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Comment. Math. Helvetici 51 (1976) 241-257 Birkhâuser Verlag, Basel

Sous-groupes distingués du groupe unitaire et du groupe général
linéaire d&apos;un espace de Hilbert.

Pierre de la Harpe

I. Résultats.

Soit H un espace de Hilbert complexe, séparable et de dimension infinie. Nous
notons L(H) l&apos;anneau des opérateurs linéaires bornés sur H, et GL(H) le groupe
des unités dans L(H) ou groupe général linéaire de H. Le sous-groupe des

éléments de GL(H) qui conservent le produit scalaire est le groupe unitaire de H
noté U(H). L&apos;objet de ce travail est l&apos;étude des sous-groupes distingués de GL{H)
et U(H). Ce faisant, nous précisons certains résultats de Kadison [12, 13, 14]
concernant le facteur de type L»; notre contribution est en ce sens l&apos;analogue de

celle de Kaplansky [15, appendice IV] concernant le groupe général linéaire des

facteurs de type 11^ de plus, nos méthodes s&apos;étendent au cas des groupes GL(HR)
et O(HR) définis comme ci-dessus lorsque HR est un espace de Hilbert réel,
séparable et de dimension infinie. Avant d&apos;énoncer nos résultats, nous
introduisons quelques sous-groupes remarquables de GL(H), U(H), GL(HR) et

O(HR).
Calkin ([5], voir aussi Schatten [23] chapitre I) a montré que tout idéal bilatère

non trivial de L(H) contient l&apos;idéal C0(H) des opérateurs de rang fini, et est

contenu dans l&apos;idéal C(H) des opérateurs compacts. Par suite, il est naturel
d&apos;introduire les sous-groupes suivants de GL(H), qui sont tous distingués.
L&apos;opérateur identité sur H est désigné par 1, et tout scalaire nombre

complexe) est identifié au multiple correspondant de cet opérateur.

GE(H, C) {AeGL(H) \ A est congru à un scalaire modulo C(H)}

GL(H, C) {A e GL(H) \ A est congru à 1 modulo C(H)}

GL(H, C0) {A e GL(H) \ A est congru à 1 modulo C0(H)}

SL(H, Co) groupe dérivé de GL(H, Co), qui est aussi le

noyau de l&apos;homomorphisme det: GL(H, Co) —&gt; C*

C* est le sous-groupe de GL(H) formé des scalaires

non nuls.
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De même pour les sous-groupes distingués de U(H):

UE(H, C) =U(H)n GE(K C)

U(H, C) U(H) H GL(H, C)

U(H, Co) U(H)H GL(H, Co)

SU(H, C0)=U(H)nSL(H, Co)

sl u(H)nc*.
On définit de façon semblable les sous-groupes distingués GE(HR, C),..., K*
de GL{HR) et les sous-groupes distingués OE(HR, C),..., Z2 de O(HR).

Nos résultats principaux s&apos;expriment alors comme suit.

THEOREME I. Soit U un sous-groupe distingué non trivial de U(H). Alors
(i) ou bien U est central: 1/cS1;
(il) ou bien SU(H, Co)&lt;= l/&lt;= UE(Hy C).

Preuve: voir propositions 1 et 3; analogue réel: voir propositions 1R et 3.

COROLLAIRE. Soit U un sous-groupe distingué non trivial de U(H) qui est

fermé dans la topologie uniforme (ou normique). Alors
(i) ou bien U est central, et donc isomorphe à S1 ou à un groupe cyclique fini;
(ii) ou bien U est un sous-groupe de congruence de niveau C(H): U(H, C)c

L/c UE(H, C); et donc U/U(H, C) est isomorphe à UE(H, C)/U(H, C)
S1 ou à un groupe cyclique fini.

Preuve: voir proposition 4.

THEOREME IL Soit G un sous-groupe distingué non trivial de GL(H). Alors
(i) ou bien G est central: GczC*;
(ii) ou bien SL(H, C0)cGcG£(H, C).

Preuve: voir propositions 6 et 3; analogue réel: voir propositions 6R et 3.

COROLLAIRE. Soit G un sous-groupe distingué non trivial de GL(H) qui est

fermé dans la topologie uniforme. Alors
(i) ou bien G est central;

(H) ou bien G est un sous-groupe de congruence de niveau C(H): GL(H, C)&lt;=

C).

