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Homotopy-equivariance

I. M. James

1. Introduction

Let Xbe a G-space, where G is a discrètel) group. The classification of real G-vector
bundles over Xby equivariant isomorphism leads to the Grothendieck ring2) KG{X)
of equivariant ^T-theory, as described in [15]. The notion of homotopy-equivariant
isomorphism, which we shall define, leads to a quotient ring KjG(X) of KG(X), and
the corresponding notion for fibre homotopy équivalence leads to a factor group
J/G(X) ofKlG (X). When G is trivial K/G(X) reduces to K (X) and J/G(X) to*) / (X),
the well-known functor studied by Adams and Atiyah. We discuss, with examples,
methods of calculating K/G(X) and JjG{X), and use the results to solve a problem
about cross-sections of Stiefel manifolds.

The basic notion of homotopy-equivariance is as follows. For any G-space X we
dénote by g# : X-+ Zthe action of an élément g e G. IfX and F are G-spaces we describe

a mapf:X-* Y as a. homotopy-G map if g^fg^1^/, for ail geG. If/is a homotopy
G-map and a homotopy équivalence then any homotopy inverse of/is also a

homotopy-G map. In that case we describe/as a homotopy-G équivalence and say that X
and Y hâve the same homotopy-G type. Also we describe a G-space X as homotopy-G
trivial ifg^ 1 for ail geG. This is the case, for example, if X is contractible with any
G-structure, or if X is a sphère with orientation-preserving G-structure.

Now consider the category of G-spaces E, F,... over a given G-space X. In the

terminology of [10], the set of overhomotopy classes of overmaps/:Is->F will be

denoted by nx(EiF). We describe/as a homotopy-G overmap if g#fg#x is over-
homotopic to/for ail geG. When the overspaces are fibre spaces the tcrmfibre-
preserving homotopy-G map may be used instead. The other homotopy-equivariant
notions are extended to the category of spaces over X in the obvious way.

For any G-module M we dénote by M the G-vector bundle XxM with the natural

projection and product G-structure. Given an équivalence relation ~ between G-vector

bundles over X we say that U9 V are stably équivalent if £/©M~ V®M for some M.

*) This restriction is more a matter ofconvenience than necessity ; the situation when G is topologi-
cal will be considered in a separate note.

2) We write Kg rather than KOg since we hâve no occasion to consider complex vector bundles.
3) We use / in the unreduced sensé, taking dimension into account, and dénote the Adams-Atiyah

functor by /.
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We describe the relation as insensitive if for every G-module M there exists a G-module
N such that M®N is équivalent to a trivial (/-module. In that case we can, of course,
take M to be trivial in the définition of stable équivalence.

Let U, V be G-vector bundles over X. We say that an isomorphism/: U-* V of
vector bundles is a homotopy-G isomorphism iffeindg#fg#x are homotopic through
isomorphisms, for ail geG. If such an isomorphism exists we say that U and V are
homotopy-G isomorphic. This équivalence relation is insensitive since M®M is
homotopy-G isomorphic to a trivial G-module for any G-module M, Notice that if U, V, W
are G-vector bundles over X with U homotopy-G isomorphic to V then U® W is

homotopy-G isomorphic to V® W and U® W is homotopy-G isomorphic to V® W.

From now on it is convenient to assume that X is a finite complex. The Grothen-
dieck ring KG (X) is defined in the usual way. Factor out the idéal consisting of
éléments of the form [£/]~[F], where U and F are stably équivalent G-vector bundles
in the sensé of homotopy-G isomorphism. The quotient ring thus obtained is denoted

by K/G(X). The homomorphism/*:^^)^!^*) induced by a G-map/:X-> Y
détermines a homomorphism/*:i^/G(r)->'J^/G(Ar). Since/* dépends only on the

G-homotopy class of/it follows that K/G(X), like KG(X), is an invariant of the

G-homotopy type. However K/G(X) is not an invariant of the homotopy-G type, as

we shall see in a moment.
Note that KIG(pt)&Z®Hom(G, Z2), as a group. Following the practice in equi-

variant X-theory we dénote by R/G(X) the cokernel of the homomorphism c*:K/G
x (pt)-*K/G(X) induced by the constant map. If the action of G on X is pointed
then 6*c* l, where b\pt-+X gives the basepoint, and hence K/G(X)&KIG(pt)
®Ë/G(X), as a group.

