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Comment. Math. Helvetici 51 (1976) 171-182 Birkhduser Verlag, Basel

Partitions of the Natural Numbers into Infinitely
Oscillating Bases and Nonbases

PauL ErRDOS AND MELVYN B. NATHANSON

Abstract. The set A of nonnegative integers is a basis if every sufficiently large integer x can
be written in the form x=a+a' with a,a’e A. If A is not a basis, then it is a nonbasis. We
construct a partition of the natural numbers into a basis A and a nonbasis B such that, as
random elements are moved one at a time from A to B, from B to A, from A to B,..., the

set A oscillates from basis to nonbasis to basis...and the set B oscillates simultaneously from
nonbasis to basis to nonbasis. . . .

1. Introduction

Let A be an infinite subset of the natural numbers N={0,1,2,...}.
Then A is an asymptotic basis of order 2, or, simply, a basis, if every suffi-
ciently large number can be written in the form a;+a;, where a; aq;e A. If
the set A is not a basis, then it is called an asymptotic nonbasis of order 2,
or, simply, a nonbasis.

The set A is a minimal basis if A is a basis, but, for any ae A, the set
A\{a} is a nonbasis. Similarly, the set A is a maximal nonbasis if A is a
nonbasis, but, for any natural number b€ A, the set AU{b} is a basis. Mini-
mal bases and maximal nonbases were introduced by Stohr [5] and Nathan-
son [4], and studied further by Hartter [3] and Erdos and Nathanson [1, 2].

Minimal bases and maximal nonbases are examples of sets which oscillate
once from basis to nonbasis or from nonbasis to basis by the deletion from
or addition to the set of a single element. There also exist sets which
exhibit two oscillations. Erdos and Nathanson [2] have constructed a basis A
such that, for any ae A, the set A\{a} is a nonbasis, and, for any
b€ A\{a}, the set (A\{a})U{b} is again a basis. They also constructed a
nonbasis A such that, for any bZA, the set AU{b} is a basis, and, for any
ac AU{b}, the set (AU{b})\{a} is again a nonbasis. But no example had
been constructed of a set which would oscillate infinitely often from basis to
nonbasis to basis to nonbasis...by successive deletions from and additions
to the set of single elements. Such a set can be precisely described in the
following way. Let A be an infinite set of natural numbers, and let S and



172 PAUL ERDOS AND MELVYN B. NATHANSON

T be finite sets such that S A and T< N\ A. Then A is an infinitely oscil-
lating basis if (A\S)UT is a basis if and only if |S|=<|T]. Similarly, let B
be an infinite set of natural numbers, and let S and T be finite sets such
that Tc B and Sc N\ B. Then B is an infinitely oscillating nonbasis if (BU
S)\ T is a nonbasis if and only if |S|=<|T]. Clearly, if A is an infinitely os-
cillating basis, then A\{a} is an infinitely oscillating nonbasis for any ae€ A.
Similarly, if B is an infinitely oscillating nonbasis, then BU{a} is an in-
finitely oscillating basis for any a ¢ B.

Nathanson [4] asked if there existed a partition of the natural numbers
into a minimal basis A and a maximal nonbasis B. This partition would
have the property that A is a basis and B is a nonbasis, but, if any ele-
ment a€ A is moved to B, then A\{a} becomes a nonbasis and BU{a}
becomes a basis. One can ask, further, for such a partition with the addi-
tional property that if any element be BU{a} is moved to A\{a}, then
(BU{a})\{b} becomes a nonbasis and (A\{a})U{b} becomes a basis again.
Indeed, one could wish for a partition of N into a basis A and a nonbasis
B such that, as random elements are moved one at a time from one set of
the partition to the other, the set which is a basis becomes a nonbasis and
the set which is a nonbasis becomes a basis. This is equivalent to requiring
a partition of the natural numbers into two sets, one of which is an in-
finitely oscillating basis and the other an infinitely oscillating nonbasis. The
purpose of this paper is to construct such a partition. In particular, this
proves the existence of infinitely oscillating bases.

