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//-Cobordismes entre variétés homéomorphes

Jean-Claude Hausmann

Soit Mm une variété semi-linéaire (PL) de dimension m. Soit G (M) le sous-
ensemble de Wh(7r1 (M)) (où Wh désigne le foncteur «groupe de Whitehead» [5])
formé des torsions t telles que si (W, M, M') est un /*-cobordisme entre M et M' de

torsion t on ait M' PL-homéomorphe à M. Remarquons qu'avec cette définition il
n'y a pas lieu de s'attendre à ce que G{M) soit un sous-groupe de Wh(7i1(M)), à

cause des problèmes d'identification de groupes fondamentaux.
Soit K un polyèdre de dimension k. Choisissons un plongement semi-linéaire

i:K-+R2k+1 et un voisinage régulier de i(K) que nous dénoterons par E2k+i (K). On
définit par récurrence: En(K) En-x(K)x [0, 1] pour n^2k+2.

Dans cet article, on trouvera quelques considérations sur G {M) lorsque M est

Bd(Ett{K)) ou En(K)9 n7z2 dira K+2. Les /z-cobordismes de variétés à bord (comme
En (K)) sont supposés être des produits sur le bord.

1. /z-Cobordismes partant de Bd(En(K))

Comme n^2k+2, En(K) est de la forme £w"1 (A')x [0, 1]. Nous considérerons
donc En~1(K) comme une sous-variété PL de BdEn(K) en l'identifiant avec

En~1(K)x {0}. Via ces identifications, nous considérerons toujours la torsion

x{W, BdjE"1^), V) comme appartenant à Wh^^)).
Pour terminer avec ces conventions d'identifications de groupes fondamentaux,

indiquons que si f:K-+L est une équivalence d'homotopie entre deux polyèdres, la
torsion t(/) sera mesurée dans Wh(7r1(i^)).

Soit s(K)c:Wh(K)) le sous-ensemble formé des éléments réalisables comme
torsion d'une auto-équivalence d'homotopie f:K-*K. En général, il n'y a pas lieu de

s'attendre à ce que e(K) soit un sous-groupe de Wh(7t1 (K)).

PROPOSITION 1.1. Soit K un polyèdre de dimension k et n^2k+2. Alors

s(K)czG(BdEn(K)).
Démonstration. Soit i:K^En(K) l'inclusion naturelle et soit f:K-+K une

équivalence d'homotopie. Uf est homotope à un plongement. Soit Vn un voisinage régulier
de Uf (K) dans int^iO. Soit W= [En(K)-int V\. Il est aisé de voir que (W, bd V,

Bd En(K)) est un A-cobordisme (on peut par exemple recopier la démonstration du

lemme 7 de [4]).
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Comme / et /©/ sont isotopes dans Rn^>En(K), il en résulte que V est PL-homé-

omorphe à En(K).
Soit h : En (K) -* V un PL-homéomorphisme tel que le diagramme suivant commute :

Nous obtiendrons le résultat escompté en montrant que

Ce genre de résultat a déjà été utilisé quelquefois (par exemple [7]) sans

démonstration, à ma connaissance. Nous nous permettrons de donner quelques détails car,
on a déjà pu s'en apercevoir, les questions d'identifications de groupes fondamentaux

ne peuvent malheureusement pas être négligées ici. On a :

Les formules de somme des torsions (cf. [0] th. 23.1 ou [6] th. 6.9) donnent:

d'où

COROLLAIRE 1.2. Soit K un polyèdre de dimension 2 avec n1 (K) cyclique. Alors,

Démonstration. Cela résulte immédiatement de la proposition 1.1 et du théorème

A de [1], affirmant que e(K2) Wh(;r1 (K2)). Remarquons que pour n pair, ce corollaire

découle d'un résultat récemment annoncé de T. C. Lawson [3].
Dans [2], M. Kervaire pose la question de savoir si G(M) dépend réellement de

de M. Nous pouvons maintenant donner la réponse:

COROLLAIRE 1.3. // existe deux variétés closes M et N, de même dimension

et de groupes fondamentaux isomorphes, et telles que G(M)^G(N).



/i-Cobordismes entre variétés homéomorphismes 11

Démonstration. Soit K un polyèdre de dimension 2 avec nx (K)~Z/7Z. BdE8 (K)
et L(7, l)x£4 sont tous deux de dimension 7 et ont leur groupe fondamental
isomorphe à Z/7Z (où L(p,q) désigne l'espace lenticulaire de dimension 3 de type
(/?, q)). D'après le corollaire 1.2, G(BdE8(K))^Wh(Z/7Z) tandis que ce n'est pas
le cas pour G(L(7, 1) x S4) d'après J. Milnor [4] théorème 4.

2. A-Cobordismes partant de En(K)

Soit dn\Wh(7i1 (K))-+ Wh(nl (K)) l'homomorphisme donné par:

où f désigne le conjugué de t (cf. [5], §6).