Without real loss of generality we can assume that every G-vector bundle F over X
is equipped with a G-invariant euclidean structure, so that the associated sphere-
bundle S (V) is defined as a G-space over X. We now say that two G-vector bundles

are équivalent if their associated sphere-bundles hâve the same fibre homotopy-G type,
and we define JjG{X) to be the factor group of KG(X) (as a group) by the subgroup
of éléments of the form [(7] — [F], where U and V are stably équivalent in this sensé.

Alternatively we can define J/G(X) as a factor group ofKfG(X). The natural projection

from KG(X) to KjG(X) is denoted by K/G, and the natural projection from
either KG{X) or K/G(X) to J/G(X) by //G. Note that JjG:KIG{pt)ttJIG(pt). The

cokernel of c*:JIG(pt)-+JIG(X) is denoted by JjG{X).
To illustrate thèse définitions we shall, in §2, calculate K/G(X) and J/G(X) in case

Xis a trivial G-space with G=Z2. Similar calculations can be made whenever G acts

trivially. Methods which can be used when G acts non-trivially are described in §4, 5,

after digressing in §3 to discuss the transfer in relation to our two functors. Finally we

show in §6 how Atiyah's theory ofThom spaces [3] can be extended to the homotopy-
equivariant case, with JjG playing the rôle of /. This enables us to reexamine récent
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work [12] of Sutherland and myself on stunted projective spaces and in particular to
solve the following problem which was raised in §4 of [12].

Consider the Stiefel manifold Vmtk of orthonormal A>frames in Rm, where 1 <k<m.
We fibre Fm>k over S"1'1 in the usual way and describe a cross-section s:Sm~l -? Vm>k

as simple if Ts~s, where T: Fm>fe-> Vm,k dénotes the involution which changes the sign
of the last vector in each fc-frame. If k is odd then T~ 1, since m is even, and so every
cross-section is simple. It is noted in [12] that a cross-section of Vmtk+1 projects into
a simple cross-section of Vmtk. Moreover when k 2, 4 or 8 it is shown in §4 of [12]
that Vmtk admits a simple cross-section if and only if m is an even multiple of k. This
resuit is included in

THEOREM (1.1). Let k>2 and & 2mod4. Then Vmtk admits a simple cross-
section if (and only if!) Vmk admits a cross-section.

THEOREM (1.2). Let k 2 or k =0 mod4. Then Vmk admits a simple cross-section

ifand only */ Fm>fc + 1 admits a cross-section.

I am most grateful to my colleagues M. F. Atiyah, M. C. Crabb, G. B. Segal and
W. A. Sutherland for some very helpful suggestions about this work.

2. Homotopy-symmetry

Throughout this section we take X to be a trivial Z2-space. We dénote the non-
trivial 1-dimensional représentation of Z2 by L, the trivial by R. Following [11] we

say that Fis linearly homotopy-symmetric if Fand V®L are homotopy-Z2 isomorphic,
homotopy-symmetric if S (F) and S (V®L) hâve the same fibre homotopy-Z2 type.
The corresponding stable notions are defined in the obvious way. We shall need

LEMMA (2.1). Let U, V be J-equivalent vector bundles over X. Then U is stably

homotopy-symmetric if V is.

To prove (2.1) consider the automorphisms v of Fand w of F© F which are given

by vx=— x and w(x,y) (y,x), where x,yeV. Consider also the homotopy
ht : F© F-> F© F which is given by

x f n n n n \
ht(*> >0H * cos

^
t +y sin2 tf x Sin2 t"y C°S2 /

Write S (V)=E so that S (V®V)=^E*E9 and consider the function

E# : nx(E9 E) -* nx (E*E, E*E)
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given by the fibre join with the identity on E. Clearly Fis homotopy-symmetric if and

only if S(v):E-*E is fibre homotopic to the identity. Let us say that V is homotopy-
invertible if S (w):E*E->E*E is fibre homotopic to the identity. Now S (l®v) is

fibre homotopic to S (w) under S (ht):E*E-+E*E. Hence V is homotopy-invertible
if V is homotopy-symmetric, and the converse holds in the stable range since 2s# is

bijective, by (5.1) of [16]. Stably, therefore, homotopy-symmetry is équivalent to
homotopy-invertibility and since the latter condition dépends only on the fibre homo-

topy type of the associated sphere-bundle we obtain (2.1).
The classes of linearly homotopy-symmetric vector bundles form a subring

