Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 50 (1975)

Artikel: Homotopy Theory for the p-adic Special Linear Group.
Autor: Wagoner, J.B.

DOl: https://doi.org/10.5169/seals-38824

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-38824
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 50 (1975) 535-559 Birkhéduser Verlag, Basel

Homotopy Theory for the p-adic Special Linear Group

J. B. WAGONER 1)

If E is al ocal field, complete with finite residue field, the special linear group
inherits a topology from E which makes it a locally compact, totally disconnected
topological group and hence its homotopy groups in the usual sense are trivial. This
paper proposes a definition for the higher homotopy groups of SL([+ 1, £) which on
the one hand, agrees with the fundamental group computed by Moore [7] and by
Matsumoto [5] from the viewpoint of universal topological central extensions and,
on the other hand, is related to the algebraic K-theory of E viewed as an abstract field.
The idea is to define groups K;°® (E) which carry that part of the algebraic K-theory
of a local field which comes from ‘“‘continuous” invariants such as the continuous
Steinberg symbols in the work of Matsumoto and Moore. We also define homotopy
groups K;°° () for the special linear group over a compact discrete valuation ring O,
and in a forthcoming joint paper of the author and R. J. Milgram we use the con-
tinuous cohomology of SL(I+ 1, D) to compute the rank of the free part of Kj°° (D)
considered as a module over the p-adic completion of the integers where p is the
characteristic of the residue field of O. The theory as developed in this paper is closely
connected to BN-pairs and buildings and in the last section we briefly discuss the
relation of the spaces constructed in the first section to the p-adic building associated
to SL(I+1, E). We shall treat only the special linear group and the root system A4;;
it seems likely that a similar program can be worked out for other simply connected
algebraic groups. Useful background references are [1], [4], and [6].

Throughout this paper E will denote a field with a discrete valuation v:E* - Z,
Let O be the valuation ring consisting of those xe E with v(x)>0 and let p be the
maximal ideal consisting of those xeE with v(x)>0. Let = be a generator for p.

§1. Definition of 7;° and P

In this section we define “abstract” homotopy groups n{’SL(I+1, E) and homo-
topy groups n;*SL(I+ 1, E) which take into account the topology on E. These defini-
tions correspond respectively to the “linear” and “affine” BN-pair structures on
SL(I+1, E). For standard terminology in the theory of BN-pairs and root systems
see [1] and [4, Chap. II].

1) Research supported by the University of Lausanne and by NSF grant GP-34217X.
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Let R'""' be the set of all (I+1)-tuples (xg, X;,..., X;) of real numbers. Let
e;:R'"1 5 R be the ith coordinate function. The linear stratification of R'*! is the
decomposition of R'*! into facettes determined by the hyperplanes e;—e,;=0 of the
linear root system of type A,. As the fundamental chamber we take

Co={x0>x1>--->x[}

so that the positive linear roots are e; —e; with i<j and the negative linear roots are
e;—e; with i>j. The affine stratification of R'*! is the decomposition into facettes
determined by the hyperplanes e;—e;+k=0, keZ, of the affine root system asso-
ciated to 4,. The fundamental chamber is

C= {x[+1>x0>--->xl}.

If F and F' are both facettes in the linear stratification or in the affine stratification we
write F< F’ to mean F is contained in the closure of F’. Actually, our terminology is
not quite standard in that one usually speaks about the linear and affine stratifications
of the subspace ¥=R'"! given by the condition x,+ -+ x,=0. However, the cor-
respondence F— Fn Vis a bijection of facettes for both the linear and affine stratifica-
tions, and in the affine case the geometric realization of the nerve of the partially
ordered set of facettes is precisely the first barycentric subdivision of the space V'
triangulated by the open rectilinear simplices Fn V. The realization of the nerve of
the linear stratification of R'*!-diagonal is S'~'. In the present situation it is con-
venient to use R'* ! instead of ¥ because then the natural stabilizationmap R'*! - R'*?
given by

(%05 -++5 X1) = (X5 -5 Xp5 Xy)

takes facettes to facettes and preserves the ““ <’ relation.
The “linear” BN structure on SL(I+1, E) has

B=upper triangular matrices
N=matrices with exactly one non-zero entry in each row and each column.

The linear Weyl group W,=N/Bn N is isomorphic to S;,, the symmetric group on
[+ 1 letters generated by reflections in the hyperplanes e;—e;=0. W, acts on R'*! by
permuting the coordinates. The ““affine” BN structure on SL(I+1, E) has

B=subgroup of SL(I+1, D) consisting of matrices (m;;) with v(m;;)>0 when-
ever i>].
N=same as for the linear case.
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The affine Weyl group W= N/Bn N fits into an exact sequence
1 >5T->-W-Wy-1

where T is a free abelian group of rank [. W is isomorphic to the group generated by
the reflections in the planes e;—e;+k=0. An element w of W acts on R ! as follows:
Choose a representative for w in N of the form o-d where ¢ is a permutation matrix
and d is a diagonal matrix with entries +7",..., +#"! such that ny+---+#n,=0. Then
w acts as translation by (—ny,..., —#n,) followed by permutation of coordinates ac-
cording to o.

If F is a facette in the linear stratification, let Up< SL(I+ 1, E) denote the sub-
group generated by the elementary matrices e;;(41) where e;—e;>0 on F and A€E.
If F is a facette of the affine stratification and # is a positive integer, let k (F, e;—e;),
be the least integer ken-Z such that e;—e;+ k>0 on F. Let Uz SL(I+1, E) denote
the subgroup generated by the e;;(A) where v(1)>k(F, e;—e;), and by the elements
of the subgroup H" consisting of those diagonal matrices with entries in the subgroup
of units 1+ p” in O*.

LEMMA 1. (A) If F<F’ in the linear stratification, then Ugc Upg..
(B) If F<F' in the affine stratification, then Ug< Ug..
Furthermore, if m divides n, then Uz Ug.

The proof of this lemma will be given later on in this section.

For any two cosets a* Ur and B- Ug. where a, fe SL(1+1, E) define a* Up<f U
to mean that F<F’ and - Up= B+ Up.. Similarly, define a- Ug <f* Ug. to mean F<F’
and o Ug<=f- Ug..

Now let SL**(I+1, E) be the geometric realization of the simplicial set which has
as its k-simplices (k+ 1)-tuples

(ao'UF0<a1'UF1<"‘<C(k' UFk)

where the faces F; belong to the linear stratification of R'*' — 4. Here 4 denotes the
diagonal. The group SL(I+1, E) acts on SL**(I+1, E) by the formula

o (g Up, <+ <o Up )= (0o Up, <+ <ty Up,).
Define
n’SL(1+1, E)=n,SL**(I+1, E).
The stabilization map R'*!— 4 - R'*2—4 induces a simplicial map

SLe(1+1, E)— SL*(1+2, E)
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and for i>1 we let
K®, (E)=nSL (E)=lim z,SL** (I+1, E)
._)
I

The definition of K/ given here is essentially the same as that of the groups denoted
KN in [10]. See also [13]. It is valid for any associative ring with unit E and it is
a theorem [11] that K{®(E)=K2(E), the algebraic K-theory groups of Quillen [8].
When E is a field, it follows from [6, Cor. 11.2] and [10, Prop. 2] that for [>3

K> (E)=K, (I4+1, E)=m,SL*(L+1, E).

