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Sous-groupes distingués du groupe unitaire et du groupe général
linéaire d’un espace de Hilbert.

PIERRE DE LA HARPE

I. Résultats.

Soit H un espace de Hilbert complexe, séparable et de dimension infinie. Nous
notons L(H) I’anneau des opérateurs linéaires bornés sur H, et GL(H) le groupe
des unités dans L(H) ou groupe général linéaire de H. Le sous-groupe des
¢léments de GL(H) qui conservent le produit scalaire est le groupe unitaire de H
noté U(H). L’objet dece travail est I’étude des sous-groupes distingués de GL(H)
et U(H). Ce faisant, nous précisons certains résultats de Kadison [12, 13, 14]
concernant le facteur de type l.; notre contribution est en ce sens ’analogue de
celle de Kaplansky [15, appendice IV] concernant le groupe général linéaire des
facteurs de type II,; de plus, nos méthodes s’étendent au cas des groupes GL(Hg)
et O(Hg) définis comme ci-dessus lorsque Hg est un espace de Hilbert réel,
séparable et de dimension infinie. Avant d’énoncer nos résultats, nous intro-
duisons quelques sous-groupes remarquables de GL(H), U(H), GL(Hg) et
O(HgR).

Calkin ([5], voir aussi Schatten [23] chapitre I) a montré que tout idéal bilatere
non trivial de L(H) contient I'idéal Cy(H) des opérateurs de rang fini, et est
contenu dans I'idéal C(H) des opérateurs compacts. Par suite, il est naturel
d’introduire les sous-groupes suivants de GL(H), qui sont tous distingués.
L’opérateur identité sur H est désigné par 1, et tout scalaire (= nombre
complexe) est identifié au multiple correspondant de cet opérateur.

GE(H, C)={A e GL(H) | A est congru a un scalaire modulo C(H)}
GL(H, C)={A € GL(H)| A est congru 2 1 modulo C(H)}
GL(H, Cy)={A € GL(H)| A est congru a 1 modulo Co(H)}
SL(H, C,) = groupe dérivé de GL(H, C,), qui est aussi le

noyau de I’homomorphisme det: GL(H, Co) — C*

C* est le sous-groupe de GL(H) formé des scalaires
non nuls.
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De méme pour les sous-groupes distingués de U(H):
UE(H, C)=U(H)NGE(H, C)
U(H, C)=U(H)NGL(H, C)
U(H, Cy)=U(H)N GL(H, Cy)
SU(H, Cy)=U(H)NSL(H, Cy)
S'=UH)NC*

*

On définit de fagon semblable les sous-groupes distingués GE(Hg, C),..., R
de GL(Hg) et les sous-groupes distingués OE(Hg, C), ..., Z, de O(HRg).
Nos résultats principaux s’expriment alors comme suit.

THEOREME 1. Soit U un sous-groupe distingué non trivial de U(H). Alors
(i) ou bien U est central: U< S';
(ii) ou bien SU(H, Cy)= U< UE(H, C).

Preuve: voir propositions 1 et 3; analogue réel: voir propositions 1R et 3.

COROLLAIRE. Soit U un sous-groupe distingué non trivial de U(H) qui est
fermé dans la topologie uniforme (ou normique). Alors
(i) ou bien U est central, et donc isomorphe a S' ou a un groupe cyclique fini;
(ii) ou bien U est un sous-groupe de congruence de niveau C(H): U(H, C)c<
U< UE(H, C); et donc U/U(H, C) est isomorphe a UE(H, C)/U(H, C)=
S' ou a un groupe cyclique fini.

Preuve: voir proposition 4.

THEOREME 11. Soit G un sous-groupe distingué non trivial de GL(H). Alors
(i) ou bien G est central: G < C*;
(i) ou bien SL(H, Co)= G< GE(H, O).

Preuve: voir propositions 6 et 3; analogue réel: voir propositions 6R et 3.

COROLLAIRE. Soit G un sous-groupe distingué non trivial de GL(H) qui est
fermé dans la topologie uniforme. Alors

(i) ou bien G est central;

(ii) ou bien G est un sous-groupe de congruence de niveau C(H): GL(H, C)c

G< GE(H, O).