Preuve: voir la fin de la section V.
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Les deux corollaires ont été démontrés par Kadison selon une preuve très
différente de la nôtre. (Voir [12] théorème 4, [13] théorème 4 et [14] théorème
1.) A notre connaissance, les deux théorèmes sont nouveaux, de même que leurs
analogues pour les sous-groupes distingués de O(HR) et GL(HR); dans le cas

réel, on doit évidemment remplacer S1 par le groupe à deux éléments Z2, ainsi

que C* par R*.
Si Ton ne tient pas compte des sous-groupes centraux, les théorèmes I et II

affirment que les sous-groupes considérés sont pris en sandwich entre des

groupes minimaux et maximaux, les tranches supérieures se révèlent être plus
longues à maîtriser que les tranches inférieures. Les sections II et III sont
respectivement consacrées aux tranches supérieure et inférieure du théorème I et
de son analogue réel. La section IV expose des préliminaires algébriques à la

section V, qui consiste elle-même en la preuve du théorème II et de son analogue
réel. La section VI contient un corollaire et formule une question restée jusqu&apos;ici

sans réponse.
Je remercie le fonds national suisse de la recherche scientifique, qui m&apos;a

supporté pendant ce travail, ainsi que M. Karoubi, à qui je dois un allégement de

la section IV.

IL Les sous-groupes distingués maximaux de U(H) et O(HR).

Le point de départ pour la preuve du théorème I utilise un ingrédient crucial
dû à Brown et Pearcy [4], et qui est reformulé dans notre premier lemme.
L&apos;ensemble des entiers naturels est désigné par N.

LEMME 1. Soit U un sous-groupe distingué de U(H). Supposons qu&apos;il existe

AeU avec AfÈ UE(H, C). Alors il existe

une base orthonormale e (e£)neNU(£n)neNU(e^nes
un nombre réel 0inf avec 0&lt; 0m/^ n
une suite de nombres réels(On)n(£N avec Bmf^On^ tt pour tout neN
tels que D e U, où D est Vopérateur unitaire défini sur H par

&gt; pour tout n e N.Deln= exp(+idn)e&quot;

Preuve.

Echelon 1. Notons &lt;|&gt; le produit scalaire sur H. En vertu du lemme 3.3 de [4], il
existe une suite orthononormale (eJ,)neN dans H et un nombre réel r avec
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0^r&lt; 1 tels que, si &lt;pn Aen pour tout neN, alors:

(i) (eln | &lt;pn)~0 pour tous m, neN avec m^n
(ii) Kel | &lt;pn)|^ t pour tout neN
(iii) le complémentaire orthogonal de la famille (gn)neN U(&lt;pn)neN est de

dimension infinie.
Pour tout neN, soit alors eït un vecteur de norme unité, orthogonal à eln,

et dans le plan engendré par £„ et &lt;pn; soient an et /3n des nombres
complexes tels que &lt;pn «„£„ +fri^n1, de sorte que \an\ \{eln\&lt;pn)\^ t et |an|2 + |i3n|2 1.

Soit (en^neN une suite orthonormale dans H telle que e (ei)n€NU(e&quot;)n6NU

(en^neN soit une base de H. Les matrices de A et de son adjoint A* relativement

à s sont donc respectivement

ta p 0

et / p* s* m*

\0 m w/ \r* r* w*/
où a [resp. j8] est la (NxN)-matrice diagonale définie par les an [resp. les j8M],

Comme A est unitaire, AA*= 1:

:+pp* + rr* l ajg -r-ps* + rr* 0 pu* + rw* 0
(1)

Echelon 2. Soit J l&apos;opérateur unitaire de matrice / \. Alors U

\ -iy
contient l&apos;opérateur B JAJ*A*, dont la matrice se calcule aisément grâce aux
formules (1):

(2aâ-l
-2j8â l-2]8j8 0

0 0

Pour tout neN, le sous-espace Hn de H engendré par eln et e&quot; est invariant par
B. La matrice relativement à la base (el, e&quot;) de la réduction de B à Hn s&apos;écrit

KP-i

Ses valeurs propres sont données par kt yn±i8n où

7n 2|an|2-l et -1

Sn 2V|an|2-|an|4

Comme y2 + Ô2 l, il existe un unique nombre réel 6n avec 0&lt;8mm
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À* exp (±i6n) ou dmin Arc cos (2t2-1) est indépendant de n De plus, il existe

une (2 x 2)-matnce unitaire Vn qui diagonahse Bn

Soit enfin V l&apos;opérateur unitaire sur H défini par Vejj= Vne&apos;m Ven Vnen et
Veî/^e&quot;1 pour tout neN Alors D= VBV* a les propriétés désirées

Nous rappelons ensuite un lemme-clé dans la preuve standard de la simplicité
de SU(2) modulo son centre L&apos;espace C2 est muni du produit scalaire, de la

norme associée, et de la base orthonormale (e, e&apos;) canoniques, le groupe SU(2)
agit canoniquement sur C2

