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Eigenvalue Inequalities for the Dirichlet Problem on Sphères
and the Growth of Subharmonie Functions

S. Friedland and W. K. Hayman

1. Introduction

Let u be a subharmonie (s.h.) function in Rm, i.e.
(i) -oc&lt;W(jc)&lt;+oe

(ii) u(x) is upper-semicontinuous (u.s.c.) and
(iii) for every xoe Rm, u(x0) does not exceed the average with respect to

spherical measure of u(x) on the hypersphere |x-jco| r.

Consider the set

ER(K) {x\u(x)&gt;K,\x\&lt;R}.

This set is compact, since u(x) is u.s.c. and so can be divided into a
number of components, Cr(K) which are continua or points. In a récent
paper Talpur [13] has proved the following 3 facts about thèse components.
(a) Each Cr(K) meets the boundary |jc| jR.

We only consider those components which contain at least one point jc0 in
|jco|&lt;jR, where u(xo)&gt;K. Such components will be called thick. Talpur [13]
has shown that thick components necessarily hâve positive m-dimensional
measure and thus their total number is finite or countable. He has also
shown that there can be non-countably many thin components on which
u(x) K, but that if u{x) has such a thin component, with a point x0 in
|*o|&lt;2?, then either u(x) K in \x\&lt;R, or u(x) has infinitely many thick
components.
(b) If v(x) is defined as follows

v(x)= u(x) in a component CR(K)

v(x) K elsewhere,

then v(x) is s.k in \x\&lt;R.
Let x0 be a point of Rm, such that u(xo)&gt;K, and let CR(x0, K) be the

component of ER(K) containing xo. Then evidently CR(x0, K) expands with
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increasing R. We define

C(K)=C(xo,K)= U CR(xo,K)
R&gt;\xo\

to be a limit component. Evidently two points xi, x2 for which u{x})&gt; K
belong to the same limit component if they belong to the same component
Cr(K) for sufficiently large R. Two limit components are either identical or
disjoint. We dénote by N(K) the total number of limit components, which

may be either finite or +00. Since each component Cr(jco, K) and so also

C(xo, K) has positive measure, it follows that the number of limit components

is at most countably infinité.
We now define

B{ry u) supu(x). (1.1)
\x\ r

The quantity

ix hm înt

is called the lower order of u(x). Then Talpur [13] has proved
(c) If u(x) is bounded above with least upper bound Kq then for K&lt;K0 there

exists exactly one limit component C(K). If u(x) is not bounded above, but
has finite lower order /x, then u(x) is unbounded above on every limit
component C(jco, K).

We suppose henceforth that u(x) is not bounded above but has finite
lower order /x. If /u, +oo ail our results will be trivially true. It then follows
from (c) that if Ki&lt;K2 each limit component C(K\) contains at least one
limit component C(K2). Thus N(K) is a monotonie increasing function of K.
We define

N= lim N(K)

to be the number of tracts of u(x). In fact the limit N also exists if u(x) is

bounded above by K2 say on some component C{K\). For in this case it
turns out that u(x) is unbounded above on every C{K) for K&gt;K2 [13].
Thus the limit N still exists.

Let /(N, m) be the greatest lower bound of ail lower orders jx of sub-
harmonic function in jRm having at least N tracts. Our aim in this paper is
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to obtain good lower bounds for l(N,m). It will turn out that 1(2, m) l, so
that unbounded functions of order jll &lt; 1 always hâve exactly one tract.
Thus it is possible to obtain a non-trivial lower bound only when N&gt;2. We
shall also see that /(N, m)-» oc as N-^oc uniformly in m, so

/(oc, m) -foo.

Thus we may assume that 2&lt;N&lt;oo? 2&lt;m&lt;oc.

2. Known Results

Suppose first that m=2. In this case the problem was solved by Heins
[8], who proved

THEOREM A. We hâve /(N, 2) èN.

This resuit of Heins represents a généralisation of Ahlfors&apos;, theorem on
asymptotic values. In fact if f(z) is an entire function with N distinct
asymptotic values, where N^2, then it is easy to see that m(z) log|/(z)| is
s.h. in R2 and has at least N tracts, so that by Theorem A the lower order
/x of f(z) is at least {N. For m 3 Talpur [13] proved

THEOREM B. Z(N,3)&gt;Î7oV(N-l)-i where /O==2.4048 • • • is the first
zéro of Besseïs function of order zéro.

For m&gt;4, the best resuit is due to Dinghas [5]

THEOREM C.

{/ 1 \2 } 1/2

C2m0m(^j +(m-2)2J N^2, m &gt;3.