THEOREM. There exists a partition of the natural numbers N into two
disjoint sets A and B such that A is an infinitely oscillating basis and B is
an infinitely oscillating nonbasis.

2. A Critical Lemma

The following notation will be used consistently in this paper. If A is a
set of numbers, then the sumset 2A ={a+a’|a,a’e A}. By [M, N] we de-
note the interval of integers x=M M+1,..., N. Let Ni>2Nx-1, where
Ne=2m+1 and nc=2mi is even. The interval [Nk—1+1, Ni] will be di-
vided into the following three subintervals:

Ii=[Ni-1+1, ni], i=[m+1, Ne—Ni-1—1],  I't=[Ne— Ni-1, Nc].

By Ak and Bi (resp. Ak and Bk, A% and B%) we denote subsets of Ik
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(resp. Ik, I') which partition the interval Ii (resp. Ik, I%). Let
I = IkU Ik =[Nx-1+1, N — N1 —1]

and let Ax=ArU A% and By =BiUB}%. Then the sets Ax and Bi partition
the interval Ix and the sets AxUA%Y and BxU BY% partition the interval
[Ni-1+1, Ni].

The cardinality of the finite set A is denoted |A|.

LEMMA 1. Let x€[2P+2, P+ Q+1). Then the number of subsets A of
[P+1, Q] such that xg2 A is less than

(ﬁ):c—zpzo_})ﬂ
> .

Proof. Let Ac[P+1, Q] with x€2A. Suppose x=2x'+1 is odd. We di-
vide [P+1, Q] into the interval [x—P, Q] and the x'—P pairs {r, x—r} with
r=P+1,P+2,...,x". Then A can contain any of the 29 *"P*! subsets of
[x—P, Q). On the other hand, A can contain at most one element from
each pair {r,x—r}, and so there are three choices for the distribution of
each pair {r,x—r} in A (either re A, x—r€A, or réA, x—reA, or réA,
x—ré&A). Therefore, the number of ways to choose A is exactly

J3\x—2P

3x'—P20—(x-P)+1 — 3(x—2P~—1)/220—P+1——(x—2P) < (_2_> 2Q—P+1.

Similarly, if x=2x' is even, we divide [P+1,Q] into the interval
[x—P, Q], the singleton {x'}, and the x'—P—1 pairs {r,x—r}, where r=
P+1,P+2,...,x'—1. Clearly, x'¢ A, and the number of ways to choose A
is exactly

—2pP
x'—=P—1~4Q—(x—P)+1 (x—2P—2)/2~4Q—P+1—(x—2P) _‘/_3 ¥ Q-P+1
3 2 =3 2 < > 2 .

LEMMA 2. Let xe[P+Q+1,2Q). Then the number of subsets A of
[P+1, Q] such that x¢2A is less than

V3\20-x
A o-p
( 2 ) 2
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Proof. Let A<[P+1, Q] with xg2A. Suppose x=2x'+1 is odd. We di-
vide [P+1, Q] into the interval [P+1, x—Q-1] and the Q-—x' pairs
{x—r,r} where r=x"+1, x'+2,..., Q. Then the number of ways to choose
A is exactly

\/3 2Q—x
3Q—x'9x=Q-1-P _ 3(2Q=x+1)/29Q—=P-1-(2Q~x) (_ HQ-P
) .

Similarly, if x=2x" is even, we divide [P+1, Q] into the interval [P+
1, x—Q-1], the singleton {x'}, and the Q-—x' pairs {x—rr}, where r=
x'+1,x'+2,..., Q. Then the number of ways to choose A is exactly

3O—x’2x~Q~I—P= 3(20—x)/220—P—1—(2Q—x) < (?)20—’520*P.

