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Homotopy-equivariance

I. M. JAMES

1. Introduction

Let X be a G-space, where G is a discrete!) group. The classification of real G-vector
bundles over X by equivariant isomorphism leads to the Grothendieck ring2) K (X)
of equivariant K-theory, as described in [15]. The notion of homotopy-equivariant
isomorphism, which we shall define, leads to a quotient ring K/G(X) of K5(X), and
the corresponding notion for fibre homotopy equivalence leads to a factor group
JIG(X)of K/|G(X). When G is trivial K/G (X ) reduces to K (X)and J/G(X)to3)J (X),
the well-known functor studied by Adams and Atiyah. We discuss, with examples,
methods of calculating K/G(X') and J/G(X), and use the results to solve a problem
about cross-sections of Stiefel manifolds.

The basic notion of homotopy-equivariance is as follows. For any G-space X we
denote by g+ : X — X the action of an element ge G. If X and Y are G-spaces we describe
a map f: X — Y as a homotopy-G map if g, fg;' ~f, for all geG. If fis a homotopy
G-map and a homotopy equivalence then any homotopy inverse of f is also a homo-
topy-G map. In that case we describe f as a homotopy-G equivalence and say that X
and Y have the same homotopy-G type. Also we describe a G-space X as homotopy-G
trivial if g~1 for all geG. This is the case, for example, if X is contractible with any
G-structure, or if X is a sphere with orientation-preserving G-structure.

Now consider the category of G-spaces E, F,... over a given G-space X. In the
terminology of [10], the set of overhomotopy classes of overmaps f:E— F will be
denoted by ny(E, F). We describe f as a homotopy-G overmap if g, fgs' is over-
homotopic to f for all geG. When the overspaces are fibre spaces the term fibre-
preserving homotopy-G map may be used instead. The other homotopy-equivariant
notions are extended to the category of spaces over X in the obvious way.

For any G-module M we denote by M the G-vector bundle X x M with the natural
projection and product G-structure. Given an equivalence relation ~ between G-vector
bundles over X we say that U, V are stably equivalent if UOM~ V@M for some M.

1) This restriction is more a matter of convenience than necessity ; the situation when G is topologi-

cal will be considered in a separate note. ) .
2) We write K¢ rather than XOg¢ since we have no occasion to consider complex vector bundles.
3) We use J in the unreduced sense, taking dimension into account, and denote the Adams-Atiyah

functor by J.
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We describe the relation as insensitive if for every G-module M there exists a G-module
N such that M@ N is equivalent to a trivial G-module. In that case we can, of course,
take M to be trivial in the definition of stable equivalence.

Let U, V be G-vector bundles over X. We say that an isomorphism f:U— V of
vector bundles is a homotopy-G isomorphism if f and g, fgz' are homotopic through
isomorphisms, for all geG. If such an isomorphism exists we say that U and V are
homotopy-G isomorphic. This equivalence relation is insensitive since M@ M is homo-
topy-G isomorphic to a trivial G-module for any G-module M. Notice that if U, V, W
are G-vector bundles over X with U homotopy-G isomorphic to V then U® W is
homotopy-G isomorphic to V@ W and U® W is homotopy-G isomorphic to V@ W.

From now on it is convenient to assume that X is a finite complex. The Grothen-
dieck ring K (X) is defined in the usual way. Factor out the ideal consisting of ele-
ments of the form [U]—[V], where U and ¥ are stably equivalent G-vector bundles
in the sense of homotopy-G isomorphism. The quotient ring thus obtained is denoted
by K/G(X). The homomorphism f *:K;(Y)— K;(X) induced by a G-map f: X— Y
determines a homomorphism f *:K/G(Y)— K/G(X). Since f * depends only on the
G-homotopy class of f it follows that K/G(X), like K;(X), is an invariant of the
G-homotopy type. However K/G(X) is not an invariant of the homotopy-G type, as
we shall see in a moment.

Note that K/G (pt)~ Z®Hom (G, Z,), as a group. Following the practice in equi-
variant K-theory we denote by K/G(X) the cokernel of the homomorphism c*: K/G
X (pt)— K/G(X) induced by the constant map. If the action of G on X is pointed
then b*c*=1, where b:pt— X gives the basepoint, and hence K/G(X)~K/G(pt)
@®K/G(X), as a group.