Hère

{
^j (m-3)/(m-l)

07n~lJ

(Tm 27ril/2)m/rém) (2.1)

&apos;s tfie (m-l)-dimensional measure of the surface of the unit-sphere Sm in
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Rm, and

It should be said that Dinghas did not state his results in the above gen-
erality, but only for certain harmonie functions. However his proof can be

extended to the gênerai case, using a technique of Huber [9].
Ail the above results, as well as our own use a difïerental inequality

technique, which in the case m 2 is due to Carleman [3] and was
extended to the case m 3 by Keller [10] and the gênerai case by Dinghas
[4] and Huber [9]. It was Huber who removed the hypothesis on smooth-

ness, which other authors needed, by an approximation technique. We now
proceed to describe Huber&apos;s key resuit on which ail subséquent work includ-
ing our own has been based.

In order to do this we define, following Huber, the characteristic
constant a(E) of a set E on the unit sphère

in Rm. Suppose that E is an open set. Let $(E) be the class of functions
which are Lipschitzian, nonnegative and not identically zéro on Sm and

which vanish outside E. Let

[|grad/|2dcr

À(E)= inf — (2.2)

J l/l2 da

where da dénotes (m-1) dimensional measure on Sm and grad/ is the
gradient, i.e. maximum directional derivative on the surface of the sphère.
Huber notes without proof that if E is suitably smooth, this infimum is ob-
tained for the solution of the Laplace-Beltrami équation

F/+A/=0

on E, where \ \(E) is the lowest eigenvalue of this équation. However we
shall use this resuit only in a very spécial case, when we can give a simple
proof (Lemma 1).
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The characteristic constant a(E) is defined to be the positive root of the
équation

a(a + ra-2) À. (2.3)

If E is a gênerai compact set on Sm, such that E and the complément of E
are not empty we define a(E) to be the upper bound of a(D) over the
class of ail open sets D containing E. Finally if E is a gênerai set, then
a(E) is defined to be the lower bound of a(F) over compact sets F con-
tained in E. Thus a(E) is now defined for ail measurable sets E on Sm and

a(E) is a decreasing function of E, i.e. if Ei c: E2 then a{Ei)&gt;a(E2).
Finally if E is a set on the sphère |x| -R, let Ê be the projection of E

on |jc| 1. In other words Ê consists of ail points x/|x|, where xeE. Then
we define a(E) a(Ê).

Suppose now that u{x) is s.h. and non-negative in |x|&lt;.R. Let D(r) be

the intersection of the set w&gt;0 with |jc| r and let a(r) be the characteristic
constant of D(r). If D(r) has (m-l)-dimensional measure zéro, it follows
from Poisson&apos;s inequality that u(x) 0 for |x|&lt;r. We suppose that u(x)&gt;0

for some x in |jc|&lt;-R, so that D(r) has positive measure for ro^r&lt;R say.
We now set

m\r) m\r, u) l—x f u\x) dco(x), (2.4)
crmr jD(r)

where (o(x) dénotes surface area on |x| r, and crm is given by (2.1). Then
Huber [9, p. 112] proved the following fundamental convexity theorem.

THEOREM D. We hâve with the above hypothèses

exp \l f &quot;a(t)^]pm^ dp, ro&lt;r&lt;R
l Jr0 t

where

Cb=rg-mfr— m2(r)rm-2} &gt;(m-2)m2(r0).
l dr )r r0

COROLLARY. //m&gt;3 and 2ro&lt;r&lt;R, we hâve

1 rrd/2)r dA
m(r) ~7/2 m(ro) exp l J a(r) 7J
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The corollary follows at once from the main resuit. In fact we hâve in this
case for ^&gt;r&lt;p&lt;r

f fp dt) f f(1/2)r di\
exp|2 a(f)—}&gt;expj2 a(t)— \ B say.

l Jro t { Jr0 t

Thus

Jd/2)r (m-2)

Thus

£m2(r0)

and this proves the Corollary. We shall in gênerai assume m&gt;3 in the se-

quel since Theorem A solves our main problem for m 2.

3. Statement of our Résulte

We can now return to our problem. Suppose that u(x) is s.h. in Rm and
has at least N tracts there. Then for some positive K the set u(x)^K has

N limit components Ci to CN, each containing a point x} such that
u(x,)&gt;K.

We now choose

max Ijc.I
/ 1 to N

and define the functions Vj(x, R) as follows. Let C7(K, R)&apos; be that compo-
nent of u(x)&gt;K in |jc|&lt;JR, which contains x}. We define

Vj(x, R) u(x)-K, xeCj(x, R)

Vj(x, R) 0, elsewhere.