LEMME 2 Soit e un nombre réel avec 0&lt; e ^2 Alors il existe un entier positif k

ayant la propriété suivante Pour tout AeSU(2) avec \\Ae — e\\^e, il existe k
éléments Vu Vk dans SU(2) tels que (VkAVf Vk iAVt-i • • VxAVf)(e) -e

Preuve Voir dans Artin ([2], chapitre V, § 2) le cas presqu&apos;identique de SO(3)
Les Vj dépendent évidemment de A, l&apos;importance du lemme 2 ici est que leur
nombre ne dépend que de e

DÉFINITION Une involution de H est un operateur unitaire J sur H avec
J2=\ Si J est une telle involution, soient H^ {xe H \ Jx x} et HJ
{xeH\Jx -x} Si p dim H^ et q dim HJ, nous disons que J est de type
(p, q), on a p, qeNU{oo} et p+q dim H &amp;&gt;

Nous montrons dans les lemmes 3 et 4 que le groupe U du lemme 1 contient
toutes les involutions de H

LEMME 3 Soit U comme dans le lemme 1 Alors U contient une involution de

type (°°, °°)

Preuve

Echelon 1 Pour tout ne N, soit Dn lP l n

^ J comme dans le
\ 0 exp(+i0n)/

lemme 1; alors

II existe donc en vertu du lemme 2 un entier k (indépendant de n) et des

(2 x 2)-matnces unitaires Vnl, Vnk tels que

(VnkDnVnk* ••• VnlDnVnr)(ei) -ei
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Pour tout /€{1,..., k}, soit V0) l&apos;opérateur unitaire sur H défini par

pour tout neN.

Alors l&apos;opérateur £ V(k)DV(k)* • • V(1)DV(1)* est dans U, et sa matrice relativement

à la base e est de la forme

0 0 \)
Echelon 2. Soit F l&apos;opérateur unitaire dont la matrice relativement à

/0 0 1\

e est j 0 1 01. Comme E est dans l/, il en est de même de / FEF*E*, dont
\l 0 0/

/-l 0 0\
la matrice est 0 1 0 J. L&apos;opérateur / est donc une involution de type

\ 0 0 -l/
(oo, oo) qui est dans U.

LEMME 4. Soit U comme dans le lemme 1. Alors U contient toutes les involutions
de H.

Preuve. Il est évident que deux involutions de H sont conjuguées par un élément
de U(H) si et seulement si elles sont de même type; il suffit donc de vérifier que
U contient une involution de chaque type (p, q). Si p q &lt;», il n&apos;y a plus rien à

démontrer. Si p est fini, soit A un décalage bilatéral d&apos;ordre p, donné dans une
base orthonormale (en)neZ de H par àen en+P; et soit Jx Finvolution donnée par
Jien en si n^0 et Jien — en si n&gt;0. Comme J\ est de type (oo, °°), c&apos;est un
élément de [/, et il en est de même de J2 àJi&amp;*Ji. On vérifie facilement que J2

est une involution de type (&lt;*&gt;, p). Enfin l&apos;involution —Jx est dans U puisque de

type (oo, oo), et /3 ~J\J2 est une involution de type (p, oo) qui est dans U.

Nous sommes en mesure d&apos;établir la partie non banale du théorème I.

PROPOSITION 1. Soit U un sous-groupe distingué de U(H). Alors: ou bien

l/= U(H), ou bien l/c UE(H, C).

Preuve. Les lemmes 1 à 4 montrent que, si U&lt;£ UE(H, C), alors U contient
toutes les involutions de H. La proposition résulte du théorème de Halmos et

Kakutani, selon lequel tout opérateur unitaire sur un espace de Hilbert complexe
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de dimension infinie est un produit de quatre involutions (Voir par exemple
Halmos [7], problème 112)

Considérons maintenant l&apos;espace de Hilbert HR L&apos;énonce et la preuve du
lemme 1 3 de Brown et Pearcy [4] s&apos;étendent immédiatement au cas réel Par

suite, si O est un sous-groupe distingué de O(HR) qui n&apos;est pas contenu dans

OE(HR, C), alors on montre comme dans le lemme 1 que O contient un

operateur DR, dont la matrice relativement à une base ad hoc n&apos;exhibe que des

(3 x 3)-blocs centrés sur la diagonale, ces blocs sont de deux types une infinité de

(cos

6n -sm 6n 0\
sin 6n cos 6n 0 1 avec 0 &lt; 6mf ^ 6n ^ tt et une infinité de blocs

0 0 1/
o o\
1 0 I L&apos;analogue du lemme 2 pour le groupe SO(3) est bien connu
0 1/

