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Comment. Math. Helvetici 39 (51) 301-318 Birkhâuser Verlag, Basel

Konvergenzbetrachtungen bei quasikonformen Abbildungen im R3

mittels Sàtzen von K. Strebel

NlKLAUS BUHLMANN

1. Einleitung

Bei einer Folge (/„) von konformen Abbildungen der Ebene, welche in einem
Gebiet D lokal gleichmâssig gegen die konforme Abbildung / konvergiert,
konvergiert bekanntlich auch die Folge der Ableitungen (f&apos;n) lokal gleichmâssig

gegen /&apos;.

Da die K-quasikonformen Abbildungen f.u. differenzierbar sind, ist es sinn-
voll, das obige Problem auch fur Folgen von K-quasikonformen Abbildungen zu
untersuchen. Einfachste Beispiele zeigen allerdings, dass wir keine Konvergenz
f.u. der partiellen Ableitungen erwarten diirfen.

Das Motiv dieser Arbeit besteht deshalb darin, zu untersuchen, wieviel
Information ûber die Ableitungen der Folge auf die Grenzabbildung ûbertragen
wird. Dabei werden die partiellen Ableitungen durch Grôssen ersetzt, welche vom
Koordinatensystem unabhângig sind.

Wir beschrânken uns hier auf die àussere und die innere Dilatation; gelegent-
lich kommt noch die lineare Dilatation hinzu. Dièse Grôssen konvergieren i.A.
nicht. Hingegen kann eine Reihe von Ungleichungen fur den Limes superior und
den Limes inferior bewiesen werden. Dièse Ungleichungen gelten teilweise ohne
zusâtzliche Bedingungen, so die Aussagen ùber den Limes superior der Di-
latationen. Um hingegen Sâtze ùber den Limes inferior der Dilatationen zu
erhalten, muss man weitere Bedingungen an die Folge (/n) und den Limes /
stellen (S-Approximation).

In der Ebene wurden àhnliche Problème von K. Strebel untersucht [1] und [2].
Einige Ergebnisse meiner Arbeit sind Verallgemeinerungen von Sâtzen von
Strebel in den R3. Fur Ungleichungen ûber den Limes inferior und den Limes

superior der Funktionaldeterminanten môchte ich auf die Arbeiten von K.
Leschinger [3] und [4] verweisen.

Dièse Dissertation entstand unter der Betreuung meines Lehrers, Professor

Dr. Kurt Strebel, von dem ich auch in dièse Problemkreise eingefùhrt wurde. Fur
seine wertvollen Anregungen und Ermutigungen môchte ich ihm vielmals danken.

301



302 NIKLAUS BUHLMANN

2. Bezeichnungen und Hilfssàtze

Ein Homôomorphismus f(x) heisst K-quasikonform (1^K&lt;&lt;») in einem
Gebiet D &lt;= [R3, falls er absolut stetig auf Geraden, f.û. differenzierbar ist und falls

gilt:

j-; max |/&apos;(x)Ax|3^|J?(x)|^K min |/&apos;(x) Ax|3 f.ù. in D

(Caraman [5], pg. 83)

Dabei ist 3&gt;{x) die Funktionaldeterminante im Punkte x. Sei xoeD ein regulàrer
Punkt, d.h. ein Punkt, wo f&apos;(x0) existiert und |^(xo)|&gt;0 ist. f&apos;(x0) ist also eine
lineare Abbildung, welche die Einheitskugel B3(x0) mit Zentrum x0 auf ein

Ellipsoid E3(x0) mit den Halbachsenvektoren ai(x0), a2(x0), a3(x0) abbildet,
wobei wir voraussetzen, dass |ai(xo)|&gt;|a2(xo)|&gt;|a3(xo)|&gt;0 se*&apos; ^u^ ^e ausêearte&quot;

ten Fâlle von Kugeln und Rotationsellipsoiden werden wir spâter zu sprechen
kommen. ei(x0), e2(x0) und e3(x0) seien jene drei paarweise orthogonalen
Einheitsvektoren, fur welche gilt: /&apos;(xo)e,(xo) a,(x0) (î 1,2,3). Die ent-
sprechenden Grôssen der Funktion fn bezeichnen wir mit am(x0), em(x0),

fn(xo)em(xo). Die Koordinaten des !R3 seien &amp;, ^2 und ^3.

