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Compact Quadratic s-Manifolds

ARTHUR J. LEDGER AND R. BRUCE PETTITT!)

The definition of a Riemannian regular s-manifold (M, g, s) is similar to that of a
Riemannian symmetric space but without the condition that symmetries have order
two. A regularity condition (trivially satisfied for symmetric spaces) is imposed on the
composition of symmetries. Such manifolds are known to be homogeneous ([2], [4])
and classification problems reduce essentially to the study of automorphisms of Lie
groups. In this connection, recent work of Wolf and Gray [7] is of fundamental im-
portance for cases when the symmetries have finite order.

A metrisable regular s-manifold (M, s) is defined by relaxing the unique choice of
g in (M, g, s) to that of any g compatible with the s-structure. There is an obvious
equivalence relation on the class of such manifolds, and we seek theorems which are
valid up to this equivalence.

For any (M, s) there is an associated tensor field S of type (1, 1) and (M, g, 5) is
symmetric if and only if S has linear minimal polynomial. We treat the case when S
has a quadratic minimal polynomial; then (M, s) is called a quadratic s-manifold. Any
such (M, s) admits an almost complex structure @ canonically associated with S;
moreover, either all symmetries have order 3 or @ is integrable and there exists a
metric g for which (M, g, s) is a Riemannian regular s-manifold and (M, g) is Her-
mitian symmetric with respect to @. This paper gives a classification up to equivalence
of all compact quadratic (M, s).

§ 1 is mostly expository, but improves slightly some known results; it contains most
basic definitions and properties for later use. In particular, it is easily seen that for any
(M, s) the simply connected covering space M of M admits a metrisable structure
(M, §) whose symmetries cover those of (M, s). Then if (M, s)and (M, s") are covered
by (M, ) the equivalence of (M, s) and (M, s") reduces to a study of certain deck
transformations of M. We also develop for later use the relation between (M, s) and
a triple (G, H, 0) where G is a Lie group acting transitively on M with isotropy group
H, and 6 is an automorphism of G determined by s. The section concludes with some
remarks on the smoothness of the map s and tensor field S.

In §2 the notion of a quadratic s-manifold is defined and four theorems are stated

1) This research was done at the University of Liverpool during 1972-3 while the second author
was a Postdoctoral Fellow supported by the National Research Council of Canada.
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giving the structure theory of such manifolds. Proofs of these theorems are given in
§3, with the exception of certain details which form the two appendices.

§1. Preliminaries

DEFINITION 1.1. A regular s-manifold is a connected manifold M together with
a map s from M into the group Diff M of all diffeomorphisms of M with the following
properties:

(i) for each peM, the point p is an isolated fixed point of the difftomorphism
s(p) (written as s,),

(ii) s,08,=5 (g °5, for all p, ge M,

(iii) the tensor field S: M — T{(M) defined by p— S, = (s,.), is smooth.

The diffeomorphism s, is referred to as the symmetry at p, and S as the symmetry
tensor field. Any smooth map x: M — M is called s-preserving (resp. S-preserving) if
xo8,=5,,°x for all pe M (resp. x,(SX)=S(x,X) for all XeZ'(M)). Any tensor
field on M is called s-invariant if it is invariant under the action of s, for each pe M.

DEFINITION 1.2. Let k be an integer >2. A k-symmetric space is a regular s-
manifold (M, s) for which each symmetry has order k; that is, for all pe M, (s,)*=id
but (s,)"#id for 0<h<k.

DEFINITION 1.3. The regular s-manifold (M, s) and the regular s’-manifold
(M’, ") are said to be equivalent if there exists a diffeomorphism f: M — M’ such that
fos,=sPpof for all pe M.

DEFINITION 1.4. Leta: M — M be a covering space. Then (M, §) is said to cover
(M, ) if 00055 =15, 00 for all je M.

Remark 1.5. Given (M, s), let o: M — M be the simply-connected covering space
of M. Define for each jeM the symmetry §5 as the lift of s,; which fixes p; then
(M, ) is a regular §-manifold and covers (M, s). We call (M, §) the simply-connected
covering space of (M, s).

For the converse problem of obtaining each (M, s) covered by (M, §) we have the
following criterion.

PROPOSITION 1.6. Let (M, 5) be a simply-connected regular §-manifold and
a:M — M a covering space with group of deck transformations I'. Then M admits a
regular s-manifold structure (M, s) covered by (M, §) if and only if T is a group of
§-preserving diffeomorphisms and each symmetry $5 normalises I in Diff M.

Proof. Let I" be a group of §-preserving diffeomorphisms normalised by each §j.
For each pe M choose pea™'(p); because §; normalises I', the relation s,oa=0o5;
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defines a diffeomorphism s,: M — M. Moreover, s, is well-defined (independently of
the choice of pea™!(p)), because each element of I' is §-preserving. Properties (i),
(ii) and (iii) of Definition 1.1 are readily verified, and (M, s) is a regular s-manifold
covered by (M, §).

Conversely, suppose (M, s) is covered by (M, §). Then for each jeM and yer,
xoSzoyo8y ! =&, whence §50y085 'er'; hence, the symmetries §; normalise I'. Observe
also that yo§;09 "' =4§, 5, each being the lift of Sa5) Which fixes y(p); thus each yerl is
§-preserving.

DEFINITION 1.7. (a) A metrisable regular s-manifold is a regular s-manifold
(M, s) which admits an s-invariant Riemannian metric.

(b) A Riemannian regular s-manifold (M, g, s) is a regular s-manifold (M, s)
together with an s-invariant Riemannian metric g.

Remark 1.8. (a) Let (M, s,) and (M,, s,) be metrisable, and let s, X 5,: M, x
XM, —> M, x M, be the product map. Then (M, x M,, s;xs,) is a metrisable
(81 X 5, )-manifold.

(b) Let (M, §) be the simply-connected covering space of (M, s) with covering
map a«. Then g is an s-invariant metric on M if and only if §=a*g is an §-invariant,
-invariant metric on M ; in that case we call (M, g, §) the simply-connected covering
space of (M, g, s).

PROPOSITION 1.9. For any (M, g, s) the set of all s-preserving isometries is a
closed subgroup of the group of all isometries I(M, g) endowed with the compact-open
topology.

Proof. Let (x,) be any sequence of s-preserving isometries which converges in
I(M, g) and let x, — x. Since M is connected, any isometry is s-preserving if and only
if it is S-preserving. Hence each x, is S-preserving. Since S is continuous, then x is
S-preserving and therefore s-preserving. This proves closure.

DEFINITION 1.10. The Lie group I(M, g, s) is the group of all s-preserving
isometries of (M, g, s) endowed with the Lie group structure induced by inclusion in
I(M, g). Its identity component is denoted I,(M, g, s).

By the proof of Theorem 1 of [4] we have the following proposition and its
immediate corollary:

PROPOSITION 1.11. Given (M, g, s), any Lie transformation group G of M
satisfying s(M)< G is transitive on M. In particular, I(M, g, s) is transitive on M.

COROLLARY 1.12. The symmetries of a metrisable regular s-manifold are
determined by the symmetry at any one point.
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Proposition 1.11 shows that a metrisable regular s-manifold admits a transitive
group of s-preserving diffeomorphisms; this yields the following useful criterion for
the equivalence of two such manifolds covered by a given simply-connected one.

PROPOSITION 1.13. Suppose (M, §) is the common simply-connected covering
space of (My, s,) and (M,, s,) where, for i=1,2, (M,, s;) is metrisable. For i=1,2
denote the covering by o,;:M — M, and let T'; be the group of deck transformations.
Choose a base point pe M. Then (M, s,) and (M, s,) are equivalent if and only if there
exists an §-preserving diffeomorphism f:M — M such that f(p)=p and fT f'=T,.

Proof. Suppose (M, s;) and (M,, s,) are equivalent. Define p; = o, (p), p» =0, (p).
By Proposition 1.11 some s,-preserving group is transitive on M, ; it follows that there
exists a diffeomorphism f: M; — M, such that f(p,)=p, and fo(s;),=(53) (4 f for
all ge M,. Define f to be the lift of f which fixes p. Thus foa, =a, o f, and consequently
folyof "'=T,. Also, for GeM, fo3;=5;°f, each being the lift of fo(s;),, s Which
maps § to f(§); thus, f is s-preserving.

Conversely, suppose given an §-preserving diffeomorphism f:M — M such that
f(p)=p and fI',f~'=T,. Then the diffeomorphism f: M, — M, is defined by foa, =
®, 0 f, and it follows that fo (s, ), = (s,) s, o/ for all ge M. Thus, (M, s,) and (M, s,)
are equivalent.

DEFINITION 1.14. For any (M, g, s) the symmetry group X(M, g, s) is the
topological Lie subgroup of (M, g) defined on the closure in /(M, g) of the group
generated by s(M).

PROPOSITION 1.15. Let g, and g, be s-invariant metrics on (M, s). Then
Z(M’ &1s S)=Z(Ma 825 S)'

Proof. Let ¥ be the group generated by s(M), and let (x,) be a sequence in ¥
which converges in I(M, g,) to some element x. Then for each pe M, x,(p)— x(p).
Since (x,) is also a sequence in I(M, g,), then x,— x in I(M, g,) (cf. Lemma 2.4 of
Chapter IV in [3]). Thus X(M, g, s)=X(M, g,, s), and likewise Z(M, g, s)c
Y(M, gy, s); consequently, the two symmetry groups are equal as abstract groups.
Each has the compact-open topology, so they coincide as Lie groups.

The following definition is now valid.

