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Comment. Math. Helvetici 51 (1976) 215-231 Birkhâuser Verlag, Basel

Ueber die Eigenwerte des Laplace-Operators auf kompakten
Riemannschen Flâchen

Heinz Huber (Basel)
Herrn C. L. Siegel zum 80. Geburtstag gewidmet

1. Einleitung

Auf jeder kompakten Riemannschen Flàche 9 vom Geschlecht gy &gt; 1 gibt es

genau eine Riemannsche Metrik mit konstanter Krûmmung —1, welche mit der
konformen Struktur von 9 vertràglich ist. Es sei [l&amp; die Lange der kùrzesten
geschlossenen Geodàtischen und A&amp; der Laplace-Beltrami-Operator bezùglich
dieser Metrik. Das Spektrum von — A&amp; ist diskret; 0 ist ein einfacher Eigenwert,
aile ubrigen Eigenwerte sind positiv. Es sei Ay(x) die Anzahl der mit ihrer
Multiplizitât gezâhlten Eigenwerte im Intervall [0, x] und

Da der Inhalt von 9 gleich 47r(g&amp;-l) ist, so konvergiert nach H. Weyl Q&amp;(x) -»
1 fur jc -» +oo. Natûrlich kann nicht erwartet werden, dass dies gleichmâssig in 9
gilt! In der vorliegenden Arbeit soll aber gezeigt werden:

(A) Fur aile Flâchen 9 mit Cos \^ ^ 1 + 8, 8 &gt; 0, gilt

/2Jftj) 2, 56 fur x ^ Max (3, 3/8).

(Darin bedeutet / die kleinste positive Nullstelle der Besselschen Funktion Jo)-

Daraus ergibt sich andererseits mit Hilfe der Selbergschen Spurformel [6]:
(B) Fur aile Flâchen mit Cos \\l&amp; ^ 1 + 8 gilt

Qp(x)z*q(x,8) fur x&gt; 1/4.

Dabei ist q(x, 8) eine fur x&gt;i 8&gt;0 positive und in beiden Variabeln monoton
wachsende Funktion:

q(x, 8) p(x, y), y min (1, x/3, 8x /3),

0 fur
t&gt;o L t
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(Wegen /(O) 1/tt und /(s) ~ (&gt;/tt/2Vs) fur s —&gt; +00 sieht man sofort, dass die

eckige Klammer, als Funktion von f&gt;0 betrachtet, fur r—»0 gegen —oo, fur
t —&gt; +00 gegen 0 strebt und von einem gewissen t an positiv ist; sie besitzt daher in
der Tat ein positives Maximum p(x, y). Ofïensichtlich ist p(x, y) monoton wach-
send in beiden Variabeln und somit q(x, 8) ebenfalls.)

Aus (B) folgt insbesondere, dass A&amp;{x) fur festes x&gt;\ gross ist, wenn g&amp; gross
und juljf nicht zu klein ist. Von besonderem Interesse ist nun A^(l/4), die Anzahl
der &quot;kleinen&quot; Eigenwerte. Dièse sind wichtig u.a. fur das asymptotische Verhalten
des Lângenspektrums von 9 [3] und fur die Selbergsche Zetafunktion [6].
Nachdem H. P. McKean [4] behauptet hatte, dass ausser dem trivialen Eigenwert
0 keine kleinen Eigenwerte auftreten kônnen, hat B. Randol [5] kûrzlich gezeigt,
dass es Flâchen mit beliebig grossem A^(l/4) geben muss. Wir zeigen nun
andererseits:

(d) A^
(C2) ^

(Offenbar ist (Ci) fur grosse, (C2) fur kleine ja&amp; intéressant.)
Aus (JB) und (Ci) ergibt sich: Fur e&gt;0, Cosjfx^^l gilt

Wenn also ijl&amp; sehr gross ist, dann konzentrieren sich die Eigenwerte des

Intervalles [0, i+e] im kleinen Teilintervall (4, |+e] und McKean hat in diesem

Falle doch ein wenig redit! Dagegen folgt aus (A) und (B) fur x &gt;|, Cos jpg, ^2:

Dass es tatsâchlich Flâchen mit beliebig grossem (jl&amp; gibt, scheint nicht
selbstverstândlich zu sein; im letzten Abschnitt wird deshalb die Existenz solcher

Flâchen nachgewiesen.