THÉORÈME 2.1. Si K est un polyèdre et n^2 dim^+2 on a:

On déduit immédiatement de ce théorème les corollaires suivants :

COROLLAIRE 2.2. KerdnczG(En(K)). Comme lmdn + icKer^ on retrouve le

fait bien connu que le sous-groupe des éléments de la forme x + — 1 )" f est contenu
dans G {M).

COROLLAIRE 2.3. G(En(K)) est un sous-groupe de Wh^j (K)) si et seulement
si Rn (K) en est un.

La démonstration du théorème 2.1 sera décomposée en quelques lemmes.

LEMMA 2.4. Si Mn est une variété semi-linéaire, on a:

Démonstration. Soit (W, M, M') un /ï-cobordisme de torsion xeG(M). Il existera

donc un PL-homéomorphisme h:M'->M. Notons par i: M-*> Wet r: W-+ M'les
inclusion et rétraction par déformation. La torsion de l'auto-équivalence d'homotopie
horoi:M-+M est égale à T + (-l)n+1 f par la formule de dualité ([5], §10). D'où
dn(T)ee(M).

LEMME 2.5. dl^1(e(K))czG(EH(K))9 lorsque n^2 dimi^+2.
Démonstration. Soit (W9En(K),B) un A-cobordisme de torsion aed~l(e(K)).

Soient i et r comme dans la démonstration du lemme 2.4. Soit f:K-+K une
autoéquivalence d'homotopie avec r(f)=dn(a), ct(p:K^Kun inverse homotopique de/.
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Considérons l'équivalence d'homotopie roio(p;K^>B. Sa torsion est:

D'où B a le type d'homotopie simple de K.
Le fait que B est PL-homéomorphe à En(K) se déduit du lemme suivant:

LEMME 2.6. Une PL-variété Fn ayant le type d'homotopie simple d'unpolyèdre de

Kde dimension k (n^2k+2) est PL-homéomorphe à En(K) si et seulement si BdF est

PL-homéomorphe à BdEn(K).
Démonstration. Soit h:BdEn (K) -*BdF un PL-homéomorphisme et x//: K-+Fune

équivalence d'homotopie simple. Par position générale, i// est homotope à un plonge-
ment de K dans h(En~1 (K))aBàF. Soit V un voisinage régulier de xj/ (K) dans BdF.
Par le théorème du .y-cobordisme, F est homéomorphe à Vx [0, 1].

Le lemme 2.6 sera ainsi démontré lorsque nous aurons établi que V est PL-
homéomorphe à E"'1^). Si n^2k+3, cela résulte du fait que /T1-^ et i sont

isotopes dans Rn~1^En~1(K). Si n 2k+2, on utilise le résultat suivant:

LEMME 2.7. Soit K un polyèdre de dimension k et fl9 f2 : K-+ R2k+Î deux plonge-
ments semi-linéaires. Si Vl et V2 désignent des voisinages réguliers de fx (K) et f2 (K)
respectivement, alors V1 est PL-homéomorphe à V2.

Démonstration. Considérons ft comme un plongement dans R2k+2 en plongeant
R2fc+1 dans R2k+2 de la manière standard. Let voisinages réguliers de ft(K) dans
R2k+2 sont de la forme Vt x [0, 1]. Comme ft et f2 sont isotopes dans R2fc+2, on a

un PL-homéomorphisme:

Par position générale (le bord de V2 x [0, 1] étant de dimension 2fc + l), on peut

supposer que g(Vx x {0})cz V2 x {0}. Le diagramme suivant:

i 1

Vx x [0, 1] > V2 x [0,1]

montre que l'inclusion de g(Vt x {0}) dans g(V2 x {0}) est une équivalence d'homotopie

simple. Par le th. 23.1 de [0], V2 x {0}- int(g(Vt x {0})) est un s-cobordisme,
d'où on déduit que V1 est PL-homéomorphe à V2.



/f-Cobordismes entre variétés homéomorphismes 13

BIBLIOGRAPHIE

[0] Cohen, M. M., A course in simple-homotopy theory, Springer-Verlag 1973.

[1] Dyer, M. et Sieradski, Tress ofhomotopy types of two dimensional spaces complexes, Comment.
Math. Helv. 48 (1973), 31-44.

[2] Kervaire, M., The theorem ofBarden-Mazur-Stallings, Comment. Math. Helv. 40 (1965), 31-42.
[3] Lawson, T. C, Non trivial h-cobordisms between a manifold and itself, Notices Amer. Math. Soc.

20(1973), A-191.
[4] Milnor, J., Two complexes wich are homeomorphic but combinatorialy distinct, Ann. of Math.

74 (1961), 575-590.
[5] 9

Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426.
[6] Siebenmann, L. C, The obstruction to finding a boundary for an open manifold, Thesis, Princeton

(1965).
[7] Stallings, J., On infinité process leading the differentiability in the complément ofa point, Differen-

tial and Combinatorial topology. (Symposium M. Morse) Princeton (1965)

Université de Genève
Section de Mathématiques

Reçu Mars 1974




	h-Cobordismes entre variétés homéomorphes.