Preuve: voir la fin de la section V.
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Les deux corollaires ont été démontrés par Kadison selon une preuve tres
différente de la noétre. (Voir [12] théoreme 4, [13] théoréme 4 et [14] théoréme
1.) A notre connaissance, les deux théorémes sont nouveaux, de méme que leurs
analogues pour les sous-groupes distingués de O(Hg) et GL(Hg); dans le cas
réel, on doit évidemment remplacer S' par le groupe a deux éléments Z,, ainsi
que C* par R*.

Si 'on ne tient pas compte des sous-groupes centraux, les théorémes I et 11
affirment que les sous-groupes considérés sont pris en sandwich entre des
groupes minimaux et maximaux, les tranches supérieures se révelent €tre plus
longues a maitriser que les tranches inférieures. Les sections II et III sont
respectivement consacrées aux tranches supérieure et inférieure du théoréeme I et
de son analogue réel. La section IV expose des préliminaires algébriques a la
section V, qui consiste elle-méme en la preuve du théoreme II et de son analogue
réel. La section VI contient un corollaire et formule une question restée jusqu’ici
sans réponse.

Je remercie le fonds national suisse de la recherche scientifique, qui m’a
supporté pendant ce travail, ainsi que M. Karoubi, a qui je dois un allegement de
la section IV.

II. Les sous-groupes distingués maximaux de U(H) et O(Hg).

Le point de départ pour la preuve du théoreme I utilise un ingrédient crucial
di a Brown et Pearcy [4], et qui est reformulé dans notre premier lemme.
L’ensemble des entiers naturels est désigné par N.

LEMME 1. Soit U un sous-groupe distingué de U(H). Supposons qu’il existe
A e U avec A€ UE(H, C). Alors il existe

une base orthonormale € = (eL)nen U (eDnen U (M nen

un nombre réel 6,,; avec 0< 0 <1r

une suite de nombres réels(0,),.cn avec 0, < 6,, < m pour tout n€ N

tels que D € U, ou D est I’opérateur unitaire défini sur H par

Del = exp(—ib,)er,
De, = exp(+i6,)er b pour tout ne N.

I
De f," =g,
Preuve.

Echelon 1. Notons (|} le produit scalaire sur H. En vertu du lemme 3.3 de [4], il
existe une suite orthononormale (gl).cn dans H et un nombre réel r avec
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0<7<1 tels que, si ¢, = Ae, pour tout ne N, alors:

(i) (€1 | @a)=0 pour tous m, ne N avec m# n

(ii) (e | @n)| =<7 pour tout ne N

(iii) le complémentaire orthogonal de la famille (eD)nen U(@n)nen est de
dimension infinie.

Pour tout ne N, soit alors &) un vecteur de norme unité, orthogonal a &,
et dans le plan engendré par e, et ¢,; soient a, et B, des nombres com-
plexes tels que ¢, = anen+ Bnen, de sorte que |a,|=[(er] )| <7 et |a,|* +|B.]> = 1.
Soit (&n)sen une suite orthonormale dans H telle que & = (&L)nen U (e nen U
(en)nen soit une base de H. Les matrices de A et de son adjoint A* relative-
ment a £ sont donc respectivement

a p r a B 0
B s t et [p* s* u*

0O u w r* t* w¥

ou a [resp. B] est la (N x N)-matrice diagonale définie par les a, [resp. les B,].

Comme A est unitaire, AA*=1:
ad+pp*+r*=1 af+ps*+r*=0 pu*+rw*=0

(1) Ba+sp*+ur*=0 pR+ss*+t*=1 su*+tw*=0
up*+wr*=0 us*+wt* =0 uu*+ww*=1
. . . : +1
Echelon 2. Soit J V'opérateur unitaire de matrice _1 . Alors U
-1

contient 'opérateur B =JAJ*A*, dont la matrice se calcule aisément griace aux
formules (1):
2ei—1 2a8 O
—2B& 1-288 0
0 0 1

Pour tout n e N, le sous-espace H, de H engendré par e, et £ est invariant par
B. La matrice relativement a la base (e}, &) de la réduction de B a H, s’écrit

B, = (2|an|2—- 1 2a,8.

ol +]Bal* = 1.
2,8, 2|a,,|2—1) avec ||+ || =1

Ses valeurs propres sont données par A, = vy, +i, ou
Yo =2|a,|?—1 et —1sy,s<27-1<1

8 =2V |, |* — | an* 0<s,<1.

