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Comment. Math. Helvetici 51 (1976) 215-231 Birkhauser Verlag, Basel

Ueber die Eigenwerte des Laplace-Operators auf kompakten
Riemannschen Fliachen

HEINZ HUBER (BASEL)
Herrn C. L. Siegel zum 80. Geburtstag gewidmet

1. Einleitung

Auf jeder kompakten Riemannschen Fliche % vom Geschlecht gg>1 gibt es
genau eine Riemannsche Metrik mit konstanter Kriimmung —1, welche mit der
konformen Struktur von & vertriglich ist. Es sei wugs die Linge der kiirzesten
geschlossenen Geoditischen und Ag der Laplace-Beltrami-Operator beziiglich
dieser Metrik. Das Spektrum von — Ag ist diskret; O ist ein einfacher Eigenwert,
alle ubrigen Eigenwerte sind positiv. Es sei Ag(x) die Anzahl der mit ihrer
Multiplizitat gezéhlten Eigenwerte im Intervall [0, x] und

Qs(x) = Az(x)/(gs — 1)x.

Da der Inhalt von & gleich 47r(gs — 1) ist, so konvergiert nach H. Weyl Qg(x) —
1 fiir x — 400, Natiirlich kann nicht erwartet werden, dass dies gleichmassig in &
gilt! In der vorliegenden Arbeit soll aber gezeigt werden:

(A) Fiir alle Flichen % mit Cossus=1+86, >0, gilt

Qs(x)<4/j2J3(j)=2, 56 . .. fiir x=Max (3, 3/).

(Darin bedeutet j die kleinste positive Nullstelle der Besselschen Funktion Jo).
Daraus ergibt sich andererseits mit Hilfe der Selbergschen Spurformel [6]:
(B) Fiir alle Flichen mit Cos 3ug=1+38 gilt

Qs(x)=q(x,8) furx>1/4.

Dabei ist q(x, 8) eine fiir x >3, 8§ >0 positive und in beiden Variabeln monoton
wachsende Funktion:

q(x,8)=p(x, y), y=min(l1, x/3, x /3),

_ a1\ —vax_ (_1_ .1.) “]> fiir x>1 y>0
p(x,y)—rpggt[tf(x)e 577 0 fiir x>3% y>0,

o —sr2

<=4PRG, f0)=| dr.

, Cos® 7r
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(Wegen f(0)=1/7 und f(s) ~(/@/2Vs) fiir s — 4+ sieht man sofort, dass die
eckige Klammer, als Funktion von t>0 betrachtet, fur t— 0 gegen —o, fiir
t — +oo gegen 0 strebt und von einem gewissen ¢ an positiv ist; sie besitzt daher in
der Tat ein positives Maximum p(x, y). Offensichtlich ist p(x, y) monoton wach-
send in beiden Variabeln und somit g(x, §) ebenfalls.)

Aus (B) folgt insbesondere, dass Ag(x) fiir festes x >z gross ist, wenn gg gross
und weg nicht zu klein ist. Von besonderem Interesse ist nun Ag(1/4), die Anzahl
der “kleinen’’ Eigenwerte. Diese sind wichtig u.a. fiir das asymptotische Verhalten
des Langenspektrums von % [3] und fiir die Selbergsche Zetafunktion [6].
Nachdem H. P. McKean [4] behauptet hatte, dass ausser dem trivialen Eigenwert
0 keine kleinen Eigenwerte auftreten konnen, hat B. Randol [5] kiirzlich gezeigt,
dass es Flichen mit beliebig grossem Ag(1/4) geben muss. Wir zeigen nun
andererseits:

37

(C)) Ag(1/4)< - (g — 1)(log Cos jus) >

(C) A%(1/4) s-;- (g# —1)(log Cos spus) .

