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Konvergenzsitze fiir Jacobi-Determinanten
von n-dimensionalen quasikonformen Abbildungen

KARL LESCHINGER

1. Sei G R" ein Gebiet, n=2. Wir betrachten Folgen (f;) von K-
quasikonformen Abbildungen f;:G — R", die in G lokal GleichmaBig (d.h.
gleichmaBig auf allen kompakten Teilmengen von G) gegen eine endliche Abbil-
dung f konvergieren. f ist dann bekanntlich entweder konstant oder K-
quasikonform in G.

Natiirlicherweise stellt sich die Frage, wie sich die Folge (Jf;) der Jacobi-
Determinanten verhilt, ob sie in irgendeinem Sinne konvergiert, und wie im Falle
der Konvergenz die Grenzfunktion beschaffen ist. Wir beweisen die folgenden
drei Satze:

SATZ 1. Die Folge (Jf;) konvergiert in G schwach gegen Jf, d.h. fiir jeden
achsenparallelen Wiirfel Q, Qc G, gilt

}1{2 L (Jf;(x) = Jf(x)) dx =0. (1)

Insbesondere ist wegen der Lokalsummierbarkeit von Jf die Folge der Integrale
der Jf; nach oben beschrinkt. Falls f nicht konstant ist, besitzt sie auch eine
positive untere Schranke. Diese Aussagen lassen sich folgendermaBen umkehren:

SATZ 2. Sei F eine Familie von K-quasikonformen Abbildungen f:G — IR",
|f (xo)l|= C fiir ein xo€ G und alle f € . Es existiere eine Kugel B= B(xo, 1) in G
mit Mittelpunkt xo und Radius r>0, so daB fiir alle fe F gilt

j J(x) de =M<, @)

Dann enthiilt jede Folge aus ¥ eine in G lokal gleichmdBig konvergente Teilfolge.
Ist auBerdem noch fiir alle fe ¥

O<msj Jf(x) dx, (3)
B

so sind alle Grenzabbildungen konvergenter Folgen aus & in G K-quasikonform.
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KOROLLAR. Sei (f;) eine Folge von K-quasikonformen Abbildungen f;: G —
R", so daf3 die Folge (Jf;) in G schwach gegen eine fast iiberall positive
lokalsummierbare Funktion J konvergiert. Dann existiert eine K-quasikonforme
Abbildung f: G — R", deren Jacobi-Determinante fast tiberall in G gleich J ist.

Beweis. Es sei Q ein achsenparalleler Wiirfel, Q < G. Dann gibt es Zahlen
m, M mit

0<mSJ Jfi(x) dx=M <o (4)
Q

fir alle j. Wir konnen f;(xo) =0 fiir ein xo€ Q und alle j annehmen. Aus Satz 2
ergibt sich die Existenz einer Teilfolge von (f;), die in G lokal gleichmiBig gegen
eine K-quasikonforme Abbildung f konvergiert. Wegen Satz 1 gilt Jf=J fast
uberall in G.

SATZ 3. (i) In G ist fast uiberall
lim inf Jf;(x) < Jf(x) <lim sup Jf;(x). (5)
j—>oo j—>oo

(i1) Gilt fiir alle x aus einer meBbaren Menge A < G an einer Stelle der Doppelung-
leichung (5) Gleichheit, so existiert eine Teilfolge von (Jf;), die fast tiberall in A
gegen Jf konvergiert.

Fiir den Fall n =2 wurden diese Ergebnisse in [3] hergeleitet. Die Beweise der
Sitze 1 und 2 sind n-dimensionale Versionen der dort angegebenen Beweise. Fir
Satz 3 gilt dies jedoch nur teilweise. In [3] wird als wesentliches Hiltsmittel die
Hilberttransformation benutzt, die fiir n =3 nicht zur Verfiigung steht. Eine von
Gehring [2] bewiesene Ungleichung fiihrt jedoch zu einer Abschétzung, die einen
fiir alle n=2 giiltigen Beweis von Satz 3 ermdglicht.