(voir Artin [2] chapitre V § 2) On peut donc montrer comme aux lemmes 3 et 4

que O contient toutes les involutions de HR

La preuve du théorème de Halmos et Kakutani, utilise pour la proposition 1,

s&apos;étend également sans peine au cas réel Le seul point qui mente quelque
commentaire est l&apos;existence, pour tout opérateur A normal sur HR, d&apos;une suite
infinie de sous-espaces fermés orthogonaux de HR, tous de dimension infinie et
tous invariants par A Ce dernier fait résulte du théorème spectral (voir Halmos
[7] problème 111), et se démontre de la même manière dans le cas réel que dans

le cas complexe On trouvera une rédaction du théorème spectral pour les

opérateurs normaux sur HR dans un article de Goodrich [6] II suffirait d&apos;ailleurs

dans notre cas d&apos;utiliser deux résultats plus anciens, d&apos;abord le théorème spectral

pour les opérateurs auto-adjoints sur HR (voir Stone [25], fin du chapitre IX § 2),
ensuite la forme des opérateurs orthogonaux sur HR mise en évidence par Martin
([19], théorème IV) pour tout AeO(HR), il existe une mvolution J et un

opérateur anti-adjoint S sur HR tels que A Jexp(S) avec JS SJ Nous avons

montré.

PROPOSITION 1R Soir O un sous-groupe distingué de O(HR) Alors ou bien

O=O(HR), ou bien OaOE(HRy C)

III. Les sous-groupes distingués minimaux; preuve du théorème I.

Soient H et HR comme dans la section I
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PROPOSITION 2. Les groupes SU(H9 Co), SO(HR, Co), SL(H, Co) et

SL(HR, Co) sont simples.

Preuve. On montre d&apos;abord que ces groupes sont localement presque simples. En
d&apos;autres termes: tout sous-ensemble fini d&apos;un de ces groupes est contenu dans un

sous-groupe, respectivement de la forme SU(n), SO(n), SLn(C) ou SLn(R); et
chacun de ces groupes classiques n&apos;a comme sous-groupes distingués non triviaux
que des sous-groupes centraux finis. La proposition 2 résulte alors du fait que les

groupes de l&apos;énoncé ont des centres triviaux (c&apos;est le lemme de Schur; voir Lang
[17] appendice II). Les détails sont identiques à ceux qui concernent les algèbres
de Lie correspondantes ([8], proposition 1A page I. 2).

LEMME 5. Soient F un groupe et Fo un sous-groupe distingué de F. Supposons

que
(i) r0 est simple;
(ii) {creF | ay ya pour tout yeFo} est égal au centre de F.

Soit N un sous-groupe distingué non central de F. Alors N contient Fo.

Preuve. Soit veN avec v non central. Par (ii), il existe y€F0 tel que a-
vyv~ly~l ¥=¦ 1. Donc FonN n&apos;est pas réduit à {1}; comme c&apos;est un sous-groupe
distingué de Fo, il résulte de (i) que roniV Fo.

PROPOSITION 3.

(i) Soit U [resp. O] un sous-groupe distingué non central de U(H) [resp.

O(HR)]. Alors U [resp. O] contient SU(H, Co) [resp. SO(HR, Co)].

(ii) Soit G un sous-groupe distingué non central de GL(H) [resp. GL(HR)].
Alors G contient SL(H, Co) [resp. SL(HR, Co)].

Preuve. Il suffit d&apos;appliquer le lemme 5, dont la première condition est vérifiée vu
la proposition 2 et la deuxième vu le lemme de Schur.

Les propositions 1 et 3(i) établissent le théorème I de la première section. Le
corollaire résulte alors du résultat suivant, qui est bien connu des spécialistes du

folklore, mais que nous redémontrons ici faute de référence convenable.

PROPOSITION 4.

(i) Uadhérence de SU(H, Co) dans U(H) pour la topologie normique est

l/(H, C).
(ii) L&apos;adhérence de SO(HR, Co) dans O(HR) pour la topologie normique est la

composante connexe de O(HR, C).
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Remarque: On sait que U(H, C) est connexe et que la composante connexe de

O(HRj C) est d&apos;indice 2 dans O(HR, C); voir par exemple [9]. Nous formulons
quelques lemmes avant de démontrer la proposition 4 proprement dite.

LEMME 6. Soit K l&apos;un des corps R, C. Soit f0 Vespace des suites finies (An)n€N
d&apos;éléments de K telles que X An=0; soit c0 Vensemble des suites (An)neiV

neN
d&apos;éléments de K qui convergent vers zéro, ensemble que Von muni de sa structure
usuelle d&apos;espace de Banach sur K. Alors f0 est dense cans c0.

