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The Range of Atomless Group Valued Measures

CORNELIU CONSTANTINESCU

We prove the following results: (1) the range of an atomless group valued
measure satisfying ccc is pathwise connected (Corollary 6; generalization of [2]
Theorem 4); (2) the closure of the range of an atomless group valued measure is
connected if it is compact (Theorem 3).

A 8-ring is a nonempty set R such that for any sequence (An)nen in R we
have [(nen An€R and Ao A A eR. If moreover Jnen AneR we call R a
o-ring. A semi-value on a commutative group G is a map p of G into R, such
that

p(0)=0, p(x+y)<p(x)+p(y), p(=x)=p(x)

for any x, y € G. Any family of semi-values on a commutative group G defines a
group topology on G and any such topology is defined by the family of continuous
semi-values.

- Let R be a 8-ring and let G be a Hausdorff topological commutative group. A
G-valued measure on R is a map u of R into G such that for any disjoint
sequence (An)nen in R whose union belongs to R we have

p.( U An)= Z w(An).

neN neN

We set
N(w):={AecR|VBeR, Bc A= u(B)=0}.

We say that u satisfies locally ccc if any disjoint family in ®\J(u) is countable if
its union is contained in a set of M. Let A(u) be the set of subsets A # ¢ of
R\ N(w) such that the intersection of any countable family in ¥ belongs to . The
maximal elements of A(u) (for the inclusion relation) will be called atoms of .
Let A be an atom of w and let F ) be the filter on R generated by the filter base

{Be¥%|Bc A} A ).



208 C. CONSTANTINESCU

An atom ¥ of u is called improper if w(F@)) converges to 0; otherwise we call it
proper. A measure possessing no proper atoms is called atomless.

Throughout this paper we shall denote by R a 8-ring and by G a Hausdorff
topological commutative group. We consider R o dered by the inclusion relation and
denote by A the set of lower directed nonempty subsets of R\{¢p}. For any Aec A we
denote by FN) the filter on R generated by the filter base

{{Be¥A|Bc A}| Ae¥}.

PROPOSITION 1. Let u be an atomless G-valued measure, let p be a
continuous semi-value on G, and let u be the canonical map G — G/P~'(0). Then
uou is an atomless measure satisfying locally ccc.

p'(0) is a closed subgroup of G, G/p~'(0) is a Hausdorff topological com-
mutative group, and ucu is a measure on a 8-ring. Since G/p~'(0) possesses a
coarser metrizable topology u o u satisfies locally ccc. From ()< (uo u) we
deduce by [1] Corollary 1.4 that uou is atomless. I

PROPOSITION 2. Let w be an atomless G-valued measure on R, let p be a
continuous semi-value on G, and let A €R. Then there exists an increasing map
B:[0,1]— R such that B(0)= ¢, B(1)= A and such that w°B is continuous with
respect to the topology on G defined by p.

By Proposition 1 and [3] Proposition 2 there exists for any ne N a family

(Ani)o<i<k, Of pairwise disjoint sets of # whose union is A and such that for any
natural number i€ ]0, k] and for any A’eR contained in A,; we have

Ml
p(u(A)=<—.

We may even assume k., =2 for any ne N. We set for any neN

o= ] km,

m=n
for any ieN, 0<i=<lo,

A6,i .= U Ao,j,

j<i
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and for any neN, A’ o: = ¢. We construct inductively for any n e N\{0} a family
(Aho<i<i, by setting for any ieN, 0<i< I,

Ani:=Ah-10 U (Ah—ria1 N ( U An,j)>,

j<i—i'ky,

where i’ denotes the greatest natural number such that i'k, <i. It can be shown
inductively that the following properties hold for any n e N:

(a) An,=A;

(b) O<isjsl > ALCAL;

© 0<i<l, 0<j<lu, -li= L > ALi=ALay;

ln+1

. 1
d) 0<i<l, A'efR, A'cA:.,,-\Aa,i_l:>p(u(A'))s-,;-

Let r be a rational number, 0<r=<1 for which there exists n€ N and i e N such
that O0<i</|, and (i/l.) =r. By (c) we may set

B(r):= A#.

We have B(0)= ¢ and (by a)) B(1)= A. By b) B(r)= B(r') for any Osr=<r'<1.
This last property allows us to extend the domain of B by setting for any a €[0, 1]

B(a):= [ B(r)eR.

r=a

By d) the map weB is continuous with respect to the topology on G defined
byp. B

THEOREM 3. Let u be an atomless measure on R such that for any A € R the

set {w(B)| BeR, B< A} is compact (resp. relatively compact). Then w(R) (resp.
the closure of w(R)) is connected.

Let G be the target of u, let Ae®R. and let

R:.={BeR|Bc A}
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By Proposition 2 for any continuous semi-value p on G there exists a map

-

f:[0,1]— n&)

continuous with respect to the topology on (') defined by p and such that
f(0)=0, f(1)=u(A). Hence n(A) belongs to the connected component of 0 in
r(O) (N. Bourbaki, nouvelle édition, TG II p- 32, Proposition 6). It follows that
n(A) belongs to the connected component of 0 in w(R) (resp. ;LTST)). Since A is
arbitrary w(R) (resp. w(M)) is connected. M

PROPOSITION 4. Let u be an atomless G-valued measure on R, let A be an
increasing map of [0, 1] into R, and let p be a continuous semi-value on G. Then
there exists an increasing map B of [0, 1] into R such that

A([0, 1) = B([0, 1]
and such that o B is continuous with respect to the topology on G defined by p.

