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Eigenvalue Inequalities for the Dirichlet Problem on Spheres
and the Growth of Subharmonic Functions

S. FrRIEDLAND AND W. K. HAYMAN

1. Introduction

Let u be a subharmonic (s.h.) function in R™, i.e.
(1) —o=u(x)<+ox
(i1) u(x) is upper-semicontinuous (u.s.c.) and
(iii) for every xo€ R™, u(xo) does not exceed the average with respect to
spherical measure of u(x) on the hypersphere |x — x| =r.
Consider the set

Er(K)={x| u(x)=K, |x|<R}.

This set is compact, since u(x) is u.s.c. and so can be divided into a
number of components, Cr(K) which are continua or points. In a recent
paper Talpur [13] has proved the following 3 facts about these components.

(@) Each Cr(K) meets the boundary |x|= R.

We only consider those components which contain at least one point xo in
|Xo| < R, where u(xo)>K. Such components will be called thick. Talpur [13]
has shown that thick components necessarily have positive m-dimensional
measure and thus their total number is finite or countable. He has also
shown that there can be non-countably many thin components on which
u(x)=K, but that if u(x) has such a thin component, with a point xo in
|Xo| <R, then either u(x)=K in |x|<R, or u(x) has infinitely many thick
components.

(b) If v(x) is defined as follows

v(x) = u(x) in a component Cg(K)
v(x) =K elsewhere,

then v(x) is s.h. in |x| < R.
Let xo be a point of R™, such that u(xo)>K, and let Cr(x0, K) be the
component of Egr(K) containing xo. Then evidently Cr(xo, K) expands with
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increasing R. We define

C(K)=C(x0, K)= | Cr(x0, K)

R>{xo|

to be a limit component. Evidently two points x;, x> for which u(x;)>K
belong to the same limit component if they belong to the same component
Cr(K) for sufficiently large R. Two limit components are either identical or
disjoint. We denote by N(K) the total number of limit components, which
may be either finite or +oo. Since each component Cr(xo, K) and so also
C(xo, K) has positive measure, it follows that the number of limit compo-
nents is at most countably infinite.
We now define

B(r, u) = sup u(x). (1.1)

|x|=r
The quantity

log B(r,
= limmt 2220 4)
r—o log r

is called the lower order of u(x). Then Talpur [13] has proved

(c) If u(x) is bounded above with least upper bound K, then for K <Ky there
exists exactly one limit component C(K). If u(x) is not bounded above, but
has finite lower order wu, then u(x) is unbounded above on every limit com-
ponent C(xo, K).

We suppose henceforth that u(x) is not bounded above but has finite
lower order u. If w=+o0 all our results will be trivially true. It then follows
from (c) that if K;<K, each limit component C(K;) contains at least one
limit component C(K3). Thus N(K) is a monotonic increasing function of K.
We define

N= lim N(K)

K->+

to be the number of tracts of u(x). In fact the limit N also exists if u(x) is
bounded above by K; say on some component C(Kj). For in this case it
turns out that u(x) is unbounded above on every C(K) for K>K, [13].
Thus the limit N still exists.

Let I(N, m) be the greatest lower bound of all lower orders w of sub-
harmonic function in R™ having at least N tracts. Our aim in this paper is
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to obtain good lower bounds for I(N, m). It will turn out that I(2, m)=1, so
that unbounded functions of order w <1 always have exactly one tract.
Thus it is possible to obtain a non-trivial lower bound only when N=2. We
shall also see that I(N, m) — < as N — uniformly in m, so

(o0, m) = 4.

Thus we may assume that 2=< N <o, 2<=m <,

2. Known Results

Suppose first that m=2. In this case the problem was solved by Heins
[8], who proved

THEOREM A. We have I(N,2)=3N.

This result of Heins represents a generalisation of Ahlfors’, theorem on
asymptotic values. In fact if f(z) is an entire function with N distinct
asymptotic values, where N=2, then it is easy to see that u(z)=log|f(z)| is
s.h. in R? and has at least N tracts, so that by Theorem A the lower order
p of f(z) is at least 3N. For m =3 Talpur [13] proved

THEOREM B. (N, 3)=%jov(N—1)—3, where j,=2.4048:-- is the first
zero of Bessel’s function of order zero.

For m=4, the best result is due to Dinghas [5]

THEOREM C.
l 2 1/2
I(N, m)Z{Cfn‘Pm(—ﬁ) +(m——2)2} , N=2, m=3.

Here

Om }(M~3)/(m—l)

Cm - {%(m — 1)}(m—2)/(m~1){

b

Om-1

Om =272 C(Gm) (2.1)

is the (m—1)-dimensional measure of the surface of the unit-sphere S, in
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R™, and
(p (JC) — x—l/(m—l)(l ___ x)(m—z)/(mvl).

It should be said that Dinghas did not state his results in the above gen-
erality, but only for certain harmonic functions. However his proof can be
extended to the general case, using a technique of Huber [9].