By (b) of section 1, v}(x, R) is s.h. in |jc|&lt;jR. Let

j(r, R) supi;;(jc, JR), ro&lt;r&lt;R.
|x|«r
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Let a,(r, R) be the characteristic constant of Q(K, R)D(\x\ r). It follows
from Theorem D, Corollary that

f(1/2)r dt
B}(r, K)-|m;(r0, R)exp\ a}(uR)-, (3.1)

Jr0 t

where

?(ro, R) ^T f (u
crmro Jc;(K,R)n|x| r0

(x)-Kfdcr(x).

Since Q(K, R) expands with increasing JR it follows that we can replace .R

by any smaller number without destroying the inequality (3.1). In particular
we may replace R by 2r0. We deduce that

BAr, R)&gt;C,exp\\ aj(t,R) — \, R&gt;r&gt;2r0,
Uro t)

where the constants C, are independent of R and positive. Thus

^ ll/N f f&lt;l/2)r | N j^IlA(a) ^Coexp -Ia;aR)-, 2ro&lt;r&lt;,R,
l;=l J Uro i\j l l J

where

Cb l

is again independent of 2?. Thus if B(r, w) is defined by (1.1), we deduce

U(1/2)rl ^ rfrl
~X «y(f,K)yj, ro&lt;ïr&lt;R. (3.2)

We note that the a;(f, K) are characteristic constants of mutually disjoint
sets. In order to achieve good lower bounds for B(r, u) we proceed to ob-
tain lower bounds for such characteristic constants. A fundamental resuit was

recently published by Sperner [11].

THEOREM E. Among ail sets E with given {m-iydimensional surface

area amS on the unit sphère in Rm, a spherical cap, Le. a set of the form
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^1, has the smallest charactenstic constant a (S, m) Hère O&lt;S&lt;1 and

c, S are related by the équations

* — I

CTrn Jo
(smt)m2dt, c cos(f&gt;, O&lt;0&lt;77 (33)

We deduce

THEOREM 1 Let a(S, m) be the functwn defined in Theorem E, and

suppose that

a(S, m)&gt;

where 4&gt;(S) is a convex decreasing functwn of S Then

The idea of this resuit was used by Dinghas [5] and Talpur [13] for their
proof of Theorems B and C It might be désirable to prove that a (S, ni) is

îtself a convex function of S, but this seems hkely to be difficult We can
however obtain vanous inequalities We note

THEOREM 2 The quantities a(S, m) for fixed S and l(N, m) for fixed N
are monotonie decreasing functions of m

In view of Theorem 2 we may consider the function

a(S, oo) hm a(S, m)

and try to obtain a convex lower bound for this We will then, in view of
Theorem 1, deduce a lower bound for l(N, m) which is independent of m
Our resuit is contained in

THEOREM 3 We hâve a(S,&lt;x&gt;)^&lt;f&gt;ao(S), where

(3 4)

.2(1-S), !&lt;S&lt;1
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lience we hâve, for ail m, 1(2, m)= 1, /(3, m)&gt;f,

/(N, m)^ilogf-J+i JV&gt;4.

COROLLARY. // u(x) is s.h. in Rm then either ail the sets u(x)&gt;K are
connectée in Rm or else

liminf^-^X).

The function \x\\ shows that this limit need not be infinité.

The resuit of Theorem 3 gives the right order of magnitude for /(N, m)
when the order of log N is not greater than that of m. In fact if we choose

u — \x\ x2 - • • xm\, we see that for K&gt;0 the set u&gt;K has N=2m compo-
nents, while the order /ll of u is just m. Thus

log 2

while Theorem 3 gives for ail m

When log N is large compared with m we can also obtain the right order of
magnitude.

THEOREM 4. We hâve a(S, m)&gt;&lt;t&gt;m(S) and hence

where &lt;f&gt;m(S) 2(1 -S), for £&lt; S&lt;1 andforO&lt;S&lt;i we hâve

l/(m-l) ]fèj (3.5)

l 1\1/2 1

j
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AlSO

(3.7)

Hère jk is the first zéro of Bessel&apos;s fonction of order /c=|(m-3), and in par-
ticular /0 2.4048 • • • Also

dm=-

For m 2 we obtain the classical resuit of Heins [8]. The results for m ^ 3

sharpen the previous bounds of Talpur [13] and Dinghas [5], particularly
when N is small. We shall also in Theorem 5 obtain a more précise bound
for l(N, m) when m 4. It is shown elsewhere that [2,6]

N=&gt;2m,

and in fact a little more. We note that [1, p. 371]

;k~fc~èm, d\Lim-l)-»h

as m —&gt; oo. Thus Theorem 4 gives

/()l}, N&gt;2m

where em —&gt; 0 as m -» oo, and so we still obtain the right order of
magnitude for l(N, m) when N&gt;2m.