(Offenbar ist (C,) fiir grosse, (C,) fir kleine ug interessant.)
Aus (B) und (C;) ergibt sich: Fiir £ >0, Cos 3ug =2 gilt

Ag"(%) s 3 7"'2

< log Cos sug) .
As+e) 2plred B

Wenn also ug sehr gross ist, dann konzentrieren sich die Eigenwerte des
Intervalles [0, 3+ ¢] im kleinen Teilintervall (3, 3+ ] und McKean hat in diesem
Falle doch ein wenig recht! Dagegen folgt aus (A) und (B) fiir x >1 Cos sug =2:

Ag(x) 1.2

N xq(x, 1)
_— = Jz
Ag;(xfs) i J1())

max (3,x+¢€)’

Dass es tatsichlich Flichen mit beliebig grossem ug gibt, scheint nicht
selbstverstandlich zu sein; im letzten Abschnitt wird deshalb die Existenz solcher
Flachen nachgewiesen.

2. Hilfssiatze iiber Legendre-Funktionen

1. Die Differentialgleichung
(P =1y"(t)+2ty' () +Ay()=0, AeR, (1)
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hat in =1 eine reguldre Singularitat mit den Exponenten 0, 0. Sie besitzt daher
genau eine Losung

Foe C*(—1,+x) F,(1)=1. (2)
Aus (1), (2) ergibt sich
Fi(1)=—A/2. (3)

LEMMA 1. Ist ye C*(1,b), 1<b <+, eine Losung von (1) mit
lim y(1) =, (4)
so gilt: y = aF,.

Beweis: Die Wronskische Determinante
W = yFi—y'F, (5)
erfiillt in (1, b) die Differentialgleichung (t*— 1) W’+2tW = 0. Daraus ergibt sich:
W(t)=vy/t* 1. (6)

Aus (2) und (4)-(6) folgt: li?} (t—1)y'(t)=—+v/2. Wegen (4) muss daher y = 0 sein.
t

Dann verschwindet aber W im ganzen Intervall (1, b) und y, F, sind dort linear
abhangig. Daraus folgt wegen (2), (4) die Behauptung.
2. F, ist eine Legendresche Funktion erster Art:

F,=P, mit v(v+1)=—-A. (7)

Daraus ergeben sich nach [2] pag. 188 (11) und pag. 262 (122) folgende
Darstellungen:

F,\(t)—1+z( R(/\)( 1>", li—1]<2, (8)
R,,(,\)="f1 A+ K2+ k), 9)
k=0
V2~ dr
F14 - e ——— (10)
lt)= J JCos T+t

3. Aus (7) folgt nach [2] pag. 402, dass F, fiir A >3 unendlich viele Nullstellen
im Intervall (1, +) besitzt. Wir bezeichnen die kleinste dieser Nullstellen mit
a(A). Nach [2] pag. 388-389 besitzt F, keine Nullstellen in (1, +) fiir A <j
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Demgemass setzen wir

a(A) =+ fir A<i
4. LEMMA 2. Fiir \=3 gilt

1+j2/2A
a(A)=1+j3/2A, J F2(t) dt=j2J3()12A.
1
Dabei bedeutet j die erste positive Nullstelle der Besselfunktion J,.

Beweis: Wir setzen
c=j4=1,44....

Nach (8) gilt fiir
A=3, O<us=l:

(= 1) R.(A) .

Fa(1+2cu/A) = 1+nZ=:1 "=
=1+§1(; sty ,,;( b () 1)C,.u,.=
=Jo(jVw+A+B

A=} SR o221 Lofo. )]

N gy _c"u"(Ra(A)
B‘,;( 1B, b""(nz)z\ A" 1)'

3
Nun ist %cu(2+l\) 2¢=0, 96. .. und somit

A>0.
Wegen (9) ergibt sich leicht:

busafby = cul 3y —mt L )
e An+1 n+1R,(A)—A" (n+1)3/)

n—1
R,(A)=A" +( Y (k*+ k))A"“ =A"+3n(n—1)(n+ 1A,

k=0

(11)

(12)

(13)

(14)

(15)

(16)

(17)
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Somit gilt fiir n=4:
/b, cu(1 n + 3 i ><
brirlbu= e\ 3y n—Dn+17 (D2~

<C(3+25+25)—750<1

Daher folgt aus (16), dass auch B>0. Somit ist nach (14), (17)

Fa(1+2cu/A)>Jo(jYu)=0 fiir A=3, 0<us<l,
Daraus folgt aber

a(M)=1+2¢/A =1+j%]2A,

1+j2/2A 1 1

2¢ 2¢ N
j F(t) dt=—J Fi(l+2¢u/,\)du>—-J’ J3(jVu) du=
1 A 0 A 0
j2
A

LEMMA 3. Fiir y=1 gilt

1
j xJ(jx) dx = 212()/2A.