Without real loss of generality we can assume that every G-vector bundle V over X
is equipped with a G-invariant euclidean structure, so that the associated sphere-
bundle S (V) is defined as a G-space over X. We now say that two G-vector bundles
are equivalent if their associated sphere-bundles have the same fibre homotopy-G type,
and we define J/G (X) to be the factor group of K;(X) (as a group) by the subgroup
of elements of the form [U]—[V], where U and V are stably equivalent in this sense.
Alternatively we can define J/G(X) as a factor group of K/G(X). The natural projec-
tion from K;(X) to K/G(X) is denoted by K/G, and the natural projection from
either K;(X) or K/G(X) to J/G(X) by J/G. Note that J/G:K/G(pt)~J|G(pt). The
cokernel of c¢*:J/G(pt)—J/G(X) is denoted by J/G(X).

To illustrate these definitions we shall, in §2, calculate K/G (X ) and J/G(X) in case
X is a trivial G-space with G=Z,. Similar calculations can be made whenever G acts
trivially. Methods which can be used when G acts non-trivially are described in §4, 5,
after digressing in § 3 to discuss the transfer in relation to our two functors. Finally we
show in §6 how Atiyah’s theory of Thom spaces [3] can be extended to the homotopy-
equivariant case, with J/G playing the role of J. This enables us to reexamine recent
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work [12] of Sutherland and myself on stunted projective spaces and in particular to
solve the following problem which was raised in §4 of [12].

Consider the Stiefel manifold V,, , of orthonormal k-frames in R™, where 1 <k <m.
We fibre V,, , over S™! in the usual way and describe a cross-section s:S™ ! — mk
as simple if Ts~ s, where T: V,, ,— V,, , denotes the involution which changes the sign
of the last vector in each k-frame. If £ is odd then T'~ 1, since m is even, and so every
cross-section is simple. It is noted in [12] that a cross-section of V,, ;. projects into
a simple cross-section of V,, ,. Moreover when k=2, 4 or 8 it is shown in §4 of [12]
that V,, , admits a simple cross-section if and only if m is an even multiple of k. This
result is included in

THEOREM (1.1). Let k>2 and k=2 mod4. Then V,, , admits a simple cross-
section if (and only if!) V,, , admits a cross-section.

THEOREM (1.2). Let k=2 or k =0 mod4. Then V,, , admits a simple cross-sec-
tion if and only if V,, .+, admits a cross-section.

I am most grateful to my colleagues M. F. Atiyah, M. C. Crabb, G. B. Segal and
W. A. Sutherland for some very helpful suggestions about this work.

2. Homotopy-symmetry

Throughout this section we take X to be a trivial Z,-space. We denote the non-
trivial 1-dimensional representation of Z, by L, the trivial by R. Following [11] we
say that Vis linearly homotopy-symmetric if V and V® L are homotopy-Z, isomorphic,
homotopy-symmetric if S (V') and S (V®L) have the same fibre homotopy-Z, type.
The corresponding stable notions are defined in the obvious way. We shall need

LEMMA (2.1). Let U, V be J-equivalent vector bundles over X. Then U is stably

homotopy-symmetric if V is.
To prove (2.1) consider the automorphisms v of V" and w of V@V which are given
by vx=—x and w(x, y)=(y,x), where x,yeV. Consider also the homotopy

h:V@®V - V@V which is given by
s n
h, (x, y)=(x cos—;E t+y sing t, X sini t—y cos, t). (2.2)

Write S (V)=E so that S (V@V)=E=*E, and consider the function

E4:ny(E, E)—>ny(ExE, ExE)
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given by the fibre join with the identity on E. Clearly ¥ is homotopy-symmetric if and
only if S(v): E— E is fibre homotopic to the identity. Let us say that V is homotopy-
invertible if S (w):ExE— ExE is fibre homotopic to the identity. Now S (1®v) is
fibre homotopic to S (w) under S (h,): Ex E— Ex E. Hence V is homotopy-invertible
if V is homotopy-symmetric, and the converse holds in the stable range since E, is
bijective, by (5.1) of [16]. Stably, therefore, homotopy-symmetry is equivalent to
homotopy-invertibility and since the latter condition depends only on the fibre homo-
topy type of the associated sphere-bundle we obtain (2.1).