Preuve. Soit A =(Artjn€NGc0. Pour tout jeN, soit (x1 (jLLJn)neN la suite dans f0

définie comme suit: Si n&lt;j:jx}n An; si /^n^2/-l: /x;n -l//Xii^o An; si n^2j:
jx&apos;n 0. Alors les fx] convergent vers A.

Dans l&apos;énoncé du lemme 7, on écrit Hc au lieu de H, et K désigne toujours
l&apos;un des corps R, C. L&apos;espace vectoriel des opérateurs de rang fini et à trace nulle
sur HK est noté sl(HK, Co). L&apos;espace des opérateurs compacts sur HK est noté

gl(HK, C).

LEMME 7. L&apos;espace sl(HK, Co) est dense dans gl{HK, C).

Preuve. Soit d&apos;abord A un opérateur normal dans gl(Hc, C). Alors A est

diagonal dans une base ad hoc, et les coefficients diagonaux de la matrice

correspondante forment une suite dans c0; (voir Halmos [7] problèmes 132 et
133). Le lemme 7 résulte donc du lemme 6, puisque tout opérateur dans gl(Hc, C)
est la somme de deux opérateurs normaux: A j(A+A*) + l(A-A*). Soit

ensuite A un opérateur normal dans gl(HR, C). Alors A a une représentation
matricielle dans une base ad hoc qui ne contient que des coefficients diagonaux et
des (2x2)-blocs centrés sur la diagonale (Goodrich [6] remarque 3). Le lemme 6

permet à nouveau de conclure.

Soient alors shilb(HK, Co) {A e sl(HK, C0)|A* -A} et hilb(HK, C)

{Aegl(HK, C)|A* -A}.

LEMME 8. L&apos;espace shilb(HK, Co) est dense dans hilb(HK, C).

Preuve. Soit A € hilb(HK, C). Il existe par le lemme 7 une suite (An)n€N de sl(HK, Co)

qui converge vers A. Posons Bn=|(An-AÏ) pour tout neN. Alors (Bn)neN
est une suite de shilb(HK, Co) qui converge aussi vers A.

Preuve de la Proposition 4. Nous faisons la démonstration dans le cas réel. Il suffit
de montrer que tout élément d&apos;un voisinage de l&apos;identité dans O(HR, C) peut être
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arbitrairement approché par des éléments de SO(HR, Co). Soit donc A e O(HR, C)
tel que la norme de A-l soit petite. Alors il existe un opérateur anti-adjoint
compact S sur HR tel que A=exp(S). (C&apos;est un cas particulier facile—puisque
A-l est compact—d&apos;un résultat de Putnam et Wintner [21].) Par le lemme 8, il
existe une suite (Sn)neN de so(HR, Co) qui converge en norme vers S. Comme
l&apos;exponentielle est continue pour les topologies normiques, les opérateurs An
exp (Sn) convergent vers A, et ils sont évidemment tous dans SO(HR, Co).

IV. Un résultat algébrique sur certains anneaux de matrices 2x2.

Dans toute cette section, nous désignons par si un anneau associatif avec unité
1. Nous supposons que si possède un idéal bilatère maximal % distinct de si, tel

que tout idéal bilatère non trivial de si soit contenu dans C6. De plus, nous

supposons systématiquement que si possède les deux propriétés suivantes:

(PI): 2 est inversible dans si;
(P2): tout élément de sa est une somme finie d&apos;éléments inversibles de si.

Les anneaux qui vérifient (P2) ont été étudiés par exemple par Henriksen (voir
[10] et sa bibliographie); ils ont été classés dans le cas fini par Stewart [24]. Les

anneaux d&apos;opérateurs usuels sur H ou HR satisfont certainement (PI) et (P2).
Le groupe dérivé du groupe GLi(si) des éléments inversibles de si sera

désigné par SLi(si), et le groupe des (2 x 2)-matrices inversibles sur si par
GL2(si).

PROPOSITION 5. Soit G un sous-groupe distingué de GL2(si). Supposons qu&apos;il

existe des éléments a, b, c, jÏ9 j2, y*3, \* dans si avec

la b\ //, M fa by

Soient x, y, z, tesi avec t inversible et tx-tyt~lzeSLi{si). Alors I est

inversible et e G.\z t)
Nous décomposons la preuve de la proposition 5 en trois lemmes, où G est

une fois pour toutes un sous-groupe distingué de GL2(st). On aura remarqué que,
si si est un corps gauche, alors la condition tx-tyt~1zeSL1(si) s&apos;écrit

det 1; toutefois, dans ce cas, la proposition serait vide, puisqu&apos;on aurait

forcément /1
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LEMME 9 Soient a, ;4 comme dans la proposition 5 Alors il existe r, s dans si

avec r inversible, sé^o, tels que je G

Preuve Soit n un multiple entier de l&apos;unité de si L&apos;operateur

/l n\(a b\(l n\ VI n+/A//i ]2\(1 n + jA 1

Xn~\0 lAc OÀO 1/ \0 1 j\,3 ,J\0 1,J

c b + aji + ncjAhi ]2~nji~]2
c A

est évidemment dans G Vu les hypothèses de la proposition 5

hi ]2~nji~]2i\
A/3 ]4-n]3-]3]J

C]i =0 CJ2 =1,

et par suite

N(n)
o

avec

(n)\
i ;