(Y +1
F2,4(t) dt =2 log 1—2—-— (18)
J1
(Y 2 +1
Fhult) di = (log 1 ) (19)

(Die erste Ungleichung kann fiir y — 1, die zweite fiir y — +o asymptotisch nicht
verbessert werden.)
Beweis: Aus (10) ergibt sich durch die Substitution

u = arcsin (Tg 1/2)

2 V2 J"’Z du
1r~/t+1

t—1
F, ()= "  Osh=—-<1,t=1. (20)
ualt) = V1—hsin® u t+1
Da der Integrand =1 in [0, 7/2] ist, so folgt

Jz

t+1

Fi4(t)=

Daraus ergibt sich sofort (18). Etwas mehr Miihe bereitet (19). Zunéchst folgt aus
(20):

2 22 (@2n)
mVt+1, 222" (n!)?

w2
Fi4(t) = h" j sin®" u du. (21
0



220 H. HUBER

Setzen wir
w2
I,= J cos®" u du, (22)
0
so gilt:
2 ! 2 w2 .
2§n(r:3')2 = _"I_T— Ina L Slnzn u du = In

Somit folgt aus (21):

Fua()= ( ) Z Ehn (23)
Ji+1,
Andererseits folgt aus (22) durch die Substitution v =tgu:
o oo =) , \/—
In=J dvo 1 J’ szc __ 1 J R L.
o 1+0)" Vn+1/, <1+ X )"” vn+1/, 2Vn+1
n+1

Somit folgt aus (23)

F (t)>l 2 & 1 V2 1lg 1 1 2 10gt+1
v Jit1. 2 nt1 mitlh Ci-n vl B,

Daraus folgt aber (19) unmittelbar.
5. Wir betrachten nun im Intervall [1, b], 1 <b <+, das Eigenwertproblem

(P—1)y"+2ty'+uy=0, yeCil,b], y(b)=0.

Nach Lemma 1 und nach 3 sind alle Eigenwerte dieses Problems grosser als i
Bezeichnen wir den kleinsten Eigenwert mit w(b), so ist also

w(b)>% fir b>1, (24)

und nach dem Rayleighschen Extremalprinzip gilt

b b '
M»(b)=ir;fjl (= 1)(g'(1))* dlt/j1 g’(ndy, geC[1,b], gb)=0, (25

woraus sich auch ergibt, dass w(b) eine monoton fallende Funktion ist. Fir x >1
ist F,(t) eine Eigenfunktion des Intervalles [1, a(x)], welche im Innern keine
Nullstellen besitzt. Daher gilt

pla(x))=x fir x>3 (26)
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Diese Bemerkungen ermoglichen uns nun den Beweis von
LEMMA 4. Fir A<x und 1<t<a(x) gilt

O0<F, (1)< F,\(1).

Beweis: Es sei

A<x,  g(t)=F()—F(1). (27)
Dann folgt aus (1)—(3):

g(1)=0, g'(1)=3(x—1)>0, (28)

L (P-Dg)+Ag=(x~NF. (29)

Wir haben zu zeigen, dass g(t)=0 in [1, a(x)]. Ware dies nicht der Fall, so gibe es
wegen (28) ein b derart, dass

1<b<a(x) (30)
g(b)=0 (31)
g()>0 in (1,b). (32)

Aus (29) und (31) ergibt sich:

b b

b
(x—A)jl F.()g(t) dt = A J &0 d“L (P=1)(g () dt. (33)

Nun ist wegen (32)

Lb g(t) dt>0
und wegen (27), (30), (32)
(x —)\)J;be(t)g(t) dt>0.
Somit folgt aus (33)

f<t2~ 1)(g'(1))? dt / ngzm G<n

Wegen (31) folgt daraus nach (25)
p(b)< A <x. (34)
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Fir x <% ist dies bereits ein Widerspruch zu (24). Fiir x >3 ist a(x) <+ und
daher folgt aus (30) und (26):

m(b)= u(a(x)) = x,

ein Widerspruch zu (34). Damit ist Lemma 4 bewiesen.