All the above results, as well as our own use a differental inequality
technique, which in the case m=2 is due to Carleman [3] and was ex-
tended to the case m=3 by Keller [10] and the general case by Dinghas
[4] and Huber [9]. It was Huber who removed the hypothesis on smooth-
ness, which other authors needed, by an approximation technique. We now
proceed to describe Huber’s key result on which all subsequent work includ-
ing our own has been based.

In order to do this we define, following Huber, the characteristic con-
stant a(E) of a set E on the unit sphere

S XT+x3+: - xh=1

in R™. Suppose that E is an open set. Let F(E) be the class of functions
which are Lipschitzian, nonnegative and not identically zero on S,. and
which vanish outside E. Let

lgrad f|? do
AE)= inf : (2.2)

fEB(E) J \fI? dor

where do denotes (m—1) dimensional measure on S, and grad f is the gra-
dient, i.e. maximum directional derivative on the surface of the sphere.
Huber notes without proof that if E is suitably smooth, this infimum is ob-
tained for the solution of the Laplace-Beltrami equation

Vf+Af=0

on E, where A =A(E) is the lowest eigenvalue of this equation. However we
shall use this result only in a very special case, when we can give a simple
proof (Lemma 1).
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The characteristic constant a(E) is defined to be the positive root of the
equation

ala+m—=2)=A. (2.3)

If E i1s a general compact set on S,,, such that E and the complement of E
are not empty we define a(E) to be the upper bound of «a(D) over the
class of all open sets D containing E. Finally if - E is a general set, then
a(E) is defined to be the lower bound of «(F) over compact sets F con-
tained in E. Thus a(E) is now defined for all measurable sets E on S,. and
a(E) is a decreasing function of E, i.e. if E;< E> then a(E:;)= a(E>).

Finally if E is a set on the sphere |x|=R, let E be the projection of E
on |x|=1. In other words E consists of all points x/|x|, where xe E. Then
we define a(E)=a(E).

Suppose now that u(x) is s.h. and non-negative in |x|<R. Let D(r) be
the intersection of the set u>0 with |x|=r and let a(r) be the characteristic
constant of D(r). If D(r) has (m—1)-dimensional measure zero, it follows
from Poisson’s inequality that u(x)=0 for |x|<r. We suppose that u(x)>0
for some x in |x|<R, so that D(r) has positive measure for ro=r<R say.
We now set

m?(r) = m*(r, u) = 1m_1 J u’(x) dw(x), (2.4)
D(r)

ml

where w(x) denotes surface area on |x|=r, and o, is given by (2.1). Then
Huber [9, p. 112] proved the following fundamental convexity theorem.

THEOREM D. We have with the above hypotheses

r P ) . _
r"‘“zmz(r)—r()"":"mz(ro)zCoj CXP{zj a(t)-;}p"‘ *dp, r<r<R

ro 0

where

Co= r(2)—m{ r‘c‘i(1 mz(r)rm—z} Z(m—Z)mz(ro).
r

r=ro

COROLLARY. If m=3 and 2ro<r<R, we have

(1/2)r
m(r)k-j—z-mm)exp“m a(t)ff—t}
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The corollary follows at once from the main result. In fact we have in this
case for sr=p=r

P dt (1/2)r dt
exp {2J a(t)T}zexp{ZJ a(t)~t—}=Bsay.

0

Thus
) " ) BCor™2  BCer™?
rmzmzr?_CJ Bp" 3 dp=————(1-2""") =
(=G ), B dp =" 5y ( )= 2m—2)
Thus
2
()= BCo_ Bm(r)

2m-2) 2’

and this proves the Corollary. We shall in general assume m=3 in the se-
quel since Theorem A solves our main problem for m =2.

3. Statement of our Results

We can now return to our problem. Suppose that u(x) is s.h. in R™ and
has at least N tracts there. Then for some positive K the set u(x)=K has

N limit components C; to Cy, each containing a point x; such that
u(x;)>K.
We now choose

3R =r,> max |x]
j=1toN

and define the functions v;(x, R) as follows. Let G(K, Ry be that compo-
nent of u(x)=K in |x|=R, which contains x;. We define

vi(x, R)=u(x)— K, xe€ Ci(x, R)

vi(x, R) =0, elsewhere.
By (b) of section 1, vj(x, R) is s.h. in [x|<R. Let

Bj(r, R) = supvj(x, R), rn<r<R.

x| =r
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Let a;(r, R) be the characteristic constant of G(K, R)N(|x|=r). It follows
from Theorem D, Corollary that

(1/2)r

dt
Bj(r, R) = im;(ro, R)eXpJ’ o;(t, R)T’ (3.1)
where
2 1 2
m;(ro, R) = "‘“J (u(x)—K)* do(x).
Omlo C,(K,R)N|x|=rg

Since Gi(K, R) expands with increasing R it follows that we can replace R
by any smaller number without destroying the inequality (3.1). In particular
we may replace R by 2ro. We deduce that