DEFINITION 1.16. The symmetry group X(M, s) of a metrisable (M, s) is the
symmetry group X(M, g, s) where g is any s-invariant metric on M.

Note that since s(M )= Z(M, s), then by Proposition 1.11, (M, s) and its identity
component X (M, s) are transitive on M.

DEFINITION 1.17. Let G be a connected Lie group, H a closed subgroup of G,
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and 0eAutG. We call (G, H, 0) a symmetric triple if the following three conditions
are satisfied:

(1) G acts effectively on the coset space G/H,

(2) (G°)o=H<=G* where G’ is the closed subgroup of G defined by G®=
G’={xeG:0(x)=x} and (G?), is its identity component,

(3) the subgroup of Autg generated by Ad; H and 0, has compact closure @ in
Autg where g denotes the Lie algebra of G.

The next proposition shows how the metrisable regular s-manifolds and symmetric
triples are related.

PROPOSITION 1.18. Let (M, s) be a metrisable regular s-manifold with base
point pe M. Let G be any Lie group satisfying:

(i) G is a connected Lie group acting transitively on M,

(ii) G is normalised by s, in Diff M,

(iii) G I(M, g, s) for some s-invariant metric g on M.
(Such G exist; for instance, G=Xy(M, s) or Io(M, g, 5).)

Let H be the isotropy subgroup of G at p, and v: G — M = G| H the natural projection.
Then there exists a unique 0 AutG such that s,ev=vol: moreover, (G, H,0) is a
symmetric triple.

Conversely, let (G, H, 0) be a symmetric triple. Define M=G|H; let v:G — M be
the natural projection and set p=v(H). Then M admits a unique metrisable regular
s-manifold structure (M, s) such that

(a) s,ov=vo0 and

(b) each element of G is s-preserving; moreover, G satisfies conditions (i), (ii) and
(iii).

Proof. Since the Lie group G acts transitively on M and G I(M, g, s)cI(M, g),
it follows (Remark 2, p. 176 of [3]) that G is a topological Lie subgroup of I(M, g).
Moreover, since s, normalises G, the automorphism ad(s,)e Aut(/(M, g)) preserves
G. Consequently, 9=ad(sp)|G defines a Lie group automorphism of G. For xeG,
(s5,00)(x)= (s,ox)(p)=(s,0x0s, Y(p)=(vo0)(x); thus, s,ov=vof. Furthermore,
since G acts effectively on M, then 6 is the unique automorphism of G satisfying the
relation s,0v=vo6.

Next we check that (G, H, 0) is a symmetric triple. Condition (1) of Definition
[.17 is satisfied, because G<=I(M, g). Consider ye H; then y is s-preserving, y(p)=p,
and so O(y)=s,oyos, ' =s,08,°y=y. Thus, H=G°. Suppose now 0, X = X for some
Xeg, and let Y=v,X. Then, Y=v4(0,X)=(s,)+Y, and so Y=0 because p is an
isolated fixed point of s,» an isometry of (M, g). Consequently, Xekerv, =} (the Lie
algebra of H), and the inclusion (G®),< H follows. Thus, (2) of Definition 1.17 is
satisfied. Define the Lie group G’ as the closure in (M, g) of the group generated by G
and s,. Then G’ has compact isotropy subgroup K at p. Moreover, for each keK,
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G is invariant by ad(k)eAutG’; also the action A:K xG— G defined by A(k, x)=
ad(k)x=kxk ™! is smooth. It follows that the homomorphism u: K — Autg defined by
u(k)=Ad(k)|, is smooth; (here Ad(k) denotes the automorphism induced on the Lie
algebra of G’ by ad(k)e Aut G"). Consider now the group @, the closure of the group
generated by Adg(H ) and 0, =Ad(s,)|,. Since H= K and s,€ K, then O is closed in the
compact group u(K). Consequently, @ is compact. Thus, (3) of Definition 1.17 is also
satisfied, and (G, H, 0) is a symmetric triple.

We now turn to the converse of Proposition 1.18, and consider a given symmetric
triple (G, H, 0). By (2) of Definition 1.17 we have 0,(h)="1 (where }) is the Lie algebra
of H), and hence ©(h)=1. Therefore, as a consequence of (3) of Definition 1.17, there
exists a direct sum decomposition g=T¥) +m with @(m)=m, and a @-invariant positive
definite quadratic form B on m Let g, be the corresponding quadratic form induced
by v on the tangent space M, to M=G/H at p=v(H ). Then g, is invariant under the
action of H on M,, and so g, extends uniquely to a G-invariant Riemannian metric
gon M.

Define 5s,e Diff M by s,ov=vcf. Then s, is an isometry of (M, g) because B is
0,-invariant. For each ge M choose xev™'(¢q) and define s,=xos,ox~', an isometry
of (M, g). By (2) of Definition 1.17, s, is well-defined, and if Xe M, is non-zero then
(s,)xX # X. Since s, is an isometry it is immediate that p is an isolated fixed point of s,,.
It follows that g is an isolated fixed point of s, for all ge M. Thus (i) of Definition 1.1
is satisfied.

Observing that for x, yeG,

(Sxmor)(p)=(xos,0x7 oy)(p)= (xo5,0v)(x"'y)=(x°0(x""y))(p), a short com-
putation shows that, for all g, g'€ M, 5,05, =5, (,,y°5,. This establishes (ii) of Defini-
tion 1.1.

Now the symmetry tensor field S is G-invariant since G is s-preserving. Then
smoothness of S follows by using a local cross-section in G; alternatively, one observes
that if T is the smooth right-invariant tensor field on G with value 0, at the identity,
then 7 and S are v-related, and hence S is smooth. This establishes (iii) of Definition
1.1.

Thus, (M, s) is a regular s-manifold. By construction, g is an s-invariant metric,
so (M, s) is metrisable; moreover, G satisfies properties (i), (ii) and (iii). Finally, the
conditions that s,ov=vo-0 and that G be s-preserving clearly determine the s-manifold
structure on M uniquely.

Remarks 1.19. (a) Given a symmetric triple (G, H, 6) and the corresponding
metrisable (M, s) as in Proposition 1.18, we say that (G, H, 0) and (M, s) are related.

(b) For later use we make the following observation. Consider a metrisable (M, s)
related to a symmetric triple (G, H, 0), and let te AutG. Define H'=1(H) and
0'=10t"'. Then (G, H', ') is a symmetric triple, and so determines a related metris-
able (M’, s’). Define the diffeomorphismf: M — M’ by f(xH)=1(x)H' for xHe G/|H=
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M. From the relation between s, s" and 6, 6’ (see (a) of Proposition 1.18), it follows
that fos,y =5, of for all xHe G/H. Thus, (M, s) and (M, s") are equivalent.

We conclude this section by showing that, for the metrisable case, (iii) of Defini-
tion 1.1 may be replaced by other equivalent smoothness conditions.

PROPOSITION 1.20. Let (M, g) be a connected Riemannian manifold with a map
s:M - I(M, g) satisfying (i) and (ii) of Definition 1.1. Define S as in (iii) of Definition
1.1 and define a map p: M x M — M by u(p, q)=s,(q). Then the smoothness of s, S or
implies the smoothness of all three.

Proof. Consider the following smooth maps:

a:l(M,g)x M—>M (Lie group action),
0, X):M>TMxTM, defined by p—(0,, X,)

where 0 is the zero vector field and X any smooth vector field on M.

Now u=ao(sxid,,), hence s smooth implies 4 smooth. Again, if u is smooth, then
SoX=p,0°(0, X), whence SoX is smooth for each smooth vector field X and so S is
smooth.

Finally, suppose S smooth. Then (M, g, 5) is a Riemannian regular s-manifold.
Write G=1(M, g, s), and define the following smooth maps:

i:G-1(M,g) (inclusion)

B:GxG—->G (group multiplication)
l,:G>G (left multiplication by s,)
1:G->G (group inversion)

4:G-GxG (diagonal map).

Now by Proposition 1.11 the Lie group G acts transitively on M, and so for any pe M
there is a smooth cross-section A: U— G for some open neighbourhood U of p. Then,

slu=ioBo(idg x (I, °t))e Ao A.

Thus, s is smooth. This completes the proof.

We may regard p as a multiplication on M, and write u(p, ¢)=p-gq. Then a smooth
map x: M — M is s-preserving if and only if it is a homomorphism of the multiplication
K, that is

x(p q)=x(p) x(q) forall p,geM.

By (ii) of Definition 1.1 each symmetry s, is such a homomorphism.
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§2. Structure Theory of Quadratic s-Manifolds

The Riemannian symmetric spaces studied by Cartan form the class of Riemannian
regular s-manifolds with symmetries of order two; equivalently, the minimal poly-
nomial of the symmetry tensor field S is linear (necessarily then S+7=0, since S is
orthogonal and S+#7).

Consider now a Riemannian regular s-manifold (M, g, s) for which S has quadratic
minimal polynomial, say ¢? + aé + B. Thus, for each pe M, S§+aS,,+[31p=O. Because
I(M, g, s) is transitive and S preserving, « and f are constants on M. Now each S, is
orthogonal so its eigenvalues must have modulus one, and since they are roots of the
quadratic minimal polynomial these eigenvalues are either real or form a complex
conjugate pair. Since (M, g, s) is a regular s-manifold, S, has no eigenvalue +1, so
if S had real eigenvalues we would have S= —1I, contradicting S having quadratic
minimal polynomial. Thus S has two eigenvalues e*‘? with ¢€7]0, n[. Since these are
roots of &2 +aé+B=0 we have &> +af+f=(E—e'?)(E—e™'?), whence a= —2cos¢
and f=1.