In [3] werden (fiir n = 2) Beispiele angegeben, die zeigen, dal Satz 3 gewisser-
maBen bestmdglich ist: Es gibt Folgen (f;), fiir die (Jf;) keine Teilfolge enthilt, die
fast iiberall konvergiert. Damit ist auch die Frage nach der L°-Konvergenz der
Jacobi-Determinanten negativ beantwortet.

Nach Fertigstellung des Manuskriptes erhielt ich die Nachricht, daB3 Satz 3
nahezu gleichzeitig von N. Biihlmann in Ziirich ebenfalls mit Hilfe der Un-
gleichung von Gehring bewiesen wurde.

2. Der Beweis von Satz 1 ergibt sich unmittelbar aus dem folgenden Lemma:

LEMMA 1. Sei G < R" ¢in Gebiet, G, ein Teilgebiet von G, dessen Rand E eine
in G kompakte Lebesgue’sche Nullmenge ist. Ferner sei .(f;) eine in G lokal
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gleichmdflig konvergente Folge von Homoéomorphismen f;: G — R", die ebenso wie

die Grenzabbildung f in G die (N)-Bedingung erfiillen, d.h. Nullmengen auf
Nullmengen abbilden. Dann gilt

lim |f,(Go)| =|f(Go)l." (6)

Beweis. Die Mengen E'= f(E), E; = f;(E) sind kompakt und haben das Ma8 0.
Wir wiéhlen ein 6>0 und j so groB3, daf3 E; ganz in

Us(E')={x e R" | dist(x, E") < 8}
liegt. Dann gilt
1fi(Go)l = |f(Go)| =|Us(E")|.

Ist nun £ >0, so kann & so gewédhlt werden, daB |Us(E')| < e ist. Es gibt namlich
eine offene Menge 6 < R", E'< 6, mit |#|<e. Der Rand von 6 hat von der
kompakten Menge E’ einen positiven Abstand d. Wiahlt man & =d/2, so ist
Us(E') < 6.

3. Beweis von Satz 2. Es sei (f;) eine Folge von Abbildungen aus &. Wir zeigen,
daB fi(x) in G —{xc} nicht liberall gegen » konvergieren kann.

Wiirde namlich f;(x) dort gegen « konvergieren, so miiflite diese Konvergenz
lokal gleichméBig sein (vgl. [S], Theorem 19.4 in Verbindung mit Theorem 20.3.)
und deshalb fiir ein ro, 0<ro<r, die Folge der Zahlen

= n:i"n I1£i (%) = fi(xo)
gegen o konvergieren.

Setz man A={xeR"|r<|x—xd|<r} und A;=f(A), so hat jede
Hyperfliche S in A;, die die beiden Randkomponenten von A; trennt, ein
(n—1)-dimensionales Hausdorff-MaB H" '(S)=H"'(S" '(fi(xo), 1)=s, wo
S"Y( fi(x0), r;) die (n—1)-Sphéare mit Mittelpunkt f;(xo) und Radius r; ist.

Nach Caraman [1], S. 170, gilt fiir die Kapazitit des Ringgebietes A;

s.
Cap A;=—21—,
Al
woraus wegen lim s; = und |A;|= M folgt
]

lim Cap A; =x.

j—>o

Y Fiir eine meBbare Menge A < R" bezeichne |A| ihr n-dimensionales Lebesgue’sches Ma8.
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Dies steht aber im Widerspruch zur K-Quasikonformitét der f;, denn es ist (vgl.
[1], S. 125)

Cap A;=K"'-Cap A <.

Es gibt daher einen Punkt x; € G, x; # xo, mit ||f;j(x,)||= C, fiir alle j. Da alle f; den
Punkt « auslassen, ergibt sich die Existenz einer lokal gleichmiBig konvergenten
Teilfolge (vgl. [5], Theorem 19.4. in Verbindung mit Theorem 20.3.). Wegen (3)
kann die Grenzabbildung nicht konstant sein, daher ist sie K-quasikonform.