$(X)czK(X). We recall from §1 of [11] that &(X) is precisely the image of the
Grothendieck group of complex vector bundles, under the realification homomor-
phism. Using (2.1) we see that the classes of homotopy-symmetric vector bundles

form a subgroup W(X)czJ (X), the détermination of which is the subject of the main
theorem of [8]. Of course J<P(X)cz Y(X) and it turns out that equality holds when

X is a sphère or a real, complex or quaternionic projective space.
After thèse preliminaries we are ready to détermine K/Z2(X) and J\Z2(X). By

(2.2) of [15] an isomorphism

9:K(X)®K(X)-*KZ2(X)

is given by 0([17], [?!)== [t7]-[P®£], where U, V are vector bundles over X.
Hence it follows that the séquences

0 (X) À K (X)®K (X) -t K/Z2 (X), (2 3)

J/Z2(X),

are exact, where ô is given by the diagonal and 0, \j/ are induced by 9. The same is true
when K, J are replaced by R, J and <P, W by their images $, W in K9 J, respectively.

For example, takeX=Sn= S ((n+1) i*).Then $(Sn) 2K (5") for «=0 or 1 mod8
while $(Sn)=K (Sn) for n 2 or 4 mod8. Using (2.3), therefore, we obtain the follow-
ing table

n(mod8) 0 1 2 3 4 5 6 7

RlZ2(Sn) Z®Z2 Z2®Z2 Z2 0 Z 0 0 0

Since f(Sn)=J$(Stt) it follows that the table for J/Z2 (Sn) can be obtained from this

by replacing the infinité cyclic summands which occur when «==0 mod 4 by the finite
cyclic group J (Sn).

In contrast, consider the spheie Sn S ((n+ l)L). The natural projection
Sn-+SnIZ2=Pn détermines an isomorphism K(Pn)&KZ2(Sn), as shown in (2.1) of
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[15]. Thus every élément of KZ2(Sn) can be représentée by a Z2-vector bundle of the
form r L, for some r^O. In this case, therefore, KIZ2(Sn) 0, hence J/Z2(5w) 0.

However S ((n+ 1)L) and S ((«+ l)R) hâve the same homotopy-Z2 type when n is

even and so, comparing the results of this paragraph with those in the previous one,
we see that neither K/G(X) nor JjG(X) is an invariant of the homotopy-G type of X.

3. TheTransfer

Suppose that G is finite of order n, say G (g1,..., gn). If F is a vector bundle over
the G-space ^Tthen the transfer F', as defined in §2 of [4], is a G-vector bundle over X,
which can be constructed as follows. We are given a vector bundle with projection
p:V-+X, say. Considei the direct sum Vl®-~®Vi®-~®Vn, where Vt (/=1,...,«)
has the same total space as F but projection gl# p : F -? X. We make G act on this vector
bundle by permuting the factors according to the regular représentation, and thus
obtain a G-vector bundle F'. In this way a homomorphism i\K(X)->KG{X) is

defined such that

where q:Kg(X)-*K(X) ignores G-structure. If S(V) E then S (F') £1*--.*£i
*•••*£„, where Et S (Vt) and G permutes the factors of the multiple join. Thus the
fibre homotopy type of S (F) détermines the fibre G-homotopy type and afortiori the

fibre homotopy-G type of S (F'). In this way a homomorphism x\J (X)-+JIG(X) is

defined such that t/= //Gt, as shown below, where t : K (X) -? K/G(X) is obtained by
composing t:K(X)-+KG(X) with the natural projection.

J/G \J

J(X)

Of course (3.1) détermines each of the compositions £t. Now suppose that Fis itself
a G-vector bundle over X. In that case the action g# : V-+ V détermines an isomor-

phism h1: V-* V1 (/= 1,...,«). To make the isomorphism

a G-isomorphism it is of course necessary for G to permute the summands of the

domain of h, according to the regular représentation, as well as act on the individual
summands. Using the homotopy (2.2), however, we conclude that this "twisted"
direct sum of G-vector bundles is homotopy-G isomorphic to V®((n-l)R®L)9
where G acts on Z2 and hence on L through the sign représentation. Hence we obtain
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THEOREM (3.2). Let aeKjG(X). Then TQ(x=n<x if either (i) n \G\ is odd or(i)()()e()A similar argument goes through for the associated sphere-bundies, using the

multiple join instead of the direct sum, and we obtain

THEOREM (3.3). Let peJ/G(X). Then xqp^np if either (i) n \G\ is odd or
(ii) qPeW(X).

