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Comment. Math. Helvetici 39 (51) 289-299 Birkhâuser Verlag, Basel

On Meromorphic Solutions of First-Order Différentiel Equations

Steven B. Bank and Robert P. Kaufman

1. Introduction

In the first part of this paper, we consider first-order differential équations of
the form,

£ Rn(z,w)(w&apos;)n 0, (1)

where for each n, Rn(z, w) Xk2o akn(z)Pkn(w), the akn(z) are analytic functions
in a neighborhood of &lt;», having no essential singularity at °o, and the functions
Pkn(w) are ail defined and analytic on some common open set in the plane. Such

équations were treated by A. A. Gol&apos;dberg in [1], and he showed [1; Th 4] that

any solution, meromorphic in a neighborhood of », is of finite order of growth,
and he obtained estimâtes (which dépend on the équation) for the growth. The
main technique used by Gol&apos;dberg in proving this resuit is 0. Frostman&apos;s generali-
zation of the Ahlfors-Shimizu formula (see [3; p. 180] or [10; p. 42]). In the first

part of our paper (§§ 3, 4 below), we présent an alternate proof of Gol&apos;dberg&apos;s

resuit which seems to be more elementary and more transparent than Gol&apos;dberg&apos;s

proof. In our proof, we détermine disks around the sufficiently large a-points of
the solution (for most values of a) on which the solution is univalent. From this

we obtain estimâtes for the growth of the counting functions for the a-points, and

hence an estimate on the growth of the solution by I^evanlinna&apos;s Second Funda-
mental Theorem.

The second part of the paper deals with algebraic differential équations (i.e.

équations of the form F(z, y, y&apos;,..., y(n)) 0, where F is a polynomial in ail its

variables.) In [5], Pôlya proved that an entire transcendental function of order

zéro cannot be a solution of a first-order algebraic differential équation. This
resuit was generalized by Valiron [8], who showed that in the first-order case, the

order of an entire transcendental solution must be a positive rational number (and

it is now known (see Strelitz [7; p. 70]) that the order must be at least |.). In
addition, Valiron (see [9; pp. 223-225]) found a third-order algebraic differential
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290 STEVEN B BANK AND ROBERT P KAUFMAN

équation with a transcendental solution of order zéro. The remaining case of
second-order algebraic differential équations was settled by Zimogljad [11], who
showed that thèse équations cannot possess transcendental entire solutions of
order zéro. At the présent time, the situation concerning transcendental
meromorphic solutions of order zéro is less clear. In the third-order équation,
F(z, y» y\ y&quot;&gt; y&apos;&quot;)= 0&gt; constructed by Valiron in [9], it is easily seen that F is

homogeneous as a polynomial in y, y&apos;, y&quot; and y&apos;&quot;, and hence the logarithmic
derivative of Valiron&apos;s solution does provide an example of a transcendental

meromorphic solution of order zéro of a second-order algebraic differential
équation. However, to the authors&apos; knowledge, it was not known whether
transcendental meromorphic functions of order zéro can satisfy first-order
algebraic differential équations. (The resuit of Gol&apos;dberg [1, Th. 4] hints at the
possibility that such solutions may exist, but none had been constructed.) In the
second part of our paper (see § 5 below), we construct an example of a transcendental

meromorphic function /(z) of order zéro which satisfies a first-order
algebraic differential équation. The characteristic of our function /(z) satisfies

T(r, f)- O((log r)2) as r—&gt; + oo (which is the estimate suggested by Gol&apos;dberg&apos;s

resuit), and from the construction of /(z), it is easy to see that T(r, f) t* o((log r)2)

as r-* +oo. We conjecture that first-order algebraic differential équations cannot
possess transcendental meromorphic solutions whose characteristic is o((log r)2) as

r-&gt; +oo.

2. Notation

If / is a meromorphic function and À is a complex number or oo5 we will use

the standard notation for the Nevanlinna functions, T(r,f), N(r, A,/) and

m(r, A, /), (see [2; p. 6] or [4; pp. 6, 12]). We will also use the notation n(r, A, f) to
dénote the number of roots of /(z) A (counting multiplicity) in |z|&lt;r.