2. Hilfssâtze ùber Legendre-Funktionen

1. Die Differentialgleichung

0, AgR, (1)
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hat in t 1 eine regulàre Singularitât mit den Exponenten 0, 0. Sie besitzt daher
genau eine Lôsung

FA(1) 1. (2)

Aus (1), (2) ergibt sich

FA(1) -A/2. (3)

LEMMA 1. Isî yeC2(l,b), KH+co, eine Lôsung von (1) mit

limy(f) a, (4)

50 gilt: y aFK.

Beweis: Die Wronskische Déterminante

W=yF&apos;A-y&apos;FA (5)

erfùllt in (1, b) die Differentialgleichung (t2-1)W&apos; + 2tW 0. Daraus ergibt sich:

y/t2-l. (6)

Aus (2) und (4)-(6) folgt: lim (t-l)y&apos;(t) -y/2. Wegen (4) muss daher y 0 sein.
111

Dann verschwindet aber W im ganzen Intervall (1, b) und y, FA sind dort linear
abhàngig. Daraus folgt wegen (2), (4) die Behauptung.
2. FA ist eine Legendresche Funktion erster Art:

FK PV mit v(i/+l) -À. (7)

Daraus ergeben sich nach [2] pag. 188 (11) und pag. 262 (122) folgende
Darstellungen:

k=0

F1/4(0^ [&quot;-*_. (10)
V2 f

&quot;7l

3. Aus (7) folgt nach [2] pag. 402, dass FA fur A &gt;k unendlich viele Nullstellen
im Intervall (1, +oo) besitzt. Wir bezeichnen die kleinste dieser Nullstellen mit
a(A). Nach [2] pag. 388-389 besitzt FA keine Nullstellen in (l,+oo) fur A^i
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Demgemàss setzen wir

a(A) +oo fur A^i (11)

4. LEMMA 2. Fur A 2* 3 gilt

Fl(t)dt^i2j\{f)l2^
i

Dabei bedeutet j die erste positive Nullstelle der Besselfunktion Jo.

Beweis: Wir setzen

c /2/4=l,44.... (12)

Nach (8) gilt fur

^l: (13)

(n!) n=i (n!) VA

2 / 3\ -,
Nun ist - cul 2+— I ^fc 0,96... und somit

1 n n A1&apos;&quot;1

£

A&gt;0. (17)

Wegen (9) ergibt sich leicht:
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Somit gilt fur

Daher folgt aus (16), dass auch B&gt;0. Somit ist nach (14), (17)

o(;)&gt;0 fur À3*3, 0&lt;u=sl.

Daraus folgt aber

F2K(t) dt y J Pî(l + 2cu/A) du &gt;y j 4(/Vw) d«

LEMMA 3. Fur y 3= 1 gilt

g^- (18)

(Die erste Ungleichung kann fur y -? 1, die zweite fur y -^ +00 asymptotisch nicht
verbessert werden.)
Beweis: Aus (10) ergibt sich durch die Substitution

u arcsin(Tgr/2)

r *L !^»i. (20,,/4(()^ ^7rVt+lJ0 Vl-hsinzu t+l
Da der Integrand ^=1 in [0, tt/2] ist, so folgt

V2

Daraus ergibt sich sofort (18). Etwas mehr Mùhe bereitet (19). Zunàchst folgt aus

(20):

^^L £ J^ Tsin-udu. (21)
7rVf+lnt022n(n!)2
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Setzen wir
tt/2

cos2n u du, (22)

so gilt:

(2n)\ 22 r—Im sm
22n(n!)2 7T

Somit folgt aus (21):

2n

(23)

Andererseits folgt aus (22) durch die Substitution u fg m :

\ n + l/
Somit folgt aus (23)

„ _ i V2 ^ hn i^L1, i i V2
1 —:=—?=^7log ^7==log.
no -h TTVt+1 2

Daraus folgt aber (19) unmittelbar.
5. Wir betrachten nun im Intervall [1, b], Kb&lt;+o°, das Eigenwertproblem