Actually it is possible to show this for I>2 provided SL**(I+1, E) is defined using
all linear facettes of R'**. The reason why facettes in R'*!— 4 are used is to get a
space which maps to the building corresponding to the linear BN-pair structure on
SL(I+1, E). See [10, §2]. As far as algebraic K-theory is concerned it is immaterial
which method is used to define n?’SL (E) because they both are the same in the limit.

Fix a positive integer n. Let SL;’® (I+ 1, E) denote the geometric realization of the
simplicial set which has as its k-simplices the (k+1)-tuples

(ao'U;O<al'U;1<"'<ak' ;k)

The group SL(I+1, E) actson SLi® (I+ 1, E) in the same way it acts on SL** ([+1, E).
Whenever m divides n, a-Up<pf-Ug implies a- Uy <f- Uy so the correspondence
a-Up—a- Uy induces a simplicial map

SLP([+1, E)« SLP(I+1, E). (*)
We define
n°?SL(I+1, E)=limn,SL? (1+1, E).
“«—

m|n
The stabilization map induces a simplicial map
SLP(1+1, E)-> SL? (I+2, E)
of inverse systems and we therefore can set
n°’SL(E)= 1i_1;:1 n’SL(1+1, E).
I

By analogy with algebraic K-theory we could propose for i>2 the definition

K'“?(E)=n",SL(E).



Homotopy Theory for the p-adic Special Linear Group 539

In the next section we will construct a homomorphism n? — 7'°?, and in the third
section we will use this to prove

THEOREM A. If Eis a local field (i.e. E is complete with finite residue field) and
[>2, then there is an isomorphism

nyPSL(1+1, E)~pu(E)

where u(E) is the group of roots of unity in E.

This result indicates that n°*SL(I+ 1, E) may give the “correct” value for the
higher homotopy of SL(I+ 1, E) only in the stable range; that is, where i is somewhat
smaller than [+ 1. A word about the motivation for the definition of K;°?: the defini-
tion of K using the linear BN-pair structure on SL([+ 1, E) comes directly from the
geometry of Morse functions on manifolds as is explained in [10]. The group K;°®
came about as an attempt to see if the affine BN-structure on SL([+1, E) could be
used in an analogous way.

The proof of Theorem A in §3 together with the partial computation of K, (E)
known from the work of Moore [7; also 6, A. 14] gives

COROLLARY. K3°(E)=K3®(E)®D where D is infinitely divisible.

The remainder of the section proves some lemmas which will be needed later on.

Proof of Lemma 1. The definition of a facette [1, p. 58] implies that for any facette
F in the linear stratification and any linear root e;—e; there are three mutually distinct
possibilities: e;—e;>0 on F, e;—e;=0 on F, or e;—e;<0 on F. The same is true of
any facette F in the affine stratification and any affine root e¢;—e; +k.

Now let F<F' in the linear stratification. To show Urc Uy, it must be verified
that e;—e;>0 on F implies e;—e;>0 on F’. Since F is contained in the closure of F’
there is some xeF’ sufficiently close to F such that e;—e;>0 on x. Hence ¢;—e;>0
on all of F'.

Let F<F' in the affine stratification. To show Ugpc Ug we must show that
k=k(F, e;—e;), is greater than or equal to k'=k(F’, e;—e;), for each linear root
ei——e\j. As in the linear case e;—e;+k>0 on F implies e;—e;+k>0 on F'. Hence
k=k'.

Finally, Upc Uy whenever m divides n because then n-Zcm-Z. q.e.d.

Now let F be a facette in the linear stratification. Let * U be the subgroup of Uy
generated by the e;;(4) with i< j, and let ~ Uy be generated by the e;;(4) with i>j.
Similarly for any facette F in the affine stratification let * Uy be the subgroup of Uy
generated by the e;;(1) with i<j and v(A)>k(F, e;—e;),. Let ~Ug be the subgroup
generated by the e;;(1) with i>j and v(3) >k (F, e;—e)),.

LEMMA 2. (A) Up=*Up "Up="Up-*Up
(B) Up="*Up-H" ~Up="Up-H"*U}.
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Proof of 2, Part (A). We will show that Up=*U,-~Ug; the argument for
Up="Upg" " Uy is similar. To simplify notation let U= U and U,=UnSL(p, E) for
2<p<I+1. The claim (A) is true for p=2 because then U= {ey;(4) I A€E} or
U={e;o(4) | 2€E}. Now assume inductively that U;=*U;- " U, Let V*<cU, be
the subgroup generated by the e; (1) with e;—e;>0 on F and ¥~ be the subgroup
generated by the e, ;(4) with e;—e;>0 on F. Then the Steinberg relations show

() UsVE=V*-U;and “U; V*=V* "U,

For any 0<i<[—1 we cannot have both e¢;—e;>0 and ¢,—e;>0 on F; in other
words for 0<i<I—1 we do not have both e; ((1)eV™ and e, ;(1)eV . Thus the
Steinberg relations imply
(i) givenv,eV™* and v,e ¥V ", there are elements ue U, w;eV'*, and w,e ¥V~ such
that v, v, =u-w;-w,.
Using (i), (ii), and the induction hypothesis we have

UI+1=+UI°—UI'V+'V—=+UI'V+°_UI'V—=+UI+1°~UI+1'

Proof of 2. Part (B). The argument that Up="*Ug- H"- ~ Ug is essentially the same
as Proposition (2.6.4.) of [4, p. 29]. The only minor difference is that here the groups
Ur are defined using strict inequalities while in (2.6.4) similar groups P g, are defined
using weak inequalities and it is assumed that S has a non-empty interior in order to
invoke (III) on p. 27 of [4]. Condition (III) is what allows one to reverse the order of
e;i (1) e;;(1) whenever i <j. To make the proof of (2.6.4) work here we only need the
following statement analogous to (III): Fix a pair of indices i<j. Let a=e;—e;+k
where k=k(F, e;—e;), and f=e;—e;+k’ where k'=k(F, e;—e;),. Let U, be the sub-
group generated by e;; (1) where v(1)>k and U, be the subgroup generated by e; (1)
where v(4)>k’. Then the subgroup generated by U,, U,, and H" is

Ua'Hn'Up=Up'H”'Ua.

The proof of this is essentially the matrix identity

(o )@ ) G D=6 ) G ) 6 707)

where z=d+d "' Ap and we must check that ze 1 + p”. First note that since e;—e; + k>0
on F, e;—e;—k<0 on F and so k' =r-n—k for some r>0. Hence

vAp)=v(A)+v(u)=k+k'=k+r-n—k=n.