3. THEOREM. Given the équation,

f Kn(z,w)(w&apos;)n=0, (2)
n 0

where each Rn(z, w) is a polynomial in z whose coefficients are meromorphic
functions of w, say

A(n)
«n(2,VV)= £ Z&gt;P,n(w), (3)
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where Pjn(w) is a meromorphic fonction of w. Let J be the set of integers n,

0&lt;n^N, for which Rn(z, w) is not identically zéro, and we may assume that 0
and N belong to J, and if n belongs to J, then PA(n),n(w) is not identically zéro.
Assume also that N&gt;1 (see §4(b)), and set

L max{((A(/)-A(N))/(N-/)):/€j-{N}}. (4)

Let w /(z) be a meromorphic function on the plane which satisjies équation (2) at
every point of analyticity. Then, as r —» + o°,

(a) T(r,/) O(logr) if L&lt;-1,

(b) T(r,/) 0((logr)2) if L -1,

(c) T(r,f) O(r2L+2) if L&gt;~\.

Proof. Let E be the set of ail complex numbers w0 with the property that if
P;n(w) is not identically zéro, then Pjn(w) is analytic and nonzero at w0. We now

prove a séquence of four lemmas from which the theorem will immediately
follow.

LEMMA A. Let vv0 belong to E. Then there exist real numbers, b&gt;Q, rx&gt;l,

K2&gt;K1&gt;0 and ax&lt;a2&lt;&apos; • &lt;aq&lt;L, such that if l&lt;/&lt;s&lt;q, then

2K2|z|a&lt;&lt;K1|z|û* if \z\&gt;rl9 (5)

and in addition, if z is a complex number satisfying \z\ &gt; rx and \f(z) — wo\ ^ b, then

there is a unique élément j in the set {1,2,..., q} such that,

X1|z|^^|f(2)|^X2|2|a». (6)

Proof. If w0 belongs to E, then there exist real numbers b&gt;0 and d2&gt;di&gt;0

such that on |w-wo|^b, we hâve,

d2, (7)

for ail Pjn which are not identically zéro. It now easily follows from (3) that there
exists ro&gt;l, such that if n belongs to J, then for any z satisfying \z\&gt;r0 and

|)-wo|^fc, we hâve,

(zJ(z))\^c2\z\Mn\ (8)
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where Ci di/2 and c2 2d2. For convenience, dénote Rn(z,f(z)) by Bn(z). Now
if z satisfies \z\ &gt; r0 and \f(z) — wo| ^ b, let fc be the largest élément of J for which,

\Bk(z)(f(z))k\ max {|Bn(z)(/&apos;(z))n| :neJ}. (9)

Then there must exist an élément m in J—{k} such that,

|Bm(z)(f(z)rl^N-1 \Bk(z)(f(z))k\, (10)

or else équation (2) would clearly be violated at z. If m is the smallest élément of

J-{k} with property (10), we will say that the pair (fc, m) is the index for z.

Dénote by akm the number (A(k)-A(ra))/(m-fc). In addition, let K2 dénote the
maximum of ail numbers (Nc2/ci)1/0~n), and K\ the minimum of ail numbers
(ci/Nc2)1/0~n), where ; and n belong to / and j&gt;n. (Clearly Kx and K2 are

independent of z.) From (8), (9) and (10), it easily follows that if z satisfies |z|&gt; r0

and |/(z) —wo|^fc, and if (k, m) is the index for z, then

Let F be the set of distinct numbers of the form akm for which there exists a

complex number z satisfying \z\&gt; r0 and |/(z) — wo| ^ b having (k, m) for its index.
Let Fx be the subset of F consisting of those éléments of F which are larger than
L. Let r2 be so large that r2 &gt; r0 and

r2t~L&gt;K2/K1 for ail a in Fx. (12)

We now claim that if z satisfies |z|&gt;r2 and \f(z) — wo\^b, and if (fc, m) is the
index for z, then

(Xkm^L. (13)

If k N, then (13) is clear, so we may assume that k &lt; N. If (k, m) is the index
for z, then by (9), we hâve

|Bk(z)(f(z))k|&gt;|BN(z)(f(z))N|. (14)

In view of (8) and (4), it follows that \f(z)\^K2 \z\L. But since (k, m) is the index
for z, (11) holds, so that \z\akm~^-&lt;K2IKi, Hence by (12), we see that akm cannot

belong to Fx which proves (13). Now if a1&lt;a2&lt;- • -&lt;aq are the éléments of

F-Fi, and if rt is chosen so large that rt&gt;r2 and (5) holds for |z|&gt;ri, then the

proof of the lemma is complète.
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DEFINITION. Let w0 belong to E, and let b, ru Ku K2 and au aq be as

in Lemma A. If z is a complex number satisfying \z\&gt;r1 and \f(z)-wo\&lt;b, then
the unique a, for which (6) holds will be said to be associated with z.

LEMMA B. Let vv0 belong to E with b, ru Ku K2 and au aq as in Lemma
A. Assume that some ak is less than —1. Then there exists Ro&gt; rx such that if there

is at least one point z0 satisfying \zo\ &gt; Ro and f(z0) vv0, whose associated a, is less

than -1, then f(z) is a rational function.