LEMMA 3. Let d=1. Then the number of subsets A of [P+1, Q] such
that

acA and a=Q-d implies a+deA *)

does not exceed

(ZE+2)"

Similarly, the number of subsets A of [P+ 1, Q] such that
acA and a=P+1+d implies a—de A (**)

does not exceed

(EE+2)"

Proof. The interval [P+1, Q] can be partitioned into d disjoint arithmetic
progressions with difference d, each of length at most (Q— P)/d+1. Suppose
that Ac<[P+1, Q] satisfies (*) (resp. (**)). Then A is the disjoint union of
terminal (resp. initial) segments of the d arithmetic progressions, and each
of these segments is determined by its initial (resp. terminal) element, which
can be chosen in at most (Q— P)/d+2 ways. Since there are d progressions,
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the number of Ac<[P+1, Q] which satisfy (*) (resp. (**)) is at most
((Q-P)/d+2)".

LEMMA 4. There exists a constant c¢ such that, given a nonnegative in-
teger Ni-1, then for all sufficiently large Ni =2nc+1 there is a partition of
the interval It =[Ni-1+ 1, N« — Ni—1— 1] into two sets Ax and By such that

(i) Nieg2AxU2Bx
(i) [Nk +1,2Nik —2Ni-1—2—c]=2 A N 2B..

Furthermore, if Ni—1 is sufficiently greater than Ni_», and if there is a par-
tition of the interval Ii—1=[Nk—2+1, Ni-1—Ni_2—1] into two sets Ax_1 and
Bi-1 such that

(ii1)) Nk—1€2Ak-1U2Byk_;
(IV) [Nk_1 + 1, 2Ni-1—2Nyx_,—2— C] <C2Ax-1N2Bk_1

then there is a partition of I into sets Ax and Bix which satisfy (i), (ii), and
also

(v) [Nk_1 +1, Nk..l]c 2(Ax U Ar-1)N2(Bx U Bi-1).

Proof. Let us call a partition Ix = Ax U By permissible if Ni.# 2 Ak U2Bk. Since
I is symmetric with respect to Ni/2, then x € A« if and only if N —x € Bi. Let
I = [Nk_1 +1, nk] and I{= [nk +1, Nk — Ni—1— 1]. Let Ak=AcN I, A=A N ﬁ,

k= Bx N I%, and B} = Bx N I% Then x € Ak if and only if Nx —x € Bk, and x € B

if and only if Nix —x € A¥%. Clearly, if I = Ax U Bk is a permissible partition, then
each one of the four sets Ak, A%, Bk, Bk uniquely determines the other three.
Since A% can be any subset of It =[Ni—1+1, ni], it follows that there are exactly
2™ N1 permissible partitions of I.. We shall prove that for any & >0 there exists
a constant ¢ such that, for all sufficiently large Ni, the number of permissible
partitions of I. which alse satisfy condition (ii) is greater than (1—g)2™ N1,
Moreover, for this constant c, if Ni-1 is sufficiently greater than Nx—» and if there
exists a partition Ix—1 = Ax—1U Bi—1 which satisfies conditions (iii) and (iv), then
the number of permissible partitions of Ir which satisfy both conditions (ii) and (v)
is greater than (1—g)2™ Ne1,

Let ¢ >0, let ¢’ =¢/18, and choose the constant ¢ =2 so that
i (ﬁ)c <g'.

2

t=c
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Let N. =2nm+1, where nx =2mix and mx =2Nx-1+c+1 and also
Y (me+2)t< g2k,
d=1

The proof is in seven steps.
I. Let xe[Nk+c—1, nk+ Nk —Ni—1]. By Lemma 1, the number of subsets
Ak of Ik=[m+1, Nx — Nix—1—1] such that xg2 A% is less than

(ﬁ) x—znkznk*Nk-ﬁ'l
> .