Let G, be the group G endowed with the topology defined by p, let M be the
topological group G,/p~'(0) and let u be the canonical map G — M. By Proposi-

tion 1 ueop is an atomless measure satisfying locally ccc. Let T be the set of
a €[0, 1] at which uew° A is not continuous from the left. For any a € T we have

A(a)\ U A(B) g N(uop).

B<a

It follows that T is countable. Let a € T. By Proposition 2 there exists for any
a€ T an increasing map A, of [0, 1] into R such that

Aax(0)= ¢, Aa(1)=A(a)\BL<J A(B),

and such that puo A, is continuous as a map in G,. Let us endow the set

C:={(a, B)e[0,1]%[0,1]|aeT or B=0}

with the lexicographical order relation. It is easy to see that C is order complete
and contains a countable infinite subset which is dense in order. Moreover for any
a, be C with a <b there exists ce C with a<c<b. From these properties we
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deduce that there exists a bijective map ¢:[0, 1]— C which is an isomorphism of
ordered sets. Let t€[0, 1] and let (o, B) = ¢(1). If ag T we set

B(t) := A(a);

if aeT we set

B = A.®)U( U At).

Y<a
Then B is an increasing map of [0, 1] into R such that
A([0, 1) <= B([0, 1]

and such that we°B is continuous from the left as a map in G,. Moreover if A is
continuous from the right then B is continuous from the right.

If we repeat the same construction starting with B instead of A and replacing
the continuity from the left by the continuity from the right we get a map with the
required properties. Wl

THEOREM 5. Let u be an atomless G-valued measure on R satisfying locally
ccc and let AeR. Then there exists an increasing map B:[0,1]— R such that
B(0)= ¢, B(1)= A and such that w° B is continuous.

Assume the contrary and let w; be the first uncountable ordinal. We construct
inductively a family (pg)¢<w, Of continuous semi-values on G and a family (Bg)¢<,
of increasing maps of [0, 1] into R such that we have for any & <w:

(a) Be(0)=¢, Be(1)= A;

(b) woB, is continuous with respect to the topology on G defined by
{p, | <&} and it is not continuous with respect to the topology on G
defined by p,;

(© U Bn ([0, 1]) = Be([0, 1]).

n<§

Let £¢<w, and assume the families were constructed for all ordinals strictly
smaller than & The set

C= U By([0,1)

n<§

is linearly ordered with respect to the inclusion relation and contains a countable
subset which is dense in order. Hence there exists a subset M of [0, 1] and a
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bijection ¢: M — C which is an isomorphism of ordered sets. We may easily
extend ¢ to an increasing map of [0, 1] to :R. By Proposition 4 there exists an
increasing map Bg of [0, 1] into & such that

and such that pe B¢ is continuous with respect to the topology on G defined by

{pn | n<&}. Since ¢, A€y ([0,1]) we may assume B:(0)=¢ and Be(1)=A.
Hence B, fulfills a) and b). By the hypothesis of the proof we° B is not

continuous. Hence there exists a continuous semi-value p; on G such that we B is
not continuous with respect to the topology on G defined by ps.
We set for any ¢ <w: and for any a €0, 1]

Be(a):= An( N Be®))\( U Ben).

y<a
M := G/p¢ ' (0),

and denote by ¢; the canonical map G — M. By c) two sets of the type Be(a)
either are disjoint or one of them is included in the other one. By b) there exists

for any ¢ <w: an a(§)€[0, 1] such that B:(a(£)) 2 N(¢e ° ). By b) for any n<§
we have Be(a(£))e N(pnopn). Let us denote by My (resp. M) the set of £ < w, for

which the set

{n <1 | By(a(n)) < Be(a ()}

is countable (resp. uncountable). We set for any £€€ Mo

Ce := Be(a(O)\ U Bn(a(n)).

n<wi
n>§

Since (C¢)eem, is a family of pairwise disjoint sets of R\J(w) and since u satisfies

locally ccc M, is countable. We may therefore construct a strictly increasing family
(£(€))e<w, Of elements of My such that

Bien(a(£(m)) = Beo(a(&(£)))

for any & m such that £ <n <w:. Then

(Byo(a(L(EON\ Bresn(@(L(€+1))))e<w
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is a family of pairwise disjoint sets of R\RN(w) contained in A and this contradicts
the hypothesis that p satisfies locally ccc. I

COROLLARY 6. If u is an atomless measure on R satisfying locally ccc then
w(R) is pathwise connected. W

Remark. D. Landers ([2] Theorem 4) showed that w(R) is pathwise connected
if there exists an atomless submeasure A :JR — [0, [ dominating w. In this case u
is atomless and satisfies locally ccc (since A satisfies locally ccc and JH(A) = (w)).
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