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h-Cobordismes entre variétés homéomorphes

JEAN-CLAUDE HAUSMANN

Soit M™ une variété semi-linéaire (PL) de dimension m. Soit G(M) le sous-
ensemble de Wh(m, (M)) (ot Wh désigne le foncteur «groupe de Whitehead» [5])
formé des torsions 7 telles que si (W, M, M’) est un h-cobordisme entre M et M’ de
torsion 7 on ait M’ PL-homéomorphe & M. Remarquons qu’avec cette définition il
n’y a pas lieu de s’attendre a ce que G(M) soit un sous-groupe de Wh(=n,(M)), a
cause des problémes d’identification de groupes fondamentaux.

Soit K un polyédre de dimension k. Choisissons un plongement semi-linéaire
i: K—R?*™1 et un voisinage régulier de i(K) que nous dénoterons par E***!(K). On
définit par récurrence: E"(K)=E""'(K) x [0, 1] pour n=>2k +2.

Dans cet article, on trouvera quelques considérations sur G(M) lorsque M est
Bd(E"(K)) ou E"(K), n=2 dim K+2. Les h-cobordismes de variétés a bord (comme
E"(K)) sont supposés étre des produits sur le bord.

1. h-Cobordismes partant de Bd(E"(K))

Comme n>2k+2, E*(K) est de la forme E"~1(K)x [0, 1]. Nous considérerons
donc E""'(K) comme une sous-variété PL de BdE"(K) en lidentifiant avec
E"1(K)x {0}. Via ces identifications, nous considérerons toujours la torsion
(W, BdE"(K), V) comme appartenant & Wh(n, (K)).

Pour terminer avec ces conventions d’identifications de groupes fondamentaux,
indiquons que si f: K — L est une équivalence d’homotopie entre deux polyédres, la
torsion 7 ( /') sera mesurée dans Wh(z, (K)).

Soit ¢(K)=Wh(K)) le sous-ensemble formé des éléments réalisables comme tor-
sion d’une auto-équivalence d’homotopie f:K— K. En général, il n’y a pas lieu de
s’attendre 4 ce que £(K) soit un sous-groupe de Wh(n, (K)).

PROPOSITION 1.1. Soit K un polyédre de dimension k et n>2k+2. Alors
¢(K)<G(BdE"(K)).

Démonstration. Soit i: K— E"(K) l'inclusion naturelle et soit /: K— K une équi-
valence d’homotopie. io f est homotope & un plongement. Soit ¥ un voisinage régulier
de iof (K) dans int E"(K). Soit W=[E"(K)—intV]. Il est aisé de voir que (W, bd ¥,
Bd E”(K)) est un h-cobordisme (on peut par exemple recopier la démonstration du
lemme 7 de [4]).
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Comme i et iof sont isotopes dans R"> E"(K), il en résulte que ¥ est PL-homé-
omorphe a E"(K).
Soit h: E"(K)— V un PL-homéomorphisme tel que le diagramme suivant commute:

s

-» K

BdE" (K)4BEE > BdV 2

E" lEK) /

Nous obtiendrons le résultat escompté en montrant que

A Eis ! (h| BAE"(K))i * (z(0))=1(f)-

Ce genre de résultat a déja été utilisé quelquefois (par exemple [7]) sans démon-
stration, & ma connaissance. Nous nous permettrons de donner quelques détails car,
on a déja pu s’en apercevoir, les questions d’identifications de groupes fondamentaux
ne peuvent malheureusement pas étre négligées ici. On a:

x=iy ' ohi o vi(7(0))
Les formules de somme des torsions (cf. [0] th. 23.1 ou [6] th. 6.9) donnent:

va(2(0)=7())

d’ou
=iy ohg (2(j)) = (johoi)=1(iof)
—t(f)+fat <) =1(f).

COROLLAIRE 1.2. Soit K un polyédre de dimension 2 avec n, (K) cyclique. Alors,
G(BdE"(K))=Wh(n,(K)) (n=6).

Démonstration. Cela résulte immédiatement de la proposition 1.1 et du théoréme
A de [1], affirmant que &(K?)=Wh (rn, (K?)). Remarquons que pour » pair, ce corol-
laire découle d’un résultat récemment annoncé de T. C. Lawson [3].

Dans [2], M. Kervaire pose la question de savoir si G(M ) dépend réellement de
de M. Nous pouvons maintenant donner la réponse:

COROLLAIRE 1.3. Il existe deux variétés closes M et N, de méme dimension
et de groupes fondamentaux isomorphes, et telles que G(M)#G(N).
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Démonstration. Soit K un polyédre de dimension 2 avec n, (K)~Z/7Z. BdE® (K)
et L(7,1)x S* sont tous deux de dimension 7 et ont leur groupe fondamental iso-
morphe & Z/7Z (o L(p, q) désigne I’espace lenticulaire de dimension 3 de type
(P, q)). D’aprés le corollaire 1.2, G(Bd E®(K))=Wh(Z/7Z) tandis que ce n’est pas
le cas pour G(L(7, 1)x S*) d’aprés J. Milnor [4] théoréme 4.