The next definition introduces the manifolds which form the principal objects of
study in this paper.

DEFINITION 2.1. Let ¢€]0, n[. A quadratic s-manifold (M, s, ¢) with angular
parameter ¢ is a metrisable regular s-manifold (M, s) whose symmetry tensor field has
quadratic minimal polynomial ¢2—2(cos¢)E+1.

DEFINITION 2.2. For any (M, s, ¢) the almost complex structure ¢ =(sin¢)™*
{S—(cos¢)I} is called the canonical almost complex structure.
The next proposition is immediate.

PROPOSITION 2.3. Let (M, sy, ¢;) and (M,,s,, ¢,) be quadratic. Then
(M, x M,, s, X s,) is quadratic with angular parameter ¢ if and only if ¢=¢,=0¢,.

Remark 2.4. (Recall Definition 1.2 of a k-symmetric space.) A quadratic s-mani-
fold (M, s, 2n/3) is a metrisable 3-symmetric space, and conversely. For k>3, any
quadratic s-manifold (M, s, 2mn/k), where m and k are relatively prime integers, is a
metrisable k-symmetric space. However, not every metrisable k-symmetric space is
quadratic. For instance, let (M, sy, 2n/k) and (M,, s,, 2mn/k) be quadratic with
l<m<k (such (M, s;) exist — cf. Theorem B below); then (M, x M,, s, Xs,) is
metrisable k-symmetric, but (by Proposition 2.3) is not quadratic.

We now state four theorems which desciibe the structure of compact quadratic
s-manifolds. (Proofs are given in Section 3.) Before stating the theorems we introduce
some notation.

C” denotes the complex vector space of n-tuples (zy,..., z,), and writing each
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z,= X,+ 1y, one has the underlying real vector space R?" of 2n-tuples (x;, y1, ..., Xp, V»)-
The natural complex structure J, on C" (or more precisely on R?") is that induced by
scalar multiplication by i on C". The natural basis {¢,, Jo(¢,)},=1.2. . » is defined by
the relation

(xh Yiseoos Xps yn)::z:=1 xa8a+Z:=1 yajo(ga);

the Euclidean metric on C" is defined by the condition that the natural basis be
orthonormal. We define the following two real lattices:

X" =the lattice generated by {e,, Jo(¢,)}a=1.2. ...
A"=the lattice generated by {e,, exp(n/3J) €x}az1.2. .. .n

Theorem A shows that the compact quadratic s-manifolds are of two basic types.

THEOREM A. Every compact quadratic s-manifold (M, s, ¢)is one of the following
two types.

(i) The angular parameter ¢ #2n/3, the canonical almost complex structure ® is
integrable, and, for any s-invariant metric g, (M, g) is a Hermitian symmetric space with
respect to ®. Moreover, if (M, g) has non-trivial Euclidean factor C"|I in its symmetric
space decomposition, then the lattice I is invariant by exp(¢J,) and necessarily ¢ =n/3
or m/2.

(ii) The angular parameter ¢ =2n/3 and (M, s, ) is a metrisable 3-symmetric space.

The next two theorems (B and C) classify the compact quadratic s-manifolds of
types (i) and (ii), thus affording a converse of Theorem A.

DEFINITION 2.5. Let (M, g) be a Hermitian symmetric space with complex
structure J. We say a quadratic s-manifold structure (M, s, @) is associated with the
given Hermitian symmetric space if J is the canonical almost complex structure of
(M, s, ¢) and g is an s-invariant metric.

Theorem B describes the quadratic s-manifold structures associated with compact
Hermitian symmetric spaces, and gives the classification (up to equivalence) of the
s-manifolds of type (i) in Theorem A.

THEOREM B. (i) Let (M,, g,) be a Hermitian symmetric space of compact type
with complex structure J,. Then, for each ¢€]0, n[, there is a unique associated
(M 15 1, d))

(ii) Let (M,,s,, ¢) be associated with a compact Hermitian symmetric space
(M,, g2) of Euclidean type. Then ¢=n/3, n/2 or 2n/3, M, is complex analytically
diffeomorphic to C"|Z" or C"|4", and (M, s,, ¢) is equivalent to (C"| Ay, 04, §) where

Ay=2" for ¢p=n/2,
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and

Ay=4" for ¢=n/3 or 2n/3;
in each case the symmetries are determined by

("¢)a(0)°°‘=°‘°exl’(¢jo)»

where a:C" — C"[ A, is the natural projection.

(ii1) Let (M, s, ¢) be associated with a compact Hermitian symmetric space
(M, g)=(M,, g,)x(M,, g,) with complex structure J, where the factors (M, g,) of
compact type and (M,, g,) of Euclidean type are each non-trivial. Then ¢ =n/3, n/2 or
2n(3, and (M, s, ¢) is equivalent to (M, xC"[Ay, s, %04, §) for some (M, sy, ¢),
(C"[ Ay, 04, @) defined in (i), (ii) above.

(iv) The compact quadratic s-manifolds with angular parameter #2n/3 are (up to
equivalence) precisely the folowing

the (M, sy, ¢) of (i) with ¢ #2n/3,

the (C"/A4", 6,3, n/3) and (C"[Z", 6,,,, T/2) of (ii), and the products (M x C"[A,
51X 04, @) of (iii) with ¢=n/3 or n/2.

We now turn to case (ii) of Theorem A. Each coset space G/H given in Tables 1,
2 and 3 in §6 of [7] is defined by an automorphism e AutG of order 3. In each case
(G, H, 0) is a symmetric triple, and so determines (cf. Remarks 1.19) a related
metrisable 3-symmetric space (M, s). We refer to these particular symmetric triples
(G, H, 0) (and to the related (M, s)) as primitive. It follows from Proposition 1.18
and §6 of [7] that the simply-connected compact metrisable 3-symmetric spaces are
(up to equivalence) precisely the products (M;x M, x -+ X M,, s; X5, X > X5,)
where each (M, 5;) is a primitive 3-symmetric space. The next theorem shows how
all compact metrisable 3-symmetric spaces are constructed.

THEOREM C. Let (G,, K;, 0;) be primitive symmetric triples for i=1,2,...,r. Let
Go(=R?") be the translation group of a Euclidean vector space C" with complex structure
Jo, and write 0,=exp(2n/3J,). Define

G=GyxG x-%xG,
R={0}x K, x---x K,
Z=GyxZ X XZ,
0 =0x6,x---x6,,

where Z, denotes the centre of G,;. Let I be a discrete subgroup of Z such that (I')=TI"
and T' NG, is a 2n-lattice. Define G=G|I', and let K=n(K) where n:G— G is the
covering homomorphism. Define 0e AutG by Qon=mn-0. Then (G, K, 0) is a symmetric
triple and the related (M, s) is a compact metrisable 3-symmetric space.
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Conversely, each compact metrisable 3-symmetric space is equivalent to some
3-symmetric space constructed as above. Thus the compact quadratic s-manifolds of type
(ii) in Theorem A are, up to equivalence, precisely the above 3-symmetric spaces.

Remark 2.6. Observe that (M, s) is covered by the simply-connected (not ne-
cessarily compact) 3-symmetric space (M, ) related to the symmetric triple (G, K, 8).
For the covering a: G/ K — G/K, defined by a(xK)=n(%)K, satisfies oaoSy=s
all peM =G/ K.

Remark 2.7. Keep the notation of Theorem C. Let A be any discrete subgroup of
Z. Then a typical element of A is of the form (4, 44,..., 4,), and for =0, 1, ..., r one
has the subgroup A, of Z, consisting of those elements of Z, appearing in the ath
place for some element of A. (We call A, the ath slot group of A.) Clearly 6(A)= 4
implies 0,(A,)= A, for each a. The subgroups 4,=G, invariant by 0, are precisely
the conjugates of the triangle lattice 4" by non-singular complex linear transformations
of C"; see the proof of Theorem B for details, particularly the identities (2) and (3).
The next theorem treats explicitly the covering space problem for any primitive

3-symmetric space, and so gives for a>0 the possible 0,invariant subgroups
A,cZ,.

a5y °® for

THEOREM D. Let (M, §) be the simply-connected compact metrisable 3-sym-
metric space related to a primitive symmetric triple (G, K, 0). Then the (compact)
metrisable 3-symmetric spaces (M, s) covered by (M, §) are, up to equivalence, precisely
the 3-symmetric spaces related to the symmetric triples (G, K, 0) constructed as in
Theorem C in terms of the O-invariant central subgroups I' of G. Explicitly, the possibili-
ties for such I are as follows:

(i) Suppose K is a maximal rank subgroup of G ; that is, (G, K, 8) occurs in Table 1
or 2 in §6 of [7]. Then there is no non-trivial 0-invariant T .