The effect of thèse two results, combined with (3.1), is to give an upper bound for
the exponents of the kernels and cokernels of g:K/G(X)-+K(X) and q:J/G(X)
-> / (X), for G finite. Henceforth we dénote the kernels of thèse homomorphisms by

K'/G(X) and J'jG(X\ respectively.

4. The Key Monomorphisms

Consider the cohomology of G with coefficients in the Cr-group R (SX), where
G opérâtes through the induced automorphisms (Sg#)* (geG). A monomorphism

k:K'/G(X)»Hl (G; R (SX))

can be defined as follows. Let V be a G-vector bundle over X which is trivial as a

vector bundle. Choose a trivialization X: V-+Xx M, where M is a trivial G-module,
and transfer the (/-structure of Fto Xx M through X. Then we obtain for each élément

geG & homomorphism g#:XxM-^XxM and hence a vector bundle Vg over SX,
by using g# as a clutching function. It is easy to check that

[^] (^#)*[Fg]+[F,] (g.heG)

in Ë (SX). Hence a cocyle ceZ1 (G; R (SX)) is defined by c(g)= [Fj. If À is replaced
by A£, where i is an automorphism of the vector bundle M=IxM, then [Fg] is

replaced by - (5g# )*9+ [Fg] + 9, where 9eR (SX) is the élément obtained by treating
£ as a clutching function. Hence the cobomology class \_c]eHi(G; R(SX)) of c is

independent of the choice of trivialization. Now À is a homotopy-G isomorphism if
and only if Vg is trivial for ail geG. Hence &[F] [c] defines a monomorphism

k:KfIG(X)-^Hi(G; R(SX)).

We refer to k as the key monomorphism. Notice, incidentally, that K'jG(X) is finite
(finitely generated) if G is finite (finitely generated), since R (SX) is finitely generated.

Now consider the group a (X) of homotopy classes of maps of X into the /f-space
of homotopy équivalences Sm -+ Sm (m large) with G acting through (g# )*. Regarding
J (SX) as a subgroup of a(X), in the usual way, let I:R (SX)-^a(X) dénote the
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homomorphism defined by J. We shall now define a monomorphism j which makes
the following diagram commutative, where /* dénotes the coefficient homomorphism
determined by /.

K'/G(X)±>Hl(G;K(SX))

H j
V

Let V be a G-vector bundle over X such that S (F) is trivial, in the sensé of fibre
homotopy type. Choose a fibre homotopy équivalence pt'.S (V)-*Xx S, where S is

a trivial G-sphere, and let v:Ix S-* S (V) be a fibre homotopy inverse of/i. For each
élément geG the composition

détermines, through the Hopf construction, an élément c(g)eo{X). Proceeding as

before we find that ceZ1 (G; <r(X)) and that the cohomology class [c\eHl (G; a(X))
of c is independent of the choice of ju and v. Hencey [K] [c] defines a homomorphism,

as in (4.1), and just as in the case of A: we see thaty is injective. Finally, to show
tha.t j (J/G) I*k we take V to be trivial as a vector bundle and choose fi S (A),
v S (A"1), where A is a trivialization of V.

Recall from (2.2') in Chapter V of [16] that a(X) is finite, and from (1.5) of [3]
that / (X) is finite. Sincey is injective we obtain

PROPOSITION (4.2). If G isfinitely generated then 3jG{X) is finite.
When the action of G on the coefficient group A is trivial we identify H1 (G; A)

Hom((j, A) in the usual way. When G=Z2, in particular, we further identify
Hom(Z2, A) with the kernel 2A of2:A^A. When G=Z2 and the action on A is by
sign reversai we identify H1 (G; A) A/2A in the usual way.

For example, consider the Z2-space S (nL®R) Sn. I assert that

k:KfIZ2(Sn)*H1(Z2;K(Sn+1)). (4.3)

Consider the Clifford algebra Cn+l C (nL@R). The action of Z2 on Sn

S (nL®R) is given by xi-> — exe, where e en + x eR is a generator such that e2 — 1.