(1/2)r

Bj(r, R)zcjexp{J a;(t, R)—dt—t}, R>r>2r,

To

where the constants C; are independent of R and positive. Thus

(]/Z)rl N

N 1/N di
{H B;(r, R)} = Cy exp {J --Z a;(t, R)—}, 2ro<r<R,
j=1 ro N)——-l t

where

N 1/N
c=(11 ¢)
j=1

is again independent of R. Thus if B(r, u) is defined by (1.1), we deduce

(1/2)r 1 N ‘1

. t
B(r,u) =K+ G exp {J ‘I\—I Z a;(t, R)T}, r0<%r<R~ (32)
ro ]=1

We note that the a;(t, R) are characteristic constants of mutually disjoint
sets. In order to achieve good lower bounds for B(r, u) we proceed to ob-
tain lower bounds for such characteristic constants. A fundamental result was
recently published by Sperner [11].

THEOREM E. Among all sets E with given (m—1)-dimensional surface
area o,,S on the unit sphere in R™, a spherical cap, i.e. a set of the form
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c<x1=1, has the smallest characteristic constant a(S, m). Here 0<S<1 and

¢, S are related by the equations

Om-—1

S =

&
J' (sin )™ 2 dt, ¢ =cos ¢, 0o<d<m (3.3)
0

m

We deduce

THEOREM 1. Let a(S, m) be the function defined in Theorem E, and
suppose that

a(S, m)=¢(9S), 0<S<«1,

where ¢(S) is a convex decreasing function of S. Then

I(N, m)= qﬁ(}%])

The idea of this result was used by Dinghas [5] and Talpur [13] for their
proof of Theorems B and C. It might be desirable to prove that a(S, m) is
itself a convex function of S, but this seems likely to be difficult. We can
however obtain various inequalities. We note

THEOREM 2. The quantities a(S, m) for fixed S and I(N, m) for fixed N
are monotonic decreasing functions of m.

In view of Theorem 2 we may consider the function

a(S, )= lim a(S, m)

m-—>»

and try to obtain a convex lower bound for this. We will then, in view of
Theorem 1, deduce a lower bound for I(N, m) which is independent of m.
Our result is contained in

THEOREM 3. We have a(S, ©)= ¢«(S), where

1 1)
slog|-—]+3 0<S=
2 Og(4s 2 S

ENE

P=(S) = (3.4)

SN
IA
9]
A
it
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Hence we have, for all m, 1(2, m)=1, (3, m)=3%,
I(N, m)Z%log (%r)+§, N=4.

COROLLARY. If u(x) is s.h. in R™ then either all the sets u(x)=K are
connected in R™ or else

lim inf 2%

r—oc r

>0.

The function |xi| shows that this limit need not be infinite.

The result of Theorem 3 gives the right order of magnitude for I(N, m)
when the order of log N is not greater than that of m. In fact if we choose
u=|x1 x2- - xm|, we see that for K>0 the set u>K has N=2" compo-
nents, while the order u of u is just m. Thus

log N

(N, m)=m=
L, mmy=s m log 2

while Theorem 3 gives for all m
I(N, m)= %log N.

When log N is large compared with m we can also obtain the right order of
magnitude.

THEOREM 4. We have a(S, m)= ¢n(S) and hence

1
l M = Pm —'"),
(N, m)=¢ (N
where ¢m(S)=2(1—S), for i=S<1 and for 0<S<3, we have
d 1/(m—1)
¢m(5)=max{¢m(5),jk(—"') —%jk—%(m—z)}, 4=m<oo, (3.5)

S

1 1 1

¢3(S) = max {de(S),%jo(g—E) 1/2“5}- (3.6)
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Also
1
¢2(S)=—2—§, 0<S<1. (3.7)

Here ji is the first zero of Bessel’s function of order k =3(m—3), and in par-
ticular jo=2.4048 - - - . Also

___ Icm
27V’ riEm+ 1)}

dm

For m=2 we obtain the classical result of Heins [8]. The results for m=3
sharpen the previous bounds of Talpur [13] and Dinghas [5], particularly
when N is small. We shall also in Theorem 5 obtain a more precise bound
for I(N, m) when m =4. It is shown elsewhere that [2, 6]

(N, m)=(m—1)EN)""",  N=2™

and in fact a little more. We note that [1, p. 371]
i~k ~3m, Ay —1,

as m — . Thus Theorem 4 gives
N, m)=G—em)m{N/""V-3,  N>2"

where €, >0 as m—o, and so we still obtain the right order of mag-
nitude for I(N, m) when N>2",

In fact these remarks probably underrate the accuracy of the above re-
sults. Thus one of us has sketched elsewhere [6] an example to show that

I(N, 3)<1.013 12‘-’ N2

when N is large. This compares with Theorem 4 which yields

(N, 3)>3jo(N-9)"*—3, ~ N=2.
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4. Proof of Theorem 1

In order to prove Theorem 1 we use the inequality (3.2). Let
omr™ 'Si(r, R) be the (m—1)-dimensional area of G(K, R)N(|x|=r). Since
the G (K, R) are disjoint for different j, we deduce that