(ii) Suppose G=Spin8, and K=G, or SU(3)/Z; with the corresponding 0 in each
of the two cases determined by Theorem 5.5 of [7]. Then, in each case, Z(Spin8)=
Z,xZ, is the only non-trivial O-invariant I

(iii) Suppose G=Lx Lx L|Z*, R=L*|Z*, where L is a simply-connected compact
simple Lie group with centre Z (the symbol “*” denotes diagonal embedding); here 8 is
the automorphism induced on G by cyclic permutation of the simple factors in Lx Lx L.
The B-invariant central subgroups I of L3|Z* are given in § A2 of Appendix A. Then,
3-symmetric spaces related to symmetric triples (G, K, 0) constructed in terms of distinct
I' are inequivalent except when L=D,, (k>2). For L=D,, (k=2) there are precisely
five non-trivial, proper, B-invariant subgroups I', denoted T'; (i=1,2,...,5) in §A2 of
Appendix A. In the case L= D, (k>2) the 3-symmetric spaces determined by I'y and I,
are equivalent, likewise those determined by Iy and I 5. In the case L=D , the 3-sym-

metric spaces determined by I'y, I', and I 5 are equivalent, likewise those determined by
r 4 and I’ 5.
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§3. Proofs of Theorems

Proof of Theorem A. (i) Let (M, s, ¢) be a compact quadratic s-manifold with
¢ #2n/3. Let g be any s-invariant metric on M, and let V be the corresponding Rie-
mannian connection. Since VS is s-invariant we have S(V,.S) (Y)=(VsxS) (SY) for
all X, YeZ(M). Consequently, for any eigenvalues g,, 0, of S (not necessarily
distinct)and corresponding complex eigenvectors U, ¥ atany pointof M, S(V,S)(V)=
0:02(VyS)(V). Since ¢ #2n/3, and +1 are not eigenvalues of S, then g,¢, is not an
eigenvalue of S, and it follows that VS=0. Consequently, the canonical almost com-
plex structure ¢=(sing)~'(S—(cos¢)I) is parallel with respect to V, and so ® is
integrable. Moreover, for each pe M, S, is orthogonal, and hence @, is orthogonal.
Thus (M, g) is a Kahler manifold with respect to @. Since S is parallel, (M, g) is
locally Riemannian symmetric (cf. [4]); since @ is parallel, then (M, g) is locally
Hermitian symmetric with respect to .

We now show that (M, g) is (globally) Hermitian symmetric with respect to &.
Consider the simply-connected covering space (M, &) with the complex structure &,
where § and @ are the lifts of g and &. Then (M, ) is a Hermitian symmetric space
with respect to &. We have the decomposition (M, §)=(C", §,)x (M, §)x - x
x (M,, g,), where (C", §,) is a complex Euclidean vector space with complex structure
Jo, and for i=1,2,...,r, (M, §;) is an irreducible Hermitian symmetric space of
compact type with complex structure J;; moreover &=J, x J; x --- x J, (cf. the proof
of Proposition 5.5 in Chapter VIII of [3]).

For the Riemannian covering (M, §)— (M, g) the group I' of deck transforma-
tions is a group of Clifford translations of (M, §) because (M, g) is Riemannian
homogeneous (cf. [6], Theorem 2.7.5). Furthermore, any yel" is decomposable as
P=70 X ¥4 X =+ Xy, Where 7y, y; are Clifford translations of (C", g,), (M,, ;) resp.
(Corollary 3.1.4 of [5]). Let I, be the ath slot group of I for a=0, 1,..., r (cf. Remark
2.7). Since @ is the lift of @, then & is I'-invariant and from the above decomposition
of @ it follows that each J, is I',-invariant. Define My,=C"/I'; and M;,= M,/T’; for
i=1,2,...,r. Let go, g; and J,, J; be the metrics and parallel complex structures in-
duced on the M,, M, respectively. Since I', is a group of translations on the real
Euclidean space underlying C} and I', preserves J,,, then (M, g,) is a compact
Hermitian symmetric space of Euclidean type. We claim that for i=1, 2,..., r the
group I'; is trivial. Consider the following two possibilities.

(a) Suppose (M, §;) is not a complex projective space P,,,+;(C) of odd complex
dimension 2m+ 123, nor a space SO(4m+2)/U(2m+1) with m>0. Then Theorem
5.5.1 of [5] implies that I'; is finite and centralises I,(M,, §;), and that (M,, g;) is
Riemannian symmetric. Because J; is a parallel complex structure on (M, g;), then
(M, g;) is Hermitian symmetric with respect to J;; it is of compact type, whence M,
is simply-connected. Thus I'; is trivial.
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(b) Suppose (M, §;) is either P,, .;(C) or SO(4m+2)/U(2m+1) for m>0. If
(M, g;) is Riemannian symmetric then, as in (a), I'; is trivial. If, for some non-trivial
r;, (M,, g;) is not Riemannian symmetric, then by Chapter 9 of [6] or 5.5.5 and 5.5.6
of [5], I't={1, 6;} where §, is anti-holomorphic. This contradicts the fact that I,
preserves J;. So again I'; must be trivial.

Since all the I'; are trivial, we have I'=I,. Consequently (M, g)=(M,, go) X
x (M, §)x-+x(M,, g,) and &=JyxJ, x---J,. Thus (M, g) is a (globally) Hermi-
tian symmetric space with respect to @.

Suppose now that the factor (M,, go) is non-trivial (i.e., dimMy=n>0). From
the above decomposition of @, it follows that the symmetry tensor field has a similar
decomposition; consequently, s=s, x 5; X --- X 5, such that for =0, 1,..., r, the map
S,: M, — Diff M, defines a quadratic s,-manifold (M,, s,, ¢) with angular parameter ¢.
Consider now the simply-connected covering space (C", §,) of (M, 5o) (cf. Remark
1.5). By Proposition 1.6, the symmetry (S, ), at the origin 0 of C" normalises I'. Make
the standard identification of C" with the tangent space to C" at 0, consider I" as a
lattice in C", and write 4=(S;),; then I' is invariant by the transformation 4. Since
(Mo, so, @) is quadratic, then A%2—2(cos@)A+I=0. Let {t;};=1 5, .. 2, be a set of
generators of the lattice I', hence also a basis of the R?" underlying C". Define the
matrix Wby A(t;)=Y 32, Wjt;; because 4 leaves I' invariant, W is an integer matrix.
We have det W=1, and

W?2—2(cosp)W+1=0;

therefore, (2 cos¢)*"=det(W?2+1)eZ. Since & —2(cos¢)&+1 is the minimal poly-
nomial of W, then det(W —&I)=(£2 —2(cos¢) &+ 1)". The term linear in ¢ shows that
2n cospeZ, that is, cos¢p=m/2n for some meZ. Since (2 cos$)*"eZ, it follows that
(m/n)*"eZ and so m/neZ which implies that cos¢ =0,+1%, or +1. By assumption,
$€]0, n[ and ¢ #2n/3; thus, ¢=n/3 or n/2. This completes the proof for case (i).

(ii) Let ¢ =2n/3. Then (M, s, ¢) is 2 metrisable 3-symmetric space by Remark 2.4.
This completes the proof of Theorem A.

Proof of Theorem B. (i) Given a Hermitian symmetric space (M, g;) of compact
type with complex structure J,, then the Lie group G=1I,(M,, g;) is a compact semi-
simple group of Hermitian isometries acting transitively on M;. Thus, M; =G/H
where H denotes the isotropy subgroup of G at some point pe M;. Now H may be
identified with the linear isotropy group at p=v(H) where v:G— M, is the natural
projection, and then (J;), may be considered as an element of the Lie algebra of H
(cf. Chapter VIII in [3]). Given ¢€]0, n[, consider exp(¢(J;),)eH, and define
0=ad(exp(¢(J,),))e AutG. Then (G, H, 0) is a symmetric triple, and determines a
unique related metrisable regular s,-manifold (My, s, ¢) satisfying (a) and (b) in
Proposition 1.18. From (a) it follows that (s, ),=exp(¢(J;),)- By (b), G is a group of
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sy-preserving diffeomorphisms. Consequently, since G is a transitive group of Hermi-
tian isometries of (M, g,) with respect to J,, the metric g, is s-invariant and (s,),=
exp(¢(J,),) for all ge M,. It follows that the symmetry tensor field S;=exp¢J,=
(cos@) I+ (sin¢)J;, and so J; is the canonical almost complex structure on (M, s,).
Moreover, (S;)*—2(cos¢) S; +1=0, whence (M, s,) is quadratic with angular para-
meter ¢; thus, (M, s,, ¢) is associated with the given Hermitian symmetric space.
Suppose (M3, s, ¢) is also associated with the given Hermitian symmetric space; then,
s,=(51),, for their differentials have the common value exp(¢(J,),) at p and each is
an isometry of (M}, g, ). Since the symmetry s, determines (M,, s) (cf. Corollary 1.12),
this proves uniqueness of the associated (M,, s, ¢).

(ii) Given a compact Hermitian symmetric space (M, g,) of Euclidean type, then
M,=C"|I' where I is a 2n-dimensional real lattice in C" and g, is the flat metric in-
duced by the Euclidean metric on C". The complex structure J, on M, is that induced
by the complex structure J, on C". Consider (M,, s,, ¢) associated with the given
Hermitian symmetric space, and the simply-connected covering space (C", §, ¢) of
(M, s,, ¢) where for all p, GeC”

55(q)=P+exp(dpJo) (G—P)- (1

Observe that, by Proposition 1.6, the lattice I' must be invariant by the orthogonal
transformation A =exp(¢J,) of the Euclidean vector space R*" underlying C"; cf. the
last paragraph in the proof for case (i) of Theorem A.