Comme y2+82=1, il existe un unique nombre réel 6, avec 0<0;, <60, < et
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A, =exp (£i6,) ol O, = Arc cos (272 —1) est indépendant de n. De plus, il existe
une (2X2)-matrice unitaire V, qui diagonalise B,:

exp (—i6,) 0 )

w=wmﬁ=(
0 exp (+i6,)

Soit enfin V l'opérateur unitaire sur H défini par Ve,= V,e), Vel =V,en et
Vell'=el" pour tout ne N. Alors D = VBV* a les propriétés désirées.

Nous rappelons ensuite un lemme-clé dans la preuve standard de la simplicité
de SU(2) modulo son centre. L’espace C> est muni du produit scalaire, de la
norme associée, et de la base orthonormale (e, e’) canoniques; le groupe SU(2)
agit canoniquement sur C>.

LEMME 2. Soit € un nombre réel avec 0 <e <2. Alors il existe un entier positif k
ayant la propriété suivante: Pour tout A € SU(2) avec |[Ae—e||=¢, il existe k
éléments Vy, ..., Vi dans SU(2) tels que (ViAV¥V, _LAVF - - V,AVH(e)=—e¢

Preuve: Voir dans Artin ([2], chapitre V, § 2) le cas presqu’identique de SO(3).
Les V, dépendent évidemment de A; I'importance du lemme 2 ici est que leur
nombre ne dépend que de e.

DEFINITION. Une involution de H est un opérateur unitaire J sur H avec
J*=1. Si J est une telle involution, soient Hj ={xeH|Jx=x} et H; =
{erle-——-*x}. Si p=dim Hj et q=dim Hj, nous disons que J est de type
(p,q);onap, qge NU{x} et p+q=dim H =,

Nous montrons dans les lemmes 3 et 4 que le groupe U du lemme 1 contient
toutes les involutions de H.

LEMME 3. Soit U comme dans le lemme 1. Alors U contient une involution de
type (%, ®).
Preuve.

exp(—i6,) 0

Echelon 1. Pour tout ne N, soit D, =( .
0 exp (+i6,)

) comme dans le
lemme 1; alors

|Dner— 5| =lexp (—=i6,) — 1| =|exp (—iine) — 1| = £ >0.
Il existe donc en vertu du lemme 2 un entier k (indépendant de n) et des
(2x2)-matrices unitaires V, 1,..., V., tels que

(vn,anVn,k* ct Vn,anVn,l*)(E»{t) = _851-
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Pour tout je{l,..., k}, soit V|;, 'opérateur unitaire sur H défini par

I_ I
V(,-)e,,— Vn,jgn
T
V(j)E{, = Vn,jf:?f,l pour tout ne N.
or__ I
Vihen =€n

Alors 'opérateur E = V., DV,)* - - V,DV,* est dans U, et sa matrice relative-
ment a la base £ est de la forme

-1 0 0
0 * 0].
0 0 1
Echelon 2. Soit F I'opérateur unitaire dont la matrice relativement a
0 0 1
gest |0 1 0}. Comme E est dans U, il en est de méme de J = FEF*E*, dont
1 00
-1 0 0
la matrice est | 0 1 0]. L’opérateur J est donc une involution de type
0 0 -1

(00, ) qui est dans U.

LEMME 4. Soit U comme dans le lemme 1. Alors U contient toutes les involutions
de H.

Preuve. 1l est évident que deux involutions de H sont conjuguées par un élément
de U(H) si et seulement si elles sont de méme type; il suffit donc de vérifier que
U contient une involution de chaque type (p, q). Si p=q ==, il n’y a plus rien a
démontrer. Si p est fini, soit A un décalage bilatéral d’ordre p, donné dans une
base orthonormale (&,).cz de H pat Ag, = &,.p; €t soit J; 'involution donnée par
Jig,=¢, si n<0 et Jig,=—¢, si n>0. Comme J; est de type (x, ®), c’est un
élément de U, et il en est de méme de J, = AJ;A*J;. On vérifie facilement que J,
est une involution de type (e, p). Enfin I'involution —J; est dans U puisque de
type (%, ®), et J3= —J2J, est une involution de type (p, ®) qui est dans U.

Nous sommes en mesure d’établir la partie non banale du théoréme I.

PROPOSITION 1. Soit U un sous-groupe distingué de U(H). Alors: ou bien
U= U(H), ou bien U< UE(H, C).