Proof Let am be the largest ak less than -1 say am -l-r), where t)&gt;0.

Choose Ro so large that R0&gt;r1 and,

Rôr}^min{br1l4K29 b/8&lt;rrK2}. (15)

Now let zQ satisfy |zo|&gt;Ro, f(zo) wo, and hâve associated a,&lt;-l. Then

a} =-l-o-, where

(16)

If Zo |zo| el&lt;P&gt; w^ n&lt;&gt;w assert that,

|f(rel(p)|&lt;K2ra&apos; for ail rs&gt;|zo|. (17)

If (17) fails to hold, then clearly we can find € satisfying 0&lt; e&lt; K2, and a point
z2 \z2\ eI&lt;p, with |z2|&gt;|&lt;2:o|, such that,

|z2|a», (18)

while,

|f(reI&lt;p)|&lt;(K2+e)ra. for |zo|sr&lt;|z2|. (19)

Hence from (19),

\f(z2)-f(zo)\^(K2 + e) IzoP/ct, (20)

so in view of (15) and (16),

\f(z2)-w0\&lt;bl2. (21)
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By Lemma A, let as be associated with z2. Then by (6) and (18), we hâve,

Kt |z2|a« &lt; (K2 + €) |z2|û&lt; &lt; K2 \z2\\ (22)

From the second inequality, it follows easily that as ^ a, is impossible, so a] &lt; as.

But then the first inequality contradicts (5), thus proving (17). From (17) (together
with (15) and (16)), it follows that

\f{rel*)-w0\&lt;bl2 for ail r&gt;|zo|. (23)

We now assert that if r &gt; Ro, then

|f(z)|&lt;K2|z|û&lt; on |z| r. (24)

By (17), we know that (24) holds at zx relq&gt;. Hence if (24) failed to hold at
some point on |z| r, then we can find e, with 0&lt;e&lt;K2, and a point z2 re1*,

with &lt;p&lt;i/f&lt;&lt;p + 27r, such that,

|z2|ûs (25)

while for &lt;p
&lt; 6 &lt; ij/,

(26)

Hence, |/(z2)-/(z1)|&lt;47rK2rû/+1, which with (15), (16) and (23), yields |/(z2)-
wo| ^ fe. Thus if as is associated with z2 (by Lemma A), then using (25), we again
obtain (22), which as before is impossible. This proves (24), and it easily follows
that / is rational.

LEMMA C. Let w0 belong to E, and let b, ru Ku K2 and au aq be as in
Lemma A. Assume f is transcendental. Then there is a constant 8U with 0&lt; 8t &lt;§,

with the property that if z0 satisfies \zo\ &gt;2r1 and f(z0) w0, and if the a} associated
with z0 is at least -1, then f is univalent on the disk |z-zo|^£i |zorL.

Proof. Let À max {\au\ : k 1,..., q). Let S be a positive real number such

that,

8&lt;min{£(b/K2)2-A}, (27)

and set,

^v (28)
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Let z0 satisfy \zo\&gt;2ru /(zo) w0, and let a} be associated with z0 and satisfy
a;^— 1. Since / is transcendental, the set

H {z:|z|^3r1/2, |/(z)-wo| fc}, (29)

is not empty. Let zx be a point in H such that \z0 — Zi\ min{\z0-z\: zeH}.
We now assert that,

|z,-zo|2s5|zora&apos;. (30)

To prove (30), we assume the contrary, so that

Illpol. (31)

Let D be the disk \z — zo\ ^ |zi — zo|. In view of our assumption (31), it follows that
for ail z in D, we hâve \z\ &gt; (j)rx (by (27)) and |/(z) - wo| ^ b (or else the définition
of Zi would be violated). Hence by Lemma A, each z in D has some ak

associated with it. Using (5) and (6), it follows by an argument very similar to that
used to prove (17), that for every z in D, the ak associated with z is the original a}

associated with z0, so that (6) holds on D. Now from (27) and (31), we hâve,

|zo|/2&lt;|z|&lt;2|zo| on D, so it follows from (6) that \f(z)\&lt;K22la&gt;l\z0\\ Since Zl
belongs to H, we thus hâve b&lt;K22A |zo|a&gt; |zi-zo|, which in view of (31) and (27)
is impossible. This proves (30).

