die

Ungleichung

IJ' IJ ( lai.(x)]? Ifi.(x)el(xo)lz)
H —Eg<—; H,(x)dm—— — d
(x0) =& q° Jo, (x) 0 Jo, \lain@laz(x)] g (xxa) /"

(3.3)
1
\?J H,(x) dm erfiillt ist fir alle q<&(e,xo) und n>n,
Qq

Dabei ist g,(x, xo) = |fu(x)e1(xo) X fi(x)es(x0)|*.

Beweis. Wir gehen dhnlich vor wie bei Lemma 3.1, integrieren aber uber ein
Quadrat E, welches parallel zu e;(xo) und es3(xo) ist und durch Q begrenzt wird.
Fir n> n, erhalten wir fur fast alle E:

q2(|a1|‘28)< JJ |fr(x)ei(xo)| d€; dés,

und daraus mittels der Schwarzschen Ungleichung:

4 _ D o 1/4 |f:’1(x)el(x0)| )2
q (lall 28) \(Jjgn (x, xO) g'11/4(x, xo) dgl d§3

E

= J’ J g,l.,’z(x, xo) dfl dfj;Jj lf:t(x)el(x())l d§1 d§3

gn2(x, xo)
E E

Fiir das erste Integral rechts erhalten wir:

I J gn (X, Xo) dé1 dés< q*(|as(xo)| +2¢)(|as(x0)| +2¢)

E

Wir nehmen diesen Ausdruck auf die linke Seite, integrieren iiber £, und erhalten
durch Umdefinieren von & und & die linke Seite von (3.3). Die rechte Seite von
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(3.3) gilt, weil |fa(x)e1(x0)|*/gn*(x, xo) hochstens gleich dem Achsenverhiltnis der
Ellipse des Schnittes von f,(x)B>(x) mit der von den beiden Vektoren f(x)e;(xo)
und f,(x)es(xo) aufgespannten Ebene und daher durch H,(x) nach oben
beschrankt ist.

SATZ 3.1. Sei (f,) eine Folge von K-quasikonformen Abbildungen, welche in
einem Gebiet D< R> lokal gleichmdssig gegen die quasikonforme Abbildung f
konvergiert. Dann gelten die folgenden Ungleichungen:

lim Hyn(x)=Ho(x) fii.in D (3.4)
lim Hyn(x)=Hy(x) fii.in D (3.5)
lim H,(x)=H(x) f.ii.in D (3.6)

Beweis. Nach dem Lemma von Fatou gilt:

H,.(x) dm =l_i_mj (K—H,,(x)) dm

Kq®~Tim j
Q,

Q,

BJ lim (K — H,,.(x)) dm=Kq3-J lim H,,(x) dm
Qq Q,

q

Durch Anwendung von Lemma 3.1 erhalten wir:

 J—
Ho(Xo) — € S."q‘:; llmJ

1 -
H,,(x) dm S'c;g J lim H,,(x) dm
Q,

Q,

fir q<<é&(e,x0) undfirf.a. xoeD.

Daraus folgt (3.3) fiir g — 0 und ¢ — 0 nach dem Satz von Lebesgue. Der Beweis
fiir (3.5) und (3.6) verlauft gleich.

Bemerkung. Beispiel 3.1 zeigt, dass wir fiir die Achsenverhiltnisse |a;,(x)|/

lazn(x)| und |as,.(x)|/|asn(x)] keine Aussagen machen konnen, welche (3.6)
entsprechen.

4. Der Limes inferior der Dilatationen

Aus dem Beispiel (3.1) wird deutlich, dass lim H,,(x) > Hy(x) f.i. sein kann.
Im folgenden wollen wir zusitzliche Forderungen an die Konvergenz stellen,
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welche hinreichend dafur sind, dass der Limes inferior der Dilatationen f.i.
kleiner oder gleich der Dilatation der Grenzabbildung ist.
Fir die folgenden Lemmata seien e,(xo) und e3(xo) wie in §3 festgelegt.

LEMMA 4.1. Unter den Voraussetzungen von Lemma 3.1 gibt es zu jedem
e >0 ein 8(e, xo) >0, sodass die Ungleichung

L § J L1 J |asn ()P = |fr(x)es(xo)l’
Hi(xo) q’ Jo Q, | n (x)|

. Ha(®) m pe dm 4.1)

erfiillt ist fiir alle q < 8(g, xo) und n>n,.

