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Explicit Quasiconformal Extensions for some Classes of Univalent
Functions

MARIA Fait, JAN G. KrzYZ AND JADWIGA ZYGMUNT

1. Introduction. Notations

Let S be the class of functions analytic and univalent in A={z:|z|<1} for
which f(0)=f'(0)—1=0.

We say that fe S,, 0=k <1, if fe S and f has a quasiconformal extension on
the whole plane € with complex dilatation ws=f;/f, that satisfies |us(z)|=k
almost everywhere in €. The symbols f,, f; denote formal derivatives of f.

Let S*(a),0=a <1, denote the subclass of S consisting of strongly starlike
functions of order a,cf. [1], [5], i.e. of functions f that satisfy:

zf'(z)
)

T

Sa‘é‘ , Z€A. (1)

As shown in [1], f(4) is a Jordan domain for any fe S*(a).

In this paper we find an explicit quasiconformal extension for an arbitrary
function fe $S*(a). We show that $*(a)< S\, where k <sin am/2.

We construct this extension by means of an auxiliary mapping which may be
called a reflection with respect to a starlike Jordan curve (Lemma 1). In what
follows we call a k-circle a Jordan curve that is a homeomorphic image of the unit
circumference under a quasiconformal mapping F of the extended plane ¢ onto
itself whose complex dilatation wr satisfies |ur(z)|=k <1 a.e.

We obtain explicit quasiconformal extensions for bounded convex functions
and for functions with bounded boundary rotation (Theorems 3,4). In particular
we show that any convex Jordan curve contained in an annulus {w:r=<|w|=<R} is
a k-circle with k =<v1—(r/R)%.

Similarly, any strongly starlike curve of order « is a k-circle with k <sin an/2.
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2. Quasiconformal Extension for the Class S™*(a)

In this section we shall prove

THEOREM 1. If fe S*(a), 0=a <1, then the mapping F defined by the
formula

f(2) for |z|=1
F(z)= L /1) 2
If(&) /f(—z:), for |z|=1,

where { satisfies the conditions: |{|=1, argf({) =argf(1/Z), belongs to the class S
and |ur(z)|=k =sin an/2 a.e.

We first prove

LEMMA 1. Suppose that G is a domain bounded by a Jordan curve I starlike
with respect to the origin. Suppose, moreover, that

w=R(p)e¥, 0=¢=2m, (3)

is the parametric equation of I', where R(¢) is absolutely continuous and positive,
R(0)=R(27) and

IR'(¢)I[[R*(¢)+ R"*(¢)] *=k <1 (4)
almost everywhere in [0,2m]. Then the mapping
¢(w)=R*(@)/w, @=argw, (5)

is an antiquasiconformal mapping of G onto €\ G whose complex dilatation ¢./ds
is bounded by k in absolute value.

Proof. Obviously ¢ is a sense-reversing homeomorphism in G. Moreover, if
w=re?, 0<r<R(¢p), then

®(w)=D(re'?) = R*(¢)e™/r
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and we have for almost all ¢ in [0, 27]:

— _(E“i — e—Ziwm = g 2i® R,((P)
He (bW (br - ¢cp/if R'((P) -+ lR((p)

so that |us(w)| =k almost everywhere in G by (4).

We now prove that ¢ has the ACL-property in G\{0}. The function
R?*(¢)e'/r is absolutely continuous in ¢ with fixed r>0 because by (4) R'(¢) is
essentially bounded and also absolutely continuous in r, re[8, R(¢p)], for fixed ¢,
8 >0. Thus the ACL-property holds in the log w-plane. Since the ACL-property
is invariant under composition with conformal mapping, ¢ has in fact the
ACL-property in G\{0}. This ends the proof.

The condition (4) has a simple geometrical interpretation. Suppose that R'(¢)
does exist. Then I' has a tangent intersecting the radius vector at an angle
Y =arctan R/R’ and consequently

R'(R*+R"» " =cos ¢

Hence (4) means that the angle ¢ is bounded away from 0 and 7 at points where
the tangent does exist.

The mapping ¢(w) will be called a reflection with respect to the starshaped
curve I. It is a sense-reversing homeomorphism for any starshaped Jordan curve
I'. Moreover, if the angle between the radius vector and the tangent of I' is
bounded away from O and 7 a.e., the reflection ¢(w) is an anti-quasiconformal

mapping.