The classes of linearly homotopy-symmetric vector bundles form a subring
@ (X)c=K (X). We recall from §1 of [11] that &(X) is precisely the image of the
Grothendieck group of complex vector bundles, under the realification homomor-
phism. Using (2.1) we see that the classes of homotopy-symmetric vector bundles
form a subgroup ¥ (X)<J (X), the determination of which is the subject of the main
theorem of [8]. Of course J® (X )= ¥ (X) and it turns out that equality holds when
X is a sphere or a real, complex or quaternionic projective space.

After these preliminaries we are ready to determine K/Z,(X) and J/Z,(X). By
(2.2) of [15] an isomorphism

0:K (X)®K (X)— Kz, (X)

is given by 0([U], [V])=[U]-[V®L], where U, V are vector bundles over X.
Hence it follows that the sequences

® (X) % K (X)@K (X) 5 K/Z, (X),

(2.3)
P (X)) J(X)® J(X) S J/Z,(X),
are exact, where 0 is given by the diagonal and ¢, { are induced by 6. The same is true
when K, J are replaced by K, J and @, ¥ by their images &, ¥ in K, J, respectively.
For example, take X=S"= S ((n+1) R). Then & (S")=2K (S")forn=0o0r 1 mod8
while & (S")=K (S") for n=2 or 4 mod8. Using (2.3), therefore, we obtain the follow-
ing table

n(mod8) 0 1 2 3 4 567
Riz,(s" z®z, Z,®Z,Z, 0 Z 0 0 O

Since ¥ (S")=J&(S") it follows that the table for J/Z,(S") can be obtained from this
by replacing the infinite cyclic summands which occur when n=0 mod4 by the finite
cyclic group J (S").

In contrast, consider the sphete S"=S ((n+1)L). The natural projection
S"— S"/Z,=P" determines an isomorphism K (P")~ K, (S"), as shown in (2.1) of
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[15]. Thus every element of K, (S") can be represented by a Z,-vector bundle of the
form r L, for some r>0. In this case, therefore, K/Z,(S")=0, hence J/Z,(S")=0.
However S ((n+1)L) and S ((n+1)R) have the same homotopy-Z, type when # is
even and so, comparing the results of this paragraph with those in the previous one,
we see that neither K/G(X') nor J/G(X) is an invariant of the homotopy-G type of X.

3. The Transfer

Suppose that G is finite of order n, say G=(g',..., g"). If V is a vector bundle over
the G-space X then the transfer V', as defined in §2 of [4], is a G-vector bundle over X,
which can be constructed as follows. We are given a vector bundle with projection
p:V— X, say. Consider the direct sum V,®@---®V,®---®V,, where V, (i=1,...,n)
has the same total space as ¥ but projection g’y p: ¥ — X. We make G act on this vector
bundle by permuting the factors according to the regular representation, and thus
obtain a G-vector bundle V’'. In this way a homomorphism t:K (X)— K;(X) is
defined such that

or=(g5)" + - +(g%)", (3.1)

where ¢:K;(X)— K (X) ignores G-structure. If S (V)=EFE then S (V')=E;*---*E;
*---xE , where E;=S (V) and G permutes the factors of the multiple join. Thus the
fibre homotopy type of S (V') determines the fibre G-homotopy type and a fortiori the
fibre homotopy-G type of S (¥’). In this way a homomorphism 7:J (X) - J/G(X) is
defined such that ©J=1/Gr, as shown below, where 7: K (X)— K/G(X) is obtained by
composing 7: K (X)— K;(X') with the natural projection.

K(X)5 K/G(X)> K(X)
l JIG J

J(X) o JIG(X) - J(X)

J

Of course (3.1) determines each of the compositions ¢r. Now suppose that V is itself
a G-vector bundle over X. In that case the action g’ : ¥V — V determines an isomor-
phism A: V> V' (i=1,..., n). To make the isomorphism

=@ O Ve --eV-Vie V"

a G-isomorphism it is of course necessary for G to permute the summands of the
domain of A, according to the regular representation, as well as act on the individual
summands. Using the homotopy (2.2), however, we conclude that this “‘twisted”
direct sum of G-vector bundles is homotopy-G isomorphic to V®((n—1)R®L),
where G acts on Z, and hence on L through the sign representation. Hence we obtain
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THEOREM (3.2). Let aeK/G(X). Then tga=na if either (i) n=|G| is odd or
(ii) pxe P (X).

A similar argument goes through for the associated sphere-bundles, using the
multiple join instead of the direct sum, and we obtain

THEOREM (3.3). Let BeJ/G(X). Then tof=np if either (i) n=|G| is odd or
(ii) fe ¥ (X).