In regulâren Punkten lassen sich die folgenden Grôssen definieren:

die âussere Dilatation von /
im Punkte x0

die innere Dilatation von /
im Punkte x0

die lineare Dilatation von /
im Punkte x0.

Da / K-quasikonform ist, gilt f.û. in D:

K and 2/\

Ho(xo):-

Ht(xo):-

ki(xo)r
\ (L -y \\

\fjT \X0/|
|a3(x0)|3

|ai(xo)|

Fiir zwei Geraden gi(x0) und g2(^o)&gt; welche sich im Punkte x0 unter dem Winkel
&lt;(gi(*o), giixo)) schneiden, gilt f.û.:

Xo), f&apos;{Xo)g2(Xo))* &lt;(gl, g2)

^ K213 &lt; (f(xo)gi(xo), /&apos;(xo)g2(xo)). (2.D
(Caraman [5], pg. 255)

Eine Folge von beschrânkten messbaren Mengen En konvergiert regulâr gegen
einen Punkt x, falls gilt: (1) xeEn fur aile n. (2) m(En)/q3n^a &gt;0 fur aile n und
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ein a &gt; 0 (3) qn -* 0 fur n -» oo Dabei ist qn die Seitenlange des kleinsten
abgeschlossenen Wurfels mit Zentrum x, welcher En enthalt ([6], pg 183)

LEMMA 2 1 ([6], pg 189) Sei h eine reellwertige integnerbare Funktion im
R3 Dann gilt fur fast aile x0

hm —î—[ |h(x)-h(xo)| dm 0 (2 2)
*-* m(En) JEn

fur jede Folge von Mengen En, welche regular gegen den Punkt x0 konvergiert

LEMMA 2 2 (K Strebel [1]) Sei E eine Menge von endhchem Mass und
(hn) eine Folge von reellwertigen integnerbaren Funktwnen Die folgenden drei

Bedingungen sind hinreichend dafur, dass

hm \hn
%-*°° Je
hm \hn(x)\dm 0 ist (2 3)
n-*oo JE

(1) hST hn(*)«0 fu auf E
n —&gt;o

(2) Fur fast aile xoeE existiert zu jedem e&gt;0 ein behebig kleiner Wurfel Qn(x0)

mit Zentrum x0 und Seitenlange q, sodass gilt

hm I

n—*&gt;oo JQ
hn(x) dm&gt;-eq3

(3) Es gibt eine integnerbare Funktion h auf E, sodass \hn(x)\ &lt; h(x) fur aile n ist

3. Der Limes superior der Dilatationen

Nach K Strebel [2], S 469, kann der Limes mfenor der Dilatationen f u

kleiner als die Dilatation der Grenzabbildung sein Die Dilatationen konnen sogar
konvergieren und trotzdem kann îhr Limes grosser als die Dilatation der
Grenzabbildung sein, wie die folgende 3-dimensionale Variante emes Beispiels von K
Strebel [1] zeigt

BEISPIEL 3 1 Wir betrachten eine Folge (fn(x)) von K-quasikonformen
Abbildungen des Einheitswurfels O, welche gegen jene Streckung / konvergiert,
die O auf den Quader mit den Seiten 1,1,4 abbildet Dabei seien die fn stetige,
stuckweise affine Abbildungen, welche wie folgt defimert smd O wird durch n -1
parallèle Ebenen, welche senkrecht zur 3-Achse stehen, in n kongruente Teil-
quader unterteilt Durch fn werde jeder Teilquader affin auf ein Parallelepiped
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mit den rechtwinklig aufeinanderstehenden Seiten 1,1 und der Hôhe Ain abgebil-
det. Dabei soll fn auf den Parallelebenen ^3 c/n mit geradem Zâhler c mit /
ùbereinstimmen. Wenn fur aile n die Bilder der Teilquaderseiten, welche zur
3-Achse parallel sind, dem Betrag nach die gleiche Neigung gegenûber den
Parallelebenen haben, so gilt limn_&gt;ooHon(x)&gt;Ho(x) fû. auf Q.