Now write d=14+x and d"1=1+y where x, yep”. Then z=1+x+Au+yip and
v(x+Au+yAu)=>min(n, n, 2n)>n. q.e.d.
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LEMMA 3. (cf. (I) on p. 27 of [4]). (A) If F is a facette of the linear stratifica-
tion and we Wy then w-Up-w™1=U,, . }.

(B) Let F be a facette of the affine stratification and w be a Weyl group element of
the form o - t where € Wy and t is the diagonal matrix (+ 7", ..., £ ") withn,=0 modn.
Then

n -1 n
W'UF'W =UW'F'

Proof. (A) is left as an exercise. Here is the proof of (B): Let ¢;,;(4) be a generator
of Ug. Then a=e;~e;+v(A) is positive on F, v(1)=k(F, e;—e;),, and aow™' =
=e, (iy— €, (jy+ (mi—n;)+v(4) is positive on w-F. Now w-e;; (1) w™ =¢, ), (4")
where A'= £ An" ™" and so v(4')=v(4)+n;—n;. Since n divides n,—n;,

V(l,)>k(F, e'—ej)n+nl—nj=k(W' F, eo(i)—ea(j))n-

Hence w-e;;(1)-w™'eU,. 5. q.e.d.

LEMMA 4. Let u,,...,u,e Up where F is a facette of the linear stratification of
R'"*1. Also fix n>0. Then

(A) there is some facette G such that each u,e U; and

(B) the union of all such facettes is a convex subset of R'* .

Proof of (A). Choose a linear chamber D with F<D and let o be a permutation
such that ¢ ™! D= C,, the fundamental linear chamber. Then UrcUpand ™' - U,-0o
=Uc,. Let v,=0 'u,0eUc, for 1<a<s. Write each v, uniquely as a product of
e;;(4)’s, i<j, ordered lexicographically. For i<j let k;; be the minimum of the v(4)’s
where e;;(1) appears in at least one of the product expressions. For each 0<i<[—1
choose s;en-Z in such a way that, setting f;;=s;+ ---+5;_; whenever i<j, we have
fij<ki;—n. Then any affine facette G of maximal possible dimension in

M {e;—e;+f,;=0}

i<j

is non-empty and any e;;(4) in the product expression for any v, lies in Ug. Hence
each v, is in Ug. Finally

. -1 T =1_ g
=000 €0:'Ugo =Ug.;.

Proof of (B). Any ue U can be written uniquely as a product

r r+s
u=u+ ‘U_= I:[l eiaja (A'a). —Hf-l eiaja (Aa) (**)

where i,<j, for 1<a<r, i,>j, for r+1<a<r+s, each e¢;_—e; >0 on F, and the
terms in u, and u_ are arranged lexicographically.
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CLAIM. ueUg iff for each such e; ; (1,) we have v(1,)=>k(G, e;,—e; ),

To prove this write u=v, -h-v_ as in Lemma 2(B). Then u,-u_=v,-h-v_ or
vitu,=hv_-u_' Hence h=1, u, =v,, and u_=v_. Now v, can be written as a
product in lexicographical order of terms e;;(4) where i<j and v(1)>k (G, e;—e;),.
Since this lexicographically ordered product is unique for elements in the subgroup of
upper triangular matrices the expressions for ¥, and v, are the same. This means
v(A,) =k (G, e;,—e; ), for 1<a<r. A similar argument works for r+1<a<r+s.

Now we complete the proof of (B). Let uy,..., u,eUg and Ug. Choose points
x€G and x'eG’ and let x(t)=(1—1) x+1tx" for 0<z<1. Let G(¢) be the unique
facette containing x (). We shall show each u, lies in Ug , by showing that any e;; (1)
which appears in the product expression (*) for any u, belongs to Ug (,,. This amounts
to showing that v(1)=k(G(t),e;—e;), for 0<t<1. Let k=k(G, e;—e;), and
k'=k(G', e;—e;),. Let x(t); be the ith coordinate of the vector x(z). Then by the
claim

x(0);—x(0);+k>0
and
x(1);=x(1);+k'>0.
Hence
x(t)i=x(t);+k>0.
where k,=(1—1t)-k+t-k’. Since v(1)>k and k’,

v(1)>smallest integer divisible by » that is at least as big as k,
2k(G(t), e;—e;), q.e.d.

§2. The Homomorphism 7}’ — 7{°?

This section defines a sequence of maps
¢,:SL® (1+1, E) > SLP (1+1, E)

which are compatible up to base point preserving homotopy with the maps in the
inverse system (*) used to define n}°® and therefore induce a homomorphism

¢:m®SL (1+1, E) » n°*SL(1+1, E).
These in turn are compatible with stabilization and induce a homomorphism

&:K32, (E) > K%, (E).
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To simplify notation let X=SL**(+1, E) and Y,=SL*(I+1, E). The base
points of X and Y, respectively are U, and U¢ where C, and C are the fundamental
linear and affine chambers. Both X and Y, are finite dimensional simplicial complexes
of dimension [—1 and [ respectively. The map ¢,:X — Y, will be constructed induc-
tively over the dual skeletons X;* of the r-skeletons X, of X. Recall that X* is the
subcomplex of the first barycentric subdivision of X consisting of the union of the
duals o* of simplices ¢ of X of dimension at least » where o* is all simplices ¢, < --- <0,
such that ¢ <a,. For each vertex v=a: Uy of X choose an element g,ea-Up. If v="Ug,
let g,=1d. For each simplex ¢ of X let ¥V, be the finite set of elements {g,} where v is
a vertex of a. The collection of ¥V, satisfies

(a) o<t implies V, <=V,

(b) if 6=(0tg* Up, <+ <a,Ug,), then g~1-he Uy _for g, heV,.

In view of Lemma 4, (b) implies

(c) for each o there is a facette F of the affine stratification such that g~!-he U}
whenever g, heV,.

Using (a), (b), (c) we shall associate to each simplex o of X a contractible set C,c ¥,
such that ¢ <t implies C,o C,. Let Ac Y, denote the ‘“‘standard” apartment consist-
ing of simplices (Ug,<:--<Uf,) and recall from the first section that A is the first
barycentric subdivision of ¥=R'*!. For each simplex o of X let D,c A denote the
union of all simplices Fn ¥V where F satisfies (c). D, is convex by Lemma 4. Finally
let C,=g- D, where g is any element of V,; this is well defined by (c).

Now we can construct ¢,. Map each vertex v, of X* corresponding to a top dimen-
sional simplex ¢ of X to any point in C,. Assume inductively that ¢, has been con-
structed over X,* in such a way that

$,(6*)=C, for each simplex ¢ of X of dimension at least r. (1)

We shall show how to extend ¢, over X,*, so that (1) remains satisfied. Let t be an
(r—1)-simplex of X and let t'= (0, <--+ <o) be a simplex in d7*. Thus 7 is a proper
face of ¢; and 1’ is a simplex in o . By () ¢,(z')= C,, = C,. Since dt* is the union of
such simplices ©’, we have ¢, (0t*)= C, and hence ¢, can be extended over 7* so that
@, (t*) = C,. Continuing this procedure gives the desired map ¢:X— Y,. To get the
base points right note that if ¢ is the vertex U, then C,=A4; hence we can map U,
to U¢ in the last induction step.