Beweis. Wie beim Beweis von Lemma 3.1 erhalten wir fir n> ng:
q/2

q(la3(x0)|—2£) SJ ‘f;(X)e3(x0)| d€3 fur f.a. §1 und §29

—q/2

und durch Integration uber &; und &;:

q3(|a31—26)SJ |fn(x)es(x0)| dm.
Q,
Darauf wenden wir die Holderungleichung an:

#lad-267< (|13, 0ope LGN 4,

' 3372 2
<] inlan( | E0SCO 4)

_ 3 |f n(x)ea(x0)|?
=q Joq ljn(x)l de-Qq iﬂn(x)l

Fiir das erste Integral rechts haben wir die Abschitzung fq, |#.(x) dm=<
q> ;-1 (Ja;| + 2¢). Diesen Ausdruck bringen wir auf die linke Seite, spalten rechts
1/H,(x) ab und erhalten (4.1) durch Umdefinieren von é und e.

q Q

dm

LEMMA 4.2. Unter den Voraussetzungen von Lemma 3.1 gibt es zu jedem
€ >0 ein 6(e, xo) >0, sodass die Ungleichung

1 }_I 1 1[ (laZn(X)I |a3n(x)] _ gn (%, xo)”) im
Q,

— < d ————
Hoxo) © @ do, Hu®) " @ o, U lam®)P 1%. ()P

(4.2)
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erfiilllt ist fir alle q<&(e,xo) und n>n, Dabei ist g.(x,x0)=

|f1(x)ea(x0) X fr(x)es(x0)-

Beweis. Wie beim Beweis von Lemma 3.2 erhalten wir fir n> n,:

| q/2 q/2
q2(|a2| - 28)(las| —2¢e)< j J gn(x, xo)l/2 d¢, d¢;

—-q/2 J—q/2

fiir fast alle Ebenen &, = konstant. Nach Integration iiber £, erhalten wir mittels
der Holderungleichung:

. 1/2 3
q9(|a2|—2e)3(|a3|—2e)3<( |56,,(x)12’3§'-‘£’5’—’59)—d )

Ja, |2, (x)[*?
. 2 3/2
gn(x, xo)
< S (x dm) J —dm.
(«Qq I ( )l Q, Ifn(x)lz

Nun ist aber (fq, |$.(x)| dm)*<q° ;-1 (Jai| +2¢)>.

Diesen Ausdruck bringen wir auf die linke Seite, spalten rechts 1/H,,(x) ab
und erhalten (4.2) durch Umdefinieren von 8 und e.

DEFINITION 4.1. Eine Folge (f.) von K-quasikonformen Abbildungen,
welche im Gebiet D = R lokal gleichmissig gegen die quasikonforme Abbildung

f konvergiert, heisst eine S-Approximation von f auf der messbaren Menge E,
falls

(1) Die Teilfolge der ausgezeichneten e;,(x) f.ii. auf E konvergiert (falls es so
eine Teilfolge gibt):

lim e;,(x) = ei(x), wobei die linke Seite den Grenzwert der betreffenden Teilfolge
bedeutet (i=1 und 3).

(2) ei(x) = e;i(x) ist, falls e;(x) ausgezeichnet ist.

(3) ei(x) L esz(x) ist, falls beide existieren.

SATZ 4.1. Falls die Folge (f,) eine S-Approximation von f auf D ist, so gilt
lim Hy,(x)< Hy(x) f.i. auf D ' (4.3)
und

lim H,,,(x)< Ho(x) f.ii. auf D. 4.4)
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Beweis. (1) Innere Dilatation. Wir zeigen, dass im Falle einer S-Approxima-
tion der zweite Term rechts in (4.1) fiir n—>« und q— 0 verschwindet. Wegen
< (e3n(x), €3(x))—>0f.i. in D (auch wenn die Vektoren e;,(x) und e;(x) nicht ausge-
zeichnet sind, lassen sie sich nach Definition 4.1 so festlegen) folgt aus (2.1)

< (aszn(x), fr(x)es(x))— 0 f.ii. in D.
Also gilt

|fr(x)es(x)] N
-—-—-—-—-——-la3n(x)| 1. 4.5

Den zweiten Term rechts in (4.1) schreiben wir als:

1 [ Jasa ()P =|fr(x)es(x)?
7 L 9. (0] am

q

1J’ If.’,(x)e3(X)l3—IfL(x)es(’CO)Pdm (4.6)
Q,

+ N
q° | £ ()]

q

Der Integrand des ersten Integrals in (4.6) konvergiert wegen (4.5) gegen null. Da
er im Intervall [—K, 0] liegt, konvergiert auch das Integral gegen null. Fiir den
Betrag des zweiten Integranden in (4.6) benutzen wir die Abschatzung

|fr(x)es(x)]® —|fr(x)es(xo)
| £ (x)|

|f n(x)e3(x)] = | f n(x)e3(x0)|

laln(x)‘

<3K

< 3K—‘-a—3—'—l(—x-)—l- K2/3 l83(X) - eS(XO)l

Ialn(x)l
<3K°? |es(x) — es(xo)|- (4.7)

es(x) hat offenbar integrierbare Komponenten, weshalb wir aus (2.2) schliessen:

1 .
lim — j les(x) —es(xo)] dm =0 f.ii. (4.8)
104" Jo,
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Aus (4.7) und (4.8) folgt, dass das zweite Integral von (4.6) fiir ¢ — 0 verschwin-
det. Aus (4.1) erhalten wir fiir beliebige ¢ >0:

1 1 — 1 1
-—e\hm———‘[ lim dm=————f.i
H;j(xo) a—0q Hi,(x) lim Hp,(xo)

Nach dem Grenziibergang £ — 0 erhalten wir (4.3).

(2) Aussere Dilatation. Es soll gezeigt werden, dass der zweite Term rechts in
(4.2) fiir n - und q — 0 verschwindet. Er kann folgendermassen geschrieben
werden:

3

1 [ (laza(®)]|asa(®)]  galx, x)*?
q JQq ( laln(X)]2 lfn(x)lz )dm

32 _ 3/2
1J’ g (x, x)>% = ga(x, x0) im  (4.9)
Q

Tl % ()P

In (4.9) schiatzen wir zuerst das erste Integral ab: nach Voraussetzung gilt
a,(x) = <(e1n(x), e1(x))— 0 f.i. in D. Und wegen (2.1) folgt, dass

an(x)= <(ain(x), fr(x)ei(x)) >0 f.ii. in D

ist. Fir die Winkel B,(x) zwischen den Ebenen (a;,(x), as,(x)) und (f.(x)ex(x),
fr(x)es(x)) gilt Bu(x)<aL(x), woraus folgt, dass

lim |fn(x)ex(x) X falx)es(x)| _

=1 fi.in D ist.
n-—so |a2,,(x)| |a3n(x)|

Der Integrand des ersten Integrals in (4.9) geht also gegen null fiir n — % und
weil er beschrankt ist, auch das Integral. Den Betrag des zweiten Integranden
schiatzen wir folgendermassen ab:

3/2 1/2!

gn(x, x)*?— g/%(x, x0) < 3K |8 (x, X)'*— g, (x, x0)
Iyn(x)lz Ialn(x)lz

< 3K8/3 la3n(x)

} (x )‘2| ey(x)— el(xo)l

$3K8,3 ]el(x)-—e1(xo)| (4.10)
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Wegen (2.2) haben wir:
—0(q

lim —1—3J‘ lei(x) — e1(x0)] dm =0. (4.11)
Qq

Aus (4.10) und (4.11) folgt, dass das zweite Integral in (4.9) fiir ¢ — 0 verschwin-
det und aus (4.2) schliessen wir fiir ein beliebiges £ >0:

L < lim . J’ lim ! dm
—e< il
HO(xO) q—0 q3 Q, "7 Hon(x)
1
=——————— f.in D.
lim H,,(x)

Durch den Grenziibergang ¢ — 0 erhalten wir (4.4).

S. Teilfolgen mit speziellen Konvergenzeigenschaften

SATZ 5.1. Sei (f.) eine Folge von K-quasikonformen Abbildungen, welche im
Gebiet D = R* lokal gleichmdssig gegen die K-quasikonforme Abbildung f konver-

giert. E sei eine Menge von positivem endlichem Mass. Wir haben dann die
folgenden Implikationen:

lim Hyn(x)= Ho(x) fi. auf E=> lim | |Hon(x)— Ho(x)| dm =0 (5.1)
lim Hy,(x) = Hy(x) fii. auf E=> lim | |Hp(x)~Hy(x)| dm=0 (5.2)
lim H,(x)=H(x) fi. auf E=> lim j |H,(x)— H(x)| dm =0 (5.3)