In fact thèse remarks probably underrate the accuracy of the above
results. Thus one of us has sketched elsewhere [6] an example to show that

2

when N is large. This compares with Theorem 4 which yields

/(N,3)&gt;i/o(N-à)1/2H
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4. Proof of Theorem 1

In order to prove Theorem 1 we use the inequality (3.2). Let
crmrm&apos;1 Sj(r, R) be the (m-l)-dimensional area of Ç)(K, K)fl(|jc| r). Since
the C,(K, R) are disjoint for différent y, we deduce that

Let a,(f) be the characteristic constant of Q(K, R)D(\x\ t). Then we
deduce from Theorem E, that

a,(t)&gt;a(S»m)9

where S7 S;(f, R) and a (S, m) is the function of Theorem 1. Thus

N N N

1

Now since ^&gt;(S) is a convex decreasing function of S, we deduce from Jen-
sen&apos;s inequality that

Thus

Writing a}(ty R) instead 6f a}(t) and substituting in (3.2) we deduce that

O&apos;(1/2)r
/l\di*(n)t

(4.1)

where a &lt;£(l/N). Since Co is a positive constant and this inequality holds

for ail large r, we deduce that u has lower order at least a. This resuit is
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true for any s.h. function u having at least N tracts and Theorem 1 is

proved. In fact (4.1) shows a little more namely that £(r, u) has at least

positive lower type of order cf)(l/N) in this case.

5. Proof of Theorem 2

It is fairly clear that l(N, m) is a decreasing function of m for fixed N.

In fact suppose that m(jci, jc2, xm) is a s.h. function in Rm having N
tracts and lower order À. We then define

V(X\9 X2,..., Xm+l) U(XU *2, Xm).

Then v(x) also has JV tracts, since any continuum in Rm+1 on which v^K
projects onto a continuum in Rm, where u&gt;K. If there exist N points
fO) (x(iJ), ..,x(^), such that u(Ç3)&gt;K, but no pair £(l), £(/) for iïj can be

joined by a continuum on which u^K, then two points (jcV*, jc(m\ 0) for
différent j cannot be joined by a continuum on which v ^ K.

Further v has the same order as u. For

B(R, v) sup v(x) sup w(x) B(JR, u),
2 2 2 2 22

since B(R, u) increases with R. Thus i; is a competing function for the class

defîning l(N, m + 1) and so

Since we may choose A as close as we wish to /(N, m), we deduce

/(N, m + l)&lt;J(N, m).

Before we can continue with the proof of Theorem 2, we need to con-
sider more closely the extremal functions in Theorem E. In fact Sperner

proves a little more than is stated in that theorem. He shows that given any
function fe$(E), where §f(f:) is the class defined in connection with (2.2),
then there exists a symmetrized function /* on Sm, depending only on xi
and belonging to $(£*), where E* is the sphericai cap c&lt;xi&lt;l, having
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the same area as E. Furthermore

and

Thus in order to find the minimum value of \(E) for sets E of given area
it îs enough to consider spherical caps and functions on them which dépend
on xi only.

It is convenient to write ;ci=cos0, and assume that E E(6o) takes the
form O&lt;0&lt;0O. We then write f f(6). Since /eg(E), it follows that f(6) is

Lipschitzian and in particular absolutely continuous in [0, tt], /(0) O,

0O&lt; 0&lt; il. It is clear that the spherical area &lt;x(0o) of E is given by

(sin
Jo

so that the proportionate area is

where crm is given by (2.1). Thus

[(grad ff da [ °f(0)2 (sin 0)

\fda I

m~2 ci0

(5.2)

/(0)2(sin0)m~2d0

We thus need to find the minimum value of /(/) over the class of functions

described. The technique for this is classical. We state the resuit in

LEMMA 1. For ail functions f(6) which are Lip in [0, tt], not identically

zéro, but such that /(0) O, 0o^0^7r, where O&lt;0o&lt;7r, we hâve J(/)&gt;

J(F) A, wfiere w (sin 0)(1/2)(m~2)F(0) w a solution of the differential équation

d2u f w ^x2 (m-2)(4-m)]
+ |A+K»n2)&apos;+ )» 0- (5.3)
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and the positive nwnber À is so chosen that F remains analytic at 0 0,
F&apos;(0) 0, F(0O) 0 and F(0) &gt;0 for 0&lt; 6 &lt; 00.