The effect of these two results, combined with (3.1), is to give an upper bound for
the exponents of the kernels and cokernels of ¢:K/G(X)— K (X) and ¢:J/G(X)
—J (X)), for G finite. Henceforth we denote the kernels of these homomorphisms by
K'|G(X) and J'|G(X), respectively.

4. The Key Monomorphisms

Consider the cohomology of G with coefficients in the G-group K (SX), where
G operates through the induced automorphisms (Sg4)* (g€G). A monomorphism

k:K'|G(X)—H!(G; K (X))

can be defined as follows. Let ¥ be a G-vector bundle over X which is trivial as a
vector bundle. Choose a trivialization 1: ¥V — X x M, where M is a trivial G-module,
and transfer the G-structure of ¥ to X x M through A. Then we obtain for each element
g€G a homomorphism g, : X x M — X x M and hence a vector bundle V, over SX,
by using g, as a clutching function. It is easy to check that

[Vgh]=(Sh#)* [Vg]+[Vh] (g heG)

in K (SX). Hence a cocyle ce Z' (G; K (SX)) is defined by c(g)=[V,]. If A is replaced
by A¢, where ¢ is an automorphism of the vector bundle M=X x M, then [V,] is
replaced by — (Sg4 )*0+ [V, ]+0, where 8 K (SX) is the element obtained by treating
¢ as a clutching function. Hence the cohomology class [c]e H!(G; K (SX)) of c is
independent of the choice of trivialization. Now 4 is a homotopy-G isomorphism if
and only if V, is trivial for all geG. Hence k[V]=[c] defines a monomorphism

k:K'|G(X)— H'(G; K (SX)).

We refer to k as the key monomorphism. Notice, incidentally, that K'/G(X) is finite
(finitely generated) if G is finite (finitely generated), since K (SX) is finitely generated.

Now consider the group o (X) of homotopy classes of maps of X into the H-space
of homotopy equivalences S™ — S™ (m large) with G acting through (g, )*. Regarding
J (SX) as a subgroup of ¢(X), in the usual way, let I: K (SX)— o (X) denote the
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homomorphism defined by J. We shall now define a monomorphism j which makes
the following diagram commutative, where I, denotes the coefficient homomorphism
determined by 1.

K'|G(X)% H' (G; K(SX))
JIG Is

J'IG(X) H! (G; 0 (X))

Let ¥ be a G-vector bundle over X such that S (V) is trivial, in the sense of fibre
homotopy type. Choose a fibre homotopy equivalence u:S (V)— X x S, where S is
a trivial G-sphere, and let v: X x S — S (V) be a fibre homotopy inverse of u. For each
element ge G the composition

Ug4V: X xS - Xx S

determines, through the Hopf construction, an element c¢(g)eo (X ). Proceeding as
before we find that ce Z! (G; (X)) and that the cohomology class [c]e H! (G; o (X))
of ¢ is independent of the choice of u and v. Hence j [V']=[c] defines a homomor-
phism, as in (4.1), and just as in the case of k we see that j is injective. Finally, to show
that j (J/G)=I,k we take ¥ to be trivial as a vector bundle and choose pu=.S (1),
v=S (A1), where 1 is a trivialization of V.

Recall from (2.2") in Chapter V of [16] that ¢ (X) is finite, and from (1.5) of [3]
that J (X) is finite. Since j is injective we obtain

PROPOSITION (4.2). If G is finitely generated then J|G(X) is finite.

When the action of G on the coefficient group A is trivial we identify H' (G; 4)
=Hom(G, 4) in the usual way. When G=Z,, in particular, we further identify
Hom (Z,, A) with the kernel ,4 of 2: 4 - A. When G=Z, and the action on A4 is by
sign reversal we identify H' (G; A)=A/2A in the usual way.