It remains to show that ¢, is independent of the choice of elements {g,}. Let {V,}
and {¥} be two collections satisfying (a), (b), (c) coming from two choices of the g,.
Let {C.} and {C,} be the corresponding collections of contractible sets and note that
C.uC” is contractible. For let C,=g-D, and C;=h"Dj. Then

C,n Cy=g-(D, A Df)=h-(D,n D,

and D, n D, is convex.



544 J.B. WAGONER

Now let ¢, and ¢, be the two maps constructed using the collections {¥,} and
{V,}. For each vertex v, of X* define the homotopy H:v,xI— Y, by joining
¢, (v,)eC, to ¢,(v,)eC, with a path in C,uC, and assume inductively that the
homotopy H:X.* xI— Y, has been defined between ¢, | X,* and ¢, | X, so that

H (o* xI)=C,u C, for any simplex ¢ of X of dimension at least r. (1)

We will extend H over X%, x I so that the condition (1) still holds. Let t be any
(r—1)-simplex of X and 7'=(0,<::-<0,) be any simplex in dt*. Then H (t'x 1)
cC,,uC, cC/UC; and hence H (0t*xI)=C;/uUC,. Since ¢,(*x0)c=C, and
2 (t*x1)cC/, we can extend H to t x I so that H (t*xI)cC; uC,.
This completes the construction of ¢,

§3. Computation of "

This section proves Theorem A which says that whenever E is complete with finite
residue field

nyPSL(I+1, E)~u(E)

for [>2. The proof is based on the following information about Milnor’s group
K, (E) coming from the work of Moore [7; also 6, A.14], Dennis-Stein [2, §4], and
Stein [9, Th. 2.5 and Th. 3.1]:
(i) K, (E)~u(E)@®D
where D is infinitely divisible and there is some ny,>1 (depending on E) such that
(ii) for each n>n, the group D is generated by {u, v} with uel+p" and veD*;
furthermore D is the kernel of the map K, (D) — K, (D/p")
The plan of the proof is to construct homomorphisms

¢, Ky (E)~K,(I+1, E)>n,SLYP(I+1, E)
forall n>1 and
Yo SLYP(1+1, E)> K, (E)/D

for n sufficiently large such that

(1) ¢, is onto with Dckerg,

(2) for large n, Yo, is just the map K, (E)— K, (E)/D.
It then follows that for » sufficiently large ¥, is an isomorphism and it will be clear
from the construction of the y, that they are compatible with the inverse system ().
Hence

nyPSL(I+1, E)~K, (E)/D~u(E).
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The maps ¢, will essentially be those defined in §2 modulo the equivalence K, (E)
~nSL(I+1, E) for 13 demonstrated in [10]. However to avoid invoking this
isomorphism we will give some details of the construction of the ¢, which will be
needed anyway to establish (1) and (2).

Step 1. Defining ¢, for n>1 and [>2.

Let ze U be represented as a product

Z=21'22'-“‘Zs

where z;€ U, for some facette F; in the linear stratification. To this product we will
associate a loop

Zoxzy %2, SLYP(1+1, E) (V)

from the base point U¢ to itself as follows:

(a) First choose for i=0,..., s+ | an affine face G; such that z,e Ug, fori=1,...,s
and Go=G,,,=C.

(b) Then choose a path y; from the vertex Ug, to the vertex Ug,,  in the standard
apartment A<= SLy?([+1, E).

Let fp=1and for 1<k<slet f,=2z; -+ z;. Let Z,=f, -y, be the translate of y, by
By under the action of SL(I+1, E)on SL; (I+1, E). Theendpoint of Z,_, is B, _, - Ug,
and By Ug, = Bi-1"2: Ug,= By Ug, is the initial point of Z,. Hence the paths Z, can
be strung end to end to produce the loop (V).

First we show (V) is independent of the choices (a) and (b): It is clearly indepen-
dent of the choice of path y, because the standard apartment is contractible. To show
the choice in (a) doesn’t matter let Ug., be another group containing z;. By Lemma 4
there is a piecewise linear path g; from Ug, to Ug., in the standard apartment such that
each vertex Uy of g, contains z;. Then (V) constructed using the Ug, is represented, in
virtue of the independence from the choice (b), by the concatenation

Bo (o @1)* - % B (k" * V% Qs 1) * ow B (05" %)
We write this as
By (O * V-1 @) * B (0T e* Qe ) *
which is the same as
¥ By Qs * Brmt Vo1 * Brm 1" i * Be i ' * B v * By Qa1 ¥

Now B, _;-0.= B« 0, because each vertex in the path g, contains z,. Hence the terms
Br-1'0x* By 0r ' cancel out to give the loop

kB Vi *Bi ik
which is the path representing (V) obtained from the original choice (a).
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Actually, since the path Z, is determined by z,, it will be convenient from now on
to denote the loop (V) by Z,*---x Z_.

The construction of (V) shows that

(c) ifz,eUg,thenZ, *--- %, =Z,%---xZ,andif z,e Ul,then Z % --- ¥ Z,=Z % % Z,_,

(d) if for some 1<k<s—1 there is a linear face F and an affine face G such that
z, and z,,, both belong to Uy and Ug, then

Zykoook Z hZ)p ke kT =T ke kZp Zp ke kD,

Now to get ¢,, let yeK, (E) be represented as the word

s

H Xiyte (Aa) -

Then
id= Ul eiaja (A’a)

and we let

Pn(¥)=21,5, (A1) % €1 (4s)-

Any two presentations of y as a product differ by Steinberg relations and these don’t
change ¢,(») in view of (d). For example

we; () ep(p)re=-wey (Apn)-ej(n) e (A)*

because all the generators in the third Steinberg relation belong to Uy for any linear
facette on which e;—e; and e;—e¢, (and therefore e;—e,) are positive, and they also
belong to Ug where G is any affine facette contained in

ei—ej+r=0, ej_ek+rl=0, ei—ek+r+r,=0
for r and r’ sufficiently negative.

PROPOSITION 5. ¢, is onto for [>2.