3. Beweis von (A) und (O)

1. Wir versehen den Einheitskreis E={zeC ||z]<1} mit der hyperbolischen
Metrik

dz|?

ds?=4 192 1
T M
welche die konstante Kriimmung —1 besitzt. Fiir die hyperbolische Distanz p(0, z)

ergibt sich dann:
1+]|z)?
1-|z[*

Wir bezeichnen mit K(r) die Kreisscheibe {z | p(z, 0)<r}. Fiihren wir im Null-
punkt geoditische Polarkoordinaten

Cos p(0, 2)=

p = p(0, z), Jd=argz
ein, so wird
ds* = dp*+Sin® p d9>.

Daher erhilt man fiir das Flachenelement und den Laplace-Beltrami-Operator
der Metrik (1):

dw = Sin p dp dd (2)
9° F 1 &
=—s+ —t——— .

2. Nun sei ¥ eine kompakte Riemannsche Flache vom Geschlecht g#>1 und g
ein beliebiger Punkt von &. Dann gibt es eine konforme Ueberlagerungsabbil-
dung y:E — & mit

y(0)=4q. 4)

Mit Hilfe von y kann die Differentialgeometrie (1) von E auf & verpflanzt
werden; das ergibt gerade die in der Einleitung eindeutig charakterisierte Metrik
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von %. Fiir jede Funktion ¢ € C*(%) gilt dann:
(Agp)ey=A(@°y). (5)

Es sei I' die zur Ueberlagerungsabbildung y gehorige Gruppe der Deckisometrien
von E. Die Punktmenge

P={zeE|p(z 0)<p(z, T(0)) VT e ['—{id} (6)

ist ein Fundamentalbereich von I' (Frickesches Normalpolygon) und deshalb gilt
fir jede auf & stetige Funktion ¢:

L ¢ dwg = J‘P (pey) do. (7)

Nach [3] I:1.1 und 2.6 gilt:
ps =inf {p(z, T(2)) | z€ E, Te I'—{id}}
und daher Vz e KGug), TeI'—{id}:
ue <p(z, T(z))<p(z, T(0))+p(T(0), T(2)) = p(z, T(0)) +p(0, 2) <
<p(z, T(0)) +3ps.
Somit ist g < p(z, T(0)) und daher erst recht p(z, 0) < p(z, T(0)), also nach (6):
KGus)< P. (8)
3. Jetzt sei x >0 und es seien
A=0<A < - s, (n=0),

die simtlichen Eigenwerte von —Ag in [0, x], also

Ag(x)=n+1, 9)

und @o, @1,..., @, €in zugehdriges Orthonormalsystem reeller Eigenfunktionen
auf &. Wir setzen

(@j°y)(z) = Di(p, §) (10)
und zeigen:
29
j ®D;(p, 9) d¥ =2m¢;(q)F,,(Cosp), p>0. (11)
0

In der Tat: Da Agq; +Aj@; =0, so folgt aus (10), (5) und (3):

2 2

d d 1 o
— . — @, ———— @;(p, 3) + A;D;(p, ) =0.
ap2 ¢J(p’ ﬂ)+Ctgpap ¢](p’ 8)+Sin2p 6192 1(p ) ] 1(p )
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Daraus, ergibt sich durch Integration nach 9:

d2 2

2 d 2
——EJ @;(p, 9) d19+Ctgp—-J D;(p, I) dﬂ+AjJ @;(p, ¥) dI9 =0. (12)
dp o dp 0 (4]