For example, consider the Z,-space S (nL@®R)=S". I assert that

k:K'|Z,(S")~H'(Z,; K (S"*")). (4.3)

Consider the Clifford algebra C,,;=C (nL®R). The action of Z, on S"=
=S (nL®R) is given by x> —exe, where e=e, , € Ris a generator such that e?=—1.
Given a graded C,,,;-module (M°, M') we construct a vector bundle U over $"*! by
using 0:S"x M°®— M° as clutching function, where 0(x, y)=exy (xeS”", ye M°).
Over the Z,-space S", a Z,-structure on S"x M? is given by (x, y)r> (—exe, exy),
and U is related to this Z,-vector bundle as in the definition of the key homomorphism.
By (5.1), (5.4) and (11.5) of [5], however, we can choose (M°, M*) so that [U]
generates K (S"*!). Hence k is surjective and thus an isomorphism, as asserted.
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Now H'(Z,; K(S"*'))=2Z, when n=0, 1, 3 or 7 mod8, and is zero otherwise. If
n#0 mod4 then K, (S") is cyclic, by (3.3) of [6], and so K/Z,(S™) is cyclic. Hence and
from (4.3) we obtain the following table

n(mod8) 0O 1 2 3 4 5 6 1
Kiz,(S") z®z, Z, Z, Z, Z O 0O Z,

Since J (§"*1) is a direct summand of ¢ (S") the coefficient homomorphism
L:H' (Z; R (S"1)) > HY (Z550(S™))

is injective. When n#0 mod4 it follows from (4.1) that J/Z,:K/Z,(S")~J|Z,(S")
since J: K (§")~J (S"). The determination of J/Z,(S") when n=0 mod4 appears to
be difficult and I have only been able to obtain fragmentary results.

As a second example, with applications in §6 below, consider the Hopf Z,-line
bundle H over the real projective space P"=P (L@nR), where n>1. For n=1 it
follows from what we have just proved that [H]eJ/Z,(S") is of order 4 (in fact this
can easily be deduced from first principles). Let ¢ (n) denote the number of integers s
in the range 0<s<n such that s=0, 1, 2 or 4 mod8. Recall (see [2]) that K (P") is
cyclic of order 2% ™ with generator [H] and J: K (P")~J (P"). Let r, denote the
order of [H] in K/Z,(P"). We shall prove that

r,=2*®  ifn>1 and n#3 mod4,

4.4
=20+ ifp=1 or n=3mod4. (4.4)

Given a trivial Z,-module M of dimension m we have that mH~(S"x M)/Z,,
with the Z,-action which sends + (x, y) into + (—exe, y) (xeS", ye M). Suppose that
M=M", where (M°, M') is a graded C,,,-module. Then a vector bundle trivializa-
tion

A:(S"x M®)|Z, > P"x M!

is given by A(+(x, y))=(%£x, x*y). The Z,-structure on P"x M thus obtained trans-
forms (x, z) into (x, ¥ (x, z)), where Y:P"x M' —» M" is given by Y (£ x, z)=xexez
(xeS", ze M'). Now V¥ is equal to the composition

P'x M 222 §"x M° 5 M1,

where 7 (4 x)=xex, 6z=ez and u(x, y)=xy. Therefore the vector bundle over SP"
obtained from ¥ by the clutching construction is isomorphic to (Sm) *W, where W is
the vector bundle over S"*! obtained from u by the clutching construction. If (M°, M*')
is irreducible, so that dim M°®=2%®, then [ W] generates K (S"*!), by (11.5) of [5],
and so we obtain
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LEMMA (4.5). The image of the coefficient homomorphism
((Sm)*)u: H* (Z,; R (S™*1)) » H' (Z,; R (SP™))

is generated by 2° Wk [H], where
k:K'|Z,(P")— H'(Z,; K (SP")).

When n=2, 4, 5 or 6 mod 8 this proves (4.4) immediately since K (S"*!)=0. When
n=0 or 1 mod4 the results of Karoubi [13] show that (St)*=0 and again (4.4) fol-
lows at once. Let n=3 mod4, therefore, and consider the exact sequence shown below,
where u:P" 1< P",

R(s"* ) & g(spn) 25 g(spr Y.

We have that K (S"*!)=Z and K (SP")=Z®Z,, K (SP""')=Z,, as shown in [13].
It follows that (S7)* admits a left inverse as a homomorphism, hence admits a left
inverse as a Z,-homomorphism. Hence the coefficient homomorphism in (4.5) is
injective, therefore non-trivial, and so the remainder of (4.4) follows at once.

