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Abelian p-adic Group Rings

EUGENE SPIEGEL

Introduction

In the following we investigate the question of when two finite abelian groups G
and H have isomorphic group-algebras over the p-adic integers and p-adic field.

We use the following notation: N denotes the positive integers, p and g are distinct
primes in N, Z,, is the ring of integers modulo n (ne N), P is the ring of p-adic integers,
Q, is the field of p-adic numbers and C, denotes a cyclic group of order n (neN).

If G is a finite group and R is a principal ideal domain, RG=R(G) will be the
group algebra of G over R.

§1

Throughout this section, G and H denote finite abelian groups of order ¢". If
F is a field of characteristic k#¢, by the theorem of Perlis-Walker [3], F(G)=~
N1 (na/vy) F(¢,), where {, is a primitive g°th root of unity over F, v,=degree (F({,)/
F) and n, is the number of elements of order ¢ in G. Also, n,/v, is a non-negative
integer.

As (g% p)=1, the splitting field of the polynomial g(x)=x*—1 over Q,, is a
totally unramified extension of Q,. This says that degree (Q,({,)/Q,)=degree(Z,({,)/
Z,), where {, is a primitive ¢g°th root of unity over Z,. Hence we can write

Q,,Gzéll a:0, (L) (%)

and
ZpGﬁ dzl ade (Cd)

for a common collection of integers a,=n,/vy, d=1,2,..., n.
The following generalization of the Perlis-Walker result is due to Raggi Cardenas.

PROPOSITION 1.1. Let A be a local ring, with maximal ideal M, and residue
field K of characteristic p. Suppose M is finite, and (\a=o M"={0}. Then AG~
Y1 (nafvy) A(L,) where {4 is a primitive q°th root of unity, v,=degree(K({,)/K)
and n, is the number of elements of order q* in G.
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Proof. See [4].

LEMMA 1.2. If a;, d=1, 2,..., n, are defined as in (x), then PG~ ;_,; a,P({,).
Proof. If meN, the residue field of the local ring Z, is Z,. Due to Proposition
1.1 we must have

meG ﬁdzl adem (Cd) .

By taking injective limits, (the injective limit of Z,. is P), the above isomorphism
leads to an isomorphism

PG:dZ a;P(¢,).
=1

COROLLARY 1.3. If a,, d=1, 2, ..., n, are defined as in (*), and R is either Z,
Por Q, then

n

RG~ Y a,R (L)

d=1
where { ; is a primitive q°th root of unity.

We define the function y: N— N by y,(m) is the least positive integer such that
p'"™ =1 (modulo g™). Then y,(1)<y,(2)<... and y,(d)— c0. If deN, and {, is a
primitive gth root of unity over Z,, 1 ={*=(""4"1, so that y,(d)=v,, and y,(d) |
vo(d+1), d=1,2,....

Define the sequence {«,}, m=1,2,..., by a;=1, and if «,, is defined, «,, ., is
the smallest positive integer such thaty, (a,,+1)>7,(®n). Thusy,(a;)<7y,(x;)<...and

{ve(e) | 1eN}={y,(2) | ieN}.
If Ris Z,, P or Q,, then R({;)=R({4+1)<>7,(d)=7,(d+1) so that we define
the sequence by, b,,..., b, by

a41—1

bi= 2 a;

J=a;
where a,=0 if r>n and ay, a,,..., a, are as in (*).
In terms of this notation, we can restate Corollary 1.3 as

COROLLARY 1.3". If R=Z,, P or Q,, then there exist non-negative integers
by, b,,..., b, such that

RG= 3 bR (L)

where {,, is a primitive q“'th root of unity.
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We now show that the sequence b4, b,, ..., b, are invariants of RG.

If meN, and r is a non-negative integer, by the symbol rC,, we mean the direct
sum of r copies of C,. Let sy, s,,..., 5, be a sequences of non-negative integers such
that s; l S;i+1, i=1,..., n—1. Suppose that 4 and B are finite abelian groups of the
the same order and A~ ., r,C,s,_y B~)_, F,C,._, Where r,, F; are non-negative
integers for i=1,..., n. Since (p*—1) | (p™*'—1), the fundamental theorem of abelian
groups tells us that A~ B if and only if r;=¢;, i=1,..., n.

If S is a commutative ring with identity, let S*={deS | o is of finite multiplicative
order}.

THEOREM 1.4. Let R be Z,, P, or Q,. If G and H are finite abelian groups of
order q", then

RG~RH<>(RG)*~(RH)*.