We note that (5.3) can also be written as

-^(sin 0)m~2F&apos; -À(sin 0)m~2F (5.4)
du

or

F&quot; + (m-2)cot0F&apos; + AF=O. (5.5)

Thus F is Legendre&apos;s function.
It follows from standard results on Legendre-functions, that for given

positive À a solution F(6) exists which is positive at 0 0 and has at least

one zéro in (0, tt). Then 0O 0o(A) is the smallest zéro of this function. Also
if m ^3, 0o decreases continuously from tt to 0 as A increases from 0 to &lt;».

Thus for each 0o there exists exactly one corresponding A, and A is a con-
tinuous function of 0O. Thus the function F(0) exists.

Next we write p(0) (sin 0)m~2 and obtain from (5.4)

p(0)F&apos;(0)2 dO [F(O)p(O)Fr(0)]o°- F(0)-—{p(0)F&apos;(0)} de

A p(0)F(0)2d0,
Jo

so that J(F) A.

To prove that /(/)&gt;/(F), suppose first that / vanishes for O^Oi, where

0i&lt;0o. We hâve, using (5.4),

This holds whenever /&apos; exists, i.e. almost everywhere in [0, 0J. Also since /
has a bounded derivative, the right hand side is the derivative of an abso-

lutely continuous function, which vanishes for 0 0, and 0&gt;0i. Thus we
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may integrate both sides from 0 to 0O and obtain

0t u J 0

This proves the Lemma if f(6) 0 for 0&gt;6o-e, for some positive e In the
gênerai case we apply this conclusion to f(t6), where f&gt;l and allow t to
tend to one This proves Lemma 1

We also note

LEMMA 2 Suppose that (jci, X2, xm) is a point in Rm, and r, 6 are
defined by \x\ r, rcos0 Xi, where O&lt;0&lt;tt Then if F(6) is the function
of Lemma 1, v raF(6) is harmonie and positive in the cône C gwen by
0 &lt; 6 &lt; #o, and zéro on the boundary of C, where a, À are related by (2 3)

In fact the harmomcity of v is équivalent to the équation (5 5) The
other properties are obvious We deduce

LEMMA 3 Suppose that O&lt;S&lt;1 and $i(S) is the class of functions v,
s h in Rm and such that the intersection of the set v&gt;0 with the sphère \x\ r
always has area and at least o-mSrm Then the minimum of the lower orders of
ve^i(S) is precisely a, where A is gwen in terms of 60 by Lemma 1, S, 0O

are related by (5 1), and a, À are related by (2 3)

It follows from Theorem E and Lemma 1, that if a, A are related by
(2 3), then the charactenstic constant of the set i;&gt;0 on \x\ r is at least a
Thus in (3 1) we may take ; 1 and a;(f, R)&gt;a and this gives

B(r,R)&gt;Cra

This shows that the lower order of v is at least a On the other hand
Lemma 2 shows that this lower bound is attamed by the function raF(6)

We can now prove that

a(S9m+l)&lt;a(S,m) (5 6)

Let v be the function of Lemma 2 and set v 0 outside the cône C Then

evidently v is s h in Rm We now define

JC2, Xm + i) V(XU *2, *m)
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for ail points in Rm+\ Clearly V is s.h. in Rm+l and has order a a(S, m).
Also to obtain the m-dimensional area of the intersection of V&gt;0 with
|jt| r, we consider the (m — l)-dimensional area for fixed xm+i and integrate.
This (m —l)-dimensional area is for every jcm+i, precisely 5 times the area
of the whole (m —1) sphère given by

2 + * * &apos; Xm— r — Xm+l.

We deduce that V&gt;0 meets the m-sphère |x| r in a set of ra-
dimensional area precisely Scrm+irm, while V has lower order a. Thus by
Lemma 3

&lt;*(S, m) a&gt;a(S, m + 1).

This proves (5.6) and complètes the proof of Theorem 2.

6. Proof of Theorem 3

Our proof of Theorem 3 dépends on [7].

