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Explicit Quasiconformal Extensions for some Classes of Univalent
Functions

Maria Fait, Jan G. Krzyz and Jadwiga Zygmunt

1. Introduction. Notations

Let S be the class of functions analytic and univalent in z\ {z:|z|&lt;l} for
which/(0) f(0)-l 0.

We say that feSkj 0&lt; k &lt; 1, if/eS and / has a quasiconformal extension on
the whole plane C with complex dilatation /m/ /f/f2 that satisfies \jjbf(z)\&lt;k

almost everywhere in C. The symbols /2, f2 dénote formai derivatives of /.
Let S*(a),0&lt;a&lt;l, dénote the subclass of S consisting of strongly starlike

functions of order a, cf. [1], [5], i.e. of functions / that satisfy:

zf(z)
arg7û)~ zeà. (1)

As shown in [1], f(A) is a Jordan domain for any je S*(a).
In this paper we find an explicit quasiconformal extension for an arbitrary

function feS*(a). We show that S*(a)c:Sk, where k&lt;sina7r/2.
We construct this extension by means of an auxiliary mapping which may be

called a reflection with respect to a starlike Jordan curve (Lemma 1). In what
follows we call a k-circle a Jordan curve that is a homeomorphic image of the unit
circumference under a quasiconformal mapping F of the extended plane (f onto
itself whose complex dilatation fiF satisfies |ju,F(z)|^fc&lt;l a.e.

We obtain explicit quasiconformal extensions for bounded convex functions
and for functions with bounded boundary rotation (Theorems 3,4). In particular
we show that any convex Jordan curve contained in an annulus {w : r &lt; |w| &lt; R} is

a k-circle with k&lt;Vl-(r/R)2.
Similarly, any strongly starlike curve of order a is a k-circle with k &lt;sin air/2.
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2. Quasiconformal Extension for the Class S*(a)

In this section we shall prove

THEOREM 1. If feS*(a), 0&lt;a&lt;l, then the mapping F defined by the

formula

\f(z) for |z|&lt;l

where satisfies the conditions: |f|= 1, argf(^) argf(l/z), belongs to the class Sk

and \iiF(z)\&lt;k sin cctt/I a.e.

We first prove

LEMMA 1. Suppose that G is a domain bounded by a Jordan curve F starlike
with respect to the origin. Suppose, moreover, that

w R(&lt;p)el&lt;p, 0&lt;(p&lt;2tt, (3)

is the parametric équation of F, where R(&lt;p) is absolutely continuous and positive,

R(2tt) and

\R&apos;(cp)\[R2(&lt;p) + R&apos;2(&lt;p)]~1/2 &lt; k &lt; 1 (4)

almost everywhere in [0, 2tt]. Then the mapping

&lt;p argw, (5)

is an antiquasiconformal mapping of G onto C\G whose complex dilatation
is bounded by k in absolute value.

Proof. Obviously &lt;f&gt; is a sense-reversing homeomorphism in G. Moreover, if
w rel&lt;p, 0&lt;r&lt;R(&lt;p), then
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and we hâve for almost ail &lt;p in [0, 2tt]:

=: _2l&lt;p

so that |/LL4,(w)|&lt;k almost everywhere in G by (4).
We now prove that $ has the ACL-property in G\{0}. The function

R2((p)el&lt;f&gt;/r is absolutely continuous in &lt;p with fixed r&gt;0 because by (4) R&apos;(ç) is

essentially bounded and also absolutely continuous in r, re[ô, K((p)], for fixed &lt;p,

Ô&gt;0. Thus the ACL-property holds in the log w-plane. Since the ACL-property
is invariant under composition with conformai mapping, &lt;p has in fact the

ACL-property in G\{0}. This ends the proof.

The condition (4) has a simple geometrical interprétation. Suppose that R&apos;((p)

does exist. Then F has a tangent intersecting the radius vector at an angle

^ arc tan R/R&apos; and consequently

Hence (4) means that the angle ip is bounded away from 0 and rr at points where
the tangent does exist.

The mapping &lt;j)(w) will be called a reflection with respect to the starshaped
curve F. It is a sense-reversing homeomorphism for any starshaped Jordan curve
T. Moreover, if the angle between the radius vector and the tangent of F is

bounded away from 0 and tt a.e., the reflection &lt;f)(w) is an anti-quasiconformal
mapping.