Proof. The construction of (V) gives a procedure for constructing a path 7 from
any coset a- Uy to any coset «-w-U¢g given any word zeSt ([+1, E) with ¢(z)=
=weSL([+1, E). Here ¢:St— SL is the natural homomorphism. The proof that
¢, is onto reduces to the special case of showing that a one-simplex of the form
(a- Up< B-U¢) is homotopic with endpoints fixed to the path Z where ze St (I+1, E)
is chosen so that g(z)=a"'-BeUg.
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Write «"!-f=v,-g-v_ as in Lemma 2. The upper and lower triangular matrices
v, and v_ lift to well defined elements of St (I+ 1, E) which we continue to denote by
v, and v_. Let z, be a lifting of g to a product of words of the form A;;(v)=
=w;;(u) w;;(—1) where ue1+p". See [6,§9]. Let z=v, -z,-v_. Then Z=10, * Z*_
is a path from a- Uy to - Ug and we will show it is homotopic with endpoints fixed to
the one-simplex (a-Ug<p-Ug). Since v, eUg the path #, from a-Up to a-Ug is
(a-Up<a-v,-Ug)=(a-Up<a-Ug). By Lemma 6 below the path Z, from a-Ug
=a-v, Ui toa Us=a-v, g Ug (obtained by translating via «-v, the path Z, con-
sidered as a loop from Ug to Ug) is homotopic to the constant path with endpoints
fixed. The path 7_ from a-Ug=a-v, g Ug to f-Ug=a-v,-g-v_-Ug is homotopic
to the constant path (¢ Ug<p-Ug) because v_eUg and a- Ug=f-Ug. Hence

i, %Z,x0_~ (o Up<arUg)*(a-Ug<a-Ug)*(a-Ug<f-Ug)
~(a-Up<B-Ug) q.e.d.

LEMMA 6. The path z, from Ug to Ug is homotopic to a constant keeping end-

points fixed.

Proof. The general case reduces to the special case where z,=w,; (1) w;;(—1) and
either i<j or i>j. Suppose i<j. Then Z, from Ug to Ug is of the form A AT R
where 7 is a path in the standard apartment from Ug to Ug and Z, is considered as a
path from Ug to itself. We show that Z, is homotopic to a constant when viewed as

a loop based at U¢. Recall that

C={l+x>x0> - >X}.
Let

D={14x>Xg> >X;==X;>Xj41 > >X}
and

C'={l4+x>x>>x;>>x;>->x}, if j#l
={14x>X0> >X;_1 > X > Xy > >}, i j=L

Then C>D< C’ and each elementary matrix e;;(4) or e;;(4) appearing in the word
w;;(#) w;;(—1) lies in one of the subgroups U¢ or Ug.. This means we can construct
z, as in (V) by choosing as in (b) just the path y=Ug>Up< U¢ or its reverse y 1.
Write u=1+0¢ and u~!=1+71 for o, tep" and note that e;;(+0) and e;; (L) lie

in Up. Then using properties (c) and (d)

z,=¢&;(1+o)xé;(—1—1)%é;(1 +o)sé (= 1)xé;(1)xé;(—1)
=éﬁ(—-1—-r)*e",-j(1+a)*e‘,j(—1)* é;(1)
=éﬂ(—‘c)*éﬁ(-—1)*éij(a)*éij(1)*éij(— 1)xé;(1)
=éji("1)*éij(°')*éji(1)-
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This last pathis yxe-y~! wheree=e;;(—1)-e;;(c)-e;;(1) which lies in each of U¢, Up,
and Ul.. Hence e'y " 1=y"1 and y*&-y~! =y*y~1 which is certainly contractible keep-
ing the base point Ug¢ fixed.

The case when i>j is similar. q.e.d.

PROPOSITION 7. Dcker ¢, whenever n is large enough to satisfy (ii).

Proof. Let {u, v}eD where uel+p" and veO*. Then ¢,({u, v})=ho; (u)*hy, (v)
xho, (u) "' xho, (v)~! which is homotopic to A3 (v)*h,53(v) ™! by Lemma 6. This last
loop is clearly contractible. g.e.d.

Step 2. Construction of y,,.

Throughout this part we will assume n>ny+ 1 where n, is as in (ii) and we assume
[>2. Let m=order of u(E) and let ( , ),: E*x E* - u(K) be the mth power norm
residue symbol. Let

l1->u(E)->X->SL(I+1,E)-1

be the continuous central extension associated to ( , ),. By [6, A.14 and p. 95] this
is algebraically equivalent to

1> K,(E)/D— St (I+1, E)/D—SL(I+1, E)—> 1.

LEMMA 8. For each affine face F there is a homomorphism sg: Ug — St (1+1, E)/D
such that if F<F', then sg. | Up=sg and such that gosp=id.

Proof. Givenan affine facette Flet X, (resp. X ) be the subgroup of St (1+1, E)/D
generated by x;; (1) with i<j (resp. i>j)and v(4) > k(F,e; —e;),, and let Y be the
subgroup of St (I+1, E)/D generated by the words h;; (1) with ue1+p". Let G be the
subgroup of St (I+1, E)/D generated by X5, X7, and Y. Then

Gp=X} Y -X5=X5 Y-X;.
The proof of this is similar to (B) in Lemma 2 and the main point is that for i <j we have

xij('1)'xji(#)‘_—hij(z)'xji(ﬂz)'xij(z—u) (a)

modulo D where A, peE and z=1+Auel +p". Here we continue to use the notation
of (B) of Lemma 2. Not both k and k’ are zero because k' =r-n—k for r>0. Thus the
argument breaks down into two steps.

Case 1. Both k and k'’ are non-negative and so at least one of them, say k, is
strictly positive. Then k >n because ken-z. In particular v (1) >n. Thus when we con-
sider the element

Xi5(A) x5 (1) x5 (27 A) " o xji (uz) ™ by (2) 7!
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of K, (D) as an element of K,(D/p") it becomes zero. By (i), i.e. by [2, §4], it lies
in D so (o) holds modulo D.

Case 2. One of k or k' is negative. Say k= —s where s>0. Then k’>n because
k+k'Zn. Let p#i, j. Since the subgroup D is in the center of St (I+1, E) the equa-
tion (o) holds modulo D iff its conjugate by ;,(z*) holds modulo D:

xij (WA) x5 (m™ ) =hy; (m°z) by (n°) ™" x5, (™ 5pz) x5 (272 0)
={m z}" hi;(2) x ;i (n” pz) x5 (n°2 71 ).

Note that v(n°2)>0, v(z~*u)=n, v(n°z7'1)>0 and v(n~*uz)>n. Let z=1+ovn".
Then by [2, §2]
1+on""!

g 1 ny —1
{r, z}={m, 1+ovn"}={— , um
l—m l—n

and so {r, z}€K, (D) has the same image in K, (O/p"~!) as

1 17!
-7’ 1—n
which is zero by [6, Lemma 9.8]. The word

x5 (m°A) x5 (o) x5 (m2 7 A) T x g (T 0uz) T by (2) T {m, 2} 0

in K, (D) therefore goes to zero in K, (O/p”~'); so again by [2, §4] it lies in D and (a)
holds modulo D. Now to complete the proof of Lemma 8: By [6, Lemma 9.14] the
maps ¢: X7 — *Up are isomorphisms. The map g: Y — H" is a surjection. Any element
we Y with g(w)=1 lies in the kernel of the map K, (D)— K, (O/p") and therefore
in D by [2, §4]. Hence ¢: Y — H" is an isomorphism also and consequently ¢: G — Uy
is an isomorphism. We define sp: Ug — St (I+ 1, E)/D to be the inverse of ¢ restricted
to Gp. If F<F' then Gr= Gy, 50 55 | Up=sp. q.e.d.