THEOREM F. Let Ji«(jc) dénote Hermite&apos;s fonction, so that

satisfies the differential équation

^-f+(a+|-|jc2)F=0 (6.1)

and F(0)/F(0) -21/2r{(l-a)/2}/r(-a/2). Let h h(a) be the largest real

zéro of E Then if

dt, (6.2)

we hâve

a &gt; MS), (6.3)

where &lt;MS) is given by (3.4).
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We note that if /la is a positive integer, then H^(t) is a polynomial. In par-
ticular Hi(t) ty H2(f)=l-2f2, H^t) t-2t3/3, etc. Thus

We hâve not been able to give an analytical proof of (6.3) and in certain

ranges it has been necessary to verify the resuit by computer. We pro-
ceed to show that if a,S are related as in Theorem F, then a(S,&amp;&gt;) a(S).

To see this we set

7T h 1T

and we obtain from (3.3)

•tt/2

2~ I (Sin
dm

where

x ^Vm-i 1 r{\(m)} (1/2)fm= — 1/2 -pTTT 7TT~(27r) &apos; as m-&gt;oo
crjm 7rl/zjm r{|(ml)}

Also for bounded x we hâve

/ X \m~2 f / X
cos —— =exp|(m-2)log(cos——

O(l)l

Thus as m —» o°, while fi remains fixed we see that

which is (6.2). Again if
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is the fonction of Lemma 1 we see that as m-&gt;&lt;»

x \(l/2)(m-2)

The differential équation for u in terms of x becomes, in view of (5.3) with
x instead of 0

d2u 1 f i/ ^2 (m-2)(m-4)l-j^*- À+|(m-2)2-^ 2;\ /U Q.
djc ml 4cos (x/Jm) J4 cos (x/y/m)

Writing À a(a + m-2) and neglecting terms of order 1/m we obtain

d2w /
dx2 \

1 x2 O(l)\
a +— + )u 0.

2 4 m /

Thus if we multiply u by a suitable constant cm, the limiting function will
certainly satisfy (6.1), where we hâve written x instead of f, provided that
the limiting solution is chosen so that F and its derivative remain bounded
and do not both vanish at x 0. To see this we require a Lemma which
describes the behaviour of Fm{t) near t 0.

LEMMA 4. Let F(d) Fm($9\) be the function described in Lemma 1.

Then at any rate for m ^ 6 we hâve

r(\a +\mka + (m -1)/2)
r(}a)r&amp;a + (m2)/2)

{ &apos;
&apos;

Fm(7r/2)

(In fact the resuit is true for ail m, but we do not require this.)
We write c cos0 and express the équation (5.5) in terms of c. We

obtain

(6.5)
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The solution is analytic at c 0 as a function of c and so we obtain a séries

expansion for F. We write F(0) g(c), where c cos 6 and obtain

The équation (6.5) leads to

m-2)-\ {n-a){n + a + m-2)

since À a(a + m — 2). We write

Then the équation (6.6) takes the simple form

bn+2 — bn-

Thus bn bo if n is even, fcn 61 if n is odd and our expansion takes the
form

d2vc2

where

w1/2)(m-5)

Suppose now that Then, since m&gt;6 by hypothesis,

d2V+i — d2v-* +00, as 1/—&gt;oo.

Thus as c -&gt; 1 -
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However we know from Lemma 1 that F remains bounded as 0—&gt;0, i.e. as

c-&gt; 1-. Thus bo+bx=0, and

FUW2) g&apos;(Q) di r(\-ïa)réa+Hm- p)r(è)r(i)
Fm(7r/2) g(0) do r(

This yields Lemma 4.

We now let m —&gt; oc for fixed a and express F as a function of
x Vm(7r/2— 0)~Vm sin (tt/2-0) c\Im, where c cos0 as in the previous
Lemma. Then if Fm(t) h(x), we deduce that

g(0)

MO)

Thus Foc(x) limm_&gt;ocFm(&apos;7r/2-x/v/w, a(a+ m-2)) has the behaviour de-

scribed in Theorem F. In particular F(x) satisfies (6.1) and has the right behaviour
at jc O. Thèse conditions détermine F(x) uniquely, and so F(x) is the function

given in Theorem F, apart from a multiplicative constant. Also for
given a we see that F^O, provided that x&gt;h(a) and in particular for S

S(x) not satisfying (6,3).
We deduce that

aoo(S)= lim a(S, m)

satisfies the inequality (6.3) for a and this proves the first part of Theorem
3. Evidently &lt;MS) is convex for O&lt;S&lt;1 and, in view of Theorem 2,

a(S, m) ^ &lt;t&gt;oo(S), m 2, 3,....