Given a graded Cn+1-module (M°9 M1) we construct a vector bundle t/over 5W+1 by

using 0:SnxM°-+M° as clutching function, where 9(x,y)~exy (xeSn, yeM°).
Over the Z2-space Sn9 a Z2-structure on SnxM° is given by (x,y)h+(-exe9 exy),
and C/is related to this Z2-vector bundle as in the définition of the key homomorphism.
By (5.1), (5.4) and (11.5) of [5], however, we can choose (M0, M1) so that [C/]
générâtes È(Sn+1). Hence k is surjective and thus an isomorphism, as asserted.
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Now H1 (Z2; K (Sn+i)) Z2 when « 0, 1, 3 or 7 mod8, and is zéro otherwise. If
n^O mod4 then KZl(Sn) is cyclic, by (3.3) of [6], and so K/Z2(Sn) is cyclic. Hence and

from (4.3) we obtain the following table

«(mod8) 0 12 3 4 5 6 7

KjZ2{Sn) Z®Z2 Zt Z2 Z2 Z 0 0 Z2

Since / (S"1*1) is a direct summand of a(Sn) the coefficient homomorphism

is injective. When «#0mod4 it follows from (4.1) that J\Z2\K\Z2(Sn)^J\Z2{Sn)
since J:K(Sn)&J(Sn). The détermination of JjZ2(Sn) when « 0 mod4 appears to
be difficult and I hâve only been able to obtain fragmentary results.

As a second example, with applications in §6 below, consider the Hopf Z2-line
bundle H over the real projective space Pn=P (L®nR), where w>l. For n=\ it
follows from what we hâve just proved that [H~] eJjZ2 (S1) is of order 4 (in fact this

can easily be deduced from first principles). Let <f>(n) dénote the number of integers s

in the range 0<s<n such that ^ 0, 1, 2 or 4 mod8. Recall (see [2]) that K (Pn) is

cyclic of order 2<M") with generator [H~] and J:K(Pn)&J (Pn). Let rn dénote the
order of [H] in Ë/Z2(Pn). We shall prove that

rM 2^(n) ifn>\ and n=£3 mod4, jx(4 4)
2*<»+1> ifn=l or « 3mod4. v ;

Given a trivial Z2-module M of dimension m we hâve that mH&(SnxM)IZ2,
with the Z2-action which sends ±(x,y)into ±( — exe, y) (xeSn,yeM). Suppose that
M=M°, where (M0, M1) is a graded Cw + 1-module. Then a vector bundle trivializa-
tion

À:(SnxM°)IZ2->PnxM1

is given by X ± (x, y)) ± x, x - y). The Z2-structure on P n x M1 thus obtained trans-
forms (x, z) into (x, i// (x, z)), where \j/:Pnx M1 -» M1 is given by \j/ (±x, z) xexez
(xeSn, zeM1). Now \j/ is equal to the composition

where n(±x) xex, az-ez and ju(x,j) jc7. Therefore the vector bundle over SPn

obtained from \j/ by the clutching construction is isomorphic to (Sn) * W, where W is

the vector bundle over Sn+l obtained from /x by the clutching construction. If (M0, M1
is irreducible, so that dimM° 2*(ll), then \_W] générâtes £(Sn+1),'by (11.5) of [5],
and so we obtain
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LEMMA (4.5). The image of the coefficient homomorphism

is generated by 2* (n)k [H~\, where

k:K'IZ2(Pn)-*Hl(Z2;K(SPn)).

When n 2, 4, 5 or 6 mod8 this proves (4.4) immediately since K (Sn+* 0. When
« 0 or 1 mod4 the results of Karoubi [13] show that (Sn)* 0 and again (4.4) fol-
lows at once. Let n 3 mod4, therefore, and consider the exact séquence shown below,
where u\Pn~xczPn.

K(Sn+1) -^ K(SPn) S KiSP"-1).

We hâve that K (Sn+1) Z and K {SPn) Z®Z2, R (5ri>"-1) Z2, as shown in [13].
It follows that (Sn)* admits a left inverse as a homomorphism, hence admits a left
inverse as a Z2-homomorphism. Hence the coefficient homomorphism in (4.5) is

injective, therefore non-trivial, and so the remainder of (4.4) follows at once.

5. The Auxiliary Space

We regard the join E=G*G as a principal G-bundle over the suspension SG, in
the usual way. Given a G-space X let ^ £j^GAr dénote the associated bundle with
fibre X. Regarding G*G as a 1-complex, on which G opérâtes by permuting vertices,

we see that the homotopy type of this auxiliary space % dépends only on the
homotopy-G type of the G-space X. For example, take G=Z2. Then E=G*G is Z2-equiva-
lent to the circle S1 with the antipodal action of Z2. In this case, therefore, we can

construct % from Xx [0, 1] by identifying (x, 0) with (g#x, 1) for ail xeX, where g
générâtes Z2.