Auch fur die Fàlle, in welchen nicht beide Eigenvektoren ei(x) und e3(x)

ausgezeichnet sind, wollen wir dièse nun festlegen:

1. FALL. H0(x) H(x) und HI(x)&gt;H(x). Hier ist nur e3(x) ausgezeichnet. Wir
wâhlen ei(x)le3(x) beliebig und wie ûberall im folgenden e2(x) e3(x)

2. FALL. H0(x)&gt;H(x) und Hj(x) H(x). Da nur et(x) ausgezeichnet ist,
wâhlen wir e3(x)lei(x) beliebig.

3. FALL. H0(x) Hj(x) H(x). Weder ex(x) noch e3(x) ist ausgezeichnet. Des-
halb legen wir zuerst ex(x) willkùrlich fest und wâhlen dann e3(x)±ei(x) beliebig.

LEMMA 3.1. Sei (/n(x)) eine Folge von K-quasikonformen Abbildungen,
welche im Gebiet De R3 lokal gleichmàssig gegen die quasikonforme Abbildung
f(x) konvergiert. xo€ D sei ein regulàrer Punkt fur aile fn sowie fur f. Dann existiert

zu jedem e &gt;0 ein ô(e, xo)&gt;0, sodass gilt:

3 Hon(x)dm (3.1)

fur aile q&lt;Ô(e,x0) und n&gt;nq. Dabei ist nq eine natùrliche Zahl, welche von q

abhângt und Qq(x0) ein abgeschlossener Wùrfel mit Zentrum x0 und Seitenlànge q,
dessen Achsen die Richtungen ei(x0), e2(x0) und e3(x0) haben.

Beweis. In einem regulâren Punkt x0 haben wir die Entwicklung f(x)
/(*o)+/&apos;(*o) Ax + o(|Ajc|), x Xo + Ax. Also existiert zu einem beliebigen e &gt;0 ein

S(e, xo)&gt;0, sodass |/(x)-(/(xo)-+-/&apos;(xo) Ax)|&lt;q • e ist fur aile q&lt;ô und aile

x€ Oq(x0). Halten wir q fest, so existiert ein nqe IN, sodass gilt:

|/n(x)-(/(xo) +f(x0) Ax)|&lt;q • e fur aile n &gt; nq und x € Oq(x0).
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Die Intégration entlang einer Geraden parallel zu ei(x0) ergibt fur n&gt;nq und

x xo + £1e1 + £2^2 + £3^3 die folgende Abschàtzung:

q(\al(x0)\-2e)&lt;\ \fn(x)e1(x0)\dèi fur fast aile fe und fe.
J-q/2

Nach Intégration ûber £2 und £3 erhalten wir aus der Hôlderungleichung:

Die beiden letzten Intégrale schâtzen wir folgendermassen ab:

j \J&gt;n(x)\dm&lt;q3f\(\a,(x0)\ + 2e) fur n&gt;nq

f |/;(x)e1(x0)|3
dm _

f
H m

Jq, 1-^.Wl
m Jq,

&quot;Jq,

Dies ergibt:

f
: I Hon(x) dm
jQa

Die linke Seite kônnen wir schreiben als q3(H0(x0)-(e)), wobei (e)-* 0 fûr e -* 0

ist. Durch Umdefinieren von 8 und e erhalten wir (3.1).

LEMMA 3.2. Unter den Voraussetzungen von Lemma 3.1 existiert zu jedem
e&gt;0 ein 8(e, jco)&gt;0, sodass die Ungleichung

dm

Af Hi-(x)dm (3.2)
^ Jq,
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erfûllt ist fur aile q&lt;8(s,x0) und n&gt;nq. Dabei ist gn(x, xo)

\fn(x)e1(x0) x f&apos;n(x)e2(xo)\2, wobei x das Vektorprodukt bedeutet.

Beweis. Wir gehen âhnlich vor wie bei Lemma 3.1, bilden jedoch keine
Gerade ab, sondern ein Quadrat E, welches parallel zu ei(x0) und e2(x0) ist und

durch 0 begrenzt wird. Sein Bild vermôge /„ sei E&apos;n. Da die fn absolut stetig auf

Geraden in Q sind, sind sie auch absolut stetig auf Geraden auf fast allen E. Nach
dem Satz von Tonelli (Saks [7], pg. 181) lassen sich daher die ùblichen Formeln
zur Flâchenberechnung verwenden. Fur n&gt;nq erhalten wir fur fast aile E:

;) || gn(x, xo)m

E

und daraus durch Intégration ûber £3

gn(x, xo)m dm.