Proof. Since adjoining {,, to Q, gives a totally unramified extension of Q,,
(2,(8.))*~(Z,(£,))* = Cpyqean - 1. But any element of finite order in Q,({,,) is in
fact in P((,,) so that (P({,))*~Cpracr—1-

By Corollary 1.3’, there exist non-negative integers by, b,, ..., b, such that RG~
Y1 b:R((,). Thus (RG)*=Y 1oy b,Cproan—1. If by, by,..., b, is another sequence
of non-negative integers such that RG~Y7_; b,R((,,), (RG)*=Y b,Cpyoan—-1. By
the fundamental theorem of abelian groups, we must have b,=b;, i=1,..., n. Thus
the sequence b, b,, ..., b, is determined by RG and in turn determines, via a one-one
correspondence, the group (RG)*. Therefore RG~ RH <> (RG)* ~(RH)*.

COROLLARY 1.5. Let R be Z,, P or Q,. If G is a finite abelian group of order
q", and RG=Y"_, b,R((,), RG=Y1_, b;R((,,), where b;, b, i=1,...,n, are non-
negative integers then b,=b,, i=1,2,..., n.

COROLLARY 1.6. Suppose G and H are finite abelian groups of order q". The
Jollowing are equivalent.

(i) Z,G~Z,H, (i) PG~PH, (iii) 0,G=Q,H.

Proof. Note that (Z,G)*~(PG)*=(Q,G)* and use Theorem 1.4

§2

If A is a finite abelian group of order n=p°qi'q3’...q;", we let 4, be the p-Sylow
subgroup of 4 and 4,, the g,-Sylow subgroup of 4. Again we start from a result

of Perlis-Walker.
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PROPOSITION 2.1. If A and B are finite abelian groups of order n=p3'p3:.. pt
where p,, i=1,...,r, are distinct primes, and F is a field of characteristic k, where
k=0 or (k,n)=1, then FA~FB<>FA, ~FB,, i=1,...,r.

Proof. See [3] and [1].

PROPOSITION 2.2. Let A and B be finite abelian groups of order p". Then
Q,A~Q,B<A~B.

Proof. By the result of Perlis-Walker (of the last section), Q,4~> 3., @,0,({s)
where {, is a primitive p%h root of unity, a;=n,/v,, n, is the number of elements
in A of order p?, and v,=degree(Q,({,)/Q,). Similarly, Q,B~Y7_, d,0,((,), where
d,=7,[v,, and 7, is the number of elements in B of order p°. 0,4~ (Q,B implies

(QpA)*z Z ad(Qp(Cd))*z Z 4, (Qp(Cd))*z(QpB)*‘

d=1 d=1

Q, contains only the (p — 1)st roots of unity, and Q,({,) is a totally ramified extension
of @,, so that (Q,({4))*~C,a(,-1)- By the fundamental theorem of abelian groups
we have a;=d,, d=1,...,n, and so n,=#, d=1,...,n. Thus A~B.

COROLLARY 2.3. If A and B are finite abelian groups of order n, and Q is the
field of rational numbers, then QA~QB<> A~ B.

Proof. By Proposition 2.1, it is sufficient to suppose that n=p™. If Q4 ~ QB, then
QA®Q,~0B®Q,; i.e., Q,A~Q,B. But by Proposition 2.2, A~ B.

COROLLARY 24. If A and B are finite abelian groups of order p", then PA~
PB<>A~B.

Proof. PA~PB implies PAQ Q,~PB®Q,. By Proposition 2.2 A~ B.

Note that if A and B are finite abelian groups of order p”, then Z,A~Z B<> A~ B.
See [2], e.g.

THEOREM 2.5. Suppose R is Z,, P or Q,. If G and H are finite abelian groups
of order n=p°q}'...q;" where p, q, ..., q, are distinct primes, then

RG~RH<>RG,~RH, and RG,~RH, i=1,..,r.

Proof. If R=Q,, the result follows immediately by Proposition 2.1.

