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Aspherical Manifolds and Higher-Dimensional Knots

BENO ECKMANN

E. Dyer and R. Vasquez [3] proved that the complement of a higher-dimensional
knot $""2<S", n>4, is never aspherical unless the knot group is infinite cyclic
(and hence, for n>S5, the imbedding is unknotted?!)). In the present note we give a
simple proof of this fact based on some remarks concerning compact d-manifolds.
By the same method we show that the complement of a link in S", n>4, is never
aspherical.

Let X be a compact n-dimensional d-manifold, G=n,(X) its fundamental group.
If 0X is connected, let G, be the image of n,(0X) in G. Using the connection between
G, and the boundary 0X of the universal cover of X we first note that H" ™! (X;ZG)=0
if and only if G,=G. If, moreover, X is aspherical, we show that cd G, <n—1 implies
Go=G (and vice-versa). Since in the case of a knot-complement in S", n>4, the
image G, is infinite cyclic, the Dyer-Vasquez result follows. Actually the asphericity
is used here in a weak form only, cf. 3.2 below. — In the case where 0.X is not connected,
and if X is aspherical, then for at least one of the components of dX one has
cdGy=n—1. This immediately implies the sphericity of higher-dimensional links.

1. The Fundamental Group of a 0-Manifold

1.1. Let X be a J-manifold; by this we mean a connected cellular manifold with
non-empty boundary 0X. We write i/ for the inclusion map 0X — X, and G for the
fundamental group =, (X).

We will always assume X to be compact. The universal cover X of X is a
d-manifold which may be compact or not; its boundary 6X is the inverse image
p~'(0X) under the covering map p:X —» X. We want to get information on the
number of connected components of 0X; i.e., on the integral homology group
H,(0X). The exact homology sequence

yields
H§4(0X)=H,(X modoX),

1) In [3], only n>6 is mentioned (Levine, Stallings), but the result holds for n=5 as well
(C. T. C. Wall, Shaneson).



94 BENO ECKMANN

red

where H is the reduced homology group. Poincaré duality in X further yields

Hg*(0X)=H""'(X),

n being the dimension of X, and H denoting cohomology with compact supports
(i.e., if we use a cell decomposition, cohomology based on finite cellular cochains).
If C(X) denotes the chain complex of X corresponding to a finite cell decomposition
of X, one may replace (cf. [2], p. 359) the finite cochain group Hom;,(C (X), Z)
by the equivariant group Hom¢(C (X), ZG). It follows that

A" '(X)=H""\(X; ZG),

the last group being cohomology with local coeflicients given by the left G-module
Z.G. We thus obtain

HE(6X)=H™ (X; ZG). (1)
This yields the following results:

PROPOSITION 1.1. 0X is connected if and only if H" *(X; ZG)=0.

PROPOSITION 1.2. If 0X is not connected, then H" ™' (X ; ZG)+#0.

1.2. We now assume the boundary manifold X to be connected and write G, for
ix7;(0X), the image of ny(0X) under the inclusion map i:0X — X. The connected
components of 60X =p~!(8X) correspond bijectively to the cosets of G moduloG,.
Proposition 1.1 can therefore be reformulated as follows.

PROPOSITION 1.3. Let X be a compact manifold of dimension n with connected
boundary 0X. Then H" ' (X; ZG)=0 if and only if Go=G, i.e., if n,(0X)— n,(X) is
surjective.

Let K(Gy, 1) denote an Eilenberg-MacLane complex of the group G,. There is
a map j:0X — K (G, 1), determined up to homotopy, which induces the surjection
7, (0X)— G,. We now further assume that the inclusion i:0X — X can be factored up
to homotopy through j:

i=hj:0X 5 K (G, 1) 5 X. (2)

Then i*: H" ' (X; ZG)— H"'(0X; ZG) is factored as i*=j*h* through the co-
homology group H" !(G,; ZG) and will thus be 0 if we assume this group to be 0
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(in particular, if the cohomology dimension cd G, is <n—1). The homomorphism i*
appears in the exact sequence with local coefficients

oo H" Y (X moddX; ZG) > H" ' (X; ZG)S H" 1 (0X; ZG) -+ (3)

By Poincaré duality H" (X moddX; ZG)= H,(X; ZG); the latter group is com-
puted from ZG®;C (X )=C (X), i.e., it is equal to H,(X) and hence 0.

Note that the argument is valid both in the orientable and non-orientable case:
in the non-orientable case the duality yields H"~ ' (X moddX; ZG)=H,(X; ZRZG),
where Z is the group of twisted integers. But Z®ZG (with diagonal action) is easily
seen to be isomorphic to ZG.

Thus by (3) i* is always injective. Under the factorization assumption (2), and if
H" (Gy; ZG)=0, we have seen that i*=0, and therefore H"~'(X; ZG)=0. Com-
bining this with Prop. 1.3 we get

THEOREM 1.4 Let X be a compact manifold of dimension n with connected
boundary 0X, and let i:0X — X be the inclusion, G=1,(X), Go=i,7,(0X). If i can be
factored up to homotopy as i=hj:0X — K (Gg, 1)~ X and if H""'(Gy; ZG)=0, then
GO =S G.