Proof of Theorem 1. If /eS*(a) with 0&lt;a&lt;l then / has a continuous
extension on Â, f(el9) is absolutely continuous and d/dO f(el0) iel° f&apos;(el6) a.e. in
[0, 2tt], cf. [1]. Hence the définition of F in (2) makes sensé. Let F be the Jordan

curve w=/(eie) jR(cp)eup, 0&lt;0&lt;2ir. After differentiation with respect to 6 of
the identity:

log f(eie) log

we obtain

ewf&apos;(

f(e

e&apos;e) F iR&apos;(&lt;p)]dcp

&quot;&quot;) L R{&lt;p)\dd
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and hence by (1)

or

\R&apos;(&lt;p)\[R2(&lt;p) + R&apos;2(ç)Y m &lt; sin y a.e.

This means that F satisfies the condition (4) with k sin air/2 and therefore the
reflection with respect to F is anti-quasiconformal with complex dilatation
bounded by sinaTr/2. Now, the mapping F{z) for |z|&gt;l is composed of the

following mappings : reflection in |z| l, conformai mapping / and a reflection
with respect to F. Complex dilatation of F has the form

/(1/z) fa

Therefore F is a quasiconformal mapping in {z : |z| &gt; 1} and |/xF(z)| ^ sin ajr/2 a.e.

by Lemma 1. Obviously F as defined by (2), is a homeomorphism of the sphère Ê
onto itself which is conformai in A and quasiconformal in £\Â. Since dA, {&lt;*&gt;}, {0}
are removable sets, cf. [4], F is quasiconformal in ê.

COROLLARY 1. If F is a Jordan curve starshaped with respect to w 0 and

intersecting the radius vectors at an angle bounded away from 0 and rr by j3tt/2,
0&lt; j8 ^ 1, then F is a k-circle with k ^ cos 07r/2.

3. Some Applications oi Theorem 1

It is well-known that, if

00

/(*) *+! anzn in A (5)
n=2

and

£n|an|&lt;l (6)
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then / is a starlike univalent function. The condition (6) does not imply the

possibility of quasiconformal extension of / (e.g. f(z)~ z+jz2 satisfies (6) and

obviously has no quasiconformal extension on &lt;T).

Consider the class S(k) of functions / of the form (5) that satisfy the condition

£ n|an|&lt;k&lt;l.
n 2

We prove

LEMMA 2. If fe S(fc), then fe S*(&lt;*) wifh a (2/tt) arc sin fc.

Proof. The condition (6&apos;) implies

zf(z)

(6&apos;)

because

zf{z)

— 1 ¦k,

f(z)

I (n-
n=2

1+ I anz&quot; - Z \dn\

Hence / satisfies (1) with a (2/tt) arc sin k.

From Lemma 2 and Theorem 1 we immediately obtain

THEOREM 2. If feS(k) thenfeSk.

Another quasiconformal extension of feS(k) can be obtained in a différent

way, similarly as in [2].

THEOREM 2&apos;. Let /(z)
G(z) defined by the formula

for

fo S(fc). Then fhe mapping

(7)

is a quasiconformal extension of f onto € and
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The mapping G satisfies the following condition:

|||||z1-z2|(l + fc) (8)

for zu z2€ A and also for zi5 z2e C\Â It is well known that a function lipschitzian
in A has a continuous extension on A that satisfies (8) also in Â. Hence G as

defined by (7) is a sense-preserving homeomorphism in (t. Its complex dilatation
satisfies

|]*G(z)HG2-/G2| I nanz -n-l

in C\A Since dA is a removable set, G is a quasiconformal in &lt;£.

Let C(B) dénote the subclass of S consisting of ail convex functions for which
|/(z)| &lt; B, zeA. Next, let VA(B) dénote the subclass of S consisting of ail bounded
functions \f(z)\^B for which f(A) has boundary rotation at most àtt, cf. [3].

Moreover, let df dénote the radius of the largest open dise centered at the

origin which is contained in f{A).
In [1] Brafinanand Kirwan hâve found the following relations between C(B),

VA(B) and S*(a).
(i) If fe C(B), then f e S*(a) with a 1 -(2/tt) arc sin df/B.
(ii) If /eVA(B) and (à-2)tt&lt;2 arc sin (df/B), then feS*(a) with a

\-1-(2/it) arc sin {df/B).
The above stated relations yield at once as immédiate conséquences of

Theorem 1 the following results.

THEOREM 3. If fe C(B), then f has a quasiconformal extension F on the

whole plane defined by the formula (2) and

COROLLARY 2. If F is a convex* Jordan curve contained in the annulus

{wir^lwl^K}, then F is a k-circle with k&lt;Vl-(r/K)2.

THEOREM 4. Iffe Vk(B) and (A- 2) tt&lt; 2 arc sin (df/B), then the function F
defined by (2) is a quasiconformal extension of f and
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