Die Hôlderungleichung ergibt:

dm)&apos;

f

Fur die beiden letzten Intégrale haben wir die Abschâtzungen:

(f

f
jQq Qq

Die erste Abschâtzung bringen wir auf die linke Seite, fur welche wir dann
schreiben kônnen: q3(HI(x0) — (e)), wobei (e)-*0 geht fur e —» 0. Durch Um-
definieren von 8 und e erhalten wir die linke Seite von (3.2). Die rechte Seite

erhalten wir aus der Beziehung

\fn(x)eî(x0) x fn(x)e2(xo)\* \aln(x)\ \aln(x%

welche geometrisch klar ist.
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LEMMA 3 3 Unter den gleichen Voraussetzungen wie bel Lemma 3 1 gilt fur
die hnearen Dilatationen zu jedem e &gt;0 existiert ein S(e, xo)&gt;0, sodass die

Ungleichung

|flm(x)l2 \f&apos;À

(3 3)

-&quot;5 | Hn(x) dm erfullt ist fur aile q&lt;8(e,x0) und n&gt;nq

gn(x, x0) |/i

Beweis Wir gehen ahnhch vor wie bei Lemma 3 1, integneren aber uber ein
Quadrat JE, welches parallel zu 6i(x0) und e3(x0) ist und durch Q begrenzt wird
Fur n &gt; nq erhalten wir fur fast aile E

und daraus mittels der Schwarzschen Ungleichung

/ff 1/4/ J/n(x)ei(Xo)i V
l gn7 (x,x0)&apos;

1/4 dgi dfe)
\J J gn (X, XOj /

Fur das erste Intégral redits erhalten wir

i/2U, x0) d6 d6^2

Wir nehmen diesen Ausdruck auf die hnke Seite, integneren uber £&gt; und erhalten

durch Umdefimeren von e und 8 die hnke Seite von (3 3) Die rechte Seite von
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(3.3) gilt, weil \fn(x)ei(xo)\2/gn2(x, *o) hôchstens gleich dem Achsenverhàltnis der
Ellipse des Schnittes von f&apos;n{x)B3(x) mit der von den beiden Vektoren fn(x)ei(x0)
und fn(x)e3(x0) aufgespannten Ebene und daher durch Hn(x) nach oben
beschrânkt ist.

SATZ 3.1. Sei (fn) eine Folge von K-quasikonformen Abbildungen, welche in
einem Gebiet D^ (R3 lokal gleichmâssig gegen die quasikonforme Abbildung f
konvergiert. Dann gelten die folgenden Ungleichungen:

\hnHon(x)^H0(x) /.fi. in D (3.4)

îîmHin(x)^Hj(jc) f.u. in D (3.5)

ï\mHn(x)^H(x) f.û.in D (3.6)

Beweis. Nach dem Lemma von Fatou gilt:

Kq3-îî^| Hon(x)dm=lim| (K-Hon(x))dm
Jq, Joq

2*| ]un(K-Hon(x))dm Kq3-\ ÛmHon(x)dm

Durch Anwendung von Lemma 3.1 erhalten wir:

1 —f 1 f —
H0(x0)-e^ — lim Hon(x)dm^— UmHon(x)dm

q h, q hq

fur q &lt; 8(e, x0) und fur f .a. x0 g D.

Daraus folgt (3.3) fur q —» 0 und e —» 0 nach dem Satz von Lebesgue. Der Beweis
fur (3.5) und (3.6) verlâuft gleich.

Bemerkung. Beispiel 3.1 zeigt, dass wir fur die Achsenverhâltnisse |ain(x)|/
|a2n(x)| un(* |û2n(*)|/|03n(*)| keine Aussagen machen kônnen, welche (3.6)

entsprechen.