Suppose R=Z,, and Z,G~Z, H. By the results in May [2], G,~H,. Suppose
|Gpl=p", |H,|=p?, and c=max(cy,c,). Let (Z,G)" ={6"|deZ,G}. (Z,G)" ~
(Z,H)". As Z8~Z,, we have (Z,G)"~Z,(G/G,)~(Z,H)~Z,(H/H,). By Prop-
osition 2.1, Z,(G/G,)~Z,(H|H,)=Z,(G,)~Z,(H,,), i=1,...,r. Thus Z,(G)=~
Z,(H)=»Z,G,~Z,H, and Z,(G,,)~Z,(H,,), i=1,..., r. The opposite implication
follows from the tensor product.
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If R=P, and PG~PH, we let J=(p) be the ideal of P generated by p. The
epimorphism P— P{J~Z,, induces an isomorphism Z,G~Z H. By the previous case
Z2,6~2,H=>G,~H, and Z,G,~Z,H,, i=1,...,r. But by Corollary 1.6 Z,G,,~
Z,H,<>PG,~PH,, so that PG~PH=PG,=PH, and PG, ~PH,, i=1,...,r. The
opposite implication follows from the tensor product.

q:°

COROLLARY 2.6. Let G and H be finite abelian groups of order n. The following
are equivalent.

(i) Z,G~Z,H, (ii) PG=PH, (i) 0,G~Q,H.

§3

In this section we investigate for which integers me N, is it true that two abelian
groups G and H of order m have isomorphic p-adic group rings if and only if G
and H are isomorphic. To study this question, it is sufficient, by Theorem 2.5, to
again suppose that G and H are abelian groups of order ¢". We will use the notation
of Section 1.

DEFINITION. We let .#(q)=r, if there is an re N such that «,=r and a,,,#
(r+1). Otherwise, we define # (q)=oc0. We will call #(g), the index of g, (relative

to p).

THEOREM 3.1. Let Rbe Z,, P or Q,. Let neN.
(i) If n<2#(q), and G and H are abelian groups of order q", then

RG~RH<G~H.

(ii) If n>27(q), there exist non-isomorphic abelian groups G and H, of order q"
such that RG~RH.

Proof. (i) Suppose G=2Cpy X CpaX+*XCpy, and H>Cpey X Cpay X +++ X Cpe,
where y,>y,>--2,20, z,2z,2--22,20 and y,+y,++y,=z3+2,+- +
z,=n. By Corollary 1.3’, there exist non-negative integers by, b,,..., b, and b, b,,...,
b, such that RG~Y"_; b,R((,,) and RH~Y}_, b;R((,,). By Corollary 1.5, RG~
RH<>b,=b,, i=1,...,n. We suppose RG=RH. b;=n,[y,(i) for i=1,..., #(q)—1,
where n, denotes the number of elements of G of order ¢'. Similarly, b;=m,/y,(i),
where m; denotes the number of elements of H of order g¢'. Thus if y,<#(q) or
z, < (q) we must have n,=m,, i=1,...,n, and G H.

We will assume now y, >.# (¢) and z,>(q).

Suppose y, >z, > (q). Let G2Cpy; X Cpps X+ x Cyy, and A>Cpey X Cpey X+ X

C, Then G~Cph,xG, H~Cu xH, |H|>I|G| IG1<q" " @ 1<q® @2 and

q=r
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Iﬁl Sq"'“‘(‘” Sqf(q)— 1

s@)-1 Ms@g)-1

——~——=B,(q)_1=—-—————.

Ygts -1 Ygs@-1

Clearly, ng44-1 =¢(¢*@ 1)|G| (¢=Euler “phi functions) while m -1
¢ (g"@ ") H|>¢d (7P 1)|Gl=n4,- . This contradiction shows y, =z,.

Finally, we assume y;=z;, i=1,...,1,t>1, and z,,, <y, <7 (q). Let

b,(,,).. 1=

Gl=qul X quzx eee X qu,.
G”=Cq)’t+1 X X Cq)’r
H”=quy+1 X eoe X C

9%

then G~G' xG", H~G' x H" and |G"|=|H"| <qj(q).
Let u=y,,,. Then
n, m

b,=—"=—=b,.

Ygw>  Ygu»

If 4 is the number of elements of G’ of order ¢, then m,=A|H"|. But n,>A|G"|+
|G| (¢(q"))>A|G"|=m,. This is the desired contradiction, and we conclude y;=z,
i=1,...,r, and GWH.

(i) If n=25(q), let

G~ Cq.!(ll) X Cos@
and
H>~Cyy+1X Cppar-1.

A straightforward verification shows that b;=b,, i=1,..., #(q¢)—1 and b;=b;=0,
i>.# (q). Since |G| =|H|, we must have by, =b,,, and RG~RH.

If n>2(gq), we merely tack on a sufficient number of copies of C, to each of
the above examples.
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