+ b]4 -

Mais N(0) et N(l) ne sont pas tous les deux dans cê, sinon (N(0)-N(l))b
«JiO3b) aji serait dans °€, et donc aussi ji -N(l)4-a/iO4-j3-/3/i), ce qui est

contraire aux hypothèses

(r s\
«JzG Alors

(1 w\ ^I I g G pour touf w 6 si

(r s\~l lr~x ~r~x
Preuve Comme 2 est inversible et comme I 1 =(-. -

/l 0\/r s\/l OX/r&quot;1 -r^X (1 s\
(o i)(o i)(o 2)( o 1 Ho i)GG
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Par suite, pour toute paire m, v d&apos;éléments inversibles de si:

lu ON/1 s\(u-x ON (1 usv\
(o «—Ao îAo v) \o i)ea

II résulte alors de ce que si satisfait (P2) que 1
)G G pour tout élément w

dans l&apos;idéal bilatère engendré par s dans si, donc pour tout w dans si par
maximalité de c€.

LEMME 11. Si I e G powr fouf w e si, alors f e G pour fous x, y, z, f

dans 64 avec t inversible et tx — tyt~1zeSLi(si).

^ /O 1\/1 w\/0 1\ /l 0\ ^Preuve. Pour tout we.s4:l II II ,J I kG. Donc, pour tout gM 0/\0 1/M 0/ \ w 1&apos;

inversible dans si:

(l g\( 1 0\/l g\ / 0 g\

et aussi:

/0 1N/0 -g&quot;&apos;\ /g 0

Ui ojlg o j-lo g-^g

De sorte que, pour tout commutateur multiplicatif ghg&apos;1^1 dans si:

/O -1\/1 0\/g 0\/ 0 h\/l 0\-
\i oAo ghAo g&apos;Vv-h&quot;1 oAo gh)

_/0 -1\/ 0 l\_/ghg~1h~l 0\
\1 0/\—ghg&quot;1/!&quot;1 0/ \ 0 1/

II en résulte que je G pour tout k e SLi(sd). Soient enfin x, y, z, t e sd avec r

inversible et tx-tyt^zeSLiist); alors:

/r1 0\ltx-tyClz 0\/l (tx-ryr^)&quot;&quot;1^/ 1 0\_
V o J\ o iAo i nr&apos;z 1/

_/rx OWrx-ryr^ ry\/ 1 o\
~&quot;\o t)\ 0 î/lr&apos;z 1/

/r1 0\/ rx ry\/x y\

\0 t/\t~lz 1/ \z t)
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V. Les sous-groupes distingués de GL(H) et G1(HR).

Soit G un sous-groupe distingué de GL{H). Supposons qu&apos;il existe AeG avec

A£GE(H, C). Brown et Pearcy ont montré ([4], corollaire 3.4) qu&apos;il existe un
opérateur linéaire borné inversible T:H-&gt; H® H tel que

0/

et tel que le noyau de l&apos;adjoint fc* de b est de dimension infinie. Soit alors

/ n) • L&apos;opérateur jx n&apos;est pas compact. En effet, s&apos;il l&apos;était et vu

que aji + bj3 1, il existerait d e C(H) avec bj3 1 - d*, et on aurait /3*b* 1 - d,

ce qui est impossible puisque le noyau de /3*fc* est de dimension infinie.
Considérons l&apos;isomorphisme de groupes

[GL(H)~&gt;GL2{L{H))
T\ A &gt; TAT~X

Comme C(H) est un idéal bilatère absolument maximal dans L(H) (voir Calkin
[5]), la proposition 5 implique que le sous-groupe distingué r(G) de GL(H®H)

contient toutes les matrices I 1 avec t inversible et tx — tyt~lz dans le groupe

des commutateurs de GL(H). Mais GL(H) est égal à son groupe des

commutateurs (voir par exemple Halmos [7] problème 192). Donc r(G) contient

toutes les matrices I 1 avec t et tx — tyt~lz inversibles.

PROPOSITION 6. Soit G un sous-groupe distingué de GL(H). Alors: ou bien

G GL(H), ou bien GaGE(H, C).