Hence Theorem 1 shows that

and this complètes the proof of Theorem 3.
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We note in particular that ^00(2) =1 and so /(2, m)&gt;l for ail m Smce the
function |xi| shows that 1(2, m)&lt; 1, we deduce that 1(2, m) 1 for ail m

In fact (4 1) shows that with the hypothèses of Theorem 1, we hâve

lim inf —— &gt; 0 where a é[ — I

r—* r \N/

Now the Corollary to Theorem 3 follows with N 2, a 1

7. Further Estimâtes for a (S, m), and l(N, m)

Theorem 3 gives quite good results when S îs not much smaller than
1/m, or logN îs not much bigger than m and m îs large In other cases we
can obtain more précise bounds

In order to obtain such bounds for a(S, m) we employ Lemma 1 We
note first that a(S, m) îs given by (2 3), 1 e

a(a + m-2) À, (7 1)

where A îs so chosert that the smallest positive zéro 60 of the function u

satisfying (5 3) and w(0) 0 îs such that the sphencal cap, 0&lt;0O, just
satisfies

dt (72)

The resuit remains true for m 2 if we wnte n&apos;(0) 0, instead of w(0)

The équation (5 3) reduces in this case to

07 3)

so that u cos(a6), and 0o=ir/(2a) Also (7 2) gives S 60/7r Thus in this

case a l/(2S), which îs (3 7) Since 1/(2S) îs îtself a convex function of S

we obtain from Theorem 2 that
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which is Theorem A. The functions u r(1/2)N |sin (jN6)\, which hâve N
tracts and order \N show that this resuit is sharp, i.e. l(Ny 2) |N.

Another case when we can evaluate a(S9 m) exactly is the case m 4. In
this case the équation (5.3) reduces to

so that u sin{(a + l)0}, a tt/Oq—I. Also (7.2) reduces to

so that

2tt
sm —. (7.4)

a + 1a + 1 2tt a + 1

This équation gives a a(S, 4) in ternis of S. In this case we can again
show that a is a convex function of S. We note that

dS 1 2tt \— -^(1-cos &lt;0, 0&lt;a&lt;oo.
da + l)2V + 1/

\
&lt;0,

1/

Also

d2a d x da d x
S&quot;(a)

dS dS dS da S (a)

Thus a (S, 4) is convex since

2 27r\\ 2tt
da2 (a + l)3l \a + l/J (a + 1)4 a:

We deduce that we may take &lt;f&gt;(S) a(S, 4) in Theorem 1. Thus

/(JV,4)&gt;aN,
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where aN is the solution of the équation

11 2ir 1
- —-—sin-sin(n &lt;n

Since a(S, m) is monotonie, we also deduce

THEOREM 5 The funetwn a a(S,4) is gwen by the équation (7 4).
Hence

/(N,3)&gt;/(JV,4)s&gt;aN,

where aN is gwen by (7 5)

We note that

r f2^1/3_!.
3 i - ¦ -v- A as N-»oo (76)

To obtain (7 6) we wnte f 27r/(ajv + l) and deduce that

f-sin r :

Thus

:-r+O(r), r
6

T2\A 1/3

which is (7.6).
Prof J. G Wendel has kindly calculated the value of «n for us, when

16. He obtams&apos;

N

2

1

3

141167
10

4

1 72013
11

5

1 97339
12

6

219110
13

7

2 38336
14

8

2 55718
15

9

2 71583
16

aN 2 86241 2 99898 3 12708 3 24791 3 36243 3 47158 3 57541

Table 1
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In the opposite direction we note that

(7.7)

In particular 1.4116&lt;/(3, m)&lt;1.5 for m 3, 4 while Theorem 3 yields

|&lt;/(3, m)&lt;§, m&gt;5.

It seems quite possible that 1(3, m) \ for ail m. We can divide the sphère
in R3 into four congruent equilateral spherical triangles and this configuration

probably yields the extrême functions for 1(4,3). For large values of N
and m&gt;2 the inequality (7.7) is certainly not sharp. Thus the function
&quot;i |*i *2 X3I in 3 dimensions is s.h. and has 8 tracts so that

2.5571&lt;/(8,3)&lt;3.

Again in 4 dimensions we may set x\ + ix2 ne1*1, x-i+ ix4= r2e102 and

u2 r]l2r22\sm(\ei)\ |sin (§02)|. The function u2 is certainly s.h. in R4 since it
is continuous and harmonie at ail points where u2 is positive. For at such

points we hâve

d2li2 d2U2 _d2U2 d2U2

dxi dX2 dX3 dX4

But U2 has 9 tracts and order 3, so that

2.7158&lt;/(9,4)&lt;3.