Nun fiihren wir die neue Variable t =Cos p ein und setzen

J' w@,.(p, 9) d9 = Hy(1).
0

Dann ist

H; e C*(1, +) (13)
und wegen (10) und (4) gilt
2w

lim H;(f) = lim J ®,(p, 9) dO =27¢,(q)- (14)
tl1 ploO

o

Die Differentialgleichung (12) geht uiber in
(= 1)H/()+2tH|(t)+ ,;H;(1) =0, t>1.
Daher folgt aus (13), (14) nach Lemma 1:
H,(1) = 27¢,(q)F, (1).
4. Aus (11) folgt nun fiir beliebige reelle Koeffizienten cy, ..., cC,:
n 2w/ n
27 ), G@i(@)F, (COSP)=j (Z ¢ Pi(p, 19)) dd,
j=0 0 \j=0
und daraus vermoge der Schwarzschen Ungleichung:
n 2 1 2w/ n 2
(X ao@Bcos)) =<5-[ (2 ai(a 9)) ao
j=0 - 2wl \iZo

Multiplizieren wir diese Ungleichung mit Sin p und integrieren iiber = von 0 bis
r>0, so ergibt sich wegen (10) und (2):

r n 2 ) 1 n 2
J (Z c,-cp,-(q)F,\,(COSp)) Smpdp$—2-—J (Z Cj(¢]‘°'¥)) dw (15)
o \j=0 T JK() \j=0

Nun definieren wir

m(x) = min (Cos 7 pug, a(x)) (16)

und wiihlen in (15) r >0 gerade so, dass Cos r = m(x). Dann ist r <3ug und daher
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nach (8) K(r)< P. Somit folgt aus (15) und (7):

J;m(X)<Ii C;"P;‘(Q)F)‘,(t))2 dts-;;J (i CI.((P].OY))Z dw =

i=0 P Y 0

__LJ (ZC .)2d _Li
2w e \BO0) T &

Py

Dabei wurde beriicksichtigt, dass die ¢, ein Orthonormalsystem auf % bilden.
Nun wahlen wir speziell ¢; = ¢;(q) und erhalten:

me(éﬂ <P?(q)FA,(t))2 dt S—zl—ﬂ j;no ¢7(q)- (17)
Wegen A;<x und m(x)<a(x) gilt nach Lemma 4:

OsF.()<F,(1) fir 1<t=sm(x), j=0,...,n
Daraus folgt aber

(5 o) [0 ae]

1

2

mm(éo D) dt

Daraus und aus (17) ergibt sich:

(£ ot0)[ " PO a=st. (18
Das gilt fiir alle g€ %. Daraus folgt nun durch Integration iiber ¥ wegen (9):

Ay(x)LM(X)Fi(t) di s—z—l;r- L dwg =2(8s —1). (19)
5. Es sei jetzt die Voraussetzung von (A) erfiillt:

Cosiug = 1+38, x =max (3, 3/8). (20)
Dann ist nach Lemma 2

a(x)=1+j%/2x. (21)
Aus (20) folgt wegen j*/2=2,88---<3

Coszug=1+3/x=1+*/2x. (22)

Aus (21), (22) und (16) folgt m(x)=1+j*/2x. Daher ist nach Lemma 2:

m(x)
J Fi(t) dt = j2T3(j)/2x.
1

Daraus und aus (19) ergibt sich nun (A).
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6. Nach (16) und 2.3 (11) ist m(1/4) =Cos 3ug. Somit folgt aus (19):

Cosing

As(1/4) j F2,4(1) dt <2(gs — 1).
1

Daraus und aus Lemma 3 folgen unmittelbar die Ungleichungen (C,;) und (C,).

4. Beweis von (B)

Es sei Ap=0<A;<A,=--- die Folge aller Eigenwerte von —Ag, wobei jeder
Eigenwert seiner Multiplizitdt entsprechend oft auftrete. Dann folgt aus der
Selbergschen Spurformel (3.2) in [6] pag. 74 fir h(r)=e™", s>0:

e’* Z e N> (gg— I)J rTgmre™" dr= w(gs—1) @
n=0 00
oo e-—sr2
6=, o M

Andererseits ist

Z e M= SJ Ag(AN)e ™ dA, s >0.

n=0 )
Somit gilt:

w(gg—1) [(f-)- e t< stAg:()\)e_s" dA, s>0. (2)
Nun sei Cos sug =1+ 8, §>0. Dann gilt nach (A):