N
Y Si(r, R)=<1.
i=1

Let «;(t) be the characteristic constant of C;(K, R)N(]x|=1t). Then we de-
duce from Theorem E, that

a]'(t)2 CY(S,‘, m)’

where §; = S;(t, R) and «a(S, m) is the function of Theorem 1. Thus
N N N
_Z (=2, a8, m)= 2, 6(5).
= ji=

=1

Now since ¢(S) is a convex decreasing function of S, we deduce from Jen-
sen’s inequality that

d’(N) (, lN)<—, , PAS

Thus

N

2. aj(t)2N¢<—1N)-

Writing «;(t, R) instead df «;(t) and substituting in (3.2) we deduce that

amr 1\ de
B(r, u)2K+ Co exp {J (b(N)T}

koo [l Kol

where a = ¢(1/N). Since C, is a positive constant and this inequality holds
for all large r, we deduce that u has lower order at least a. This result is
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true for any s.h. function u having at least N tracts and Theorem 1 is
proved. In fact (4.1) shows a little more namely that B(r,u) has at least
positive lower type of order ¢(1/N) in this case.

5. Proof of Theorem 2

It is fairly clear that I(N, m) is a decreasing function of m for fixed N.
In fact suppose that u(xi, x2,...,xm) is a s.h. function in R™ having N
tracts and lower order A. We then define

v(X1, X2, .+ vy Xma1) = U(X1, X2, . . . Xm).

Then ov(x) also has N tracts, since any continuum in R™"' on which v=K
projects onto a continuum in R™, where u=K. If there exist N points
EV=(x{, ..., x%), such that u(¢)>K, but no pair £€*, ¢” for i#;j can be
joined by a continuum on which u=K, then two points (x¥,..., x}},0) for
different j cannot be joined by a continuum on which v=K.

Further v has the same order as u. For

B(R, v) = sup v(x)= sup u(x)=B(R, u),

X124+ xmar2=R?2 X124 - 4 x,2=R?

since B(R, u) increases with R. Thus v is a competing function for the class
defining [(N, m+1) and so

IINm+1)=A.
Since we may choose A as close as we wish to I(N, m), we deduce
I(N, m+1)=<I(N, m).

Before we can continue with the proof of Theorem 2, we need to con-
sider more closely the extremal functions in Theorem E. In fact Sperner
proves a little more than is stated in that theorem. He shows that given any
function fe F(E), where F(E) is the class defined in connection with (2.2),
then there exists a symmetrized function f* on S,, depending only on x;
and belonging to F(E™*), where E* is the spherical cap c¢<x;=1, having
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the same area as E. Furthermore

Jlgrad I dUSJ'Igrad fI? do

and
[ dor= 1P do

Thus in order to find the minimum value of A(E) for sets E of given area
it is enough to consider spherical caps and functions on them which depend
on x; only.

It is convenient to write x;=cos 6, and assume that E = E(6,) takes the
form 0=6<6,. We then write f=f(6). Since feF(E), it follows that f(0) is
Lipschitzian and in particular absolutely continuous in [0, 7], f(6)=0,
6o = 6 < . It is clear that the spherical area o(6,) of E is given by

6

o(6o) = o-m-lj O(sin H™? dt,

0

so that the proportionate area is

Om-—1

S(60) =

J O(Sin H™ 2 dt, (5.1)
[0}

m

where o, is given by (2.1). Thus

J'(grad f)? do J Of’(O)z (sin )™ % d6

J(f) = (5.2)

j ? do J "£(6)? (sin 6)™ d6
0

We thus need to find the minimum value of J(f) over the class of functions
described. The technique for this is classical. We state the result in

LEMMA 1. For all functions f(6) which are Lip in [0, ], not identically
zero, but such that f(8)=0, 6o=60=m, where 0<0,<m, we have J(f)=
J(F)= A, where u=(sin 8)V?" 2 F(8) is a solution of the differential equation

d2
;l——e—l;nt{/\ +i(m—2)*+

(m—2)4-— m)}u _o.

5.3
4 sin® 0 (5-3)
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and the positive number A is so chosen that F remains analytic at =0,
F'(0)=0, F(60)=0 and F(0)>0 for 0<6< 6.

We note that (5.3) can also be written as
d . m-—2 o * m—2
?d—o-(sm )™ “F'=—A(sin )" °F (5.4)

or
F'+(m—2)cot 6F' + AF=0. (5.5)

Thus F is Legendre’s function.

It follows from standard results on Legendre-functions, that for given
positive A a solution F(6) exists which is positive at § =0 and has at least
one zero in (0, w). Then 6o= 6o(A) is the smallest zero of this function. Also
if m=3, 6y decreases continuously from 7 to 0 as A increases from 0 to <.
Thus for each 6, there exists exactly one corresponding A, and A is a con-
tinuous function of 6. Thus the function F(8) exists.