Therefore, the number of AkcIi such that xZ€2A% for some xe
[Nk +c—1, n+ Ny — Ni—1] is less than

mAN N, x—2n, Ni—Nk-1—n
Z o (l/_%) k2nk_Nk—l+l = 2nk—Nk—l+1 ) Z (\/_3.)t <28'2nk-Nk—1

x=Nr+c—1 2 t=c¢ 2

Since each set Ak < Ik completely determines a permissible partition I =
Ax U By, we conclude that the number of permissible partitions with xg2Ax
for some x€[Ni+c—1, ne+ Ni— Ni—1] is less than 2g'2" Ne,

II. Let x€[n+Ni—Nk—1,2Nx—2Ni-1—2—c]. By Lemma 2, the number
of Ak< I such that xg2 Ak is less than

(ﬁ) 2Nk—2Nk—1_2_x2nk——Nk_1
> .
Therefore, the number of A%cIi such that xg2A%x for some xe€
[k + Nk — Nk—1, 2Nk —2Ni—1—2 —c] is less than

2N, —2N,_,—2—c N.—N, _,—n -2

3 2N, —2N, ,—2—x 3\!
(_{2._) 2"&" k=1 == 2"&“Nk—1 Z (}/.2__) < 8’2nk—Nk—-1'
t=c¢

x =ng+Ni—Nik-1

It follows that the number of permissible partitions I = AxU Bi such that

x22Ar for some xe€[nk+Nk—Nik-1,2Nik—2Nk—1—2—c] is less than
8'2nk—Nk-1.

III. Let xe[Nk+1, Nc+c—2]. Then x=Ni+d for some de[1,c—2]. Let

I = Ax U B be a permissible partition such that x£2Ax. Let Ax=ArU Ak,

and let ae A% with a=nc+1+d. Then x—ae€lir=AiLUBk But ae A% and
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x€2Ax imply x —ag Ak. Therefore, x —a € Bk. Since I = Ax U By is a permissi-
ble partition, Nx —(x —a)=a—d e Ak Thatis, Ak<[nc+1, N — Ni—1—1], and if
a€ Ak and a=nc+1+d, then a—de Ak. By Lemma 3, the number of such sets
A’ does not exceed

— Ni_ d
e R
d
Therefore, the number of permissible partitions Ix= AxU Bx such that
xZ2Ax for some xe€[Ni+1, N+ c—2] is less than

c—2
Y (me+2)* < g2 N,
d=1

Combining the results of I-1II, we conclude that the number of permissi-
ble partitions Ii=AxUBx such that xé€2Ax for some xe
[Nk+1,2Ni —2Ni—1—2—c] is less than 4¢2™ M- Similarly, the number of
permissible partitions Ik=AxUBx such that x€2B. for some xe
[Ne+1,2Nc—2Ni_1—2—c] is less than 4¢'2™ ™1, Therefore, condition (ii)
fails to hold for less than 8g'2™ M-1< g2™ M1 permissible partitions of IL.
This proves the first part of Lemma 4.

IV. Let x€[2Nik—1+¢, i+ Nik—1+1]. By Lemma 1, the number of subsets
Al of Ik=[Nk-1+1, nc] such that xg2Ax is less than

(_\/_3)x_2Nk‘12nk—Nk~1+1
) :

Therefore, the number of AicIi such that x€2Ai for some xe
[2Nik-1+ ¢, nk + Ni—1+ 1] is less than

ne+Ny—1+1 \/3
2.

x—2N,_,
i 2nk—Nk_1+1 — 2nk~*Nk_1+1

ng—Ni-1+1 \/3
; |

t
-—2—) <2g"2Mm N,

x=2Nj_1+cC t=c
Then the number of permissible partitions Ik = AxU B such that x#2A, for
some x & [2Ni—1+¢, i+ Ni_1+1] is less than 2&'2" N,