Let e, #0 be a lattice point of I' nearest to the origin 0 of R?". Since the eigenvalues
of A are e*'® with ¢€]0, n[, then {e,, Ae,} spans a 2-plane r,, which is 4-invariant
because A%>=2(cos¢) A—1. Consequently, as in Lemma 3.5.2 of [6], every lattice
point in 7, is an integer linear combination of e; and Ae,; moreover, ¢ =n/3, n/2 or
27/3. Consider now a lattice point e, ¢, at minimal distance from =n,. Then Ae, ¢,
because n, is A-invariant; it follows that {e;, Ae,, e,, Ae,} spans an A-invariant 4-
plane ,. We now show that every lattice point y lying in 7, is an integer linear combi-
nation e,, Ae,, ¢, and Ae,. Let N be the normal vector from e, to 7, ; then N'=A(N)
is the normal vector from Ae, to m,. By subtracting from y an appropriate integer
linear combination of e,, Ae,, e,, Ae,, one obtains y’'en, NI satisfying y'=ae, +
a'Ae, +be,+ b’ Ae,, where a, a’, b, b’ each have absolute value <3. Now the distance
from y’ to m, is

d(y', n,)=|bN+b'N'|
<(Ibl+16'DIN]
<IN,

the first inequality being strict because N'=A(N) cannot be parallel to N (by the
eigenvalues of 4). Since || N|| is the distance d(e,, n,) which is minimal by hypothesis,
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it follows that 5=5b"=0. Thus y’ e n;,and so a and a’ are integers. Hence, 7 is an integer
linear combination of e, Ae,, e,, Ae, as claimed. Continuing by induction, one obtains
{e;, Ae;}i-1 5. » which generates I' and forms a basis of R?".

As just shown in the preceding paragraph, ¢ =n/3, n/2 or 2n/3. Consider now the
standard basis {;, Jo(&;)}i=1.2.....» of R?", and observe that the lattice A4 generated
by {&:, Ae;}i=y,2... nis Z"for ¢ =mn/2 and 4" for ¢ =n/3 or 2r/3. (4" and X" are defined
in §2 immediately before the statement of Theorem A.) Define the non-singular real
linear transformation f:R*" — R?" by f(e,)=¢;, f(de;)=Ae,. Then

frft=4, (2)
fAf'=4. 3)

Equation (3) is equivalent to
fodo=Joof (3)

which is the condition that f be complex linear. Consequently, we have a complex
analytic diffeomorphism f:C"/I' - C"/A, defined by foo'=aof where o’ :C"—>C"/I"
and a:C"— C"/ A, denote the natural projections.

Observe that 4 =exp(¢J,) leaves the lattice A, invariant. Consequently, A, is a
group of §-preserving translations of C". Moreover, by (1) and (3'), each symmetry
§5 normalises A . Therefore (cf. Proposition 1.6) there exists a quadratic o 4-manifold
(C"/ Ay, 64, @) covered by (C", §, ¢) with symmetries satisfying

(64)apyoa=0ocs; for peC".

Now f(0)=0, and from (3') we have that f is §-preserving; hence, equation (2) and
Proposition 1.13 imply that (M, s,, ¢) is equivalent to (C"/ A4, 04, ¢).

(iii) Consider now a compact Hermitian symmetric space (M, g)=(M,, g,) X
x (M,, g,) with complex structure J=J, x J,, where (M, g,) (resp. (M,, g,)) is the
factor of compact (resp. Euclidean) type. We suppose dim M; >0 and dim M, >0, for
otherwise the situation reduces to (i) or (ii). As in (i) and (ii) we can write M, =G/K
and M,=C"/T', and we have the natural projections v:G— M, and «':C" > C"/I". We
write p=v(K)e M, and p’=o'(0)e M,. Suppose now that (M, s, ¢) is associated with
the Hermitian symmetric space (M, g) with complex structure J. Then the symmetry
at (p, p')e M= M, x M, has differential exp(¢ J,, ,,)=exp(¢(J;),) x exp(¢(J;), ) at
the point (p, p’), and consequently

S(p,p = (51)p X (52),- (4)

Now an element of G x C" acts as a Hermitian isometry on (M, g), and, since (M, s, ¢)
is associated with the given Hermitian symmetric space, we deduce that such an ele-
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ment preserves the symmetry tensor field S and hence preserves s (cf. the proof of
Proposition 1.9). As a consequence of (4), s=s, X 5,, and hence (M, s, ¢)=(M,, s,, ¢)
X (M3, s, ¢). Then (iii) follows from (i) and (ii).

(iv) Consider a compact quadratic s-manifold (M, s, ¢) with angular parameter
¢ #2n/3. By Theorem A the canonical almost complex structure @ is integrable and,
for any s-invariant metric g, (M, g) is a compact Hermitian symmetric space with
respect to @. Then (iv) follows immediately from Definition 2.5 and (i), (ii), (iii)
above. This completes the proof of Theorem B.

Proof of Theorem C. From Proposition 1.18 and the fact that 6% =id, it follows
that the construction described in Theorem C yields a metrisable 3-symmetric space
(M, s). Since I' " G is a 2n-lattice, G= G/I" is compact, so M =G/K is compact.

Now consider any compact metrisable 3-symmetric space (M, s), and write
G=2X,(M, s). Thus, G is a compact connected Lie group acting effectively and transi-
tively on M. Choose a point pe M, and let K denote the isotropy subgroup of G at p.
By Proposition 1.18 there exists fe AutG such that (G, K, 0) is a symmetric triple
related to (M, s), and 6°=id.

Let G be the simply-connected covering group of G, denote the covering homo-
morphism by #: G — G, and let D=ker#. Define K*=(%"'(K)),; then G/K* is the
simply-connected covering space of G/K with the projection induced by 7. Let N be
the kernel of the natural action of G on G/K*; thus, N is a closed normal subgroup of
G and NcK*. Define G=G/N and K=K*/N; then G/K is an effective coset space
diffeomorphic to G/K*. The group #(N) is normal in G and #(N)<K, hence #(N)=
{e} because G/K is effective, and thus NcD. Thus, the kernel I' of the covering
n:G — G is a discrete central subgroup of G isomorphic to D/N. The automorphism
0eAutG is covered by a unique feAutG. Because (G, K, 0) is a symmetric triple,
0 fixes K pointwise; consequently, since K* is connected, § fixes K* pointwise. Since
Nc<K* one thus has §(N)=N, and so § covers a unique feAutG. It follows that
G(I')=T and that 8 covers 6.

From §6 of [7] and Remarks 1.20 it follows that, up to equivalence of the 3-sym-
metric spaces, we can assume that G, K, and 8 admit the following decompositions:

G=Gyx Gy %+ xG,,
R={0} xK; x - xK,,
0 =0,x60,x--x0,,

for some set of primitive (G;, K;, 0,), i=1, 2,...,r, and G, the translation group of
some Euclidean vector space C" with complex structure J, and 0,=exp(¢J,). As
noted above, I' is a discrete central subgroup of G and 8(I')=T". Since G is compact,
then I' " G, is a 2n-lattice. Finally, from Theorem 6.4 of [7] it follows that K=n(K).
This completes the proof of Theorem C.

Proof of Theorem D. We first prove two lemmas.
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LEMMA 3.1. Let (M, £, §) be the simply-connected covering space of a Riemannian
regular s-manifold (M, g, s). Let G' be the group of §-preserving isometries of (M, §)
which preserve the fibres of the covering a: M — M with the Lie group structure induced
by inclusion in 1(M, &, §), and let G'=1(M, g, s). Then there exists a smooth covering
homomorphism 7' :G' — G' with kernel A=the group of deck transformations of the
covering a. Moreover, let G=(G'), and G=1,(M,g,s). Then n=n'|z:G—>G is a
smooth covering homomorphism with kernel I' = A ~ G(central in G).

Proof. For xeG' define the diffeomorphism x: M — M by xca=waox. If a(p)=p,
then s,oa=00§; and s0 xos,0a=Xxo0xo§5=00X08§5=008;5°X="5,(p)° XX =Sy p° X0
Thus xeG’ and so a map n':G’ — G’ is defined by n'(X)oa=aoXx. Since n'(X.y)oa=
ao(X.y)=n'(X)on'(F)oa, then n’ is a homomorphism. Moreover, ' is surjective. For
let xeG’, and let ¥: M — M be a lift of x. It is easily seen that % is an S-preserving
isometry of (M, g, §) where S is the symmetry tensor field. Hence (cf. Proof of Propo-
sition 1.9) X is §-preserving. Thus ¥eG’, and #n'(¥)=x; this proves n’ surjective. We
next show that n’ is a smooth map; for this purpose it suffices to prove continuity
since 7’ is a homomorphism of Lie groups G', G'. Let (%,) be a sequence in G’ such
that %,— %. Then for each peM, %,(p)— %(p). Hence (n'(%,))(x(p))=o(%,(p))—
a(X(p))=(n'(x))(«(p)). Since G is a closed topological subgroup of I(M, g) with the
compact open topology, it follows that n'(x,) — n'(¥), so n’ is continuous, and hence
smooth. The final statement of the lemma is immediate; thus the proof of Lemma 3.1
is complete.

LEMMA 3.2. Let (M, §) be the simply-connected 3-symmetric space related to a
primitive symmetric triple (G, R, 8), and let § be any 3-invariant metric on M. Then
G=X,(M, 5)=1,(M, g, 5). If, moreover, (M, §,3) is the simply-connected covering
space of (M, g, s) with covering map o: M — M, then each element of G preserves the
fibres of the covering a.

Proof. Let #:G — G/ K be the natural projection. Because (M, §) and (G, K, ) are
related, M =G/ K, §go =708, and §.g=Xo5gox ! for all xKeG/K. It follows that
the group ¥ generated by the symmetries is contained in GUG.5xUG.(5g)*. By
Proposition 1.18, there exists an §-invariant metric & on M such that Gcly(M, g, 5).
Consequently, since the Lie group G acts transitively on M, it follows that G is a
closed topological Lie subgroup of I,(M, g, §) (cf. Remark 2 on page 176 of [3]).
Since Z,(M, 5) is the identity component of the closure of ¥ in I(M, g, 5), then
Zo(M, §)= G. Moreover, since G is a group of §-preserving isometries of (M, g), then
Zo(M, §) is a normal Lie subgroup of G. In all cases except G=L?/Z*, the group G is
simple in Tables 1, 2 and 3 of [7], and so in these cases we have G=2,(M, §). For
G=L3/Z*, one notes that £ o(M, §) must be f-invariant and since 0 here is induced by
cyclic permutation of the three simple factors in L x L x L, again G=2,(M, 3).