4. Der Beweis von Satz 3 beruht auf dem folgenden Lemma (vgl. [3]):

LEMMA 2. Es sei (¢;) eine Folge von in G lokalsummierbaren Funktionen
¢;:G—> R=R U {~x, +}. Die Integrale der ¢; seien in G gleichgradig absolut
stetig, d.h. zu jedem & >0 existiert ein 8 >0, so daB fiir jede relativ kompakte
meBbare Menge A = G mit |A|<8 und alle j gilt: |[4 ¢;j(x) dx|<e.

(i) Gilt fiir eine lokalsummierbare Funktion ¢:G — R und jeden achsenparal-
lelen Wiirfel Q, Q< G,

lim inf J (gj(x)—@(x)) dx =0
J—>> Q
beziehungsweise
lim sup I (gj(x)—@(x)) dx =0,
j—>oo Q

so ist fast iiberall in G

lim inf @;(x) < ¢(x) (7)
]
beziehungsweise
lir}l_)silp @i(x) = ¢(x). (8)

(il) Gilt fiir alle x aus einer meBbaren Menge A < G in (7) oder (8) Gleichheit, so
existiert eine Teilfolge von (¢;), die fast tiberall in A gegen ¢ konvergiert.

Bemerkung. Man beachte, daB in Lemma 2 nicht die Lokalsummierbarkeit
von inf ¢;(x) bzw. sup ¢;(x) vorausgesetzt wird. Mit dieser Voraussetzung an
Stelle der schwicheren Forderung, daf3 die Integrale der ¢; gleichgradig absolut
stetig sind, wire das Lemma ein triviales Korollar zum Lemma von Fatou. Mir
scheint, daB Lemma 2 sich unter den angegebenen Voraussetzungen nicht unmit-
telbar aus dem monotonen Konvergenzsatz oder dem Lemma von Fatou herleiten
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laBt. Beim Beweis von Satz 3 liee sich der linke Teil der Ungleichung (5) leicht
mit dem Fatou’schen Lemma beweisen. Fir den rechten Teil von (5) ist dieses
Verfahren jedoch nicht brauchbar, da man nicht die Lokalsummierbarkeit von
sup Jfj(x) garantieren kann. Dort mufl Lemma 2 in der angegebenen Form
benutzt werden.

Beweis von Lemma 2. Wir beweisen die Behauptungen iiber den lim inf. Die
Aussagen iber den lim sup ergeben sich daraus durch Ubergang zur Folge (—¢)-

(i) Zunichst zeigt man leicht unter Verwendung der gleichgradigen Absolut-
stetigkeit der Integrale, daB} fiir jede relativ kompakte meBBbare Menge A < G gilt

lim inf J (¢j(x)—@(x)) dx =0. (9)

j—2oe

Setzt man nun ¢;(x) =inf ¢,(x), so folgt ¥; = ¢;, und die Folge (¢j;) ist monoton
h=j

wachsend.
Wir zeigen nun, daB fir ¢(x)=1im y;(x) =lim inf ¢;(x) fast Gberall in G gilt:

J—ee o=
P(x) <+,

Mit den ¢; besitzen auch die |¢;| in G gleichgradig absolut stetige Integrale.
Zu £>0 kann man also ein 6 >0 finden, so daB fiir alle relativ kompakten
mefBbaren Mengen A < G mit |A|<8 und alle j gilt f4|¢;(x)| dx <e.

Wire in G nicht fast uberall (x)< +o, so kOnnte man eine relativ

kompakte meBbare Menge A mit 0<|A|<&8 finden, auf der lim ¢;(x)=
]——)oo

lim |¢;(x)] = + gilt. Aus dem Lemma von Fatou ergibt sich lim § 4 |¢;(x)| dx = +oo,

j—>oe j—>oo

also ein Widerspruch.