Preuve. Les lemmes 1 3 4 montrent que, si UZ UE(H, C), alors U contient
toutes les involutions de H. La proposition résulte du théoréme de Halmos et
Kakutani, selon lequel tout opérateur unitaire sur un espace de Hilbert complexe
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de dimension infinie est un produit de quatre involutions. (Voir par exemple
Halmos [7], probléme 112.)

Considérons maintenant ’espace de Hilbert Hg. L’énoncé et la preuve du
lemme 3.3 de Brown et Pearcy [4] s’étendent immédiatement au cas réel. Par
suite, si O est un sous-groupe distingué de O(Hg) qui n’est pas contenu dans
OE(Hg, C), alors on montre comme dans le lemme 1 que O contient un
opérateur Dg, dont la matrice relativement a une base ad hoc n’exhibe que des
(3 x 3)-blocs centrés sur la diagonale; ces blocs sont de deux types: une infinité de

cosfh, —sinh, O
blocs du type | sinf, cos8, O] avec 0<6;s<6, <= et une infinité de blocs
0 0 1
1 00
égauxa {0 1 O]. L’analogue du lemme 2 pour le groupe SO(3) est bien connu
0 0 1
(voir Artin [2] chapitre V § 2). On peut donc montrer comme aux lemmes 3 et 4
que O contient toutes les involutions de Hk.

La preuve du théoreme de Halmos et Kakutani, utilisé pour la proposition 1,
s’étend également sans peine au cas réel. Le seul point qui mérite quelque
commentaire est I’existence, pour tout opérateur A normal sur Hg, d’'une suite
infinie de sous-espaces fermés orthogonaux de Hg, tous de dimension infinie et
tous invariants par A. Ce dernier fait résulte du théoreme spectral (voir Halmos
[7] probléme 111), et se démontre de la méme maniére dans le cas réel que dans
le cas complexe. On trouvera une rédaction du théor¢me spectral pour les
opérateurs normaux sur Hg dans un article de Goodrich [6]. II suffirait d’ailleurs
dans notre cas d’utiliser deux résultats plus anciens; d’abord le théoreéme spectral
pour les opérateurs auto-adjoints sur Hg (voir Stone [25], fin du chapitre IX § 2);
ensuite la forme des opérateurs orthogonaux sur Hg mise en évidence par Martin
([19], théoréme IV): pour tout A€ O(Hg), il existe une involution J et un

opérateur anti-adjoint S sur Hg tels que A =J exp (S) avec JS=SJ. Nous avons
montré:

PROPOSITION 1R. Soit O un sous-groupe distingué de O(Hg). Alors: ou bien
O = O(HR), ou bien O < OE(Hg, C).

IIl. Les sous-groupes distingués minimaux; preuve du théoreme L.

Soient H et Hy comme dans la section 1.
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PROPOSITION 2. Les groupes SU(H, C,), SO(Hg, C,), SL(H, C,) et
SL(Hg, Co) sont simples.

Preuve. On montre d’abord que ces groupes sont localement presque simples. En
d’autres termes: tout sous-ensemble fini d’un de ces groupes est contenu dans un
sous-groupe, respectivement de la forme SU(n), SO(n), SL,(C) ou SL,(R); et
chacun de ces groupes classiques n’a comme sous-groupes distingués non triviaux
que des sous-groupes centraux finis. La proposition 2 résulte alors du fait que les
groupes de I’énoncé ont des centres triviaux (c’est le lemme de Schur; voir Lang
[17] appendice II). Les détails sont identiques a ceux qui concernent les algebres
de Lie correspondantes ([8], proposition 1A page 1. 2).

LEMME 5. Soient I un groupe et I'y un sous-groupe distingué de I'. Supposons
que

(i) Ty est simple;

(ii) {o €T | oy = yo pour tout yeT'y} est égal au centre de T.
Soit N un sous-groupe distingué non central de T'. Alors N contient T.

Preuve. Soit ve N avec v non central. Par (ii), il existe yel, tel que a=
vyv 'y '#1. Donc I',N N n’est pas réduit a {1}; comme c’est un sous-groupe
distingué de Ty, il résulte de (i) que ' N N =T,.

PROPOSITION 3.

(i) Soit U [resp. O] un sous-groupe distingué non central de U(H) [resp.
O(Hg)]. Alors U [resp. O] contient SU(H, Co) [resp. SO(Hg, Cy)].