Now, for any §-invariant metric § on M, G=ZXo(M, §) is a normal closed topolog-
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ical Lie subgroup if I,(M, g, §). Moreover, 0 is the restriction to G of the automor-
phism ad(5§g)eAutI(M, g, §). Decomposing the compact connected Lie group
I,(M, &, 5) (which acts transitively and effectively on the simply-connected M) as in
the first paragraph of §6 in [7], one sees that G=1,(M, &, §). This completes the proof
of the first statement in the lemma.

Suppose now that (M, g, §) covers (M, g, s) with covering map a«: M — M. Then
oo§5=15,°0 for each peM, whence each symmetry §; is fibre preserving. So the
group ¥ generated by the symmetries (and hence its closure X(M, §) in I(M, g, 5)) is
fibre preserving. Thus, G=ZX(M, §) is fibre preserving, and this completes the proof
of Lemma 3.2.

We nowreturn to the proof of Theorem D. Consider then a primitive symmetrictriple
(G, R,0)and the related simply-connected compact metrisable 3-symmetric space (M, §).

Let I' be a D-invariant central subgroup of G; for the covering n:G - G=G/|T,
define K=n(K) and define e AutG by fon=n-0. By Theorem C, (G, K, 0) is a
symmetric triple and determines a related metrisable 3-symmetric space (M, s). By
Remark 2.6, (M, s) is covered by (M, ).

Conversely, suppose (M, s) is a compact metrisable 3-symmetric space covered by
(M, 5), and let 4 be the group of deck transformations of the covering o: M — M. Let
g be any s-invariant metric on M, and let ¢ be the corresponding §-invariant metric
a*g on M. Set G=1I,(M, g, s) and let K be the isotropy subgroup of G at the point
«(K) in M. Now, by Lemma 3.2, G=1,(M, g, §) and each element of G preserves the
fibres of the covering a. Consequently, by Lemma 3.1, there is a smooth covering
homomorphism n:G — G defined by n(%)ca=waox for X€G, and so '=kern=4nG
is a discrete central subgroup of G. By Lemma 3.2, G=X,(M, $), so the map ¢:G— G,
defined by §(%)=35goxo5g ' for €@, is an automorphism of G. For %, je G, §(x)j K=
6(x)7 K because §g(7R)=0(7) K, and hence ¢ =0 because G/K is effective. Define
0e AutG by 0(x)=sgoxosg ' for xeG. Since ao§g=sgoa, then (fon(%))oa=ao(G(X))
for xeG, and so noG=00-n by the defining property of n. Consequently 8(I")=T.

Let 7: G — G be the simply-connected covering group of G, and define the homo-
morphism #=no7. Since K=(G%), and, by Proposition 1.18, (G*)o= K=G?®, then
(@ 1(R))o=(7"1(K))o, since their Lie algebras coincide. Now G/z~!(K) is diffeo-
morphic to G/ K=M, because 7~ '(K) is the isotropy subgroup of G acting naturally
on G/ K; since G/ R is simply-connected, then 7#~*(K) is connected. The kernel of the
action of G on G/~ *(K)), equals the kernel of the homomorphism 7, and it follows
from the proof of Theorem 6.4 of [7] that K=n(K). To summarise, G=G/I', K=n(K)
and Oon=mo0 where n:G — G is the natural projection and I' is a f-invariant central
subgroup of G.

Thus we have shown that the compact metrisable 3-symmetric spaces covered by
(M, 5) are precisely those (M, s) constructed from the symmetric triple (G, K, 8) in
terms of f-invariant central subgroups I" of G as described in Theorem C.
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With the above notation, the covering a:G/K— G/K is given by a(xK)=n(%)K
for x Ke G/ K. Since G/ K is effective, then I' n K is the identity element. It follows that
the group of deck transformations of the covering « is precisely I', acting naturally on
G/K as a subgroup of G. Given two O-invariant central subgroups I'y, I', of G,
construct, as above, symmetric triples (G,, K, 0,), (G,, K, 8,) and the related 3-sym-
metric spaces (M, s,), (M3, s,). Now, by Proposition 1.13, (M, s,) and (M,, s,) are
equivalent if and only if there exists an §-preserving diffeomorphism f of M=G/K
such that f(K)= K and fI', f~'=T,. Since G=ZX,(M, 5), such an f exists if and only
if there exists ¢eAutG such that ¢(K)= K, #0=0¢ and ¢(I'y)=1T,.

We now describe the O-invariant central subgroups of G for the various primitive
symmetric triples (G, K, 8), and check for equivalence of the resultant 3-symmetric
spaces.

Case (i): if (G, R, 8) occurs in Table 1 or 2 of §6 in [7], then G has trivial centre,
so there are no non-trival f-invariant I

Case (ii): G=Spin8, K=G, or SU(3)/Zs,.

In the case Spin8/G, the automorphism 6 is the triality automorphism n of Spin8;
the centre Z (Spin8)=Z, x Z,. Since 7 fixes the identity and cyclically permutes the
other three elements of Z (Spin8), then the only non-trivial n-invariant subgroup of
Z (Spin8) is Z (Spin8) itself. In the case Spin8/(SU(3)/Z;) the automorphism 8 is
nead(u) for some ueSpin8. Since the inner automorphism ad(u) leaves Z (Spin8)
pointwise fixed, it follows that (as in the G, case) the only non-trivial noad(u)-in-
variant subgroup of Z (Spin8) is Z (Spin?8) itself.

Case (iii): G=L*/Z*, R=L*|Z*, where L is a compact simply-connected simple
Lie group with centre Z and “*” denotes diagonal embedding into L>*=Lx Lx L;
the automorphism e Aut L3/Z* is induced by cyclic permutation of the simple factors
in L3, For each of the simple groups L, all f-invariant central subgroups I" of L?/Z*
are listed in § A2 of Appendix A. Each such I’ yields a symmetric triple (G, K, ) and
so defines, as described above, a related 3-symmetric space. By § A3 of Appendix A,
the equivalence of the resultant 3-symmetric spaces is as stated in Theorem D.

§Al. Automorphisms of L3/Z*

Let L be a simply-connected compact simple Lie group with centre Z. Consider
the product group L>=L x L x L. Let p;;, € Aut L* be defined by

pijk(xla X2, x3)= (xis Xjs xk)9

where (i, j, k) is some permutation of (1,2, 3). Then if 6, 6,, ;€ AutL, it follows
that (0, x 0, x 63)op,; € Aut L. Conversely, if feAutL3, then, because L is simple,
6 permutes the factors of L* and so 0= (0, x 0, X 03)op;j for some 0,, 6,, 0;€ AutL
and some p;, ke
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Consider the quotient group L?/Z* where Z*{(z, z,z)eL*:zeZ}. Define Aut
(L3, Z*)={acAutL*:a(Z*)=2Z*}, and let n: L*> — L3/Z* be the natural projection.
There is a unique isomorphism f:Aut (L, Z*)— Aut L*/Z* satisfying f(¢)on=mno¢
for all geAut(L?, Z*). Now the elements of AutL?/Z* are precisely the automor-
phisms S((6, x 0, x 83)°p;;) with 8, 6, and 05 in the same ad L-coset of AutL. For
(0,0, %03)0op;eAut L’ preserves Z* if and only if 0,(z)=0,(z)=0,(z) for all
zeZ, and automorphisms in distinct ad L-cosets of Aut L have distinct actions on Z.

§A2. O-invariant Central Subgroups I’

With the notation of §Al, consider p;;,€AutL?. Then p;,,(Z*)=Z*, and we
define 6=p(p;,,)eAutL?/Z*. We now find the O-invariant central subgroups of
L?*/Z* as required for Theorem D.

The centre of L3/Z* is Z3/Z*, which we identify with Zx Z via the iso-
morphism 6:Z3/Z* > Zx Z defined by 6((zy, 25, 1)Z*)=(z,, z;) for z,, z,€Z.
Now 0((zy, z,, NZ*)=(1, 24, 2,)Z*=(z; ", z,2; ', 1)Z*, so @ acts on ZxZ by
0(zy, 2,)=(23 ', 2123 ') for (z,, z,)eZ x Z. We list below the non-trivial f-invariant
subgroups I'c Z x Z for the various simple groups L. For cases (a), (b), (c) and (d),
the results follow either directly or from Appendix B.

(a) L=G,, F, or Eg; Z is trivial. There are no non-trivial f-invariant subgroups
I'cZxZ.

(b) L=B, (I1=2), C, (I=3) or E;; Z=Z,. Here I'=Z x Z is the only possibility.

(c) L=Eg; Z=Z,.T={(0,0), (1,2), (2,1)} or Zx Z.

(d) L=Dyyyy (k22); Z=Z,.T=Z,xZ, or ZxZ.

() L=D,, (k=2); Z=Z, x Z,. Explicitly let 4 and B be the generators of the two
copies of Z,; thus Z={A4, B:A*=B*=1, AB= BA}. Directly one finds that the non-
trivial f-invariant subgroups of Z x Z are:

ri={(1, 1), (1, 4), (4, 4), (4, 1)},
r,={(1, 1), (1, B), (B, B), (8, 1)},
r;={(1, 1), (1, 4B), (4B, AB), (4B, 1)},
ry={(1,1), (4B, 4), (4, B), (B, 4B)},
I's={(1,1), (4B, B), (B, 4), (4, 4B)},

and

F6=ZXZ.