Next we write p(6)=(sin )™ * and obtain from (5.4)

6,

o, o d
L P(OVF (0" do =[FO)p(O)F (0~ | "F(0) - (p(0)F'(0)) do

= AL "p(6)F(6)? do,

so that J(F) = A.

To prove that J(f)=J(F), suppose first that f vanishes for 6=0,, where
01 < 6o. We have, using (5.4),

d
fz(—_*pF,) " '
2 12 dG 12 F ' 2F
p(f"?—=Af?)=pf t—F =pf +p——~fQF +p'f F

o1 -5A) (D)=L (L)

This holds whenever f' exists, i.e. almost everywhere in [0, 6,]. Also since f
has a bounded derivative, the right hand side is the derivative of an abso-
lutely continuous function, which vanishes for 6=0, and 6>6;. Thus we
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may integrate both sides from 0 to 6y and obtain
" 2 n oo F'(e)}
J p(0){f'(6)°—Af(6)} d6 = {p(ﬁ)f (0) F6) =0.

This proves the Lemma if f(6)=0 for 6>6,—¢, for some positive e. In the
general case we apply this conclusion to f(t0), where t>1 and allow t to
tend to one. This proves Lemma 1.

We also note

LEMMA 2. Suppose that (xi,x2,...,Xn) is a point in R™, and r, 0 are
defined by |x|=r, rcos 6=x;, where 0=60=<m. Then if F(0) is the function
of Lemma 1, v=r"F(08) is harmonic and positive in the cone C given by
0=6<6y, and zero on the boundary of C, where a, A are related by (2.3).

In fact the harmonicity of v is equivalent to the equation (5.5). The
other properties are obvious. We deduce

LEMMA 3. Suppose that 0<S<1 and %:i(S) is the class of functions v,
s.h. in R™ and such that the intersection of the set v>0 with the sphere |x|=r
always has area and at least ¢,,Sr™. Then the minimum of the lower orders of
ve &1(S) is precisely a, where A is given in terms of 6y by Lemma 1, S, 6o
are related by (5.1), and a, A are related by (2.3).

It follows from Theorem E and Lemma 1, that if a, A are related by
(2.3), then the characteristic constant of the set v>0 on |x|=r is at least o
Thus in (3.1) we may take j=1 and «;(t, R)=« and this gives

B(r, R)= Cr~.

This shows that the lower order of v is at least a. On the other hand

Lemma 2 shows that this lower bound is attained by the function r*F(0).
We can now prove that

al(S, m+1)=<a(S, m). (5.6)

Let v be the function of Lemma 2 and set v =0 outside the cone C. Then
evidently v is s.h. in R™. We now define

V(xi, X2, . ..y Xm+1) = 0(X1, X2, .« - 5 Xm)
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for all points in R™"'. Clearly V is s.h. in R™"! and has order a =a(S, m).
Also to obtain the m-dimensional area of the intersection of V>0 with
|x|=r, we consider the (m—1)-dimensional area for fixed xm+1 and integrate.
This (m—1)-dimensional area is for every xm+1, precisely S times the area
of the whole (m—1) sphere given by

Xi+ X3+ X =1 — X1,

We deduce that V>0 meets the m-sphere |x|=r in a set of m-
dimensional area precisely Som+1r™, while V has lower order a. Thus by
Lemma 3

a(S, m=a=a(S, m+1).

This proves (5.6) and completes the proof of Theorem 2.

6. Proof of Theorem 3

Our proof of Theorem 3 depends on [7].
THEOREM F. Let H.(x) denote Hermite’s function, so that
F(x)=e V" H,(x/y2)

satisfies the differential equation

2
F
—3—;—2—+(a+%~—;}x2)F=0 (6.1)

and F'(0)/F(0)=-2"?T{(1-a)/2}/(—a/2). Let h=h(a) be the largest real
zero of F. Then if

— 1 B —(1/2)¢2
S 7o) L e dt, (6.2)
we have

a = d«(S), (6.3)

where ¢=(S) is given by (3.4).
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We note that if w is a positive integer, then H,(t) is a polynomial. In par-
ticular Hi(t)=1, Ho(t)=1-2¢*, Hi(t)=1t-2¢*/3, etc. Thus h(1)=0, h(2)=1,
h(3)=.3.

We have not been able to give an analytical proof of (6.3) and in cer-
tain ranges it has been necessary to verify the result by computer. We pro-
ceed to show that if «,S are related as in Theorem F, then a(S, )= a(S).

To see this we set

T h T X

T2 m T2 gm

and we obtain from (3.3)

, Tm—1 /2 ] - l h X m-—2
S=1- (sin )" " dt=5—fm| {cos—— dx.
Tm  J(#/2)—-(h/ym) 0 \/m
where
O 1 I'A(m _
fm m—1 {2( )} — (277) (1/2), as m — oo.