Nach Lemma 1 und nach 3 sind aile Eigenwerte dièses Problems grôsser als \.
Bezeichnen wir den kleinsten Eigenwert mit it(b), so ist also

ix(b)&gt;k fur fe&gt;l, (24)

und nach dem Rayleighschen Extremalprinzip gilt

inf J (r2-l)(g&apos;(r))2dr/J g2(t)dt, 0, (25)

woraus sich auch ergibt, dass ix{b) eine monoton fallende Funktion ist. Fur x&gt;\

ist Fx(t) eine Eigenfunktion des Intervalles [1, a(x)], welche im Innern keine
Nullstellen besitzt. Daher gilt

H(a(x)) x fur x&gt;i (26)
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Dièse Bemerkungen ermôglichen uns nun den Beweis von

LEMMA 4. Fur A ^ x und 1 ^ t ^ a(x) gilt

O^Fx(r)^FA(r).

Beweis: Es sei

A&lt;x, g(t) Fk(t)-Fx(t). (27)

Dann folgt aus (l)-(3):

0, g&apos;(l) è(x-A)&gt;0, (28)

|((rl)g) + Ag (xA)Fx. (29)
dt

Wir haben zu zeigen, dass g(r)^O in [1, a(x)]. Wâre dies nicht der Fall, so gâbe es

wegen (28) ein b derart, dass

1&lt; b &lt; a(x) (30)

g(b) 0 (31)

g(r)&gt;0 in (l,fr). (32)

Aus (29) und (31) ergibt sich:

t)dt-^ (t2-l)(gf(t))2dt. (33)

Nun ist wegen (32)

f g2(t)dt&gt;0
h

und wegen (27), (30), (32)

Somit folgt aus (33)

^{t2-l){g\t)f dt/^g\t) dt&lt;\.

Wegen (31) folgt daraus nach (25)

x. (34)
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Fur x^| ist dies bereits ein Widerspruch zu (24). Fur x&gt;£ ist a(x)&lt;+°° und
daher folgt aus (30) und (26):

ein Widerspruch zu (34). Damit ist Lemma 4 bewiesen.

3. Beweis von (A) und (C)

1. Wir versehen den Einheitskreis E={zeC ||z|&lt;l} mit der hyperbolischen
Metrik

welche die konstante Krûmmung — 1 besitzt. Fur die hyperbolische Distanz p(0, z)

ergibt sich dann:

Wir bezeichnen mit K(r) die Kreisscheibe {z |p(z, 0)^r}. Fûhren wir im Null-
punkt geodâtische Polarkoordinaten

p p(0, z), # argz

ein, so wird

ds2 dp2+ Sin2 pdiï2.

Daher erhâlt man fur das Flâchenelement und den Laplace-Beltrami-Operator
der Metrik (1):

dw Sin p dp d# (2)

2. Nun sei 9* eine kompakte Riemannsche Flâche vom Geschlecht g^&gt; 1 und q
ein beliebiger Punkt von ^. Dann gibt es eine konforme Ueberlagerungsabbil-
dung 7:E-*^mit

7(0) q. (4)

Mit Hilfe von y kann die Differentialgeometrie (1) von E auf &amp; verpflanzt
werden; das ergibt gerade die in der Einleitung eindeutig charakterisierte Metrik
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von 9. Fur jede Funktion &lt;p € C2(9) gilt dann:

(5)

Es sei F die zur Ueberlagerungsabbildung y gehôrige Gruppe der Deckisometrien
von E. Die Punktmenge

F {2€E|p(2,0)^p(z,T(0))VT€r-{id}} (6)

ist ein Fundamentalbereich von F (Frickesches Normalpolygon) und deshalb gilt
fur jede auf 9 stetige Funktion &lt;p:

J&lt;pd&lt;o&amp;

9 Jp
(&lt;p°y)d&lt;o. (7)

Nach [3] 1:1.1 und 2.6 gilt:

jx&lt;? inf {p(z, T(z)) | z g E, Te F-{id}}
und daher Vz e JC(£/u^), TeF-{id}:

s(z, T(O)) + p(T(O), T(z)) p(z, T(O)) + p(O, z)^

Somit ist èjuty *s p(z, T(0)) und daher erst recht p(z, 0)^ p(z, T(0)), also nach (6):