(f) L=4, (I=1); Z=Z,,,. The f-invariant subgroups of Z x Z are the groups
listed in §B6 of Appendix B (with n=17/+1).
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§A3. Equivalence

The O-invariant central subgroups I' of L3/Z* described in §A2 are used in
Theorem D to construct 3-symmetric spaces. For given L, two O-invariant central
subgroups I', I''<L?/Z* yield equivalent 3-symmetric spaces if and only if there
exists ¢=AutL’/Z* such that ¢(L*/Z*)=L*/Z*, 06=¢0 and $(I')=I", where
L*={(a, a, a)e L*:aeL}; for details see proof of Theorem D.

Now the elements of AutL?/Z* which preserve L*/Z* and commute with § are
precisely the automorphisms of the form B((¥ x ¥ x¥)o(p31,))=BW x ¥ x )b
where yeAutL and i=0, | or 2. For, using the results of §Al, one sees that the ele-
ments of AutL3/Z* which preserve L*/Z* are precisely those of the form
B((¥ x ¥ xy)op;;;) for yeAutL; moreover, such an element commutes with 0=
B(psi12) if and only if p;; =id, p5,, or p,3;, because B is an isomorphism and p;;,
commutes with ¥ x y x .

Observe that (B(Y xy x¥)) ((z4, 25, 1) Z*)=(¥(z,), ¥(z5), 1)Z* for YyeAutL,
2y, z,€Z. Hence, identifying the centre of L3/Z* with Z x Z as in § A2, two 0-invariant
central subgroups I', I'' = Z x Z yield equivalent 3-symmetric spaces if and only if there
exists Yy e Aut L such that (y xy) (I)=1I".

For L# D,, (k>2), then each Yy e Aut L either fixes Z pointwise or maps each ele-
ment of Z to its inverse, and so Y x y preserves any O-invariant subgroup 'c Z x Z.
Consequently, for L#D,, (k>2), distinct I' yield inequivalent 3-symmetric spaces.

Consider now L= D,, (k>2) and the #-invariant subgroups I';cZx Z,i=1, 2, ...,
5, defined in § A2. For L=D,, (k>2), it follows from § Al that, for any outer auto-
morphism YyeAutL, y x interchanges I'; and I',, likewise I'y and I's, whilst pre-
serving I';. Consequently, I'; and I', define equivalent 3-symmetric spaces, likewise
I'y and I'; there are no other equivalences. For L= D,=Spin8, we have two basic
outer automorphisms; namely, a which fixes 4B and interchanges 4 and B, and the
triality automorphism # which cyclically permutes A - B— AB— A. Then E(D,) is
the dihedral group generated by o and . For ye E(D,), the action of ¥ x ¢ on the
I''cZ x Z is as follows:

o x a interchanges I'y, I',, interchanges I',, I' 5, and preserves I'3;

(noa)x (noa) interchanges I'y, I, interchanges I'y, I's, and preserves I',;
(n?oa) x (y?oa) interchanges I',, I';, interchanges I', I's, and preserves I'y;
nxn permutes I'y > I', »I'; > Ty, and preserves I'y, I's;

n*xn? permutes I'y > I'y > I', - T'y, and preserves I'y, I's.

Consequently, I';, I', and I, yield equivalent 3-symmetric spaces, likewise I'y and I's;;
there are no other equivalences.
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Appendix B

Let Z, denote the additive group of integers modulo n. If @, beZ and a(modn),
b(modn) denote their respective equivalence classes modulo n, then we denote
(a(modn), b(modn))eZ,DZ, by (a, b). We denote the greatest common divisor of a
and b by [a, b].

The purpose of this appendix is to find all the subgroups I' = Z,®Z, invariant by
the automorphism 6, defined by 6,((a, b))=(—b, a—b) for (a, b)eZ,®Z,. These
groups are needed in the proof of Theorem D; cf. also § A2 of Appendix A.

§B1

PROPOSITION. Let n=p}' p3... pir be the prime power decomposition of n with
Py <py<-<p,, and write n;=p*'. The isomorphism Z,=7,®L, D PL,, yields the
isomorphism Z,®Z,=(Z, ®ZL,)D(Z,,DZ,,)® - ®(Z, DL, ); moreover, 0,=
0, x0,,x--x0,. Hence a subgroup I' cZ,®Z, is O,-invariant if and only if I' =
rer,®---er, for some 0, -invariant subgroups I ;<< Z, ®Z, , i=1,2,...,r.

Proof. Given 0,-invariant subgroups I';cZ, ®Z,,, one sees immediately that
I'=r®r,®---@r, is invariant by 0,,.

Conversely, suppose '<Z,®PZ, is 0,-invariant. For i=1, 2,...,r let n; be the
projection of Z,®Z, onto the factor Z, @Z, , and define I';=n,(I"). Because 0,(I')=T,
0,(r;)=rI;fori=1,2,...,r. Weclaim that '=I',®I',@®---@®T,. Since it is immediate
that 'eI',®I',®---@®T,, it remains only to show that I' @I ,®---@I',<I. For a
fixed i, consider any (a;, b;)el’;. By definition of I';, there exists zeI such that n;(z)=
(a;, b;). Define m=n*- (n;)”2. Observing that (n;) is the order of Z, @Z, , one sees
that n;(m- z)=(0, 0) for j#i. Because [m, (n;)*]=1, there exist integers s, ¢ such that
sm=1—t(n;)*, and so sm-(a; b;)=(a;, b;). Consequently ((0,0),...,(a;, b,),...,
(0, 0))=sm- zel'; thus {(0,0)}®---®I';®---®{(0,0)}=TI for i=1,2,...,r, and so
r®r,®---®r,cr. This completes the proof of the proposition.

§ B2

The above proposition reduces the problem to the case of a prime power. Consider
then in this section a subgroup I'c Z,®Z, satisfying 0,(I')=T", where n=p*. Define
A, (resp. A,) as the subgroup of Z, obtained by projecting I' on the first (resp. second)
factor in Z,®Z,. Suppose a€ A,, and that (a, x)el'. Then 02((a, x))=0,(—x, a—x)=
(x—a, —a), whence ae A,. Hence, A; < A,; likewise A, A, so [« A@® A where
A=A;=4,. We call A the slot group of I'. Now A is a subgroup of Z,, so A=Z,, for
some 0<o <. The order of I' is >p°, and since I' =« A@ A, the order of I is p° ** for
some 0<u<o. We denote by I',(p* o, u) the 6, -invariant subgroups of Z,®Z,
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(n=p*) which have slot group A= Z,. and order p°**; here a runs over some indexing
set necessarily finite and possibly void for certain values of p, 4, o, u. Observe that the

subgroup I',(p*, o, 1) of Z,.®Z,. are isomorphic to the subgroups I',(p°, o, u) of
Z,,®Z,..

§B3

By the last observation, our problem is finally reduced to the following: for n=p°

and 0<u <o find all subgroups I' cZ,®Z, satisfying
(i) 0,(0)=T

(ii) order of '=p°**
and

(iii) the associated slot group A=~Z,.

In the next three sections we solve this problem explicitly. For u=o there is exactly
one subgroup of Z,®Z, satisfying (i), (ii) and (iii); namely, Z,®Z, itself, denoted
r(p’, o, o).

We now consider the case O0<u<o. Then there must be at least one element
xeZ, such that there are at least p* distinct elements of the form (x, *) in I', for other-
wise order of I' <p”**. Moreover, for any yeZ, there must be an a,eZ, such that
(=x+y, a))el by property (iii); consequently there are at least p* distinct elements
of the form (y, *)er. Since order I'=p° **=n- p*, there must be precisely p* elements
(¥, *) in T for each yeZ,.

Consider an integer x satisfying 0<x <n and such that (1, x)el’. Then (x, x*)=
x- (1, x)erl, and since 0,(I')=T, we also have (—x, 1 —x)eTl’, whence (0, x>—x+1)
el. Now if [x*—x+1, n]=1, then (x*—x+1) (modn) generates Z,, so that
{0}®Z,=r; 6,(I')=T then implies Z,® {0} =I', whence I'=Z,®Z, which contra-
dicts order I'=p°** <n?. Consequently,

x*—x+1=0(modp). (B.1)

For p=2 the congruence (1) is not soluble; for p=3 it has the solution x=2(mod3).
For a prime p>3, Euler’s criterion asserts that (B.1) has a solution if and only if
(=3)®~1/2=1 (modp), and for such p there are precisely two solutions modp.

We thus observe that, if p=2 or if the prime p is >3 and (—3)®" /21 (modp),
then for 0 <o there is no subgroup 'cZ,®Z, (n—p°) satisfying (i), (ii) and (iii)
above.

§B4

Leaving the case p=3 for the moment, we now investigate the case when 0<u <o,
p>3 and (—3)®»"1/2=1 (modp). The congruence (Bl) then has two distinct solu-
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tions modp, which we write x. (modp) where the integers x satisfy 0<x_<x, <p.
If, for 0< x<n=p°, we have (1, x)el, then by §B3, x>*—x+1=0(modp) and so
x=x, +kp for some 0<k<p®~ L.