T omdm @ 2dm [(m—1)}

Also for bounded x we have

cos (:/—%)m‘z = exp {(m —2)log (cos :/_x’;)}

2 0@ Sele!
=exp(m—-2)log<l——2§;+ niz))=eXp{—%+‘;(r—l—)}-

Thus as m — «, while h remains fixed we see that

1 ho 2 1 Jm —(1/2)e
) R (1/2)x d = —— e ( ) dt.
S—53 2m" J;) € X 2m” ),

which is (6.2). Again if

U= U = (sin ) VP2 E,(1)
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is the function of Lemma 1 we see that as m —

ADm=-2) [ x ) ( X )(1/2)m (7, X )
= Fl=——]~(1-=]  Fl=—
"= (cost) (2 Jm 2m 2 Jm

g z__x_)
e F(2 Jm)

The differential equation for u in terms of x becomes, in view of (5.3) with
x instead of 6

2
£i———+—1—{/\ +3(m—2)*—
dx®

(m—2)(m—4)}u =0
4 cos?*(x//m) '

Writing A = a(a+ m—2) and neglecting terms of order 1/m we obtain

x2

Ll m-2F(1-2 4 ) - iom -2 Ju=0

dx®>  m(cos*x/Jm)

d*u 1 x? O(l))
—+la+z-=+ =0.
dx? ( 2 4 m B={

Thus if we multiply u by a suitable constant c.,, the limiting function will
certainly satisfy (6.1), where we have written x instead of f, provided that
the limiting solution is chosen so that F and its derivative remain bounded
and do not both vanish at x=0. To see this we require a Lemma which
describes the behaviour of F,.(t) near t=0.

LEMMA 4. Let F(0)= F.(6,A) be the function described in Lemma 1.
Then at any rate for m=6 we have

Fi(m2) _, [=3a+HIGa+(m—1)2)
Fu(m2) ° I(-3a)['Ga+(m=-2)/2)

(6.4)

(In fact the result is true for all m, but we do not require this.)
We write c=cos § and express the equation (5.5) in terms of c. We ob-
tain

2
(1- cz)dF (m— 1)cfi-f+)\F 0. (6.5)
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The solution is analytic at c=0 as a function of ¢ and so we obtain a series
expansion for F. We write F(6)= g(c), where ¢ =cos 6 and obtain

g=2, anc"
0

The equation (6.5) leads to

nntm-2)—A (n—a)(inta+m-2)
n+DH(n+2) 77 (i+Dm+2) M

an+2 =

(6.6)
since A = a(a+ m—2). We write

rGn+H)rEn+1)

bn = “"r(%n 1) IGn+ia+m=-2))

Then the equation (6.6) takes the simple form
bn+2=:bm

Thus b,=by if n is even, b,=b; if n is odd and our expansion takes the
form

g(c)=bo ), d2,c® +by Y, dayerc®™™
v=0 v=0

where

_IGn-1a)IGn+ia+m=2))

dn
IrGn+3)I'Gn+1)

An) VP a5 p— o,

Suppose now that bo+ b; #0. Then, since m =6 by hypothesis,
drv+1~dpy —> +, as v—®,

Thus as ¢c—> 1—

glc)= Z (boday + bicday+1)c*” ~ (bo+ b1) Zo da,c? — o,
v=0 y=
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However we know from Lemma 1 that F remains bounded as 8 — 0, i.e. as

¢ — 1—. Thus bo+ b, =0, and

Fn(m/2) _ g(0)_di_TI'G—1a)[Ga+3(m—1)I'HI()
Fu(m2)  g(0) do [(—a)Ga+:(m=2)IAI(Q2)"

This yields Lemma 4.

We now let m—>= for fixed a and express F as a function of
x =vm(n/2—0)~vVmsin (m/2—60)= cvm, where c=cos @ as in the previous
Lemma. Then if F,.(t)= h(x), we deduce that

RO _m 0 p TGt {m2+[@-1)2)
h(0) g(0) r'(—=3)Ii{m2 +[(a—-2)/2]} °

RO o am (G- la) (m) 2 _—2"2I(~ la)

h(0) I(—ie) \2 I(~a)

Thus Fx(x)=1lim,,.Fn(7/2—x/\m, a(a + m—2)) has the behaviour de-
scribed in Theorem F. In particular F(x) satisfies (6.1) and has the right behaviour
at x =0. These conditions determine F(x) uniquely, and so F(x) is the func-
tion given in Theorem F, apart from a multiplicative constant. Also for
given a we see that F#0, provided that x> h(a) and in particular for S=
S(x) not satisfying (6,3).

We deduce that

a=(S)= lim a(S, m)

m-—oc

satisfies the inequality (6.3) for a and this proves the first part of Theorem
3. Evidently ¢«(S) is convex for 0=S<1 and, in view of Theorem 2,

a(S, m)= ¢-(S), m=2,3,...