4. Der Limes inferior der Dilatationen

Aus dem Beispiel (3.1) wird deutlich, dass lim Hon(x)&gt;H0(x) f.u. sein kann.
Im folgenden wollen wir zusâtzliche Forderungen an die Konvergenz stellen,
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welche hinreichend dafùr sind, dass der Limes inferior der Dilatationen f.ù.
kleiner oder gleich der Dilatation der Grenzabbildung ist.

Fur die folgenden Lemmata seien ei(x0) und e3(x0) wie in §3 festgelegt.

LEMMA 4.1. Unter den Voraussetzungen von Lemma 3.1 gibt es zu jedem
e&gt;0 ein 8(e, xo)&gt;0, sodass die Ungleichung

Hj(x0) q JQq HIn(x) q3 JOq \A(x)\

erfùllt ist fur aile q &lt; ô(e, jc0) und n &gt; nq.

Beweis. Wie beim Beweis von Lemma 3.1 erhalten wir fur n&gt;nq:

fq/2
q(|a3(x0)|-26)^ \fn(x)e3(x0)\ dfo fur f.a. ^ und fo,

J-q/2

und durch Intégration ùber Çx und ^2-

\f&apos;n(x)e3(xo)\dm.

Darauf wenden wir die Hôlderungleichung an:

Fur das erste Intégral rechts haben wir die Abschâtzung JQq \#n(x)\
q3 II?=i (|a,| + 2e). Diesen Ausdruck bringen wir auf die linke Seite, spalten rechts

l/HJn(jc) ab und erhalten (4.1) durch Umdefinieren von 8 und e.

LEMMA 4.2. Unter den Voraussetzungen von Lemma 3.1 gibt es zu jedem
e&gt;0 ein Ô(e, xo)&gt;0, sodass die Ungleichung

Xq)3/2\
dm

(4.2)

1 1 f _1_ _J_f (\a2n(x)\\a3n(x)\ gn(x,
ÛÔ&quot;

&quot; * ^ k Hon(x)
dm

q3 )Qq \ \aln(x)\2 \A
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erfùllt ist fur aile q&lt;8(efx0) und n&gt;nq. Dabei ist gn(x,x0)
\fn(x)e2(xo)xffn(x)e3(xo)\2.

Beweis. Wie beim Beweis von Lemma 3.2 erhalten wir fur n&gt;nq:

fq/2 T
-a/2 J-a

gn(x, xo)m dÇ2 d6
¦q/2 J-q/2

fur fast aile Ebenen £1 konstant. Nach Intégration ûber £1 erhalten wir mittels
der Hôlderungleichung:

Nun ist aber (iQq\Jn(x)\

Diesen Ausdruck bringen wir auf die linke Seite, spalten rechts l/Hon(x) ab

und erhalten (4.2) durch Umdefinieren von 8 und e.

DEFINITION 4.1. Eine Folge (/„) von K-quasikonformen Abbildungen,
welche im Gebiet D c R3 lokal gleichmâssig gegen die quasikonforme Abbildung
/ konvergiert, heisst eine S-Approximation von / auf der messbaren Menge E,
falls

(1) Die Teilfolge der ausgezeichneten etn(x) f.û. auf E konvergiert (falls es so

eine Teilfolge gibt):
lim em(x) e[(x), wobei die linke Seite den Grenzwert der betreflfenden Teilfolge
bedeutet (i 1 und 3).

(2) e&apos;t(x) et(x) ist, falls et(x) ausgezeichnet ist.

(3) e[{x)Le3(x) ist, falls beide existieren.

SATZ 4.1. Falls die Folge (fn) eine S&apos;-Approximation von f auf D ist, so gilt

ljmHIn(x)^HI(x) f.û. auf D (4.3)

und

ljmHon(x)^H0(x) f.ù.aufD. (4.4)
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Beweis (1) Innere Dilatation Wir zeigen, dass îm Falle emer S-Approxima-
tion der zweite Term rechts in (4 1) fur n—?&lt;» und q—&gt;0 verschwmdet Wegen
&lt; (^3n(^), e3(x))—&gt; 0 f u m D (auch wenn die Vektoren e3n(x) und e3(x) nicht ausge-
zeichnet sind, lassen sie sich nach Définition 4 1 so festlegen) folgt aus (2 1)

fuinD
Also gilt

(45)