5. The Auxiliary Space

We regard the join E=Gx*G as a principal G-bundle over the suspension SG, in
the usual way. Given a G-space X let X=E [TcX denote the associated bundle with
fibre X. Regarding G*G as a 1-complex, on which G operates by permuting vertices,
we see that the homotopy type of this auxiliary space X depends only on the homo-
topy-G type of the G-space X. For example, take G=Z,. Then E=G*G is Z,-equiva-
lent to the circle S' with the antipodal action of Z,. In this case, therefore, we can
construct X from X x [0, 1] by identifying (x, 0) with (g4x, 1) for all xe X, where g

generates Z,.
Returning to the general case we observe that if V' is a G-vector bundle over X then

P can be regarded as a vector bundle over X. Thus a functor is defined from the
category of G-vector bundles over X to the category of vector bundles over X. Let
U, V be G-vector bundles over X and let f/:U— V be a homotopy-G isomorphism.
Then for each element ge G there exist a homotopy Hf of finto g, fgz"! which is an
isomorphism for all values of ¢. Hence an isomorphism f: U — V is defined by

f((g’ Z e)’ x)=((g: f, e)’ Htgx)’ (51)

where xe U and e denotes the neutral element of G. Conversely, let f: U~ P be an
isomorphism. Then £ determines an isomorphism f: U— V by restriction to the sub-
space X=X, and using f in the reverse direction we see that fis a homotopy-G iso-
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morphism. Therefore U and ¥ are homotopy-G isomorphic if and only if U and ¥ are
isomorphic. Passing to equivalence classes we obtain a monomorphism ¢:K/G(X)
- K (X).

A similar argument shows that S (U) and S (V) have the same fibre homotopy-G
type if and only if S (U) and S (V) have the same fibre homotopy type. Hence it
follows that there exists a monomorphism # such that n(J/G)=J¢, as shown in the
following diagram

K/G(X)» K(X)

e

Thus instead of setting up further homotopy-G theory for computing J/G we can pass
across to the auxiliary space and use the classical theory of Adams [2]

For example, let us again consider the Z,-space P"=P (L@nR). We are now
ready to prove

THEOREM (5.3). The order of [H] in J|Z,(P") is precisely r,, where r, is as
in (4.4).

The case n=1 is disposed of in §4. The case n#3 mod4, with n>1, follows at
once from (4.4) since r,=2% ™. There remains the case n=3 mod4. To deal with this
we regard P" as a Z,-subspace of P"*!=P (L®(n+1)R), so that P"cP"*! with
inclusion map v, say. We prove

LEMMA (5.4). Let n=3 mod4. Then
v*: K (P"*1) > K (B")

is surjective.

It is easy to check that K ($") is finite, where S"=S (L@nR), and hence K (£")
is finite, since 7 is odd. Since A"*!/P" has the homotopy type of S"*2v §"*!, we have
an exact sequence

R(P"* V)5 R(P"—-R(S"vS")=2Z,

and so v* is surjective, as asserted.

When 7 is odd the homotopy-Z, type of P"*1 is trivial, and so £"*! has the homo-
topy type of P"*1 x S, Consider the Adams operator y*, where k is odd. Recall
(see [1]) that y* acts trivially on K(P"*') and K(S'), hence acts trivially on
K(P"**x 8'). Thus in our case y* acts trivially on K(£"), by (5.4). Since ¢ is in-
jective r,, is the order of ¢E[H]=[A] in K(P"), and r,=2?"*V), by (4.4). Applying
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(5.16) of [2] we calculate the ‘‘cannibalistic” characteristic classes of even multiples
of [A] and deduce from (6.1) of [2] that y[H]=[H] is of order 2¢™*) in J (P").
Since 7 is injective this completes the proof of (5.3).

6. Homotopy-equivariant S-theory

The homotopy-equivariant version of Spanier-Whitehead S-theory presents no
difficulty. The suspension of a homotopy-G map is a homotopy-G map, and the con-
verse holds in the stable range. Thus the notions of stable homotopy-G type, etc; are
defined.

Only the treatment of duality perhaps requires comment. Consider the sphere S"
with homotopy-G trivial G-structure. If X and Y are G-spaces with join X'+ Y then a
homotopy-G map u: XY — S” which is a duality map in the ordinary sense will be
described as a homotopy-G duality map. In that case if ge G then the dual of the stable
homotopy class of g4 : X — X is the stable homotopy class of gz': Y- Y. Note that X
is homotopy-G S-trivial if Y is.

We say that X is homotopy-G reducible if there exists a homotopy-G map f:S" - X
such that f,: H,(S")~ H,(X) for r>n. We say that X is homotopy-G coreducible if
there exists a homotopy-G map f: X — S" such that f *: H" (S")~ H" (X ) for r<n. The
corresponding stable notions are defined in the obvious way. If X is homotopy-G
S-reducible then the dual of X is homotopy-G S-coreducible, and conversely.