Hence Theorem 1 shows that
1
I(N’ m)?‘(bm(—ﬁ)’ sz, mZZ,

and this completes the proof of Theorem 3.
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We note in particular that ¢«(3)=1 and so (2, m)=1 for all m. Since the
function |x;| shows that [(2, m)=<1, we deduce that I(2, m)=1 for all m.
In fact (4.1) shows that with the hypotheses of Theorem 1, we have

B 1
lim inf ———Exr)>0 where a = d)(—).
r—x T N

Now the Corollary to Theorem 3 follows with N=2, a =1.

7. Further Estimates for (S, m), and I(N, m)

Theorem 3 gives quite good results when S is not much smaller than
1/m, or log N is not much bigger than m and m is large. In other cases we
can obtain more precise bounds.

In order to obtain such bounds for a(S, m) we employ Lemma 1. We
note first that «(S, m) is given by (2.3), i.e.

ala+m—2)=A, (7.1)

where A is so chosen that the smallest positive zero 6o of the function u
satisfying (5.3) and u(0)=0 is such that the spherical cap, 6=6o, just
satisfies

6()
§= "”‘“I (sin )2 dt. (7.2)
0

m

The result remains true for m=2 if we write u'(0)=0, instead of u(0)=0.
The equation (5.3) reduces in this case to
d’u

?;0—2-+a2u:0, (7.3)

so that u=cos(af), and 6p=m/(2a). Also (7.2) gives S=6o/7. Thus in this

case a=1/(2S), which is (3.7). Since 1/(2S) is itself a convex function of S
we obtain from Theorem 2 that

N
I(N,2)=—
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which is Theorem A. The functions u=r"?"|sin(1N6)|, which have N
tracts and order 3N show that this result is sharp, i.e. I(N, 2)= sN.

Another case when we can evaluate «a(S, m) exactly is the case m=4. In
this case the equation (5.3) reduces to

2

d02+(a+1)2u 0,

so that u=sin{(a+1)6}, a = n/6o—1. Also (7.2) reduces to

1
S =—{60— 3sin (200)},
w

so that

s=———Lgn 2T 7.4
a+1 27TS a+1’ (7.4)

This equation gives a=a(S,4) in terms of S. In this case we can again
show that a is a convex function of S. We note that

dS 1 2

da (—&—:ﬁi(l——cosafl)<0, O<a<om,
Also

fif___ a y_da d - S"(a)

Thus «a(S, 4) is convex since

S"( )~d25— 2 {1—-cos( 2“)}+ 27 _ in—2">0
“ da® (a a+1 (a+1)*7 a+1"

We deduce that we may take ¢(S)= a(S, 4) in Theorem 1. Thus

l(]\f, 4) = an,
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where an is the solution of the equation

1 1 . 2= 1
aN+l—27rsmaN+1—N' (7.5)

Since a(S, m) is monotonic, we also deduce

THEOREM 5. The function a=a(S,4) is given by the equation (7.4).
Hence

I(N,3)= (N, 4) = an,
where an is given by (7.5).

We note that

2 2 1/3
aN=< 3N) -1+ ON" V), as N-ow, (7.6)

To obtain (7.6) we write t=2m/(an+1) and deduce that
t—sin t=27/N.
Thus

3

27r/N=-t6—+ o), t=(127/N)+O(N™Y

2NN\ 1/3
aN+1=%-7-T= (27; N) +O(N~(1/3)),

which is (7.6).
Prof. J. G. Wendel has kindly calculated the value of an for us, when
N=16. He obtains’

N 2 3 4 5 6 7 8 9

av 1 141167 172013 197339 219110 2.38336 255718 2.71583
N 10 11 12 13 14 15 16

an 2.86241 299898 3.12708 3.24791 3.36243 3.47158 3.57541
Table 1.
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In the opposite direction we note that

I(N, m)=< (N, 2)=3N, for N=2, m=2. (7.7)
In particular 1.4116=<1(3, m)=1.5 for m =3, 4 while Theorem 3 yields

$=I3, m=3, m=5.

It seems quite possible that I(3, m)=3 for all m. We can divide the sphere
in R’ into four congruent equilateral spherical triangles and this configura-
tion probably yields the extreme functions for [(4,3). For large values of N
and m>2 the inequality (7.7) is certainly not sharp. Thus the function
u; = |x; x5 x3| in 3 dimensions is s.h. and has 8 tracts so that

2.5571<1(8,3)=3.

Again in 4 dimensions we may set xi+ix>=rie', x3+ixa=re'® and
u> = ri’?r3’* |sin (26,)| |sin (36,)|. The function u, is certainly s.h. in R* since it
is continuous and harmonic at all points where u, is positive. For at such

points we have

82u2 azuz_“azl,lz azuz_
o0x:  o0x3  o9x3  ax3

0.

But u, has 9 tracts and order 3, so that

2.7158<1(9,4)=3.

The function u», unlike wu;, is not the modulus of a harmonic polynomial
and suggests that harmonic polynomials may not yield extremal examples for
I(N, m) in all cases. In fact it seems reasonable to conjecture that the har-
monic polynomials referred to above [2] have the maximum possible number
of tracts for given degree and for these polynomials the maximum number
of tracts for degree N is certainly 2", if the number of variables is allowed
to be arbitrary.