(ii) Soit G un sous-groupe distingué non central de GL(H) [resp. GL(Hg)].
Alors G contient SL(H, C,) [resp. SL(Hg, Cy)].

Preuve. 11 suffit d’appliquer le lemme 5, dont la premiere condition est vérifiée vu
la proposition 2 et la deuxiéme vu le lemme de Schur.

Les propositions 1 et 3(i) établissent le théoréme I de la premicre section. Le
corollaire résulte alors du résultat suivant, qui est bien connu des spécialistes du
folklore, mais que nous redémontrons ici faute de référence convenable.

PROPOSITION 4.

(i) L’adhérence de SU(H, Co) dans U(H) pour la topologie normique est
U(H, O).

(it) L’adhérence de SO(Hg, Co) dans O(HRg) pour la topologie normique est la
composante connexe de O(Hg, C).
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Remarque: On sait que U(H, C) est connexe et que la composante connexe de
O(Hg, C) est d’indice 2 dans O(Hg, C); voir par exemple [9]. Nous formulons
quelques lemmes avant de démontrer la proposition 4 proprement dite.

LEMME 6. Soit K l'un des corps R, C. Soit f, Iespace des suites finies (A,)nen

d’éléments de K telles que Y A,=0; soit co I’ensemble des suites (An)nen
neN

d’éléments de K qui convergent vers zéro, ensemble que I’on muni de sa structure
usuelle d’espace de Banach sur K. Alors f, est dense cans co.

Preuve. Soit A =(An)nen € Co. Pour tout je N, soit ' =(w}).en la suite dans f,
définie comme suit: Si n<j:uh=A;sijsn<2j—1: uh=—1/j Y20 A, si n=2j:
pwh=0. Alors les u’ convergent vers A.

Dans I’énoncé du lemme 7, on écrit He au lieu de H, et K désigne toujours
I'un des corps R, C. L’espace vectoriel des opérateurs de rang fini et a trace nulle

sur Hg est noté sl(Hg, Co). L’espace des opérateurs compacts sur Hx est noté
gl(HK, C)‘

LEMME 7. L’espace sl(Hg, Co) est dense dans gl(Hk, C).

Preuve. Soit d’abord A un opérateur normal dans gl(Hc, C). Alors A est
diagonal dans une base ad hoc, et les coefficients diagonaux de la matrice
correspondante forment une suite dans c,; (voir Halmos [7] problemes 132 et
133). Le lemme 7 résulte donc du lemme 6, puisque tout opérateur dans gl(Hc, C)
est la somme de deux opérateurs normaux: A =31(A + A®+3(A - A*). Soit
ensuite A un opérateur normal dans gl(Hg, C). Alors A a une représentation
matricielle dans une base ad hoc qui ne contient que des coeflicients diagonaux et
des (2 x2)-blocs centrés sur la diagonale (Goodrich [6] remarque 3). Le lemme 6
permet a nouveau de conclure.

Soient alors shilb(Hkx, C,)={Aesl(Hk, Co)|A*=—A} et hilb(Hkx, C)=
{Aegl(Hg, C)| A*=—A}.

LEMME 8. L’espace shilb(Hk, C,) est dense dans hilb(Hgk, C).

Preuve. Soit A € hilb(Hg, C). Ilexiste par le lemme 7 une suite (A,)»~ de sl(Hk, Co)
qui converge vers A. Posons B, =1A,- A% pour tout ne N. Alors (B,)nen
est une suite de shilb(Hg, Co) qui converge aussi vers A.

Preuve de la Proposition 4. Nous faisons la démonstration dans le cas réel. Il suffit
de montrer que tout élément d’un voisinage de I'identité dans O(Hg, C) peut étre
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arbitrairement approché par des éléments de SO(Hg, Co). Soit donc A € O(Hg, C)
tel que la norme de A —1 soit petite. Alors il existe un opérateur anti-adjoint
compact S sur Hg tel que A =exp (S). (C’est un cas particulier facile—puisque
A —1 est compact—d’un résultat de Putnam et Wintner [21].) Par le lemme 8, il
existe une suite (S,)nen de so(Hg, Co) qui converge en norme vers S. Comme
I’exponentielle est continue pour les topologies normiques, les opérateurs A, =
exp (S.) convergent vers A, et ils sont évidemment tous dans SO(Hg, C,).