Proof of Theorem 1. If fe S*(a) with O0=a <1 then f has a continuous
extension on 4, f(e®) is absolutely continuous and d/d6 f(e'®) =ie” f'(e”) a.e. in
[0, 27r], cf. [1]. Hence the definition of F in (2) makes sense. Let I" be the Jordan
curve w =f(e®)=R(¢p)e'®, 0=0=2m. After differentiation with respect to 6 of
the identity:

log f(e*) =log R(¢)+ie,

we obtain

e“f(e”) [l_iR'«p)]gtg
f(e®) R(¢) Jdo
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and hence by (1)

aTr
<

=5

Sy

or
IR(@)[R*(¢)+ R()] *=sin =" a.e.

This means that I satisfies the condition (4) with k =sin an/2 and therefore the
reflection with respect to I' is anti-quasiconformal with complex dilatation
bounded by sin am/2. Now, the mapping F(z) for |z|>1 is composed of the
following mappings :reflection in |z| =1, conformal mapping f and a reflection
with respect to I Complex dilatation of F has the form

= (}_)"'f’(l/z‘r) Pw
" \s) 57z ¢

Therefore F is a quasiconformal mapping in {z :|z|> 1} and |ug(2)| <sin an/2 a.e.
by Lemma 1. Obviously F as defined by (2), is a homeomorphism of the sphere €
onto itself which is conformal in A and quasiconformal in €\ A. Since 34, {}, {0}
are removable sets, cf. [4], F is quasiconformal in C.

COROLLARY 1. If I' is a Jordan curve starshaped with respect to w =0 and

intersecting the radius vectors at an angle bounded away from O and m by B7/2,
0<B=1, then I' is a k-circle with k < cos B/2.

3. Some Applications of Theorem 1

It is well-known that, if

f(z)=z+i a.z" in A (5)
n=2

and

Zznlan|sl (6)
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then f is a starlike univalent function. The condition (6) does not imply the
possibility of quasiconformal extension of f (e.g. f(z)=z+3z” satisfies (6) and
obviously has no quasiconformal extension on ).
Consider the class S(k) of functions f of the form (5) that satisfy the condition
Z nla,|=k<1. (6"
n=2

We prove

LEMMA 2. If fe S(k), then fe S*(a) with a =(2/w) arc sin k.

Proof. The condition (6') implies

zf'(z) ‘
—-1|l=k
f(z) ’
because
iy [Beve] Foove
f(z) 143 a2 | 1-3 |al

Hence f satisfies (1) with a = (2/#) arc sin k.
From Lemma 2 and Theorem 1 we immediately obtain

THEOREM 2. If fe S(k) then fe S..

Another quasiconformal extension of fe S(k) can be obtained in a different
way, similarly as in [2].

THEOREM 2'. Let f(z)=z+),-2 a,z" belong to S(k). Then the mapping
G(z) defined by the formula

r

|zt Z a,z" for |z]=1,
Giz)={ " (7)
z+ ), a,z " for |z|=1
. n=2

is a quasiconformal extension of f onto ¢ and |pc(2)|=k.
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The mapping G satisfies the following condition:
|z1— 22| (1= k) =|G(21) — G(2z2)| <|z1— 22| (1 + k) (8)

for z,, z,€ A and also for z;, z,€ C\A. It is well known that a function lipschitzian
in A has a continuous extension on A that satisfies (8) also in A. Hence G as
defined by (7) is a sense-preserving homeomorphism in €. Its complex dilatation
satisfies

oo

< ), nla|=<k

n=2

IMG(Z)‘ = le'/Gzl =

z na,z "'
n=2

in C\A. Since 34 is a removable set, G is a quasiconformal in C.

Let C(B) denote the subclass of S consisting of all convex functions for which
If(z)]= B, z € A. Next, let V,(B) denote the subclass of S consisting of all bounded
functions |f(z)|= B for which f(A) has boundary rotation at most Am, cf. [3].

Moreover, let d; denote the radius of the largest open disc centered at the
origin which is contained in f(A).

In [1] Brannan and Kirwan have found the following relations between C(B),
VA(B) and S*(a).

(i) If fe C(B), then fe S*(a) with a =1—(2/) arcsin dy/B.
(i) If feVyB) and (A—2)w<2arcsin(d/B), then feS*(a) with a=
A —1—(2/m) arcsin (ds/ B).

The above stated relations yield at once as immediate consequences of

Theorem 1 the following results.

THEOREM 3. If fe C(B), then f has a quasiconformal extension F on the
whole plane defined by the formula (2) and

|MF(Z)|; \/ 1- (%f)z-

COROLLARY 2. If I' is a convex*Jordan curve contained in the annulus
{w:r=<|w|=<R}, then I is a k-circle with k=<~1—(r/R)%.

THEOREM 4. If fe V\(B) and (A —2)w <2 arcsin (di/B), then the function F

defined by (2) is a quasiconformal extension of f and

|ur(z)| =sin [(A -1) g-— arc sin %’f]
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