Den zweiten Term rechts in (4 1) schreiben wir als

1 f |a3n(x)i3-|/;(x)e3(x)|3
-dm

if \n

f Jq, dm (4 6)

Der Integrand des ersten Intégrais m (4 6) konvergiert wegen (4 5) gegen null Da
er îm Intervall [-K, 0] hegt, konvergiert auch das Intégral gegen null Fur den

Betrag des zweiten Integranden in (4 6) benutzen wir die Abschatzung

|/;(x)e3(x)|-|/;(x)e3(x0)|
\am(x)\

J

\ain

3K5/3|e3(x)-e3(x0)| (4 7)

e3(x) hat offenbar integrierbare Komponenten, weshalb wir aus (2 2) schhessen

lira ^5 f |c3(x) - «3(xo)| dm 0 f u (4 8)
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Aus (4.7) und (4.8) folgt, dass das zweite Intégral von (4.6) fur q —&gt; 0 verschwin-
det. Aus (4.1) erhalten wir fur beliebige e&gt;0:

1 If — 1 1

lim —â lim rr dm —.———;—- f.û.
i-*°q Joq HIn(x) hm HIn(xg)

Nach dem Grenzùbergang e —&gt; 0 erhalten wir (4.3).

(2) Àussere Dilatation. Es soll gezeigt werden, dass der zweite Term rechts in
(4.2) fur n -&gt; «&gt; und q —* 0 verschwindet. Er kann folgendermassen geschrieben
werden:

If /|fl2n(*)l lfl3nU)l gn(x, xf/2\
q3Joq \ kmWI2 |^nW|2 /

m

+M gn(x? x)7i(^Xofl2 dm (4-9)

In (4.9) schâtzen wir zuerst das erste Intégral ab: nach Voraussetzung gilt
an(x)= &lt;(eln(x), ei(x))-»0 f.ù. in D. Und wegen (2.1) folgt, dass

aiUH &lt;(aln(x),/;(x)e1(x))^0 f.û. in D

ist. Fur die Winkel P&apos;n(x) zwischen den Ebenen (a2n(x), a3n(x)) und (f&apos;n{x)e2(x),

f&apos;n(x)e3(x)) gilt p&apos;n(x)^a&apos;n(x), woraus folgt, dass

r \f&apos;n(x)e2(x)xffn(x)e3(x)\ #..hm i:î—;—rrrr—m—&quot; 1 fu-|U)| |()| m ^ lst-

Der Integrand des ersten Intégrais in (4.9) geht also gegen null fur n -» &lt;*&gt; und
weil er beschrânkt ist, auch das Intégral. Den Betrag des zweiten Integranden
schâtzen wir folgendermassen ab:

gn(jc,x)3/2-g3n/2(jc,x0) 4/3 -gn(x, Xq) 1/21

|altt(x)|2

(4.10)



Konvergenzbetrachtungen bei quasikonformen Abbildungen 313

Wegen (2.2) haben wir:

lim-^l \ei(x)-e1(xo)\dm 0. (4.11)
i^°q JQq

Aus (4.10) und (4.11) folgt, dass das zweite Intégral in (4.9) fur q -» 0 verschwin-
det und aus (4.2) schliessen wir fur ein beliebiges e&gt;0:

1 f — 1

]™T3 hnL7T7
q ° q JQq n **on\

1 -
e ^ hm — | hm „ x

dm

f.û. in D.
Mm Hon(x)

n—*&lt;x&gt;

Durch den Grenzûbergang e -» 0 erhalten wir (4.4).

5. Teilfolgen mit speziellen Konvergenzeigenschaften

SATZ 5.1. Sei (fn) eine Folge von K-quasikonformen Abbildungen, welche im
Gebiet D c R3 lokal gleichmàssig gegen die K-quasikonforme Abbildung f konver-
giert. E sei eine Menge von positivem endlichem Mass. Wir haben dann die

folgenden Implikationen:

limMiHon(x) H0(x) /.fi. au/ E =» lim f \Hon(x)-H0(x)\ dm 0 (5.1)
n-*00 JE

îimHIn(x) HI(x) f.û. auf E^ lim \ \HIn(x)-H,(x)\ dm 0 (5.2)
n-&gt;.&lt;x JE

ïïmHn(jc) H(x) f.û. auf E 4&gt; lim | \Hn(x)-H(x)\ dm 0 (5.3)
n-*oo JE

Beweis. Nach (3.1) ist H0(x0)-e^(l/q3) JQqlim Hon(x) dm f.û. in D, wobei Qq

wie in Lemma 3.1 definiert ist. Im Dichtepunkt x0 von E sei

1 r
im — lim Hon(x) dm lim Hon(x0) H0(x0).
-*°q&apos; Jo.
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Also haben wir:

Ho(xo)^ lim — lim Hon(x) dm

1 —f
=^ lim — lim Hon(x) dm

1 f —^lim — lim Hon(x) dm H0(x0) f.û. (5.4)

In (5.4) besteht daher Gleichheit fur fast aile x0. Wegen
und 1 ^ Hon(x) ^ K gilt auch

lim — îïm Hon(x) dm ^ lim — Km(Qq\E) 0
&lt;i-*0 q JQq\E n~*°° q-^o q

und analog limq—0(l/&lt;?3) Jq^ne Hon(jc) dm 0 gleichmâssig in n. Die Intégrale
ûber Qq kônnen daher durch Intégrale ûber QqHE ersetzt werden:

H0(x0)= lim — lim Hon(x) dm f.û. auf E.

hn(x):= Hon(x)-H0(x) erfûllt die Bedingungen von Lemma 2.2, woraus (5.1)

folgt. Die Beweise fur (5.2) und (5.3) gehen gleich.

KOROLLAR. ht auf einer messbaren Menge E&lt;=^D lim Hon(x) - H0(x), so

existiert eine Teilfolge, fur welche limI_&gt;ooHoni(jc) /f0(jc) f.û. auf E erfûllt ist.

Entsprechendes gilt fur die innere und die lineare Dilatation.

Beweis. Hat E ein endliches Mass, so folgt die Existenz einer Teilfolge aus der

Konvergenz im Mittel. Hat E unendliches Mass, so betrachten wir die Mengen
Em := E H{x\ \x\&lt; m}, m 1, 2, 3 Mit Hilfe des Cantorschen Diagonalver-
fahrens erhalten wir eine gewûnschte Teilfolge.

Fur die weiteren Ergebnisse beschrânken wir uns auf Punkte, in welchen
sowohl et(x), als auch e3(x) ausgezeichnet sind: sei

D: {xeD\H0(x)&gt;H(x) und Hj(x):
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LEMMA 5.1. Sei (/„) eine Folge von K-quasikonformen Abbildungen eines

Gebietes De IR3, welche lokal gleichmàssig gegen die quasikonforme Abbildung
f(x) konvergiert. Ferner sei lim Hon(x) H0(x) auf einer Menge E^D von
positivent endlichem Mass. Dann ist

lim
n-»oo JE

(55)

Beweis. x0 sei ein Dichtepunkt von E. Aus (3.1) und dem Lemma von Fatou
erhalten wir fur ein beliebiges e&gt;0:

1
&quot;F&quot; f lflln(x)|3H/n(

— lim u
\ hmHon(x)dm

q JOqnE

—f Kdm-H0(x0) + e (5.6)

Die rechte Seite von (5.6) geht fur q —» 0 gegen e f.ù. In der linken Seite dùrfen
wir Ci(x0) durch ei(x) ersetzen, denn es gelten die Ueberlegungen zu (4.6). Fur
hn(x) (\f&apos;n(x)el(\f-\aln(xiï)/\&lt;fin(x)\ sind fur e-&gt;0 in (5.6) aile Bedin-

gungen von Lemma 2.2 erfùllt, woraus (5.5) fôlgt.

LEMMA 5.2. Sei (fn) eine Folge von K-quasikonformen Abbildungen eines

Gebietes Dc= |R3, welche lokal gleichmàssig gegen die quasikonforme Abbildung
f(x) konvergiert. Ferner sei lim HIn(x) HI(x) auf einer Menge E&lt;^D von

positivem endlichem Mass. Dann ist

y f l A(X) gn(x,xf/2\ Jlim \&apos;\ 7Tf3~ \* &lt; M2 dm 0 (5.7)

wo gn(x, x) \f&apos;n(x)e1(x)xf&apos;n(x)e2(x)\2 ist.