V. Let x€[nc+ Ni-1+1, Ne—c—1). By Lemma 2, the number of Aic I
such that x 22 A is less than

(1_3_)2"*“*2,.,‘_,\,,&,=(1§)”*“1-x2n,‘_m,
2 2
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Therefore, the number of AicIi such that xg2Ai for some xe
[nk + Nik—1+1, N« —c—1] is less than

N, —c—1 N,—1—x Ng—Ng-1—1 ¢
Z (\_/é) 2™ k-lzznk—Nk~1 Z (:/_3.) <8’2"k"Nk—x'

xX=nr+Ni_;+1 2 t=c¢ 2
Therefore, the number of permissible partitions I =AxU Bi such that
x€2A for some x €[+ Ni_1+1, N —c—1] is less than &'2™ N,

VI. Let x€[Nk—c¢,Nv«—1]. Then x=Ni—d for some de[l,c]. Let
I = AxU Bx be a permissible partition such that x£2Ax. Let Ax= AiU AjL,
and let ae Arx with a=ni—d. Then x—aeli=AUB% But ae Ar and
x€2Ax imply x —a & A{. Therefore, x —a € B{. Since Ix = AU By is a permissi-
ble partition, Nx —(x—a)=a+de Ar. That is, Akc[Nk-1+1, nc), and if ae
Ak and a=nc—d, then a+de Arx. By Lemma 3, the number of such sets
Ay does not exceed

— Nu_ d
(-’3'—‘—-1—1+2) <(m+2)%
d
Therefore, the number of permissible partitions Ii =AU Bx such that
x €2 Ay for some xe€[Ni—c, N —1] is less than

Y (me+2)% < g2 N,
d=1

VII. Let x€[2Nx_1—2Ny_,—1-¢,2N,_,+c—1]. Now we suppose that
there is a partition of the interval Ii_;=[Nik—2+1, Nx-1—Nik—2—1] into two
sets Ax-1 and By-: that satisfy conditions (iii) and (iv), and that Ni_;=
2nk-1+1, where ng—1=2mu—; is even, and mx-1=2Nik—>+c+1, and

2N >+2c+1
2mk~l

4

<g.

Then J=[nmc—1—mx-1+1, k-1 +me—1]=[mu-1+1,3mk—1]< Ik—1, and J is sym-
metric with respect to Nx-1/2. By condition (iii) we have Ni—1€2Ax—1U2Bk_1,
and so J contains exactly mi-; elements of Ax—1 and mi-; elements of Bi_i.
Moreover, if ae J, then x —a e If, since x—a <x <nx and

X—a=(2Nk-1—2Nix—2—1—¢)—3mk-1= Nik—1 —2Nk—2—c+ mi-1 = Ni-1+1.
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Let Ik = AxU Bk be a permissible partition such that x€2(AxU Ax_,). If
a is one of the mi_, elements of JN Ax_y, then x—aeli. But x—agAj}
since x€2(AxU Ax-1). Therefore, Ak is a subset of a set with nx— Ni_;—
mi—1 elements, and so Ak can be chosen in at most 2™ Ne1T"-1 ways,
Therefore, the number of permissible partitions I.=AUBx with
xZ2(AxU Ak-1) is at most 2™ Ne-i""™1 and the number of permissible par-
titions I = AU By with x€2(AcU Ax—1) for some xX€
[2Nk-1—=2Nik—2—1—¢,2Ni-1 +c—1] is at most

2N »+2c+1
2"‘& 1

(2Nk—2 +2c+ 1)2"“_Nk~1_'"k .