As(A)<k(gg— DA fir A=x, (3)

xs =max (3,3/8),  k=4/j*Ji(j). (4)

Daher wird fiir x = x;:

oo

sJ. Ag(Ne ™ dAr < Ag(x)sj e d\+ k(gs — l)sI Ae M dA =
0

0 x

= Ag(x)(1—e )+ k(gs — 1)(x +-§)e""

und somit

* 1
sJ Ag(A)e ™ dr < Ag(x)+k(gs — 1)(x +;)e_”‘ fir x=x,. (5)
0
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Dagegen wird fir 0 <x <x; wegen (3):

X3 o

e M dr+ k(gs — 1)SJ Ae X dA =

Xs

sJ Ag(A)e ™ dr < Ag(x)+ k(gs — 1)x5sj
0 X

1
= Ag(x)+k(gs — 1)(x,5e'sx +; eas"b)

und somit

* 1
sj Ag(V)e ™ dr < Ag(x)+ k(gs— 1)(x5 +;)e‘s’° fir 0<x<x;s. (6)

0

Aus (5), (6) und (4) folgt jetzt fiir x>0, s>0:

= 1 1
SJ Ag(A)e—ﬂ d\ < Ag(X)"*‘ K(gy“‘ 1)x(—+——)e’s"
0 y Sx

mit
y =min (1, x/xs) = min (1, x/3, 8x/3). (7)

Daraus und aus (2) ergibt sich:

Ag(x)=(gs — 1)[77-sz e 94— Kx(—1-+i)e_”].

S y sx

Daraus folgt fiir s =t/x, t>0:

Qg(x) ?—?f(—;)e““" - K(—:)--{--})e“’.

Da dies fiir alle t>0 gilt, so ist damit wegen (1) und (7) auch (B) bewiesen.

S. Flichen mit beliebig grossem ug

1. Wir versehen die obere Halbebene
H={zeC|Imz>0}

mit der Differentialgeometrie

ds____l_d_z__l_, (1)
Im 2
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welche die konstante Krimmung —1 besitzt, und betrachten eine diskrete Unter-
gruppe I'= SL(2, R ). Jedes Element

a b
= el
Y <c d)
erzeugt dann eine Isometrie y* von H,

az+b
cz+d’

v*(2)=

und die Gruppe I'* wirkt diskontinuierlich auf H. Der Kern des Homomorphis-
mus I' — I'* besteht aus den Elementen

1 0
s-—(o 1) und -—¢,

falls letzteres iiberhaupt in I vorkommt. Wir setzen nun voraus, dass I'* einen
kompakten Fundamentalbereich in H besitzt und dass

|Spy|>2Vyerl, y# +e. (2)

Dann wirkt I'™ bekanntlich fixpunktfrei auf H und der Quotient %= H/I'* ist
eine kompakte Riemannsche Flache vom Geschlecht g>1. Die mit der kanoni-
schen Abbildung auf % = H/I'* verpflanzte Differentialgeometrie (1) ergibt dann
gerade die in der Einleitung charakterisierte Metrik von & und es gilt:

Cossus =inf {3 | Spy||ye I, y# £¢}. (3)
In der Tat: Nach [3] I:1.1 und 2.6 gilt:
Cos3ug =inf{Cos3d(z, y*(z)) | zeH, yerl, y#=*e}. (4)

Dabei bedeutet d die zur Metrik (1) gehorige Distanz. Wegen (2) gibt es zu jedem
vyeTI, y#+g, ein ve SL(2, R ) derart, dass

. a1/2 0
v yr==p, p=( 0 a__l,z), a>1.
Dann ist
|Spy|=a'*+a7'? (5)
y*v* = p¥p* p*(z) = az,
und somit

d(v*(2), y*v*(2)) = d(v*(2), v*p*(2)) = d(z, p*(2)) = d(z, az).
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Daraus folgt nach [3] 1:2.6
. * % %k -
Zlggd(v (2), y*v*(z))=log a.
Daraus ergibt sich aber wegen (5)
inf Cos 3d(z, y*(2)) = inf Cos 3d(v*(2), y*v*(2)) =

=Cos 3 log a =3 |Spy|.