2. h-Cobordismes partant de E"(K)
Soit d,: Wh (n, (K)) > Wh(n, (K)) ’homomorphisme donné par:
d,(t)=t+(-1)""' 7

ou 7 désigne le conjugué de t (cf. [5], §6).

THEOREME 2.1. Si K est un polyédre et n>2 dimK+2 on a:
G(E"(K))=d, ' (¢(K)).

On déduit immédiatement de ce théoréme les corollaires suivants:

COROLLAIRE 2.2. Kerd,=G(E"(K)). Comme Imd,,, =Kerd,, on retrouve le
Jait bien connu que le sous-groupe des éléments de la forme t+(—1)" © est contenu
dans G(M).

COROLLAIRE 2.3. G(E"(K)) est un sous-groupe de Wh(n,(K)) si et seulement
si R, (K) en est un.
La démonstration du théoréme 2.1 sera décomposée en quelques lemmes.

LEMMA 2.4. Si M™" est une variété semi-linéaire, on a:
G(M)cd 1 (e(M)).

Démonstration. Soit (W, M, M’) un h-cobordisme de torsion teG(M). Il exis-
tera donc un PL-homéomorphisme A: M’ — M. Notons pari:M —» Wetr: W— M’ les
inclusion et rétraction par déformation. La torsion de I’auto-équivalence d’homotopie
horoi: M — M est égale 3 T+(—1)"*" 7 par la formule de dualité ([5], §10). D’ou
d,(t)ee(M).

LEMME 2.5. d, ' (¢(K))=G (E"(K)), lorsque n>2 dim K +2.
Démonstration. Soit (W, E"(K), B) un h-cobordisme de torsion ced; ' (¢(K)).
Soient i et r comme dans la démonstration du lemme 2.4. Soit f: K— K une auto-

équivalence d’homotopie avec 7 (f)=d, (o), et ¢ : K— K un inverse homotopique de f.
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Considérons 1’équivalence d’homotopie roio¢: K— B. Sa torsion est:

t(roio@)=0y " (z(rei))+1(p)=
=05 (1(f))+1(p)=7(f0)=0.

D’ou B a le type d’homotopie simple de K.
Le fait que B est PL-homéomorphe 4 E"(K) se déduit du lemme suivant:

LEMME 2.6. Une PL-variété F" ayant le type d’homotopie simple d’un polyédre de
K de dimension k (n>2k +2) est PL-homéomorphe & E"(K) si et seulement si B F est
PL-homéomorphe a BAdE"(K).

Démonstration. Soit h:Bd E"(K)— Bd F un PL-homéomorphisme et y: K— F une
équivalence d’homotopie simple. Par position générale, |y est homotope a un plonge-
ment de K dans A(E"~!(K))<=BdF. Soit ¥ un voisinage régulier de Y (K) dans Bd F.
Par le théoréme du s-cobordisme, F est homéomorphe a ¥ x [0, 1].

Le lemme 2.6 sera ainsi démontré lorsque nous aurons établi que V est PL-
homéomorphe & E"~!(K). Si n>2k+3, cela résulte du fait que 27!y et i sont
isotopes dans R*"!5 E"~1(K). Si n=2k +2, on utilise le résultat suivant:

LEMME 2.7. Soit K un polyédre de dimension k et f,, f,: K— R**! deux plonge-
ments semi-linéaires. Si V, et V, désignent des voisinages réguliers de f,(K) et f,(K)
respectivement, alors V, est PL-homéomorphe a V,.

Démonstration. Considérons f; comme un plongement dans en plongeant
R**1 dans R?**2 de la maniére standard. Let voisinages réguliers de f;(K) dans
R?**2 sont de la forme V;x [0, 1]. Comme f; et f, sont isotopes dans R**2, on a
un PL-homéomorphisme:

R2k+2

g:V,x[0,1]- V¥V, x[0,1].

Par position générale (le bord de ¥, x [0, 1] étant de dimension 2k +1), on peut
supposer que g(¥; x {0})= ¥, x {0}. Le diagramme suivant:

Vi x {0} S g (V1 x {0} =V, x {0}
! l
vV, x[0, 1] ¥, x[0,1]

montre que I'inclusion de g (¥, x {0}) dans g (¥, x {0}) est une équivalence d’homoto-
pie simple. Par le th. 23.1 de [0], ¥, x {0} — int(g(¥V; x {0})) est un s-cobordisme,
d’ou on déduit que ¥V, est PL-homéomorphe a V,.
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