Let Dx be the disk \z-zo\^8\zo\~a&apos;. Then using (30) and (27), it follows that
for ail z in Dl9 we hâve |z|&gt;3ri/2 and |/(z)-wo|^b (or else the définition of zx

would be violated). As before, the ak associated with each z in Dr must be the

original a} associated with z0, so that,

Kt\z\ai*\r(z)\*K2\z\a&gt; on Dlt (32)

Since |zo|/2&lt;|z|&lt;2 |zo| on Du we thus hâve,

K12-N|Zo|^&lt;|f(z)|&lt;K22^|zo|a&apos;, on D,. (33)

Now let D2 be the disk, |z-zo|=s(S/2) |zop. If z belongs to D2, then by
Cauchy&apos;s formula for derivatives (using (33) and the circle of radius (8/2) |zo|~a&apos;

around z), we obtain,

|f(z)|&lt;K22|a&gt;l+1|^o|2aVô on D2. (34)



296 STEVEN B BANK AND ROBERT P KAUFMAN

Now let D3 be the disk |z-zo|^5i \zo\~\ where ôi is as in (28). Then D3 is

contained in D2, and by (34) and (33), it easily follows that on D3,

|f(z)-f(zo)|=s|f(zo)|/2. (35)

Writing f(z) f(zo) + (f(z)-f(zo))9 it now easily follows from (35) (and (33))
that if £ and a are distinct points in D3, then $if(z) dz (where the contour is the
line segment joining a to £) cannot be zéro, and hence / is univalent on D3. Since

a}&lt;L, D3 contains the disk |z-zo|^5i \zo\~L and hence the resuit is proved.

LEMMA D. Let L and 8t be real numbers with L &gt; -1 and 0 &lt; 8t &lt; 1. Let {zk}
be a séquence of complex numbers such that each disk |z-zk|^ôi \zk\~L contains

no other zm. Then as R-&gt; +&lt;», the number of points zk in the annulus 1 &lt; |z| &lt; ,R is

O(R2L+2) i/L&gt;-l, and is O(logR) i/L -l.

Proof. Let n be a nonnegative integer and let An={k:2n^|zk|^2n+1}. Let
82 2~lL]81. Then it is easy to see that,

81\zk\-L&gt;822-nL for k in An. (36)

For fc in An, let wk zk2~n, so l&lt;|wk|&lt;2. In view of the hypothesis and (36), it
follows that for k in An, the disk |vv - wk|&lt; rn, where rn 622~nL2 &quot;, contains no
other wm for m in An. Thus the disks \w — wk\^rj3, for fc in An. are ail disjoint
and ail lie in |w|^3. By an area argument, it follows that if a(n) is the cardinal
number of An, then,

cr(n)&lt;(81/Sl)4na+1). (37)

Now if R&gt;2 is given, let m be such that 2m&lt;.R&lt;2m+1. Then if v(R) is the
number of zk in l&lt;|z|&lt;R, clearly,

m

HR)* Z a(n). (38)
n=0

From (37) and (38), Lemma D immediately follows.

By Nevanlinna&apos;s Second Fundamental Theorem [4; p. 69], it follows that if wu
w2 and w3 are distinct complex numbers, then as r -* +oo5

T(r, f) ci t N(2r, w/? /)+log r), (39)
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and hence it is now clear that the theorem of § 3 follows immediately from
Lemmas A-D.

4. Remarks

(a) It is easy to see that the proof of the theorem of § 3 is valid when the
hypothèses are relaxed as follows. In équation (2), for each n,

Rn(z,w)= t akn(z)Pkn(w), (40)
Jc=O

where the akn(z) are analytic functions in a neighborhood of », having no
essential singularity at », the functions Pkn(w) are ail defined and analytic on
some common open set in the plane, and f(z) is a solution meromorphic in a

neighborhood of », say |z|&gt;K0- (In the définition of the characteristic T(r,f) of
such a function (see [10; p. 49]), only the a-points lying in R0&lt;|z|&lt;r are
considered in defining N(r, a, /), and the Second Fundamental Theorem still holds
for such functions (see [10; p. 50]).) Let J be as in the statement of the theorem,
and for n in J, rearrange terms in Rn(z, w) so that Rn(z, w) has the form,

B(n)
Rn(z, w) zA(n)gn(w)+ £ fckM(z)Pkn(w), (41)

k=0

where gn(w) is not identically zéro, and the highest power of z in the Laurent
expansion for each bkn(z) at » is less than A(n). Then with L as defined in (4),
the conclusions (a), (b), (c) of the theorem hold. (In this formulation, the theorem
is now fully équivalent to Gol&apos;dberg&apos;s resuit [1; Theorem 4].) The proof in this
formulation is easily seen to be identical to the proof we gave in § 3, with three
minor changes. First, the set E would consist of ail complex numbers vv0 with the

property that each gn(w) (for n in /) is analytic and nonzero at w0, and if Pjn(w) is

not identically zéro, then P,n(w) is analytic and nonzero at vv0. Secondly, the
conclusion of Lemma B would be T(r, f) O(log r) as r -» +°°, which follows
easily from (24) since then f{z) has a finite limit at ». Finally, in the hypothesis of
Lemma C, we would assume that T(r, f) ï O(log r) as r -* +», instead of assuming