Returning to the gênerai case we observe that if Fis a G-vector bundle over X then

V can be regarded as a vector bundle over £. Thus a functor is defined from the

category of G-vector bundles over % to the category of vector bundles over X. Let
U, V be G-vector bundles over X and let/: £/-» K be a homotopy-G isomorphism.
Then for each élément geG there exist a homotopy Hf of/into g# fg#l which is an

isomorphism for ail values of t. Hence an isomorphism/: Û-> V is defined by

f{{g,t9e),x) {{git9elHfx\ (5.1)

where xeU and e dénotes the neutral élément of G. Conversely, let/: Û-+ 9 be an

isomorphism. Then/détermines an isomorphism/: U-+ V by restriction to the sub-

space Xc%, and using/in the reverse direction we see that/is a homotopy-G iso-
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morphism. Therefore U and V are homotopy-G isomorphic if and only if 0 and V are
isomorphic. Passing to équivalence classes we obtain a monomorphism <^\KjG{X)

JIG\ \J

A similar argument shows that S (U) and S (V) hâve the same fibre homotopy-G
type if and only if S (Û) and S (f) hâve the same fibre homotopy type. Hence it
follows that there exists a monomorphism rj such that ?/(//G)=/f, as shown in the
following diagram

(5.2)

Thus instead of setting up further homotopy-G theory for Computing J\G we can pass
across to the auxiliary space and use the classical theory of Adams [2]

For example, let us again consider the Z2-space Pn=P (L@nR). We are now
ready to prove

THEOREM (5.3). The order of [#] in 3\Z2(Pn) isprecisely rn, where rn is as

in (4.4).
The case «=1 is disposed of in §4. The case n^3 mod4, with /i>1, follows at

once from (4.4) since rw 2^(w). There remains the case « 3 mod4. To deal with this
we regard Pn as a Z2-subspace of Pn+i=P (L®(n+l)R), so that pncPn+1 with
inclusion map v9 say. We prove

LEMMA (5.4). Let n 3 mod4. Then

v*:K(Pn+1)-+R(Pn)

is surjective.
It is easy to check that R (Sn) is finite, where Stt=S {L©nR\ and hence K (Pn)

is finite, since n is odd. Since pn+1/pn has the homotopy type of Sn+2 v Sn+1, we hâve

an exact séquence

and so v* is surjective, as asserted.

When n is odd the homotopy-Z2 type ofPn+1 is trivial, and so Pn+1 has the homotopy

type of Pn+1xS1. Consider the Adams operator \j/k, where k is odd. Recall

(see [1]) that \j/k acts trivially on R(Pn+1) and Â^S1), hence acts trivially on
Ë(Pn+1 x S1). Thus in our case \j/k acts trivially on R{P% by (5.4). Since Ç is in-
jective rn is the order of {[#] [#] in K(Pn), and rn=2*(ll+1), by (4.4). Applying
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(5.16) of [2] we calculate the "cannibalistic" characteristic classes of even multiples
of [#] and deduce from (6.1) of [2] that >?[#] [#] is of order 2*(n+1) in J(Pn).
Since rj is injective this complètes the proof of (5.3).

6. Homotopy-equivariant S-theory

The homotopy-equivariant version of Spanier-Whitehead 5-theory présents no
difficulty. The suspension of a homotopy-G map is a homotopy-G map, and the
converse holds in the stable range. Thus the notions of stable homotopy-G type, etc; are
defined.

Only the treatment of duality perhaps requires comment. Consider the sphère 5"
with homotopy-G trivial G-structure. If X and Y are G-spaces with join X* Y then a

homotopy-G map u:X* Y-+Sn which is a duality map in the ordinary sensé will be

described as a homotopy-G duality map. In that case if geG then the dual of the stable

homotopy class of g# : X-> X is the stable homotopy class of g#
*

: F-+ Y. Note that X
is homotopy-G S-trivial if Y is.

We say that X is homotopy-G reducible if there exists a homotopy-G map/: Sn -+ X
such that f*:Hr(Sn)&Hr(X) for r^n. We say that X is homotopy-G coreducible if
there exists a homotopy-G map/:X-* S" such that/ * :Hr(Sn)&Hr(X) for r<«. The

corresponding stable notions are defined in the obvious way. If X is homotopy-G
5-reducible then the dual of X is homotopy-G S-coreducible, and conversely.