1.3. In Theorem 1.4 the condition H"~!(G,; ZG)=0can be replaced by H, _; (G,)=0.
To prove this, let ee H,_,(0X) be the fundamental class of 0X [eeH,_,(0X; Z)
in the non-orientable case]. For any ze H" ™ '(G,; ZG), the cap-product formula

Jx(enj*z)=jenz

together with j,e=0 yields j*z=0, since j,: Hy(0X; ZG) > Hy(Gy; ZG)and en — are
both isomorphisms. Now j* =0 implies i*=0.

1.4. If we do not assume that dX is connected, Theorem 1.4 has to be restated in a
slightly different form.

Let ,X, v=0, 1,..., k be the connected components of 0X, and G,=1i,,7;(0,X)
the images in G of their fundamental groups under the inclusions 7,:0,X — X (deter-
mined up to conjugacy only). Let K be the disjoint union of the K (G,, 1) and
j:0X > K the union of the maps j,:0,X - K (G,, 1) inducing i,,. If i can be factored
up to homotopy as i=hj:0X—»K— X and if H" '(G,; ZG)=0 for all v (or: if
H,_,(G,)=0 for all v) then it follows as above that H"~'(X; ZG)=0; i.e., 0X must
be connected, k=0, G=G,.
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THEOREM 1.5. Let X be a compact d-manifold, G=n,(X) and G,=i,n,(0,X),
v=0, ..., k. Ifi:0X - X can be factored as i=hj:0X > K— X and if H"~'(G,; ZG)=0
(or: H,_1(G,)=0) for v=0, ..., k, then 0X is connected and G,=G.

2. Aspherical Manifolds

2.1. The notations being as in 1.1, we now assume the manifold X to be aspherical;
in other words, an Eilenberg-MacLane complex K (G, 1) for its fundamental group
G=m,(X). Since cohomology of X with local coefficients vanishes in dimensions
k >n, the cohomology dimension cdG is <n— 1. Note that the chain complex C (X)
constitutes a finitely generated free resolution for G; therefore H" '(G; ZG)=
H" (X; ZG)=0 implies H" '(G; A)=0 for all free G-modules A and hence
(cf. [1] p. 105) for all G-modules 4, and thus is equivalent to cdG<n—1.
The results of Section 1 can now be applied as follows.

PROPOSITION 2.1. Let G be a group admitting a K (G, 1)=X which is a com-
pact manifold of dimension n with non-empty boundary 0X. Then cdG<n—1 if and
only if 0X is connected; in particular, if X is not connected then cdG=n—1.

Note that any group admitting a K(G, 1) which is a finite cell-complex admits a
compact manifold with non-empty boundary as Eilenberg-MacLane space (imbed
K (G, 1) in some R" and take a regular neighborhood).

2.2. For aspherical X, assuming 0X connected, the factorization (2) of i:0X — X is
always possible. Hence Theorem 1.4 yields

THEOREM 2.2. Let G be a group admitting a K (G, 1)=X which is a compact
manifold of dimension n with connected boundary 0X, and Gy=iyn,(0X). Then Gy=G
if and only if cd Gy <n— 1. In other words, one always has cd G=cd G; namely, <n—1
ifGo=Gand =n—1if Gy #G.

From Theorem 1.5 we immediately get

THEOREM 2.3. Let G be a group admitting a K (G, 1)=X which is a compact
0-manifold of dimension n. If 0X is not connected, then cdG,=n—1 for at least one
component 0,X of 0X, G, being the image of n,(0,X) under the inclusion.

3. Higher-dimensional Knots

3.1. Let throughout this section S "~2=8" n>4, be a knot, i.e., a differentiable
imbedding of S" % in §", C=8"—S""? its complement, and X its closed comple-
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ment S"— V" where V" is an open tubular neighborhood of $"~% in S". Then X
and C have the same homotopy type, and G =, (X) is the corresponding knot group.
dX is a product S' x $"72, and n, (0X)=~Z imbeds injectively into G.

THEOREM 3.1. If the knot complement is aspherical, then G=Z.

Proof. Since i,n,(0X)=Go=Z, we have cdG,=1, and hence Theorem 2.2
applies: Go=G=xZ.

3.2. Note that the asphericity of X is not used in full here. The factorization (2) of i
can be obtained under weaker assumptions, as follows.

Let j:0X - S'=K (G, 1) be the projection of 0X=S'xS""? onto S* x pt, and A
the imbedding S x pt » 0X — X. If we assume

(a) a sphere ptx S$"~2<dX is nullhomotopic in X

then 4j and i can be made, by a homotopy, to agree on S!xptvptxS" 2. If we
further assume

(b) m,-1(X)=0
then i and Aj are homotopic, and thus, by Theorem 1.4, G=G,xZ.

THEOREM 3.1'. If pt x S"~ % is nullhomotopic in the knot complement C and if
m,-1(C)=0 then G=Z.

3.3. G. A. Swarup [4] has proved that Theorem 3.1" holds without the assumption
that n,_,(C)=0 provided G is accessible. Since it is conjectured that all finitely
generated groups are accessible, it is possible that the nullhomotopy of $"% in C
alone is sufficient to conclude that G=Z.

3.4. HIGHER-DIMENSIONAL LINKS. If X is the closed complement of a link

U S"2cS", n>4, k>0,

then 0X is not connected. The images G, of n,(0,X) are all ~Z. By Theorem 2.3 X
can not be aspherical.

THEOREM 3.2. The complement of a link in S", n>4, is never aspherical.
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