3. Jetzt sei x&gt;0 und es seien

die sàmtlichen Eigenwerte von -A&amp; in [0, x], also

n + 1, (9)

und &lt;p0, &lt;pi,..., &lt;pn ein zugehôriges Orthonormalsystem reeller Eigenfunktionen
auf 9. Wir setzen

(&lt;pJ°7)(z) &lt;£,(p, #) (10)

und zeigen:

J *,(p, d)dd 27r&lt;pi(q)FXi(Cosp), p&gt;0. (11)

In der Tat: Da A&amp;ç, + À;&lt;p, 0, so folgt aus (10), (5) und (3):

a2 ^ 1 ô2

—2 ^(p, d)+Ctgp— &lt;&amp;(n. i^H——s r^&lt;£,(p, ^) + Af^,(p, d) 0.
dp B
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Daraus ergibt sich durch Intégration nach #:

-2-n-

Nun fûhren wir die neue Variable t =Cos p ein und setzen

•2ir

Daher folgt aus (13), (14) nach Lemma 1:

4. Aus (11) folgt nun fur beliebige réelle Koeffizienten c0,..., cn:

2w I c/&lt;P,(q)FA, (Cosp)= X ^(ft #)) dû,
/=0 JO \;=0 /

und daraus vermôge der Schwarzschen Ungleichung:

(12)

Dann ist

H;€C2(l,+oo) (13)

und wegen (10) und (4) gilt

lim HAt) lim ^(p, #) dft — 27r&lt;p,(q). (14)
t i i p | o Jo

Die Differentialgleichung (12) geht ûber in

I W^^)^; JQ £ ^(ft dd.

Multiplizieren wir dièse Ungleichung mit Sin p und integrieren iiber tt von 0 bis

r&gt;0, so ergibt sich wegen (10) und (2):

f Ë c,&lt;p,(&lt;7)FA,(Cospjf Sinpdp^ f £ c,(ftoy))2 dco (15)
Jo V/=0 / ^77&quot; JlC(r) \j=0 /

Nun definieren wir

m(x) min (Cos i^9 a(x)) (16)

und wâhlen in (15) r&gt;0 gerade so, dass Cos r= m(x). Dann ist r^l/m^ und daher
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nach (8) K(r)cP. Somit folgt aus (15) und (7):
&apos;m(x)/ n \2 1 f / n \2X \ \J&apos;m(x)/

n \2 1 f / n \2X C,&lt;P,(&lt;?)FA;(O dt*—\ [L C,(&lt;p,oy)\

1 ^dù)3?=— 2, Cr
Z1T/==o

Dabei wurde berùcksichtigt, dass die &lt;p} ein Orthonormalsystem auf 9 bilden.
Nun wâhlen wir speziell c} (p}(q) und erhalten:

/•m(x)/ n \2 1
&quot;

Z &lt;P2(&lt;7)J\(O) dr^—- £ 92(q). (17)
Jl \J=o / ZTT^o

Wegen A;^x und m(x)=^a(x) gilt nach Lemma 4:

Daraus folgt aber

/V 2 \2fm(X) 2 fm(x)/A 2 V
1 2-^/(^)1 Fx(r)dr^ l L ^/W^CO) dt.
\/=o / Ji Ji \,=o /

Daraus und aus (17) ergibt sich:

(n
\ r m(x) -i

lofa))] Fl(t)dt^. (18)
j=0 /Jl Z7T

Das gilt fur aile qe 9. Daraus folgt nun durch Intégration ùber 9 wegen (9):

çm(x) ^ ç
A&lt;??(x) F*(t)dt^-— do)&amp; 2(g&amp; — l). (19)

Ji 2tt j&amp;

5. Es sei jetzt die Voraussetzung von (A) erfûllt:

Cos|jll^^1 + ô, x^max (3,3/0). (20)

Dann ist nach Lemma 2

a(x)^l+/2/2x. (21)

Aus (20) folgt wegen /2/2 2,88 • • &lt;3

Cos^^l +3/x ^ 1 +/2/2x. (22)

Aus (21), (22) und (16) folgt m(x)^l+/2/2x. Daher ist nach Lemma 2:

[ F2(0dr^/2J2(/)/2x.
Ji

Daraus und aus (19) ergibt sich nun (A).