Preuve. Supposons que G£ GE(H, C). Les notations étant comme ci-dessus, il
suffit de montrer que t(G) GL(H©H). Lorsqu&apos;on le munit de la topologie
normique, GL(H®H) est un groupe topologique connexe (voir par exemple

Kuiper [16]); il suffit donc de montrer que t(G) contient un voisinage de l&apos;origine

dans GL(H®H).
Soit SS l&apos;ensemble des (2 x 2)-matrices (* yJ à coefficients dans L(H) telles

que les normes des quatre opérateurs 1-x, y, z, 1-f soient suffisamment petites
(par exemple: plus petites que 1/10). Alors 93 est un voisinage de l&apos;origine dans

GL(H®H). De plus, si
* y) e 93, alors x et tx - tyt~xz sont inversibles, puisque
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les normes de 1-x et de 1 — (tx-tyt~lz) sont suffisament petites. Il résulte des

remarques qui précèdent la proposition que 93c:t(G), ce qui achève la preuve.

Les ingrédients utilisés dans la preuve de la proposition 6 sont les suivants.

(1°) Le corollaire 3.4 de Brown et Pearcy [4], dont l&apos;énoncé et la preuve
passent sans aucune difficulté au cas réel. (On pourrait aussi étendre, sans doute,
les preuves plus récentes de Anderson et Stampfli [1].)

(2°) La maximalité absolue de l&apos;idéal bilatère C(H) dans L(H), qui s&apos;étend

aussi au cas réel.

(3°) L&apos;égalité de GL(H) et de son groupe dérivé, qui est encore vraie dans le

cas réel. (Voir Halmos [7] problème 192, et les commentaires à la fin de notre
section II concernant le théorème spectral pour les opérateurs normaux sur HR

[6].)
(4°) La connexité de GL(H) dans la topologie normique, qui n&apos;offre pas

davantage de difficulté dans le cas réel.
Nous avons donc montré:

PROPOSITION 6R. Soit G un sous-groupe distingué de GL(HR). Alors: ou bien

G GL(HR), ou bien Gc GE(HR, C).

Le théorème II résulte des propositions 3 et 6. On vérifie comme pour la

proposition 4 que l&apos;adhérence de SL(H, Co) [resp. SL(HR, Co)] dans GL(H)
[resp. GL(HR)] muni de la topologie normique est GL(H, C) [resp. la

composante connexe de GL(HR, C)]. Le corollaire du théorème II énoncé dans
l&apos;introduction est alors immédiat.

Remarques.
(i) La proposition 6 peut rappeler certains résultats exposés par Bass ([3],

chapitre V). Toutefois l&apos;analogie n&apos;est guère instructive au niveau des preuves,
puisque les &quot;stable range conditions&quot; de [3] ne sont pas vérifiées par l&apos;anneau

L(H).
(ii) L&apos;étude des sous-groupes distingués du groupe général linéaire d&apos;un espace

vectoriel de dimension infinie (non muni d&apos;aucune topologie) a été entreprise par
Rosenberg [22]. Mais ses preuves ne s&apos;adaptent pas non plus aux cas qui nous
intéressent.

(iii) Dans la preuve de la proposition 6, il serait sans doute intéressant de

pouvoir remplacer l&apos;introduction du voisinage 93 par un argument de nature plus
algébrique; nous ne savons pas offrir une telle alternative.

(iv) Les propositions 1, 1J?, 6 et 6R montrent que les sous-groupes distingués
non triviaux de U(H), O(HR), GL(H) et GL(HR) sont formés de perturbations
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compactes des scalaires, c&apos;est-à-dire précisément d&apos;opérateurs pour lesquels le

théorème spectral est &quot;facile&quot;. Nous espérons revenir prochainement sur ce point,
et en indiquer une application.

VI. Un corollaire sur l&apos;algèbre de Calkin et une question.

Soit Cal(H) L(H)/C(H) Valgèbre de Calkin de H, qui est une algèbre
stellaire. Soient Cal(H)mt; le groupe de ses éléments inversibles et Cal(H)M le

groupe de ses éléments unitaires.
Lorsqu&apos;il est muni de la topologie normique, Cal(H)mu est un groupe topologique

dont la composante connexe Cal(H)ô&quot;v est l&apos;image de GL(H) par la projection
canonique de L(H) sur Cal(H). On sait que Cal(H)mv/Cal(H)ov est isomorphe
au groupe Z, et que l&apos;isomorphisme est donné par l&apos;indice des opérateurs de

Fredholm (voir par exemple Palais [20], fin du chapitre VII). Ecrivons enfin
PCal(H)ônv le quotient de Cal(H)onv par son centre C*. Schématiquement:

C*
4

GL(H)IGL(H, C) « Cal(H)r -&gt; Cal(H)mv -&gt; Z
1

GL(H)/GE(H, C)-FCal(H)ônv

De même pour les groupes unitaires:

S1

i
U(H)/ L/(H, C) « Cal(H)S -» Cal(H)u -* Z

1

U(H)/UE(H, C)«PCal(H)g

PROPOSITION 7. Les groupes PCal(H)% et PCal(H)o° sont simples.