Now suppose that Xis a smooth G-manifold. Under certain conditions (see [14])
there exist equivariant embeddings of X in Sn where G acts on S" through rotations.
Given such an embedding take Y=Sn — X. The corresponding duality map X* Y-+ S"
is equivariant and it follows easily that the stable homotopy-G type of F dépends only

on the stable homotopy-G type of X and not on the choice of embedding, etc.

Returning to the gênerai situation, observe that the Thom space of a G-vector

bundle V over X is a (pointed) G-space Xv. If U= K©Rn, where n^ 1, then Xu is

G-equivalent to SnXy. It follows that the stable homotopy-G type of Xv dépends only

on the class a of F in J/G(X), and can therefore be denoted by X*. We prove

THEOREM (6.1). IfXa X°, where ae//G(X), then <x 0.

For suppose that Xv and XT hâve the same fibre homotopy-G type, where F is a

G-vector bundle and T=XxRn is trivial. Proceeding as in the ordinary case we con-

struct a homotopy-G retraction S (V@R)-+Sn. Combining this with the projection
S (F0R)->Iwe obtain a fibre-preserving homotopy-G map

h:S(V®R)-+S(T®R)

which is a homotopy équivalence. Since h is a fibre homotopy-G équivalence this

proves (6.1). Note that Za=Z° if and only if X* is homotopy-G S-coreducible.
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Now let X be a smooth Riemannian G-manifold, without boundary. Let T (X)
dénote the tangent G-vector bundle of X. By a straight-forward G-version of the proof
of the corresponding resuit for ordinary manifolds, as given in §3 of [3], we obtain

THEOREM (6.2). Let x dénote the class ofT(X) in JjG{X). Then X" andX~x~x
are dual, in the sensé of stable homotopy-G type, for ail aeJjG{X).

For gênerai Zthere is an interesting subset NIG(X)czJ/G(X), consisting of those
éléments a such that X* is homotopy-G S-trivial. Clearly OeN/G(X) if and only if X-
itself is homotopy-G S-trivial. When X is a G-manifold, as above, we obtain

COROLLARY (6.3). If(xeN/G(X)then -a-
For example, consider once more the Z2-space Pn=P (L®nR). The Thom spaces

of the multiples of H are the stunted projective spaces studied in [12]. By (5.3) the

homotopy-Z2 5-type of the Thom space ofrH r 1, 2,... dépends only on the residue
class of r modr,,, where rn is as in (4.4). The class of the tangent bundle is given by

T (Pn)®R&H®(L®nR). (6.4)

Hence the Thom space ofrHis homotopy-Z2 S-trivial if and only if the (virtual) Thom

space of — [//®(L©(fl + r)i£)] is homotopy-Z2 S-trivial. Thèse results contain (1.4)
and (1.5) of [12], with improvements when n= 1 mod4. Using (6.1) and (6.2) more-
over we obtain

PROPOSITION (6.5). The Thom space oftheZ2-vector bundle H® (L® (m-n-2)
xR) over Pn (m 0, ±1,...) is homotopy-Z2 S-reducible if and only z/m=0modrn.

Write n+1 =k and consider the pair (Fmk, Pmtk) where Pmk dénotes the stunted

projective space embedded in Vmtk as described in §4 of [12]. Points of Vm>k are
represented, in the usual way, by matrices with k rows and m columns. We regard
Vmtk as a Z2-space under the involution T' : Vm>k-+ Vmtk which changes the sign of the
first row, the first column and the last column. Then Pmk is Z2-stable and can be

identified with the Thom space of the Z2-vector bundle H®{L®(m—k— l)R) over
P (L®(k-l)R) as described in (4.3) of [3]. Therefore (1.1) and (1.2) will follow
from (6.5) and

LEMMA (6.6). The Stiefel manifold Vmk admits a simple cross-section ifand only

if the Z2-space PMtk is homotopy-Z2 S-reducible.
Since TczT', we can replace Tby T'in the définition of simple cross-section. Now

Vm>k admits a simple cross-section if and only if V3ttttk admits a simple cross-section,

by (4.7) of [12]. Also F3mk admits a simple cross-section if and only ifP3m,fc is homo-

topy-Z2 S-reducible, since (V3mik, P3m,k) is (6m-2£)-connected. Since P3nttk has the

same homotopy-Z2 5-type as Pmtk this proves (6.6).
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