2nk~Nkv 1 8’2"k—Nk~1_

Combining the results of IV-VII, we conclude that the number of per-
missible partitions I = Ay UBx such that xé&€2(AxUAx-1) for some xe
[2Nk-1—2Nk—2—1—¢, Nx—1] is less than 5&'2™ ™1, Similarly, the number
of permissible partitions Ix = Ax U Bx such that x&2(BixU Bk-1) for some xe€
[2Nk-1—2Nk—2—1—¢, Nc—1] is less than 5¢2™ -1, Combining this with
condition (iv), we conclude that

[Ni-1+1, Nk —1]< 2(Ax U Ac—1) N 2(Bi U Bi—1)

for all but at most 10&'2™ ™1 permissible partitions of I.. Putting together
the results of I-VII, we see that conditions (ii) and (v) fail to hold for less
than 18¢'2™ ™ 1= g2™ M- permissible partitions Ix = AxU Bk. This finishes
the proof of Lemma 4.

CRITICAL LEMMA. There exists an increasing sequence 0= No<N;<
Ny< - and  disjoint  sets Ax and Br  with AxUBi=
[Nk-1+1, Nu=Niern—1]=1c for all k=1 such that, if A*=U%-1 Ax and
B = Uf=1 Bk, then

(i) Nkg2A*U2B* for all k, and

(i1) If F is any finite set of integers, then
x€2(A*\ F)N2(B*\ F)
for all sufficiently large x# N.

Proof. By Lemma 4, there exists an integer N1>0 and disjoint sets A;
and B; with [1,N;—1]=A;UB; such that N;g2A;U2B; and
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[Ni1+1,2N1—2~c]=2A,N2B;. Again by Lemma 4 there exists N,>N,; and
disjoint sets A, and B, with [N1+1, N,—N;—1]= AU B> such that condi-
tions (i), (ii), and (v) of Lemma 4 are satisfied for k=2. We proceed by
induction to construct an infinite sequence of integers 0=No<N; <N, <- - -
and disjoint sets Ax and Bx such that I, = A.U Bx and conditions (i), (ii),
and (v) of Lemma 4 are satisfied. Now set A*=U%-1 Ax and B*=
Uk=1 Bk. It follows from condition (i) of Lemma 4 and the shape of the
intervals I that N, g 2A*N2B* for all k.

Let F be any finite set of integers. Then F<[0, N,] for sufficiently large
p. Let x>Np+1 and x# N, for all k. Then x€[Nk-1+1, Nc—1] for some
k2p+2, and so er(AkUAk_l)ﬂ2(BkUBk_1). But AkUAk_ch*\F and
BiUBx_1=B*\ F since k—1=p+1, and so xe2(A*\ F)N2(B*\ F). This
proves the Critical Lemma.

3. Proof of the Theorem

Let 0=No<N;<N><--- be an increasing sequence of integers, and let
Ax and Bi be a partition of the interval Ix =[Nik-1+1, Nx —Ni_;—1] such
that A*= U%-1 Ax and B*= U%-1 B« satisfy the conclusions of the Critical
Lemma. We shall construct a partition of the natural numbers into an in-
finitely oscillating basis A and an infinitely oscillating nonbasis B with A*c
A and B*cB.

Set I =[Ni— Ni_1, Ni] for k=1. In particular, I''=[Ni, Ni]={Ni}. We
shall construct partitions of the intervals IY into disjoint sets A’X and BY.
Let AT={Ni} and BY7=¢. Suppose that partitions I7=A"%UB" have
been determined for all j<k—1. We construct A% and B¥.

Let p be an integer such that

k—2 k—2
1=p=1+ leA,-|= 1+ ZJB,-}.
i= j=

Suppose that k is even. Choose S< UjZ{ (AjUA%)U{0} with |S|=p, and
choose T< U/ Z(BjUB") with |T|=p—1. Let ae U}={ (A;UA")U{0}. If
acS, put Nc—acA%. If ag$, put Nv—aeBY. Let be UZ{ (BjUB"). If
be TU Bk-1, put Nk—beB%. If bgTU Byx_1, put Nx—be A%. Since the sets
{0}, A;, A, B;, B} for j=1,2,...,k—1 are disjoint and partition [0, Nk-1],
and since the numbers in Ik are precisely those of the form Niy—x for xe
[0, Nk-1], it follows that the sets A% and B partition the interval I%.
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We can count the number of representations of Ni. Clearly, Ni has ex-
actly |S|=p representations of the form Ni=a+a' with a,a'c
Uj=1 (AjU A)U{0}, namely, those with ac S and a'=Ni—a. Also, Ni has
exactly |TU Bix-1|=p—1+nc-1— Ni_> representations in the form Ny =b+b’'
with b, b'e U [~ (B;U B"), namely, those with be TU Bix_, and b'= Ni—b.