To define the homomorphism , we use essentially the same method as in [10,
Prop. 2]. If [ denotes the directed one-simplex («*Up<f-Ug), we let [! denote the
same one-simplex directed from f-Ug back to a*Ur. Any piecewise linear loop y
from Ug to itself is a concatenation

y=T s luma

where ¢;,= + 1. Choose an element in each vertex a* U of SL’®(I+1, E). For each [,
we have the element g; ' -h; where g; is the chosen element in the initial vertex of [;

and 4, is in the final vertex of I,. Since g;,, =h; the element

u= Ul (&' k)"
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lies in U If [;=(ax-Up<B-UZ) we let L;=s5(gi '-h;). Let w be a lifting of u to
St (I+1, E) obtained as in the proof of Lemma 8 and define

Yo (y)=L} L% - L2w 'eK, (E)/D.

Any two such liftings of u as in Lemma 8 are congruent modulo D so ¥, (y) doesn’t
depend on which lifting we choose. Using Lemma 8 it is not hard to see that ¥, (y)
is independent of the choice of elements in the - Ug and also is independent of any
simplicial homotopy. For example suppose we have a segment in y which looks like

n n n
Oy UF1 <a2 . UFz <a3 * UF3

and that g;ea;- U, are the chosen elements. Let g, be changed to 4 and write g,=#hA-v
where ve Ug,. The corresponding subwords of y,(y) are sp, (g1 '*82)"sr,(g7'°83)
and sy, (g *h) sg,(h™1-g3). But we have

S, (81" °82)5r, (821 *83)=5F, (81 ' " h0) 55, (0™ B ' -g3)
=55, (81" 1) 5, ()55, (07 1) 55, (7" - £3)
=5p, (81" h) sp, (h7"-g3).

The above procedure gives the desired homomorphism from the edge path presen-
tation of 7, SL,® (I+1, E) into K, (E)/D. We have verified (1) in Propositions 5 and 7.
Property (2) is an immediate consequence of the construction of ¢, and V,,.

§4. =;°° for Discrete Valuation Rings

Let O be a discrete valuation ring with unique maximal ideal p. Let v:E—Z be
the associated discrete valuation on the quotient field E of O. This section outlines
the modifications necessary to define

n®SL(1+1, O)

so that we have

THEOREM B. If O is complete with finite residue field of characteristic p and
[>2, then

2SL(I+1, O)=p (E),

where u(E), is the p-primary component of the group of roots of unity in E.
Let F be a facette in the affine stratification of R'** and let n>>1. Define Vj to be
the subgroup of SL(I+1,0) generated by the e;;(1) where AeD and v(1)>
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k(F, e;—e;),. The analogue of Lemma 1 remains valid and wel et SL'P(1+1, O) be
the realization of the simplicial set whose k-simplices are (k+ 1)-tuples

(o' Vi, <+ <oy Vi)
When m divides » there is a map
SL? (I+1, O) « SLP (1+1, D)
and we let

7 "SL(1+1, O)=lim z,SL? (1+1, O)
G

min

and
Ki® (O)=lim ;% SL (I+1, 0)

—)

I

The analogues of Lemma 2 and Lemma 3 hold although (B) of Lemma 3 is valid
for the Vg only for we W,. This is sufficient however to prove Lemma 4 for the Vy
because in the proof the conjugation is by an element of W,,. The proof of Theorem B
is similar to the argument in Theorem A but uses the following result of Dennis-Stein
[2, §4]: For r>3

K (r,0)=K,(D)=u(E),®D

where D is the same subgroup as in section 3. All the steps in the proof can be done
by replacing E by O. One point to mention is that in Case 2 of Lemma 8§ it is not
necessary to conjugate the equation () to get an equivalent equation in St (I+ 1, O)/D
because the terms in () already lie in St (I+1, D).

The natural inclusions Vz< Ug induce a map

SLYP(I+1, D) SLP(1+1, E)

of inverse systems and we get a homomorphism
K;*(D) - Ki* (E).

Following the method of §2 one constructs a natural homomorphism
K" (D)~ Ki* (D)

compatible with the above homomorphism. It seems plausible to conjecture that there
is a short exact sequence

0 - K{®(D)- K{”(E) - K;-,(D/p)—-0
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similar to the one in algebraic K-Theory. See [3, Th. 1.3] and [8, §5]. For i=2
Theorems A and B show this is true; namely, we get

0 K3* (D)~ K3* (E) > K, (D/p) -0

Ii H N

0 u(E), » w(E) » (Ofp)* —0.
In a future paper we will show that

Ki (D) =lim K, (D/p").

n

Since the kernel of the homomorphism GL(O/p"*!)— GL(D/p") is a p-group, the
maps K;(O/p"*')— K,(O/p") are isomorphisms on the [-primary part whenever
(I, p)=1. Hence by Quillen’s computation of the K-theory for a finite field [ 12] we have

2 (O)p=0, i=1
K32 (O)n=[2Z/(d-1)'Z]),,, i>2

where (I, p)=1 and ¢=|D/p]|.
§5. Relation to Buildings

In this section we discuss the relationship of the spaces SL**(I+1, E) and
SLY®(I+1, E) to the buildings corresponding to the linear and affine BN-pair struc-
tures on SL(I+1, E). The significance of this is not clear, but one possible motivation
concerns unitary representations of the p-adic group SL(I+1, E). Borel and Serre
have shown that the Hilbert space of square summable harmonic forms in dimension
[ on the p-adic building associated to SL(I+1, E) is the special representation and
that the cohomology with compact support in dimension [ is contained in it as the set
of admissible vectors. Perhaps the L? harmonic forms on some of the SL(I+1, E)-
spaces below decompose to give useful realizations for other irreducible representa-
tions of SL(I+1, E).

Recall that the linear building 7°® (resp. the p-adic or affine building 7°) is the
realization of the simplicial set whose k-simplices are the (k + 1)-tuples

(ao'PsoD"'DaK'Psx)

where 0, SL(I+1, E), S; is a linear (resp. affine) facette contained in the closure of
the fundamental chamber C, (resp. C), and Pyg, is the parabolic (resp. parahoric)
subgroup associated to S;. In the linear case we require S; to be a facette of (R'*'-
diagonal) n C,. Actually, I°® and I as defined here are the first barycentric sub-
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divisions of the buildings as usually defined. In both cases the action of SL(I+1, E)
is given by

“'(“O‘PSOD"‘30‘k‘Psk)=(““O'PSOD"‘DWk'Psk)-

See [4, chap. II].

The following two lemmas will be useful. Let S={u, v, w...} be a set partially
ordered by a relation “ < such that if ¥ < v and v<u then u=v. Suppose G is a group
acting on the right of S and preserving the ordering in such a way that

(B) if u,v<wand v=u-g, then u=v.