The function 1*2, unlike u\, is not the modulus of a harmonie polynomial
and suggests that harmonie polynomials may not yield extremal examples for
l(N, m) in ail cases. In fact it seems reasonable to conjecture that the
harmonie polynomials referred to above [2] hâve the maximum possible number
of tracts for given degree and for thèse polynomials the maximum number
of tracts for degree N is certainly 2N, if the number of variables is allowed
to be arbitrary.

We note in particular that U3 \x\ X2 X3 x4 has 16 tracts and order 4, so

that

3.5754&lt;/(16,4)&lt;4.
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8. Proof of Theorem 4

When N îs large we can obtain convenient bounds for a (S, m) from the
Sturm-Liouville theory We note that

sin

and so

l—=f l
i2 0 nét^Kd + mr/

$in2d 02/ TlW- (si)

Thus, as 0 increases from 0 to tt/2, (sin 0) 2-0 2
increases from \ to

1-4/tt2 Hence

11114 tt
i &lt;r^* &lt;- i i r\ &lt;r- /j &lt;-¦

62 3 sin20 02 7T2 2

Since 0 0, 0o are successive zéros of a solution of the équation (5 3) ît
follows(1) that we obtain lower and upper bounds for 0O by replacing

m-2) +- 0} 4 sin2 0

by a smaller or larger function We shall assume 0o&lt;7r/2, which corresponds
to 5&lt;] Also the equation(2)

d2v
de2&apos;

has a solution v 01/2A(c0), where Jk(6) is BesseFs function of order k

We recall (7 1) and define

m 1^ *u (m-2)(4-m)_1 2

=5(m-3), so that -4-fc

(1)See eg [12, p 19]
(2)Ibid p 17
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Then if

(8.2)

0o lies between the first zéro of A(ci0) and Jk(c2O), i.e. 0o lies between

jjci and jjc2, where jk is the smallest zéro of Jk(6). If m 4, fc |,
Ci c2 a +1 and ;1/2 tt. If m 3, k 0 and

c? a2 + a + i cI ol2 + ol+\-\, ;0 2.4048-••
7T

Also from (7.2)

20o

Thus

since (sin|0)~2-(|0)&quot;2 increases with 0 for O&lt;0&lt;tt/2. Thus

and

This yields (3.6) and improves slightly Talpur&apos;s Theorem B. We may again
apply Theorem 1, since &lt;f&gt;3(S) is convex and decreasing and deduce

-i= 1.2024- • .(N-è)1/2-i (8.3)
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Finally we turn to the case ra&gt;4. We note that by (7.2)

S ^^ (sinf)m-2dfariZi (ùntrcostdt
(Tm h crr

(m-\)crn

Thus

(singer-1.

u a
/ sin 0o (m-l)orm 2tj

We also recall that by (8.1)

/ 1 \2 /1\2 1 1
I—— — (-1 and hence also -:\sin// \t/ sm t t

increases with increasing t for 0 &lt; t ^ tt/2 and so

1 1.212 ^ „ tt
sin do Bo 7r 0o 5 2

Again we noted earlier that

°~&quot;ci&apos;

where ci is given by (8.2). Thus

Thus, since m ^4, we deduce that

a ]k\~s) -^
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This proves (3.5) and concludes the proof of Theorem 4, since the nght
hand side of (3.5) is clearly a convex decreasing function of S. For com-
pleteness we include a table of the quantity

pN=l.2024(N-ï)m-i

which by (8.3) gives a lower bound for /(N, 3). We are indebted to Prof. H.
L. Montgomery for the calculations.

N

N

2

0 97263
10

3

1

1

40116
1

4

1 74948
12

5

2 05068
13

6

2 31988
14

7

2 56553
15

8

2 79291
16

9

3 00557

j3N 3 20605 3 39622 3 57754 3 75113 3 91790 4 07860 4 23385

Table 2

We note that j8n&gt;«n, for N&gt;4. The table also shows that a s.h. function
of lower order 2 in R3 and in particular the modulus of a harmonie

polynomial of degree 2 in 3 variables can hâve at most 4 tracts, since

/(5,3)&gt;2. This bound is sharp as the polynomial x\ xi shows. Similarly the
modulus of a polynomial of degree 3 in 3 variables and more generally a

s.h. function of order 3 in JR3 can hâve at most 8 tracts, since /(9,3)&gt;3.

This resuit is also sharp as the polynomial x\ X2 x^ shows.

Finally we note that the lower bound for /(JV, m) can by its nature be

sharp only if Rm can be exactly divided into N congruent right circular
cônes. This is the case only when N=2 or m 2 and that is why our re-
sults are sharp only in thèse 2 cases. However we hâve seen that our re-
sults always give the correct order of magnitude for l(N, m).
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