Now suppose that k is odd. Choose T#< UK} (B; UB';')U{O} with |T%|=
p, and choose S*c USP(AjUAY) with |S%|= . Let be
U (BBUBMU{0). If be T#, put Nv—beB%. If bg T#, put N —be A%,
Let ae U/ (AjJUAY). If aeS*UAk,, put Nu—ac A% If ag S*U Ax_1,
put Ni—ae B%. This determines a partition Ik = A%U B such that Ni has
exactly |T%|= representations as a sum of two elements of
Uj=1 (BjUB") U{O} and N, has exactly |S*¥UAk_i|=p—1+nc—1— N
representations as a sum of two elements of U;(:l (AjUAY).

We can now partition the natural numbers into two disjoint sets A and
B, where

= Y (AUAD U{0}= A*u( A"’)U{O}
k=1 k=

= U (BeU "')——B*u( u B’;’é).
= k=1
The sets A% and B% are constructed inductively in such a way that, for
every p=1, every pair of sets S, T (where Sc A and |S|=p, and T<B
and |T|=p—1) is used to construct partitions I¥=A¥XUB{ for infinitely
many even integers k, and every pair of sets T#, S§* (where T < BU{0}
and |T#|=p, and $*< A\{0} and |S#|=p—1) is used to construct partitions
I't = AU B for infinitely many odd integers k.

We shall prove that A is an infinitely oscillating basis. Let S be a finite
subset of A, say, |S|=p. Since A*< A, it follows from the Critical Lemma
that all sufficiently large x# Ni can be written in the form x=a+a’ with
a, a'e A\S. If k is odd, then N, has at least |Ax_i|=nx_;— Ni_, represen-
tations in the form Ny =a+a' with a,a’€ A. Since nmc-1—Ni—2>p for large
k, it follows that Ny € 2(A\ S) for all sufficiently large odd integers k.

Let TceB=N\A with |T|=p—1. Let k be an even integer such that
SUT<[0, Nc—2]. Let S’ be the set of those ae U}={ (A;UA")U{0} such
that Nx—ae A%. Then Nig2(A\S) if and only if S'cS. If S'=S and
§'#S, then |S'|<p—1. From the construction of A% it follows that A% con-
tains all but at most p—2 of the integers of the form Ni—b with be
UJ<? (B;U BY). Therefore, if T< Uf<f (B;UBY) and if |T|=p—1, then Nve
2((A\SY U T.
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Suppose that §'=S. Let T’ be the set of those be U;-{ (B,UB") such
that N —bZA%. Then |T'|=p—-1 by the construction of A%, and Nie
2(A\S)UT) if and only it T'#T. However, since the pair of sets S, T
was used to construct the partition I'x= AU BY% for infinitely many even in-
tegers k, it will happen for infinitely many even k that S=S' and T=T",
and so Nig2((A\ S)U T). Therefore, (A\ S)U T is a nonbasis if |T|<|S]|.

On the other hand, if |T|=p=|S|, then T'#T and Ni.e2((A S)UT).
Therefore, (A\S)UT is a basis if |S|=<|T|. This proves that A is an in-
finitely oscillating basis.

Since the sets A and BU{0} were constructed by the same method, it
follows that BU{0} is also an infinitely oscillating basis. But 0 B, and so B

is an infinitely oscillating nonbasis. This proves the Theorem.
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