226 H. HUBER

6. Nach (16) und 2.3 (11) ist m(l/4)=Cos W Somit folgt aus (19):

Daraus und aus Lemma 3 folgen unmittelbar die Ungleichungen (Ci) und (C2).

4. Beweis von (B)

Es sei À0 0&lt;Ài^À2^- • * die Folge aller Eigenwerte von —A&amp; wobei jeder
Eigenwert seiner Multiplizitât entsprechend oft auftrete. Dann folgt aus der
Selbergschen Spurformel (3.2) in [6] pag. 74 fur h(r) e~sr\ s&gt;0:

QO /• -4-1

£ e~&apos;K&gt;(g?-\)\es/4 &gt; e-sA» Xr, -1) rTzirre-*&quot; dr

ce -Sr*

Andererseits ist

fiO

s
JOn=0 JO

Somit gilt:

,(A)e-sXdA, s&gt;0. (2)

Nun sei Cos \\x&amp; 3= 1 + S, 5 &gt; 0. Dann gilt nach (A):

A,(A)=SK(g,-l)A fur A^x8, (3)

x8 max (3, 3/8), k 4//2JÎ(y). (4)

Daher wird fur

sf

und somit

sf Ay(A)e&quot;sXdA«A»(x) + K(gaf-l)fx+-V&quot; fur x^x«. (5)
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Dagegen wird fur 0&lt;x&lt;x8 wegen (3):

s\ e~sA dA + K^-l^f Ae~sA dk
Jx8

und somit

sj ^(AJc&apos;^dA^A^W + ^g^-lJ^+^e-&quot; fur 0&lt;x&lt;jcô. (6)

Aus (5), (6) und (4) folgt jetzt fur jc&gt;0, s&gt;0:

si
JoJo \y sx

mit

y min (1, x/x&amp;) min (1, x/3, 8x13). (7)

Daraus und aus (2) ergibt sich:

Daraus folgt fur s t/xy t&gt;0:

Da dies fur aile f &gt;0 gilt, so ist damit wegen (1) und (7) auch (B) bewiesen.

5. Flàchen mit beliebig grossem /x^

1. Wir versehen die obère Halbebene

H {zeC|Imz&gt;0}

mit der Differentialgeometrie

dS=JM, a)
Imz
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welche die konstante Krûmmung —1 besitzt, und betrachten eine diskrete Unter-
gruppe fc SL(2, (R Jedes Elément

erzeugt dann eine Isometrie 7* von H,

az + b
*()

cz

und die Gruppe F* wirkt diskontinuierlich auf H. Der Kern des Homomorphis-
mus F-* F* besteht aus den Elementen

A1 °
\0 1

und -e,

falls letzteres uberhaupt in F vorkommt. Wir setzen nun voraus, dass F* einen

kompakten Fundamentalbereich in H besitzt und dass

|Spy|&gt;2VyeF, y* ±e. (2)

Dann wirkt F* bekanntlich fixpunktfrei auf H und der Quotient &amp;=HIT* ist
eine kompakte Riemannsche Flâche vom Geschlecht g&gt;l. Die mit der kanoni-
schen Abbildung auf 9 — H/F* verpflanzte Difïerentialgeometrie (1) ergibt dann

gerade die in der Einleitung charakterisierte Metrik von SF und es gilt:

Cos|/Lt3F inf{è| Spy\ \yeF, y^±e}. (3)

In der Tat: Nach [3] 1:1.1 und 2.6 gilt:

n (4)