IV. Un résultat algébrique sur certains anneaux de matrices 2 x 2.

Dans toute cette section, nous désignons par { un anneau associatif avec unité
1. Nous supposons que # possede un idéal bilatere maximal 46 distinct de 4, tel
que tout idéal bilatere non trivial de o soit contenu dans €. De plus, nous
supposons systématiquement que « posseéde les deux propriétés suivantes:

(P1): 2 est inversible dans o,

(P2): tout élément de A est une somme finie d’éléments inversibles de A.
Les anneaux qui vérifient (P2) ont été étudiés par exemple par Henriksen (voir
[10] et sa bibliographie); ils ont été classés dans le cas fini par Stewart [24]. Les
anneaux d’opérateurs usuels sur H ou Hg satisfont certainement (P1) et (P2).

Le groupe dérivé du groupe GL,(f) des éléments inversibles de o sera
désigné par SL;(H), et le groupe des (2X2)-matrices inversibles sur s par
GL,(SA).

PROPOSITION 5. Soit G un sous-groupe distingué de GL,(d). Supposons qu’il
existe des éléments a, b, ¢, ji, j2, j3, ja dans A avec

a b J1 j2) (a b)‘1 .
= ¢ 6.
<c O)EG (j3 i) \c 0 h

X
Soient x, y, z, tesd avec t inversible et tx —tyt” 'z € SL(d). Alors (z f) est
X
inversible et <

y) eG.
z t
Nous décomposons la preuve de la proposition 5 en trois lemmes, ou G est

une fois pour toutes un sous-groupe distingué de GL,(). On aura remarqué que,
si § est un corps gauche, alors la condition tx— tyt 'ze SLy(4) s’écrit

det( f ) = 1; toutefois, dans ce cas, la proposition serait vide, puisqu’on aurait
z

forcément j, =0€ €.
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LEMME 9. Soient q, ..., j4 comme dans la proposition S. Alors il existe r, s dans o

avec r inversible, s& €6, tels que (Or i) €G.

Preuve. Soit n un multiple entier de 'unité de . L’opérateur

O O A T
" \0 1/\c¢ 0/\0 1 0 1 ja Ja/\O 1
_(a+nc b+aj1+an1)(j1 ]'2“"]'1—]'3)
¢ Cja j3  Ja—Njsz—J3jr

est évidemment dans G. Vu les hypothéses de la proposition 5:
aj1+bj3=1 aj2+bj4=0
Cj1 =0 Cj2 =1

et par suite:

1+ajijs N(n))

X"z( 0 1

avec
N(n)=(a+nc)(j2—njy— j1) +(b+ aj))(ja— njz— jaji) =
= aj, — naj, — aji+ ncj, +
+bja— nbjz— bj3j1 + aj1ja— najijs — ajijaj
= —j1+ aj1(ja— njz— jaj1)-
Mais N(0) et N(1) ne sont pas tous les deux dans %, sinon: (N(0)—N(1))b=

aj,(jzb) = aj; serait dans 6, et donc aussi j; = —N(1)+ aji(ja— jz—j3j1), ce qui est
contraire aux hypotheses.

r s

LEMME 10. Soient r, s dans # avec r inversible, s& €, et ( 0 1

) e G. Alors

1
(0 ;v)e G pour tout we .

-1 -1 __ 1
) r s r r s
Preuve. Comme 2 est inversible et comme ( 0 1) =( )1

B R O R
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Par suite, pour toute paire u, v d’éléments inversibles de «:
(u 0 )(1 s)(u‘l 0)_(1 usv)eG
0 v'//A\o /Ao o/ Vo 1 ‘

1
Il résulte alors de ce que « satisfait (P2) que ( 0 ‘;) € G pour tout élément w

dans I'idéal bilatere engendré par s dans $, donc pour tout w dans & par
maximalité de 6.

1
LEMME 11. Si (O ;v) € G pour tout we A, alors (j f) € G pour tous x, y, z, t

dans A avec t inversible et tx — tyt 'z € SL(H).