/ is transcendental.
(b) If N 0 in the theorem of § 3, then / must be a rational function. This is

easily seen as follows. If A(0) 0, clearly / must be a constant, so we may assume

A(0)&gt;0. In this case, letting E be as in the proof, we see that if w0 belongs to E,
then there are positive constants b, dt and d2 such that on |w-wo|^&amp;, we hâve
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(7). It easily follows that if \z\ is sufficiently large, then \f(z) — wo\&gt;b and hence /
must be rational.

5. EXAMPLE. In this section, we construct an example of a transcen-
dental meromorphic function on the plane of order zéro, which satisfies a first-
order algebraic differential équation.

Let P(z) dénote the Weierstrass Pe-function having primitive periods 1 and
2m (see [6; p. 368]). If z is a nonzero complex number, and ax and a2 are two
values of logz, then clearly P(a1) P(a2). Thus, w(z) P(logz) is single-valued
on the punctured plane. Now if £ is a complex number, then clearly there is at
least one complex number z such that z + z&quot;1 £, and if z} + z,&quot;1 Ç for / 1,2,
then either Zi z2 or zi z21. In either case, w(zi)=w(z2) since P(z) is an

even function. Thus, the function u(£), defined by,

u(£) w(z) where z + z~x &amp; (42)

is single-valued on the plane.
We assert that u(£) is meromorphic on the plane. First, if £0 ^ ±2, then there is

an analytic function h(Ç) around f0 such that h(O + (h(O)~1:E££- Since h(£0)?*0,
there is an analytic branch L(z) of log z on a neighborhood of h(£0)&gt; so that
L(h(O) is analytic on a neighborhood of Ço. Thus u(Ç) P(L(h(£))) is meromorphic

on a neighborhood of £0- Now suppose £0 2. By the above argument, u(Ç)
is meromorphic on 0&lt;|£-£o|&lt;4. Let {fn} be a séquence converging to £0 such

that Cn^Co for n 1,2,..., and let zn be such that zn + z~nX £„. Then clearly
{£n}-»l and zn7*l for each n. Let L(z) be an analytic branch of logz on
|z-l|&lt;l such that L(l) 0. Then for ail sufficiently large n, 0&lt;|L(zn)|&lt;l, and
hence u(Çn) is finite. This shows that (0 2 is an isolated singularity of u(£), and
since P(0) », we see that £0 2 is a pôle of u(£). A similar argument shows that
£0 —2 is a removable singularity of «(£), and hence u{Ç) is meromorphic on the

plane.
From the differential équation for P(z) (see [6; 372]), it easily follows that

u(Ç) satisfies the first-order algebraic differential équation,

(£2-4)(w&apos;)2 4u3-g2u-g3, (43)

where g2 and g3 are certain constants. Let Zi è, z2 7ri, z3 (l + 27ri)/2, and

ej=P(z,) for / 1, 2, 3. It follows (see [6; pp. 366, 371]) that eu e2 and c3 are
distinct and that for each /, the set of points where P(z) ^ is

{zj + m + 2&lt;7rm : m, n 0, ±1, ±2,...}. (44)
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From this it easily follows that the set of points where u(£) e, is

{exp (zj + m) + exp (-(z, + m)) : m 0, ±1,...}. (45)

If j 1, 2, 3, then under the change of variable v (m - e,)~\ it follows (using [6;
p. 373. équation (5.9)]) that équation (43) is transformed into an équation of the
form,

(Ç2-4)(v&apos;)2 av3 + bv2 + cv + d, (46)

where a, b, c, d are constants and a 7*0. It easily follows that no pôle of v can
hâve multiplicity more than 2. Thus the multiplicity of each root of w(£) ei is at
most 2. It then follows from (45) that for / 1, 2, 3, we hâve n(r, ep u) O(log r)
as r —&gt; H-oo, and hence by Nevanlinna&apos;s Second Fundamental Theorem, we hâve

T(r, u) O((log r)2) as r-» -H». Thus u(£) is a transcendental meromorphic solution

of équation (43), whose order of growth is zéro. (From (45), it easily follows
that T(r, u) t* o((log r)2) as r -* +oo.)
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