Beweis. Nach (3.1) ist Ho(xo)— & < (1/°) fo, lim H,n(x) dm f.ii. in D, wobei Q,
wie in Lemma 3.1 definiert ist. Im Dichtepunkt x, von E sei

1 — _
lim — J lim H,,(x) dm =lim H,,(xo) = Ho(xo).
Q,

9—0q
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Also haben wir:

1
Hy(xo)< lim — lim J. H,,.(x) dm
q—-»()q n—»cc Q,

1 —
< lim —;Hmj H,.(x) dm
Q,

a—0q

1 [ —
< lim -—3I lim Hyn(x) dm = Ho(xo) f.il. (5.4)

q9—0¢q

q

In (5.4) besteht daher Gleichheit fiir fast alle x,. Wegen ISHE,,_,(,, H,.(x)=<K
und 1< H,,(x)<K gilt auch

1 —
lim ——3J’ lim H,,(x) dm < lim %Km(Qq\E)=O
Q, 9—04q

q—)Oq \E n—» o0

und analog lim,_¢(1/q”) fo,\g Hon(x) dm =0 gleichmissig in n. Die Integrale
iber Q, konnen daher durch Integrale iiber Q, N E ersetzt werden:

1
Ho(x0)=‘}in})F lim L H,,(x) dm f.. auf E.
- NE

n—»0o0 a

h.(x):= H,,(x)— Ho(x) erfiillt die Bedingungen von Lemma 2.2, woraus (5.1)
folgt. Die Beweise fiir (5.2) und (5.3) gehen gleich.

KOROLLAR. Ist auf einer messbaren Menge E < D lim H,,(x) = Ho(x), so
existiert eine Teilfolge, fiir welche lim;_, . H,,(x)= Ho(x) f.i. auf E erfillt ist.
Entsprechendes gilt fiir die innere und die lineare Dilatation.

Beweis. Hat E ein endliches Mass, so folgt die Existenz einer Teilfolge aus der
Konvergenz im Mittel. Hat E unendliches Mass, so betrachten wir die Mengen
E,.:=EN{x||x]<m}, m=1, 2, 3.... Mit Hilfe des Cantorschen Diagonalver-
fahrens erhalten wir eine gewiinschte Teilfolge.

Fir die weiteren Ergebnisse beschrinken wir uns auf Punkte, in welchen
sowohl e;(x), als auch e;(x) ausgezeichnet sind: sei

D:={xeD|Hyx)>H(x) und Hi(x)>H(x)}.
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LEMMA 5.1. Sei (f,) eine Folge von K-quasikonformen Abbildungen eines
Gebietes D = R>, welche lokal gleichmdissig gegen die quasikonforme Abbildung
f(x) konvergiert. Ferner sei lim H,,(x) = Ho(x) auf einer Menge Ec D wvon
positivem endlichem Mass. Dann ist

limJ’ |ayn (x)]” = |fn(x)e1(x)]

1% (x) dm =0 (5.5)

n—00

Beweis. x, sei ein Dichtepunkt von E. Aus (3.1) und dem Lemma von Fatou
erhalten wir fiir ein beliebiges € >0:

1 T j |a1n(x)|3“lf,'.(x)el(x0)|3 1 [ —
P ms<-—3 lim H,,(x) dm
q° n—=Jo | #Fa(x)| T Jo.ne
1 r
t3 K dm — Ho(xo) + & (5.6)
q Jo,\E

Die rechte Seite von (5.6) geht fiir g — 0 gegen ¢ f.i. In der linken Seite diirfen
wir e;(x) durch e;(x) ersetzen, denn es gelten die Ueberlegungen zu (4.6). Fur
ha(x) = (|fa(x)e ()] = a1/ Fa(x)| sind fir e—>0 in (5.6) alle Bedin-
gungen von Lemma 2.2 erfiillt, woraus (5.5) folgt.

LEMMA 5.2. Sei (f,) eine Folge von K-quasikonformen Abbildungen eines
Gebietes D < R>, welche lokal gleichmdssig gegen die quasikonforme Abbildung
f(x) konvergiert. Ferner sei lim H;,(x) = Hi(x) auf einer Menge E<D wvon
positivem endlichem Mass. Dann ist

lim ) dm =0 (5.7)

n-—o

J ( (%) galx, %)™
e \az. () |Fa(x))?

wo g.(x, x) =|fr(x)e1(x) X fr(x)ex(x)|* ist.