We note in particular that us=|x: x2 x3 x4| has 16 tracts and order 4, so
that

3.5754<1(16,4)=4.
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8. Proof of Theorem 4

When N is large we can obtain convenient bounds for a(S, m) from the
Sturm-Liouville theory. We note that

=L (5rm)
sinzﬂ‘,,,;_oc 0+ nm

and so
ol 7= 2(mm) (mra) )
- ——)=2 - >0, 0<f<m. 8.1
do \sin®* § 6> \‘,: nmw—6 nmw+6 T .1
Thus, as 6 increases from 0 to /2, (sin®) °—6 ° increases from % to

1—4/7°. Hence

1 1 1 1 4 T
S—-+1—-—-, o<o=—.
6° 3 sin’60 02 ° 2

Since 6=0, 6, are successive zeros of a solution of the equation (5.3) it
follows'" that we obtain lower and upper bounds for 6, by replacing

2+(m—2)(4—m)

A+i(m=2) 4sin’ 0

by a smaller or larger function. We shall assume 6o= 7/2, which corresponds
to S=<3;. Also the equation””

has a solution v = 0"?Jc(c6). where J,(0) is Bessel's function of order k.
We recall (7.1) and define

24— m)
k=1(m=3), so that °% L‘ _iog,

VSee e.g. [12, p. 19]
? Ibid. p. 17
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Then if
Gelatim-2F+(-K),  d=la+im-2P+(1-5)d-K) €2

6o lies between the first zero of Ji(ci10) and Jk(c26), i.e. 6o lies between
ji/ci and ji/c,, where j, is the smallest zero of J,(6). If m=4, k=3,
ci=c;=a+1and j,=m lf m=3, k=0 and

1
Gmattath  Gmattati-—;,  jo=24048
Also from (7.2)

)
S =1(1—cos 6o) =sin2§9, 0< eo<-’2-’.

Thus
13 1 4 1
(a +%)2+%————>——>j%[-——————+——— —-},

N 4sin* (300) W 2

since (sin 10) >—(16) 2 increases with 9 for 0=< 0= n/2. Thus

This yields (3.6) and improves slightly Talpur’s Theorem B. We may again
apply Theorem 1, since ¢3(S) is convex and decreasing and deduce

(N, 3)=D(N-9"2~4=1.2024- - (N-H"* -1, (8.3)
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Finally we turn to the case m=4. We note that by (7.2)

Om-1

90
§=Im! I (sin 1)™2 dr=
0

80
J (sin )™ *cos t dt
Om 0

Om

Thus

_ Om-1 v m—1
(m=Da, 7 "
dm);lTl 1 _ Om-—1 _ F(%m)
(s =Sng, Where dm = S A PR (m T 1))

We also recall that by (8.1)

1 \? [1)? 1 1
(-.——- —|-) and hence also ————
sin ¢ t sint t

increases with increasing ¢t for 0 <t==/2 and so

1 <l+1__.2.<_1_+_2_ O<0 <_7__T
sin 6o 6o T 6 5 0T

Again we noted earlier that

Jk
Go=—,
C1

where c¢; is given by (8.2). Thus

1 ,2{ L2
035 Telsin 60 5

v

=[a+im-2)P-(m-3)°+H=jk

’ (dm)l(m—l) 2}2
== e
"‘{ S 5

Thus, since m=4, we deduce that

d\Vom=1 2
a?_]k(?) ——5-],(——%(m—-2).

159
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This proves (3.5) and concludes the proof of Theorem 4, since the right
hand side of (3.5) is clearly a convex decreasing function of S. For com-
pleteness we include a table of the quantity

Bn =1.2024(N-1"2 -1,

which by (8.3) gives a lower bound for I(N, 3). We are indebted to Prof. H.
L. Montgomery for the calculations.

N 2 3 4 5 6 7 8 9

Bn 0.97263 1.40116 1.74948 2.05068 2.31988 2.56553 2.79291 3.00557
N 10 11 12 13 14 15 16

Bn 3.20605 3.39622 3.57754 3.75113 391790 4.07860 4.23385
Table 2

We note that Bn>an, for N=4. The table also shows that a s.h. function
of lower order 2 in R’? and in particular the modulus of a harmonic
polynomial of degree 2 in 3 variables can have at most 4 tracts, since
[(5,3)>2. This bound is sharp as the polynomial x; x, shows. Similarly the
modulus of a polynomial of degree 3 in 3 variables and more generally a
s.h. function of order 3 in R® can have at most 8 tracts, since [(9,3)>3.
This result is also sharp as the polynomial x; x> x3 shows.

Finally we note that the lower bound for I(N, m) can by its nature be
sharp only if R™ can be exactly divided into N congruent right circular
cones. This is the case only when N=2 or m=2 and that is why our re-
sults are sharp only in these 2 cases. However we have seen that our re-
sults always give the correct order of magnitude for I(N, m).
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