Dabei bedeutet d die zur Metrik (1) gehôrige Distanz. Wegen (2) gibt es zu jedem
yeF, yï*±E, ein ve SL(2, OR derart, dass

im 0

Dann ist

all2 + a-112 (5)

y*v* v*p*! p*(z) az,

und somit

d{v*(z), y*v*(z)) d(v*(z), v*p*(z)) d(z, p*(z)) d(z, az).
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Daraus folgt nach [3] 1:2.6

inf d(i/*(z),y*i/*(z)) loga.
zGH

Daraus ergibt sich aber wegen (5)

inf Cosèd(z, y*(z)) inf Cosèd(z;*(z), 7*i/*(z))
zei-f zeH

Hieraus und aus (4) folgt nun die Behauptung (3).
2. Es sei jetzt p 3 (4) eine Primzahl und Ip der Ring der ganzen Zahlen von

Wir betrachten dann folgende Untergruppen von SL(2, R ):

1} (6)

(â bedeutet die zu a konjugierte Zahl),

rp {y e &lt;PP | y e mod 2}. (7)

Nach Fricke [1] pag. 501-565 besitzt &lt;P* einen kompakten Fundamentalbereich
in H, und da Fp von endlichem Index in &lt;PP ist (er ist ùbrigens 4), so gilt dasselbe

auch von Fp*.

3. Wir setzen nun voraus:
(V) Es sei n ^ 2 und die Gleichung

fur m 1,..., n — 1 nicht lôsbar in ganzen Zahlen v, r, s e Z Wir zeigen: Dann ist

i|Spy|^2n-hl

und fur die Flàche &amp; H/r* gilt daher nach (3):

4. Beweis: Nach (6), (7) hat y die Gestalt

/l + 2(u + i;Vp) 2(r + sVp) \
\ 2(-r + sVp) l + 2(u-Wp)/

mit m, v, r, s g Z und

2Darin ist u 5^0, -1. Sonst wâre r2 p(v2 + s2), also r pk und somit pk2



230 H. Huber

Da aber p^=3 (4) eine Primzahl ist, so ist dies bekanntlich nur môglich, wenn
lç-v-s 0 £)ann wâre aber y ±e, entgegen unserer Annahme. Es ist also

entweder u^\ oder u^—2. Im ersten Falle folgt aus (9) und Voraussetzung (V)
sogar w^n, also u + u^n + n2. Im zweiten Falle ist u&apos; —(m+ 1)^1 und daher
folgt wegen u&apos; + (u&apos;)2 u + u2 aus (9) und (V) sogar u&apos;^n, also 2

2 2 auch im zweiten Falle. Nun ist aber nach (8)

5. Nach 3. gibt es also sicher dann Flâchen mit beliebig grossem ju,^, wenn es zu
jedem n ^ 2 eine solche Primzahl p 3 (4) gibt, dass die Voraussetzung V) erfûllt
ist. Nun ist (V) gewiss erfullt, wenn aile Zahlen

quadratische Nichtreste mod p sind. Wegen p 3 (4) ist aber -1 Nichtrest mod p.

Also ist (V) sicher dann erfullt, wenn aile Zahlen

u + u2, u 1,..., n —1,

quadratische Reste modp sind. Dazu genûgt es, dass aile in diesen Zahlen
aufgehenden Primfaktoren

2, qu qr

quadratische Reste mod p sind. Wir betrachten nun die r +1 simultanen Kon-
gruenzen

P^-l(8) (10)

wenn q, l(4), (11)

wenn q^3(4), (12)

wobei die Unbekannte p vorerst nicht notwendig eine Primzahl bedeuten soll. Da
die Moduln dieser Kongruenzen paarweise teilerfremd sind, bilden ihre gemein-
samen Lôsungen eine voile Restklasse mod 2qi • • • qr und zwar offensichtlich
eine zu diesem Modul teilerfremde. Dann gibt es nach Dirichlet auch eine
Primzahl p, welche aile r+1 Kongruenzen erfullt. Fur dièses p gilt nun wegen
(10):

©¦&apos;¦
\p/

Wenn q, 1 (4), so folgt aus (11) und dem quadratischen Reziprozitâtsgesetz:
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Wenn dagegen q} =3 (4), so folgt aus (12)

Somit sind m der Tat aile Pnmzahlen 2, qu qr Reste mod p und daher gibt es

eine Flache 9 mit Cos \[l&amp; ^ 2n +1.
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