0 1\/1 w\/0 1 1 0
Preuve. Pour tout we 1 oo 1\ o Wl € G. Donc, pour tout g

inversible dans A:

o D o D=(g gee

et aussi:
0 1(0 —g“)_(g 0)
(——1 0) g 0 0 ¢1)€C
De sorte que, pour tout commutateur multiplicatif ghg™'h™' dans «:
(o @6 &) oo g) -
1 0/\0 gh/\0 g '/\=hn"' 0/\0 gh
0 -1 1 hg 'h™!
(1 “o)lggrnn o7 (*%0" J)ec
1 -0/\—ghg™'h™* 0 0o 1

k
Il en résulte que ( 0 (1)) € G pour tout k € SL,(«). Soient enfin x, y, z, te & avec t

inversible et tx —tyt 'z € SL,(sf); alors:

(t_l 0)(tx—tyt“1z 0)(1 (tx——tyt‘lz)‘lty)( 1 0)=
0 t 0 1/\0 1 t7'z 1
_(t_l 0)(tx-—tyt"‘z ty)< 1 0)__

0 ¢ 0 1/\t7'z 1

' 0\( & ty)_(x y>
0 t)(t“z 1)~z 1)@
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V. Les sous-groupes distingués de GL(H) et GI(Hg).

Soit G un sous-groupe distingué de GL(H). Supposons qu’il existe A € G avec
A€ GE(H, C). Brown et Pearcy ont montré ([4], corollaire 3.4) qu’il existe un
opérateur linéaire borné inversible T: H - H® H tel que

TAT '= (z g) € GL,(L(H))= GL(H® H)

et tel que le noyau de I’adjoint b* de b est de dimension infinie. Soit alors
] b\~! : :
(’,l ]2) = (: 0) . L’opérateur j, n’est pas compact. En effet, s’il I’était et vu
I3 Ja
que aj, + bjz =1, il existerait d € C(H) avec bj;=1—d*, et on aurait j;*b*=1—d,
ce qui est impossible puisque le noyau de j;*b* est de dimension infinie.
Considérons I'isomorphisme de groupes

i { GL(H)—>GL,(L(H))= GL(H®H)
1A TAT™' '

Comme C(H) est un idéal bilatere absolument maximal dans L(H) (voir Calkin
[S]), la proposition 5 implique que le sous-groupe distingué 7(G) de GL(H @ H)
contient toutes les matrices (;
des commutateurs de GL(H). Mais GL(H) est égal a son groupe des com-

mutateurs (voir par exemple Halmos [7] probléme 192). Donc 7(G) contient

z’) avec t inversible et tx —tyt” 'z dans le groupe

. X -1 . .
toutes les matrices ( f) avec t et tx—tyt” 'z inversibles.
z

PROPOSITION 6. Soit G un sous-groupe distingué de GL(H). Alors: ou bien
G = GL(H), ou bien G< GE(H, C).

Preuve. Supposons que GZ GE(H, C). Les notations étant comme ci-dessus, il
suffit de montrer que 7(G)= GL(H® H). Lorsqu’on le munit de la topologie
normique, GL(H® H) est un groupe topologique connexe (voir par exemple
Kuiper [16]); il suffit donc de montrer que 7(G) contient un voisinage de I'origine
dans GL(H® H).

Soit B I’ensemble des (2 X 2)-matrices (Z i)) a coefficients dans L(H) telles

que les normes des quatre opérateurs 1—x, y, z, 1 —t soient suffisamment petites
(par exemple: plus petites que 1/10). Alors 8B est un voisinage de l'origine dans

GL(H@® H). De plus, si (x f) €%, alors x et tx —tyt” ' z sont inversibles, puisque
z
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les normes de 1—x et de 1—(tx—tyt 'z) sont suffisament petites. Il résulte des
remarques qui précédent la proposition que B < 7(G), ce qui achéve la preuve.

Les ingrédients utilisés dans la preuve de la proposition 6 sont les suivants.

(1°) Le corollaire 3.4 de Brown et Pearcy [4], dont I’énoncé et la preuve
passent sans aucune difficulté au cas réel. (On pourrait aussi étendre, sans doute,
les preuves plus récentes de Anderson et Stampfli [1].)

(2°) La maximalité absolue de I'idéal bilatere C(H) dans L(H), qui s’étend
aussi au cas réel.

(3°) L’égalité de GL(H) et de son groupe dérivé, qui est encore vraie dans le
cas réel. (Voir Halmos [7] probleme 192, et les commentaires a la fin de notre
section Il concernant le théoreme spectral pour les opérateurs normaux sur Hg
[6].)