Hieraus und aus (4) folgt nun die Behauptung (3).

2. Es sei jetzt p=3 (4) eine Primzahl und I, der Ring der ganzen Zahlen von
Q(s/f)). Wir betrachten dann folgende Untergruppen von SL(2, R ):

<pp={(~“5 2) |la, be L, aa+ bb = 1} (6)

(a bedeutet die zu a konjugierte Zahl),
I,={ye®,|y=¢emod2}. (7)

Nach Fricke [1] pag. 501-565 besitzt ®@¥ einen kompakten Fundamentalbereich
in H, und da I', von endlichem Index in @, ist (er ist iibrigens 4), so gilt dasselbe
auch von I'¥,

3. Wir setzen nun voraus:

(V) Es sei n=2 und die Gleichung

utu’+r’=pw’+s’

firu=1,..., n—1 nicht I6sbar in ganzen Zahlen v, r, s€ Z . Wir zeigen: Dann ist
3|Spy|=2n+1

und fiir die Fliche & = H/I'} gilt daher nach (3):
Cossug=2n+1. Vyel,, y# e,

4. Beweis: Nach (6), (7) hat y die Gestalt

=(1 +2(u+vx/;)) 2(r+s\/;)) ) (8)
2(-—r+s~/1_)) 1+2(u——v\/})-)
mit u, v, r, se Z und

u+u’+r’=p+s’. 9

Darin ist u#0, —1. Sonst wire r> = p(v?+s?), also r = pk und somit pk*=v*+s>,
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Da aber p=3 (4) eine Primzahl ist, so ist dies bekanntlich nur moglich, wenn
k=v=s=0. Dann wire aber y==*¢g, entgegen unserer Annahme. Es ist also
entweder u=1 oder u=<-2. Im ersten Falle folgt aus (9) und Voraussetzung (V)
sogar u=n, also u+ u’=n+n? Im zweiten Falle ist u'=—(u+1)=1 und daher
folgt wegen u'+(u)’=u+u’> aus (9) und (V) sogar u'=n, also u+u’=
u'+(u')>=n+n* auch im zweiten Falle. Nun ist aber nach (8)

Spy)Y’=1+4u+u’ =1+4(n+n>)=2n+1)>~

5. Nach 3. gibt es also sicher dann Flachen mit beliebig grossem wg, wenn es zu
jedem n =2 eine solche Primzahl p=3 (4) gibt, dass die Voraussetzung (V) erfiillt
ist. Nun ist (V) gewiss erfiillt, wenn alle Zahlen

—(u+u?d), u=1,...,n—1

quadratische Nichtreste mod p sind. Wegen p =3 (4) ist aber —1 Nichtrest mod p.
Also ist (V) sicher dann erfiillt, wenn alle Zahlen

2
u+u’, u=1,...,n—1,

quadratische Reste mod p sind. Dazu geniigt es, dass alle in diesen Zahlen
aufgehenden Primfaktoren

2,q19---7qr

quadratische Reste mod p sind. Wir betrachten nun die r+1 simultanen Kon-
gruenzen

p=-1(8) (10)
p=1(q;)), wenn g;=1(4), (11)
p=—1(q;)), wenn g¢;=3(4), (12)

wobei die Unbekannte p vorerst nicht notwendig eine Primzahl bedeuten soll. Da
die Moduln dieser Kongruenzen paarweise teilerfremd sind, bilden ihre gemein-
samen Losungen eine volle Restklasse mod 2q; - - - g, und zwar offensichtlich
eine zu diesem Modul teilerfremde. Dann gibt es nach Dirichlet auch eine
Primzahl p, welche alle r+1 Kongruenzen erfiillt. Fiir dieses p gilt nun wegen

(10):

B

Wenn g;=1 (4), so folgt aus (11) und dem quadratischen Reziprozititsgesetz:

(8 2)-(8)2)-(3
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Wenn dagegen g; =3 (4), so folgt aus (12)

o ()(2)-(3)2) - (3)

Somit sind in der Tat alle Primzahlen 2, q,, . . ., g Reste mod p und daher gibt es
eine Fliche % mit Cos sug=2n+1.
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