Beweis. x, sei ein Dichtepunkt von E. Aus (3.2) und dem Lemma von Fatou
erhalten wir fiir ein beliebiges € >0:

A

1 — Lq ( |Fa ()] galx, xo)”) .

— lim e
3 las. () |F.(x)]?

1 _
-3 J lim Hy,,(x) dm
q q Jo,nE

1
+-§J Kdm—HI(xo)+s (58)
Q\E

q Jo,
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Die rechte Seite von (5.8) geht fiir ¢ — 0 gegen ¢ f.ii. In der linken Seite konnen
wir fir ¢ — 0 g.(x, xo) durch g,(x, x) ersetzen, denn es gelten die Ueberlegungen
zu (4.9). Fir h,(x)=(g.(x, x)**/|Fa(x)]") — (| Fn(x)|/|a3n(x)|?) sind fiir € — 0 in
(5.8) alle Bedingungen von Lemma 2.2 erfiillt, woraus (5.7) folgt.

SATZ 5.2. Sei (f,) eine Folge von K-quasikonformen Abbildungen, welche im
Gebiet D = R? lokal gleichmdssig gegen die quasikonforme Abbildung f konver-
giere. Auf einer Menge E < D von positivem endlichem Mass seien die beiden
Bedingungen

H,,(x) > Ho(x) f.i. auf E (5.9)
und
Hp,(x) > Hi(x) f.i.auf E erfill. (5.10)

Dann existiert eine Teilfolge, welche eine S- Approximation von f auf E ist.

Beweis. Wegen (5.5) existiert eine Teilfolge (f,) mit der Eigenschaft

lain, (X)]> = |fr(x)ei(x)]
|, (x)]

—0 f.i. auf E; (5.11)

und aus (5.9) und (5.10) schliessen wir:
H,(x) = (Hon(x)Hpn(x))"® = (Ho(x)Hy(x))'>= H(x) f.i. auf E. (5.12)

Da Ec D ist, existiert auf E eine Funktion a(x)>1 und eine natiirliche Zahl
N(x), sodass

H,.(x)=a(x)H,(x) f.ii.auf E firalle n>N(x) ist. (5.13)
Aus (5.11) und (5.13) folgt

<(ayn(x), fa(x)ei(x))— 0 f.i. und nach (2.1):
<(eyn(x), e1(x))—> 0 f.i. auf E.

Ausgehend von dieser Teilfolge erhalten wir aus (5.7) eine Teilfolge, fiir welche
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zusatzlich gilt:

[P ()] gn (%, X)*?
'a3nk(x)|3 |‘¢nk(x)|2

—0 f.i.auf E. (5.14)

Wegen (5.12) existiert auf E eine Funktion B(x) und eine natiirliche Zahl M(x),
sodass

Hp,(x)=B(x)H,(x) f.i.auf E firalle n>M(x) ist. (5.15)
Aus (5.14) und (5.15) folgt:

< (aan, (x), fu (x)es(x))— 0 f.i. und nach (2.1)
<(ezpn, (x), e3(x))— 0 f.i. auf E.
KOROLLAR. Sei (f,) eine Folge von K-quasikonformen Abbildungen, welche

im Gebiet D = R® lokal gleichmdssig gegen die quasikonforme Abbildung f konver-
giere. Auf einer Menge E < D von positivem endlichem Mass gelte

lim H,.(x) = Ho(x) f.ii. auf E (5.16)
und
lim Hyn(x) = Hy(x) fii. auf E. (5.17)

Dann existiert eine Teilfolge, welche eine S-Approximation von f auf E ist.

Beweis. Nach dem Korollar zu Satz 5.1 existiert wegen (5.16) eine Teilfolge
(fa), fir welche lim; . H,, (x) = Ho(x) f.0i. auf E erfiillt ist. Fir diese Teilfolge
gilt (5.17). Eine nochmalige Anwendung von demselben Korollar zeigt, dass zu
dieser Teilfolge eine Teilfolge (f. ) existiert, fiir welche wir zusétzlich noch
limy ... Hy,, (x) = Hy(x) f.i. auf E haben. Wenden wir den Satz 5.2 auf diese neue
Teilfolge an, so folgt die Behauptung.
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