(4°) La connexité de GL(H) dans la topologie normique, qui n’offre pas
davantage de difficulté dans le cas réel.

Nous avons donc montré:

PROPOSITION 6R. Soit G un sous-groupe distingué de GL(Hg). Alors: ou bien
G = GL(HR), ou bien G< GE(Hg, C).

Le théoreme II résulte des propositions 3 et 6. On vérifie comme pour la
proposition 4 que l'adhérence de SL(H, C,) [resp. SL(Hg, C,)] dans GL(H)
[resp. GL(Hg)] muni de la topologie normique est GL(H, C) [resp. la com-
posante connexe de GL(Hg, C)]. Le corollaire du théoréme II énoncé dans
I'introduction est alors immédiat.

Remarques.

(i) La proposition 6 peut rappeler certains résultats exposés par Bass ([3],
chapitre V). Toutefois I’analogie n’est guere instructive au niveau des preuves,
puisque les ‘‘stable range conditions” de [3] ne sont pas vérifiées par I’anneau
L(H).

(i1) L’étude des sous-groupes distingués du groupe général linéaire d’un espace
vectoriel de dimension infinie (non muni d’aucune topologie) a été entreprise par
Rosenberg [22]. Mais ses preuves ne s’adaptent pas non plus aux cas qui nous
intéressent.

(i11) Dans la preuve de la proposition 6, il serait sans doute intéressant de
pouvoir remplacer I'introduction du voisinage 8 par un argument de nature plus
algébrique; nous ne savons pas offrir une telle alternative.

(iv) Les propositions 1, 1R, 6 et 6 R montrent que les sous-groupes distingués
non triviaux de U(H), O(Hg), GL(H) et GL(Hg) sont formés de perturbations
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compactes des scalaires, c’est-a-dire précisément d’opérateurs pour lesquels le
théoréme spectral est ““facile”’. Nous espérons revenir prochainement sur ce point,
et en indiquer une application.

VI. Un corollaire sur Palgebre de Calkin et une question.

Soit Cal(H)= L(H)/C(H) I’algebre de Calkin de H, qui est une algebre
stellaire. Soient Cal(H)™ le groupe de ses éléments inversibles et Cal(H)“ le
groupe de ses éléments unitaires.

Lorsqu’il est muni de la topologie normique, Cal(H)™ est un groupe topologi-
que dont la composante connexe Cal(H)g" est I'image de GL(H) par la projection
canonique de L(H) sur Cal(H). On sait que Cal(H)™/Cal(H)g" est isomorphe
au groupe Z, et que l'isomorphisme est donné par I'indice des opérateurs de
Fredholm (voir par exemple Palais [20], fin du chapitre VII). Ecrivons enfin

PCal(H)§" le quotient de Cal(H)g" par son centre C*. Schématiquement:

inv

C*
d

GL(H)/GL(H, C)=Cal(H)§" - Cal(H)™ > Z
¢

De méme pour les groupes unitaires:

Sl
!
U(H)/U(H, C)~Cal(H)s — Cal(H)" — Z

l
U(H)/UE(H, C)=PCal(H)}

PROPOSITION 7. Les groupes PCal(H)s et PCal(H)o" sont simples.

Preuve: immédiate a partir des propositions 1 et 6.

Il en résulte que les sous-groupes distingués de Cal(H)™ et Cal(H)" sont peu
nombreux (trés petits ou trés gros) et tous connus. L’anneau Cal(H) est simple; la
proposition 7 ajoute un exemple i la théorie générale des relations entre les
propriétés de simplicité d’'un anneau [resp. d’'un anneau avec involution] et les
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propriétes de simplicité du groupe de ses éléments inversibles [resp. unitaires]; voir
a ce sujet Herstein [11] et Lanski [18].
k ok ok ok Xk

Soient q un idéal bilatere non trivial de L(H) et p I’application canonique de
GL(H) dans le groupe des éléments inversibles de L(H)/q. Soit GE(H, q)=
p~'(C*), et soit GL(H, q)’ le groupe dérivé du noyau de p. Soit alors G un
sous-groupe distingué de GL(H); nous dirons que G est un groupe de congruence
de niveau q s’il existe un idéal bilatere q de L(H) tel que GL(H, q)’< G < GE(H, q).

Question: Les sous-groupes distingués de GL(H) sont-ils tous des groupes de
congruence?
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