Nehmen wir nun an, daB in einer relativ kompakten Menge von positivem
MaB (x) > ¢(x) gilt. Dann ist dort die Funktion ¢ fast iiberall endlich. Aus dem
Satz von Egorow (vgl. [4]) erhalten wir die Existenz einer Teilmenge B von
positivem MaB, auf der (¢;) gleichméBig gegen ¢ konvergiert und fur fast alle j
gilt: ¢; = ¢. Die ¢; sind also in B summierbar, und wegen ¢; = ¢; und (9) ergibt
sich

J P(x) dx =lim J ¥;(x) dx <lim infj @;(x) dx
B 7> JB = JB

= L @(x) dx,

im Widerspruch zur Annahme (x)> ¢(x). Damit ist (i) bewiesen.
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(ii) In einer meBbaren Menge A< G gelte ¢(x)=Iliminf ¢;(x). Wir nehmen

e
zunichst A als relativ kompakt an und geben eine Nullfolge (e,), €, >0, vor.
Nach dem Satz von Egorow existiert eine Teilmenge A, von A mit |A— A <ey,
auf der (y5) gleichmaBig gegen ¢ konvergiert. Wegen §j; < ¢; ergibt sich daraus die
Existenz einer Teilfolge von (¢;), die in A; L'-konvergent gegen ¢ ist, also eine
Teilfolge (¢\") enthilt, die fast iiberall in A; gegen ¢ konvergiert.

Fir diese Teilfolge gilt fast iiberall in A:

lim inf ;" (x) = ¢(x),
j—roo

woraus sich wie oben die Existenz einer Teilfolge (¢}>) von (¢}") ergibt, die fast
iiberall in einer Teilmenge A< A mit |A — A,|<e, gegen ¢ konvergiert.

Setzt man dieses Verfahren ad infinitum fort und bildet die Diagonalfolge
(@), so konvergiert diese fast iiberall in A gegen .

Ist A< G eine beliebige meBbare Menge, so schopft man diese durch
abzahlbar viele relativ kompakte meBbare Mengen aus und verwendet wieder das
beschriebene Diagonalverfahren.

Beweis von Satz 3. Ist f konstant, so folgt aus dem Lemma von Fatou und
Satz 1, daB fiir jeden achsenparallelen Wiirfel Q, Q < G, gilt

J‘ lim inf Jf;i(x) dx Slimj Jfi(x) dx =0,
Q == i~ Jo

also liminf Jf;(x) =0 fast iiberall in G. In diesem Fall existiert stets eine fast
]—-—boo

tiberall konvergente Teilfolge von (Jf;), da diese Folge in L'(Q) konvergiert. Ist f
K-quasikonform, so kann man zu jedem xo€ G einen achsenparallelen Wiirfel Q,
Q = G, mit Mittelpunkt x, finden, so daB fiir alle j gilt

dia (f;(Q)) <dist (f;(Q), 3f;,(G)).

Nach Gehring [2] existiert ein ¢ >0, so daB fiir alle p, n<p <n+c, und alle j gilt:

L (i)™ dx = Ml(L Tfi(x) dX)pm

mit
C

M,=——— K""-|Q|'"™"".
! n+c—p @l
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Da die Folge der Integrale der Jf; iiber Q beschrankt ist, existiert ein M,, so daf3
fur alle j gilt

J (Jﬁ(x))p/" dx = M,. (10)
o)

Nach einem Kriterium von de la Valleé-Poussin (vgl. [4], S. 176) besitzen die Jf;
daher in Q gleichgradig absolut stetige Integrale (dabei ist wesentlich, dal3 (10)
mit einem p > n gilt). Wegen Lemma 2 folgt also die Behauptung von Satz 3 in Q.
Schopft man nun G durch abzéhlbar viele Q aus, so ist der Beweis vollstiandig.
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