Let S/G denote the space of orbits partially ordered by the condition that u-G< v G
iff there is a ge G with u-g<v. Note that ¥-G<v-G and v-G<u- G implies u-G=v"G.

Let |S'| and |S/G| denote the geometric realizations of the nerves of these partially
ordered sets.

LEMMA 9. (A) [S|/G=|S/G]

(B) if G acts freely on S, then G acts freely and properly on |S| as a discrete group.
In particular the quotient space |S||G is not just triangulable but has a natural triangula-
tion.

Proof. (A). There is a natural simplicial map ¢:|S|— |S/G| given by the cor-
respondence

(o< <0) = (v G< -+ <v,°G)

which takes non-degenerate simplices to non-degenerate simplices. We must show that
if o=(e<---<v,) and t1=(wo<---<w,) are two non-degenerate simplices with
¢ (t)=¢(0), then there is a ge G with t-g=0. By hypotheses we know that for each w;,
there is a g,€ G with w;-g,=v;. Consider the simplex 7-g,=(wy g, < - <w,-g;). Then
w-g,=v, and for each 0<i<k we have v,=w; g, (g 'g:). Hence, by (B), v,=w, g,
and so 7-g,=o.

(B) Let 6= (v, <---<v,) be a non-degenerate simplex. Let st (¢) be the open star
of ¢ consisting of all simplices T having o as a face. We shall show that if st (6) N st (6)g
is not empty then g=1. Let t be a simplex such that 6<t and 6<1-g, and let v be
a vertex of ¢. Then v-g is a vertex of 7-g and v is a vertex of 7-g. Thus either v-g<v
in which case v-g=v by (B) and g=1 since G acts freely; or v<v-g so that v-g 7' <v
and g7 1=1. q.e.d.

Now let S'={u, v, w,...} be partially ordered by a relation “>"" and let G act on
the right of S’ preserving the ordering and satisfying

(B’') if w=>u, v and u-g=v, then w-g=w.

Partially order the orbit space S'/G by settingu-G=>v- G iff thereisa ge G withu-g>wv.
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LEMMA 10. (A) |S’|/G=1|S"/G]|

(B) if G acts freely on the set of vertices, then G acts freely and properly on |S’'|.

Proof. (A). The natural map ¢:|S’| - [S’|/G takes non-degenerate simplices to
non-degenerate simplices and we must show that if 6=(vy=>--->v,) and =
=(wo >+ =w,) have the same image under ¢ then there is a geG with c=1-g. By
hypothesis we know there are elements g,eG with w;-g,=v; for i=0,..., k. Since
Wo*8o=0o and w; g, =w, g, (g5 'g1)=v,, we conclude from (B') that w, g, =v,. By
induction one has w;-g, =v; for i=0,..., k. Hence o= t-g;. The proof of (B) is similar
to (B) of Lemma 9. q.e.d.

The Linear Case. Compare [10, §2]. For any associative ring E there is an equi-
variant map 0:SL°®(I+1, E)— I defined by the correspondence which takes the
simplex (oo Up,<::- <oy Up,) to the simplex (towqPs,> - D, Ps,) where S,
is the unique linear facette in R'* !-diag and in the closure of C, such that w;*S;=F,
for some w;e W,. The cosets a,w;*Pg, are independent of the choice of the w;.

We shall construct a space K on which SL(I+1, E) acts on the left such that the
map 6 factors as the composition of SL(I+ 1, E)-equivariant simplicial maps

SL(I+1, E)—» K> I

where the first map is a covering map with group N of the linear BN-pair structure
on SL(I+1, E).

The group N acts on the right of SL**(I+1, E) as follows: Let a- Uy be a vertex
of SL*?(I+1, E) and let ne N. Define

(a-Ug) n=onUp-1.p.
This is well defined; for if a- Up=p- U, then f=a-u with ue U and
B Uy-r.p=oun-Uy-s. p=om(n~'un)  Uy-1. p=0n Up-1.p

because 7™ 'une U,-1. p by (A) of Lemma 3. This action preserves the relation “<” on
the cosets a- Uy and induces an action on SL**(I+1, E).

LEMMA 11. The action of N on SL°®(1+1, E) satisfies condition (B) and is free
and proper.

Proof. Suppose a*Up<y:Uy, - Ug<y:Uy,and a* Up=Pn- U,-1.. The definition
of the partial ordering of the a* U in §1 implies that F=n"1-G. Now y 1o Upc Uy
and Yy 'B-Ugc Uy, and so B laeUy. Also a-Up=Ppn-U,-1.¢=pn Uy so that
n~ 1 laeUg. Hence neUy and since Nn Ugz=1 we have n=1. Thus a-Up=8-Ug.
It is also easy to see that N acts freely on the vertices a- Uy. Thus (B) is satisfied and
N acts freely and properly by (B) of Lemma 9.
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Let K=SL®(I+1, E)/N. Since 8 is constant on the orbits of N we obtain the
desired factorization.

Recall from [10, §2] that 6, and therefore @, is onto in homology in dimension
[—1. For E a finite field both H,_, (SL*®*(I+1, E); Z) and H,_, (K; Z) are free abelian
groups of finite rank mapping equivariantly onto the Steinberg representation
H,_,(I°*; Z). What can be said about them as SL(I+1, E) modules?

Here is an alternate description of K. For any linear facette F let N be the sub-
group of elements n of N such that n- F=F. Then Ny normalizes U by (A) of Lemma
3 and so Qy= Ny Uy is a subgroup of SL(I+1, E). Note that F< G implies N> Ny
so that Q is not a subgroup of Q; unless F=G. Define a partial ordering on the
cosets a*Qp by the condition that a*Qz<f-Q; iff F<G and there is an element
neNg such that an- Upc - Us.

LEMMA 12. K is isomorphic as a simplicial complex with a left SL(I+1, E)
action to the space whose k-simplices are (k+1)-tuples

(“o'Qso'<“‘<°‘k'st)

where each S, is a linear facette of R'*'-diag contained in the closure of C,.

The proof is straight forward because there is a bijection between orbits (a- Ug)* N
and the cosets o Qg.

Finally, we calculate &~ (t) for any simplex t of I°®. Actually, since t=a-c
where «eSL(I+1, E) and 6= (Ps,> - o Ps,), it suffices to describe #~* (¢). Here is
the formula:

®71(0)=B"(Qs5,<<0s,)
where fePg_mod N, - Usg,. Thus we also have
9*1(0')=ﬂ7"(U"—1.s°<"’<U"—l.sk)

for fePs, mod N, - Ug, and neN.
The Affine Case. Let E be a local field, complete with finite residue field. For each
n>1 we shall construct a sequence of SL(I+1, E)-equivariant simplicial maps

SL® (I1+1,E) -~ K,,-.;:If,“

such that whenever m divides n there is a commutative diagram of SL(I+1, E)-
equivariant simplicial maps

SI® (1+1, E) » K, 5 I*

! L, 4 (x)
S (1+1, E) » K, S 15"
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satisfying the properties
(i) for n=1, I2" is the affine building I**,

(ii) each ¥, and each vertical map in the diagram is a proper map,

(iii) the map SLy®(I+1, E)—> K, is a covering space with fiber the group M"
defined as follows: let T7"<T be the subgroup of translations in W of the form
diag(n",..., n"') where n,=0 modn. Let W" be the subgroup of W generated by T"
and W,. Let N"< N be the subgroup of elements mapping to W" under the arrow
N— W. Finally let M"=N"mod H".