Beweis. x0 sei ein Dichtepunkt von E. Aus (3.2) und dem Lemma von Fatou

erhalten wir fur ein beliebiges e&gt;0:

1 f \#n(x)\ gn(x, Xq)^ If
JQq V|a3n(x)r |^n(x)|2 / q3 JQ,nE

1 f \#n(x)\ gn(x, Xq)3/2^ If— lim I: —j5— 2 dm^—
q JQq V|a3n(x)r |^n(x)|2 / q3 JQ,

Kdm-Hi(xo) + e (5.8)—f
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Die rechte Seite von (5.8) geht fûr q —&gt; 0 gegen e f.û. In der linken Seite kônnen
wir fur q -&gt; 0 gn(x, x0) durch gn(x, x) ersetzen, denn es gelten die Ueberlegungen
zu (4.9). Fur hn(x) (gn(x, x)3/2l\^n(x)\2)-(\A(x)\/\a3n(x)\3) sind fur s -&gt; 0 in
(5.8) aile Bedingungen von Lemma 2.2 erfûllt, woraus (5.7) folgt.

SATZ 5.2. Sei (fn) eine Folge von K-quasikonformen Abbildungen, welche im
Gebiet DcR3 lokal gleichmàssig gegen die quasikonforme Abbildung f konver-
giere. Auf einer Menge Ecz D von positivent endlichem Mass seien die beiden

Bedingungen

Hon(x)^H0(x) f.û. auf E (5.9)

und

HIn(x)-*Hi(x) f.u.auf E erfûllt. (5.10)

Dann existiert eine Teilfolge, welche eine S-Approximation von f auf E ist.

Beweis. Wegen (5.5) existiert eine Teilfolge (fHi) mit der Eigenschaft

und aus (5.9) und (5.10) schliessen wir:

1/31/3 f.u.auf E. (5.12)

Da£cD ist, existiert auf E eine Funktion a{x)&gt;\ und eine natûrliche Zahl
N(x), sodass

Hon(x)^a(x)Hn(x) f.u.auf E fur aile n&gt;N(x) ist. (5.13)

Aus (5.11) und (5.13) folgt

&lt; (aijx), /i(*)«i(*)) -* 0 f.û. und nach (2.1):

&lt;(eml(x),e1(x))^0 f.u.auf E.

Ausgehend von dieser Teilfolge erhalten wir aus (5.7) eine Teilfolge, fur welche
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zusàtzlich gilt:

0 f.û. auf E. (5.14)

Wegen (5.12) existiert auf E eine Funktion ]8(x) und eine natùrliche Zahl M(x),
sodass

HIn(x)^(3(x)Hn(x) f.ù. auf E fur aile n&gt;M(x) ist. (5.15)

Aus (5.14) und (5.15) folgt:

&lt;(a3nk(x),&amp;(x)e3(x))-+0 f.û. und nach (2.1)

&lt;(c3nfcU),e3(x))-*0 f.û. auf E.

KOROLLAR. Sd (/n) eine Fo/ge uon K-quasikonformen Abbildungen, welche

im Gebiet D c R3 Joka/ gleichmàssig gegen die quasikonforme Abbildung f konver-
giere. Auf einer Menge £c D von positivem endlichem Mass gelte

îh^Hon(x) Ho(x) f.ù. auf E (5.16)

und

îïmHfn(x) HI(x) f.ù. auf E. (5.17)

Dann existiert eine Teilfolge, welche eine S-Approximation von f auf E ist.

Beweis. Nach dem Korollar zu Satz 5.1 existiert wegen (5.16) eine Teilfolge
(fnX fur welche liml_*ooHoni(x) H0(jc) f.û. auf E erfûllt ist. Fur dièse Teilfolge
gilt (5.17). Eine nochmalige Anwendung von demselben Korollar zeigt, dass zu
dieser Teilfolge eine Teilfolge (f^) existiert, fur welche wir zusàtzlich noch

linik^oo Hfn,k(jc) Hj(x) f.û. auf E haben. Wenden wir den Satz 5.2 auf dièse neue

Teilfolge an, so folgt die Behauptung.
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