Consider now all the elements in I' of the form (1, ). Firstly, either all such
elements are of the form (1, x,+kp) or all are of the form (I, x_+kp).
For suppose (1, x,+kp) and (1, x_+k'p)el’ for some k, k’; then (O,
(x4 —x_)+(k—k")p)er. Because p does not divide x, — x_, the integer ((x, —x_)+
(k—k")p) (modn) generates Z,, and so {0}@Z,<TI'. Then Z,® {0} <I also, because
0,(I')=T, whence I' =Z,®Z, which contradicts order I' <p?*’ =n*. Consequently, the
p* distinct elements (1, *) of I' can be written either all in the form (1, x, +k;p) or all
in the form (1, x_+k,p) for appropriate 0<k, <k, <---<k,.<p’~'. Secondly, we
show that for each i, (k;—k,_,)p=p°*. Suppose that for some i, [(k;—k;-,)p,
p° *l<p® *. Then, for A=1,2,...,p*+1, we have the p*+1 distinct elements
(0, A(k;—k;_,)p)er, contradicting the fact that there are only p* elements (0, ) in I
Consequently, [(k;—k;_1)p, p’ *]=p°"*, whence k;p=kp+(i—1)p°™* for i=
1,2,..., p*. Thus, the elements in I" of the form (1, *) may be written as (1, X+ ip® ™ *)
fori=1,2,..., p*, where ¥=x_, +k, p for some k, satisfying 0<k, <p® *~'.

For each i=1,2,...,p"* let {(1, x+ip° *)} denote the cyclic subgroup of I
generated by (1, x+ip°*). Now for any integers a, b, m, m’, I' contains the element

(a+b, (a+b)x+ (am+bm') p° *)=a- (1, X+mp° *)+b- (1, Xx+m'p°™*).
If p does not divide a+ b, this element is simply (a+5b)- (1, X+ m"p°~*) for an integer
m” satisfying m”(a+b) p° " * =(am+bm’) p°~* (mod p?). Considering integers a, b such
that p divides a+b, one sees that I' must contain all elements of the form (rp, rpx+
mp°~*), r and m arbitrary integers. Observe that if, for some i#i’, a- (1, X+ip° ™ *)
belongs to {(1, Xx+i'p°"*)}, then a=rp for some r. A count of elements now shows
that the subgroup of I' generated by the p* cyclic groups {(1, ¥+ip°~*)} has order
p°**, and hence coincides with I

Now a subgroup of Z,®Z, generated by such cyclic groups is 6,-invariant if and
only if 0,((1, ¥+ip° *))el for i=1,2,..., p*; equivalently if and only if ¥*—x+1=0
(modp®~*). We claim that this congruence has precisely two solutions (modr=p?).
First we prove the following

LEMMA. Let v>0. Then the congruence
%2 —x+1=0(modp") (B.2)

has a unique solution %, (modp") congruent to x, (modp), likewise for x_.
Proof. To prove the lemma for the x, case, we will show, by induction on v, that
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there is a unique solution to (B.2) of the form
X=x,+oap where 0<a<p® ! (B.3)
We write u, =2x, — |, and note that by definition of x,,
x% — x4 +1=0(modp). (B.4)

Step 1. If v=1, then necessarily a=0 and X, =x, is the unique solution to (B.2)
of the form (B.3).

Step 2. Suppose v=2. Observe that (B.4) implies that x2 —x, + 1 =r,p for some
integer r,, and (B.2) holds if and only if

(ry+u,a) p+a*p*=0(modp®). (B.5)
Consequently, a necessary condition for X=x, +ap to solve (B.2) is
ry+u,o0=0(modp). (B.6)

Now [u,,p]=1, so (B.6) has unique solution a =a,(modp) where we may assume
0<ay<p. Write a=aq+a,p; then 0<a, <p”~? because 0<a<p’ 1. If v=2, then
necessarily «; =0, and (B.6) is a sufficient condition for Xx=x, +ap to solve (B.2), so
X, =x, +ayp is the unique solution to (B.2) of the form (B.3).

Step 3. Suppose v=3. Continue, and by induction, arrive at:

Step i. Suppose v=i. Observe that (B.2i) implies that

(ri-ztuia;_3) p' 2 +2a,(a0+a;p+ - +a;_,p "2 p' =y p'!
for some integer r;_,, and (B.2) holds if and only if
(ricitugo;_5)pi ' +20;_y(ag+a,p+--a;_3p'~ %) p'=0(modp"). (B.2i+1)
Consequently, a necessary condition for £=x, +op to solve (B.2) is
Fi-i+uso;_,=0 (modp). (B.2i+2)

Now [u,, p]=1, so (B.2i+2) has unique solution «;_, =a;_,(modp) where we may
assume 0<a;_,<p. Write o, ,=a;_,+a;_p; then O0<o;_;<p'~' because
0<o;_,<p* 0D If y=i, then necessarily a;_; =0, and (B.2i+2) is a sufficient
condition for ¥=x, +ap to solve (B.2), so X, =x,+(ap+a;p+-- +ai_2pi_2) pis
the unique solution to (B.2), of the form (B.3).

This process clearly halts at Step v. This completes the proof of the Lemma.

Thus, by the Lemma, the congruence ¥*—x+ 1=0(modp’~*) has a unique solu-
tion %, (modp®~*) such that %, =x, (modp). Similarly, the given congruence has a
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unique solution X_(modp®~*) such that X=x_ (modp). Clearly X, #x_(modp”~*),
for x, #x_(modp).

Define I, (p°, o, ) to be the two subgroups of Z,®Z, generated by the p* cyclic
groups {(1, XL +ip°~ ")}, i=1, 2,..., p*, respectively.

We summarise the results of this section. Given n=p° where the prime p>3
satisfies

(=3)*"D'2=1 (modp),

let X, be the two solutions to the congruence %% — %+ 1 =0(modp°*) where 0< u<a.
Then the 0,-invariant subgroups of Z,@Z, having order p°**(0<u<oc) and slot
group A=Z, are the two groups I' . (p°, o, u) just defined.

§B5

We now treat the problem posed in §B3 for n=p” in the case p=3. For p=3, the
congruence (B.1) has the unique solution 2(mod 3). Arguing as in § B4, one may show
that the elements in I" of the form (1,*) may be written as (1, x+i3°7%),i=1, 2,...,
3°7# where X =2+ 3k forsome 0 <k <3°*~!; moreover, ¥ must satisfy the congruence

¥2—x+1=0 (mod3°*),
that is,
9k%+9k+3=0 (mod3’ ). (BY)

Now (B!) has a solution for &k only if u=0c of 60— 1. So, if 0< u<o—2, there are no
6,-invariant subgroups I'(3°, o, ). As pointed out in § B3, if u= o, there is exactly one
f,-invariant subgroup with slot group Z,, namely I'(3%, 0, 0)=Z,®Z, itself. Assume
then that u=0—1. Then any integer & solves (B!). One observes that the subgroup of
Z,®Z, generated by the cyclic groups {(1, 2+3i)}, i=1, 2,..., 3°71, is the 6,-invariant
subgroup I'(3%, o, 6 —1) of order 32?1 with slot group equal to Z,.

§B6

In this section we give the complete solution to the problem posed in §BI.

Consider any integers A and o satisfying 0<o <. Then:

(i) for any prime p we have the subgroup I'(p*, 0, 6)=Z,.®Z,. in Z DZ,:;

(ii) for p=3 we also have the subgroup I'(3%, 0, 6—1) in Z;.®Z,. generated by
the cyclic groups {3*77- (1,2+3i)}, i=1,2,...,p°"!; and

(ii’) for prime p> 3 such that (—3)*®~1/2=1(modp) we also have, for each integer
u satisfying 0<pu<a, the two subgroups I' 1 (p*, o, u) in Z,»@Z,. generated by the p*
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cyclic groups {p*~*- (1, X, +ip°™*)}, i=1,2,..., p*, respectively, where %, and %_
are the two solutions (modp®~*) to the congruence %*—x+1=0(modp® *) as
described in §B4.

Now consider any positive integer n and let n=p}* p3*... p> be the unique de-
composition of » into prime powers with

P1=2<p,=3<p3<--<p’,

and such that 4;, 1,20, 4,>0 for i >3. Then by §§B1 to B5 the 8,-invariant subgroups
of Z,®Z, are precisely the direct sums I',@T',®--- @I, where the I'; are as follows.

r,=r(*, e, 0,) for some 0<o,<4,.

r,=r3*, o,, u,) for some 0<o,<4, and p,=0, or g,—1.
For i>3:if (=3)®~1/2£1(modp;), then
I;=r(p¥, o, 0;) for some 0<0;<4;;

whereas, if (—3)®~Y/2=1(modp;), then

r;=r(p#, e, ;) for some 0<0o,;<A;,
or

Fi=r:t(p?', O ﬂ‘) for some 0<”i<oi<1i'

REFERENCES

[1] Boursaki, N., Eléments de mathématique, Groupes et algébres de Lie, Chapter VI, Hermann,
Paris, 1972.

[2] GraHAMP. J. and LEDGER, A. J., s-Regular manifolds, Differential Geometry in honor of K. Yano,
Kinokuniya, Tokyo (1972) 133-144.

[3] HeLGasoN, S., Differential geometry and symmetric spaces, Academic Press, New York, 1962.

[4] LEDGER, A. J. and OBATA, M., Affine and Riemannian s-manifolds, J. Differential Geometry 2
(1968) 451-459.

[5] WoLr, J. A., Locally symmetric homogeneous spaces, Comment. Math. Helv. 37 (1962), 65-101.

[6] WoLF, J. A., Spaces of constant curvature, McGraw-Hill, New York, 1967.

[7]1 WoLr, J. A. and GRAY, A., Homogeneous spaces defined by Lie group automorphisms, J. Differ-
ential Geometry 2 (1968) 77-159.

The University of Liverpool
P.O. Box 147
LIVERPOOL

L69 3BX

Received June 23, 1975






	Compact Quadratic s-Manifolds