Now suppose that X is a smooth G-manifold. Under certain conditions (see [14])
there exist equivariant embeddings of X in S" where G acts on S" through rotations.
Given such an embedding take Y=S"— X. The corresponding duality map X* Y - S§"
is equivariant and it follows easily that the stable homotopy-G type of Y depends only
on the stable homotopy-G type of X and not on the choice of embedding, etc.

Returning to the general situation, observe that the Thom space of a G-vector
bundle V over X is a (pointed) G-space X”. If U=V@®R", where n>1, then XY is
G-equivalent to S"X . It follows that the stable homotopy-G type of X ¥ depends only
on the class « of ¥ in J/G(X), and can therefore be denoted by X*. We prove

THEOREM (6.1). If X*=X°, where aeJ/G(X), then a=0.

For suppose that X and X7 have the same fibre homotopy-G type, where V'is a
G-vector bundle and =X x R" is trivial. Proceeding as in the ordinary case we con-
struct a homotopy-G retraction S (V@®R)— S". Combining this with the projection
S (V®R)— X we obtain a fibre-preserving homotopy-G map

h:S (VOR)—> S (TOR)

which is a homotopy equivalence. Since h is a fibre homotopy-G equivalence this
proves (6.1). Note that X*=X 0 if and only if X* is homotopy-G S-coreducible.
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Now let X be a smooth Riemannian G-manifold, without boundary. Let T (X)
denote the tangent G-vector bundle of X. By a straight-forward G-version of the proof
of the corresponding result for ordinary manifolds, as given in §3 of [3], we obtain

THEOREM (6.2). Let t denote the class of T (X) in J/G(X). Then X* and X ~*~*
are dual, in the sense of stable homotopy-G type, for all xaeJ|G(X).

For general X there is an interesting subset N/G (X )<=J/G(X), consisting of those
elements o such that X* is homotopy-G S-trivial. Clearly 0e N/G(X) if and only if X-
itself is homotopy-G S-trivial. When X is a G-manifold, as above, we obtain

COROLLARY (6.3). If ae N/G(X) then —a— 1€ N/G(X).

For example, consider once more the Z,-space P"=P (L@nR). The Thom spaces
of the multiples of H are the stunted projective spaces studied in [12]. By (5.3) the
homotopy-Z, S-type of the Thom space of rH (r=1, 2,...) depends only on the residue
class of r modr,, where r, is as in (4.4). The class of the tangent bundle is given by

T (PY®R~H@(LOnR). (6.4)

Hence the Thom space of rH is homotopy-Z, S-trivial if and only if the (virtual) Thom
space of —[H®(L®(n+r)R)] is homotopy-Z, S-trivial. These results contain (1.4)
and (1.5) of [12], with improvements when n=1 mod4. Using (6.1) and (6.2) more-
over we obtain

PROPOSITION (6.5). The Thom space of the Z ,-vector bundle HQ (L® (m—n—2)
X R) over P" (m=0, +1,...) is homotopy-Z, S-reducible if and only if m=0 modr,.

Write n+ 1=k and consider the pair (V,, ;, P, ) Where P, , denotes the stunted
projective space embedded in V,, , as described in §4 of [12]. Points of V,, , are
represented, in the usual way, by matrices with £k rows and m columns. We regard
Vm,r s @ Z,-space under the involution 7" V,, , — ¥, , which changes the sign of the
first row, the first column and the last column. Then P, , is Z,-stable and can be
identified with the Thom space of the Z,-vector bundle HQ (L@ (m—k—1)R) over
P (L@ (k—1)R) as described in (4.3) of [3]. Therefore (1.1) and (1.2) will follow
from (6.5) and

LEMMA (6.6). The Stiefel manifold V,,, , admits a simple cross-section if and only
if the Z,-space P,, ; is homotopy-Z, S-reducible.

Since T~T', we can replace T by T’ in the definition of simple cross-section. Now
V. admits a simple cross-section if and only if ¥, ; admits a simple cross-section,
by (4.7) of [12]. Also V3, , admits a simple cross-section if and only if P, , is homo-
topy-Z, S-reducible, since (V3,1 P3m,i) is (6m —2k)-connected. Since Ps, , has the
same homotopy-Z, S-type as P,, , this proves (6.6).
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