Preuve: immédiate à partir des propositions 1 et 6.

Il en résulte que les sous-groupes distingués de Cal(H)inv et Cal(H)u sont peu
nombreux (très petits ou très gros) et tous connus. L&apos;anneau Cal(H) est simple; la

proposition 7 ajoute un exemple à la théorie générale des relations entre les

propriétés de simplicité d&apos;un anneau [resp. d&apos;un anneau avec involution] et les
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propriétés de simplicité du groupe de ses éléments inversibles [resp unitaires], voir
à ce sujet Herstein [11] et Lanski [18]

*****
Soient q un idéal bilatere non trivial de L(H) et p l&apos;application canonique de

GL(H) dans le groupe des éléments inversibles de L(H)/q Soit GE(H, q)
p&apos;1^*), et soit GL(H, qY le groupe dérivé du noyau de p Soit alors G un

sous-groupe distingué de GL(H), nous dirons que G est un groupe de congruence
de niveau q s&apos;il existe un idéal bilatere q de L(H) tel que GL(H, qY c G c GE(H, q)

Question Les sous-groupes distingués de GL(H) sont-ils tous des groupes de

congruence9

VII REFERENCES

[1] J H Anderson et J G Stampfli Commutators and compressions Israël J Math 10 (1971)
433-441

[2] E Artin Algèbre géométrique Gauthier-Villars 1962
[3] H Bass Algebraic K-theory Benjamin 1968

[4] A Brown et C Pearcy Structure of commutators of operators Ann of Math 82 (1965)
112-127

[5] J W Calkin Two-sided ideah and congruences in the ring of bounded operators in Hubert space
Ann of Math 42 (1941) 839-873

[6] R K Goodrich The spectral theorem for real Hubert space Acta Sci Math (Szeged) 33 (1972)
123-127

[7] P R Halmos A Hubert space problem book Van Nostrand 1967

[8] P de la Harpe Classical Banach-Lie algebras and Banach-Lie groups of operators in Hdbert
space Spnnger Lecture Notes m Math 285 (1972)

[9] Some properties of infinité-dimensional orthogonal groups In Global analysis and îts

applications, vol II&quot;, publie par IAEA, Vienne 1974

[10] M Henriksen Two classes of rings generated by their units J of Algebra 31 (1974) 182-193
[11] I N Herstein On the multiplicative group of a Banach algebra Symposia Mathematica 8

(1972) 227-232
[12] R V Kadison Infinité unitary groups Trans Amer Math Soc 72 (1952) 386-399
[13] Infinité gênerai hnear groups Trans Amer Math Soc 76 (1954) 66-91
[14] On the gênerai hnear groups of infinité factors Duke Math J 22 (1955) 119-122
[15] I Kaplansky Rings of operators Benjamin 1968

[16] N Kuiper The homotopy type ofthe unitary group of Hilbert space Topology 3 (1965) 19-30
[17] S Lang Introduction aux variétés differentiables Dunod 1967

[18] C Lanski The group of units of a simple ring, I &amp; II J of Algebra 15 (1970) 554-569 &amp; 16

(1970) 108-128
[19] M H Martin On infinité orthogonal matrices Am J Math 54 (1932) 579-631
[20] R S Palais Seminar on the Atiyah-Singer index theorem Princeton Umv Press 1965

[21] C R Putnam et A Wintner The orthogonal group in Hilbert space Am J Math 74 (1952)
52-78

[22] A Rosenberg The structure of the infinité hnear groups Ann of Math 68 (1958) 278-294
[23] R Schatten Norm idéals of completely contmuous operators Spnnger 1960

[24] I Stewart Finite rmgs with a specified group of units Math Z 126 (1972) 51-58 &amp; 128 (1972)
187



Sous-groupes distingués du groupe unitaire 257

[25] M H Stone Linear transformations in Hilbert space and their applications to analysis Amer
Math Soc Colloquium Pub 15 (1932)

Institut de Mathématiques
Université de Lausanne
1015 Dongny-Lausanne
(Suisse)

Reçu le 7 Mai 1975




	Sous-groupes distingués du groupe unitaire et du groupe général linéaire d'un espace de Hilbert