First we define an action of N" on the right of SL>*(I+ 1, E) and prove

LEMMA 13. The induced action of M" is free, proper, and satisfies condition (B).
Let ne N". Define

(a-Up)n=an-Up-1.p.
This is well defined: for let a- Up=f- Ur where f=a-u. Then
Bn-Up-1.p=aun-Up-1.p=0n(n ‘un)-Up-1.p=0n-Up-1.g

because n 'uneUy-1.p according to (B) of Lemma 3. If neH", then n-F=F so
(a-Ug)'n=a-Up. Hence M" acts on the right of SLg,(I+1, E). This action is free
on vertices. For suppose an-U,-:.p=o- Uy in the sense of the partial ordering. Then
n~'-F=Fandn-Uy-..p=Ug as cosets. Thus ne Nn Up=H". This shows the isotropy
groups of N" are just H". Hence M " acts freely. The argument showing (B) is satisfied
is similar to the proof of Lemma 11. We apply Lemma 9 to see that M " acts freely and
properly on SLi’® (I+1, E).

In view of Lemma 13 we can define K, as SL;>® (I+1, E)/M" and get a covering
space map SLy® ([+1, E)— K, which is SL(I+ 1, E)-equivariant.

Next we define the spaces I*. First let J*f be the realization of the simplicial set
whose k-simplices are the (k+ 1)-tuples (ogPp, 2+ Do, Pg, ) wWhere each Py, is the
parahoric subgroup corresponding to the affine facette F;. Here F; runs over all affine
facettes and not just those in the closure of the fundamental chamber C. Recall that
each Py is of the form w-Pg-w™! where we W and S is a facette in C with w-S=F.
Furthermore, for ne N one has n-Pr-n~'=P,. . The group SL(I+1, E) acts on the
left of J*f by

o (ao Ppy2 - D0 Pp,)=(a0tg* Pp, 2+ Doy " Pp).

LEMMA 14. There is an action of N on the right of J*' which satisfies condition
(B’) and induces an action of W satisfying (B’).
Proof. For ne N define

(a*Pg)p=0n-P,-s.p
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This is well defined: for let a-Pp= f- P where f=a-p. Then
ﬂﬂ'Pn-l-F=°‘P'1'Pr,—1-F=°"1('1_1P’1)'Pq-1~F=°"7'Pn-1-F

because 1~ 'pneP,-1. p. To see that (B’) holds suppose y- Py oo+ Pp, y:Py> B Pg, and
a*Pp=pn-P,-1.c for some neN. Then Pr=P,-..; and n*F=G. Since FoH=G we
must have n- H=H. Hence nePy so thaty-n-P,-..y =y- Py, whichis (B’). Since Nn B
is contained in each Pp the action of N induces an action of W= N/N N B satisfying
(B')- q.e.d.

We define I;" = J*f/W". For each n:> 1 there is a simplicial SL(I+1, E )-equivari-
ant map

Yu: SLRP (1+1, E) — J*

defined on vertices by ¥, (a* U p)=a- Pg. It is compatible with the actions of M" and
W™ and therefore induces an SL(I+ 1, E)-equivariant map

¥,:K,=SLP(1+1, E)/M" - J*|/w"=I",

When m divides n we clearly get the commutative diagram (k).

To establish (ii) we use the fact that if f: X — Y is a simplicial map between locally
finite, finite dimensional simplicial complexes such that the number of elements in
f ~1(0) is bounded by a fixed constant as ¢ runs over the simplices of Y, then f is
proper. Actually it suffices to show f ~!(¢) bounded by a fixed constant for ¢ any
vertex. Thus we must compute the inverse images of simplices under ¥, and under
the vertical maps in the diagram (k). To do this it will be convenient to give equivalent
descriptions of the spaces K, and I>".

For n>1 we shall let C,={x;+n>xy>x;>:->x}. Then C, is a fundamental
domain for W" acting on R'*! and is a union of affine facettes. For any affine facette
F, let Ny be the stabilizer of Fin N". Np normalizes Ug by (B) of Lemma 3 and we let
QF = Ny Up. For any two cosets a-Qp and f-Qg we let a-Qp<f:Qp iff F<G and
there is an ne Ny such that a-n-Ug< - Ug.

LEMMA 15. (A) K, is the realization of the simplicial set whose k-simplices are
(k+1)-tuples
(20° Q5,<-++ < 05,)

where S;cC,.
(B) I* is the realization of the simplicial set whose k-simplices are (k+ 1)-tuples

(ao'PSOD"'Dak'PSk)

where S;=C,.
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The proof of (A) follows from the bijection between orbits («- Up)- N" and cosets
a- Qg; similarly for the proof of (B). In particular 13" =7, which gives (i).

In view of Lemma 15 the map ¥, is induced by the correspondence «- Qg — o Py.
The composite map

SI%® (I+1, E) —» K, — I

is induced by the correspondence o Uy — aw*Pgs where we W" and S<C, are such
that w-S=F.
Denote the vertical maps in the diagram (k) by

p:SLP(I+1, E)—> SL?(I+1, E)

q:K,— K,

r: Iaff — Iaff

With the exception of the map g, we shall describe the inverse images of simplices
lying in a region whose translates by SL(I+ 1, E) fill up the space:

(@) ¥u ' (Pry=-+-2 Pp)=a" (Up,<-<Up,)

where F;,cR'*! where o€ Py,_mod Uj,
(b) ¥, ' (Ps, 22 Ps)= (Q5,< - <05,)
where S;=C, where ae Ps, mod N§, - Ug,

(c) p” ' (Up, < <UR)=a (Uf, < <Up)

where F;,cR'*! where ae Uf, mod U},
(d) r-l(PSoD'“DPSk)=(n-1.Pn'SoD"'Dﬂ_l.Pn-Sk)
where S;cC,, where n-S;=C, for new™

We must check that in each case the cardinality of the inverse images of simplices
is uniformly bounded. In (b) and (d) this is clear because on the left hand side there
are only finitely many simplices and on the right hand side there are only finitely many
a’s and n’s. Uniform boundedness in case (a) holds because Py, mod Ug,~Ps,_mod Usg,
for some S;, S, in C,; it holds for case (c) because Uy, mod Up,~ Ug, mod Ug, for
some So<=C,.

The inverse image of a simplex under q is tedious to describe; however, we still
know that g is proper because r and ¥, are proper.
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