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Comment. Math. Helvetici 50 (1975) 509-519 Birkhiuser Verlag, Basel

Eine Interpolationseigenschaft des Raumes BMO

THOMAS RYCHENER

1. Einfiihrung und Ergebnis

Der Raum BMO der Funktionen von beschrankter mittlerer Oszillation spielt in
der Theorie der Interpolation eine wichtige Rolle (fiir die Definition von BMO ver-
weisen wir auf [3]). Wir geben im folgenden mit Hilfe der komplexen Methode der
Interpolation (siehe [1]) interpolierende Raume zwischen BMO und den homogenen
bzw. inhomogenen Soboleffraiumen V7 bzw. W} an. Die vorliegende Arbeit geht auf
eine Anregung von H. M. Reimann zuriick: in [6] wird bewiesen, dass der folgende
Zusammenhang zwischen BMO und der Theorie der quasikonformen Abbildungen
besteht:

SATZ (Reimann [6]). Ist g eine quasikonforme Abbildung von R" auf sich, so ist
durch T (f)=foq ™! ein Isomorphismus von BMO festgelegt, und es gilt | T (f )| x
< C | f |4 fiir alle feBMO und eine nur von K und n abhdngige Konstante C.

Bezeichnet V§ den Raum der lokal integrierbaren Funktionen f mit f, eL"
(j=1L2,..,n)und || fllya, =Dl fx,Ilss so gilt ein entsprechendes Resultat auch fiir
V1 (siche [11]), und es stellt sich die Frage, ob zwischen ¥{ und BMO interpoliert
werden kann. Die Antwort auf diese Frage gibt der in Abschnitt 1.4 formulierte Satz,
wonach die Raume ¥V} das Interpolationsproblem 16sen. Ein entsprechendes Resultat
gilt auch fiir die Soboleffraiume W/} und BMO.

Ergebnisse dieses Typs sind fiir BMO bekannt. Wir fithren hier zwei wichtige
Beispiele an, in denen BMO als Grenzraum der Lipschitzraume Lip(¢) fiir #—0 und
der LP-Raume fiir p — oo auftritt.

(1) (Stampacchia [7]). Seien py, p,>1,0<0<1. Ist T ein auf der Menge E der
einfachen Funktionen definierter Operator mit

IT (e)x<Adgllel,,, 1T (@lLipey <Az lell,,
fiir alle ee E, so folgt T (e)eLip(s), und es gilt
IT (e)llLip 9y S CAL™"A2 llell,

mit p~!=(1—0)/p;+6/p, und s=0¢.
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(2) (Fefferman und Stein [3]). Es bezeichne [ ], die komplexe Methode der
Interpolation. Dann gilt fiir 1 <p<o0, 0<0<1 und ¢~ '=0/p

[L?, BMO],=L".

Zunichst beschreiben wir das Analytizititsverhalten des Riesz-Potentials von Funk-
tionen eines Testraumes %, (siehe 1.1). Zu diesem Zweck muss der Rieszkern |x|™"**
in geeigneter Weise analytisch fortgesetzt werden. Weiter konstruieren wir in 1.2.
Approximationen der Einheit aus #. In 1.4 fithren wir die Raume V7 und W/ ein
und formulieren das Ergebnis der Interpolation zwischen BMO und den Soboleft-
rdumen, in dem wir in natiirlicher Weise auf gewisse Raume von Potentialen beziiglich
des Riesz- und des Besselkerns stossen (die Raume V¥, WF). Der Beweis stiitzt sich
auf die in [3] verwendeten Methoden.

1.1. Riesz-Potentiale von & ,-Distributionen

Wir betrachten stets auf R" definierte komplexwertige Funktionen. Fiir x, ye R"
bezeichne {x, y> das Skalarprodukt. Ist feL!, so ist die Fouriertransformierte von f
gegeben durch

F@= [ e ay.

Im iibrigen halten wir uns an die Bezeichnungen in [8]. Der eingangs erwahnte Test-
raum &, besteht aus allen ¢ mit €2 und O¢supp ¢. Fiir 1 <p < oo ist &, dicht in
L”? beziiglich der LP-Norm. Ausserdem ist &, dicht in H' beziiglich der H*-Norm
(siehe [8], S. 231). Unter einer #,-Distribution verstehen wir eine stetige Linearform
auf &,.

DEFINITION. Fiir zeC ist das Riesz-Potential 7,¢ einer Funktion €% defi-
niert durch

Lo (x)=2lx)"* ¢ (x)

und das Riesz-Potential einer #,-Distribution f gemass

.fi03=Lf,Lo), ¢eF,.

Das Bessel-Potential J,¢ einer Funktion p€.¥ ist durch

-\
T (x)=(1+4n?|x|?)"*/?
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festgelegt und dementsprechend das Bessel-Potential einer temperierten Distribution f
durch

L, 0>=X1,J,0), @e.

Fir o, o, ldsst sich eine Integraldarstellung angeben (desgleichen fiir J,¢,
pe ). Dazu sei fiir beliebiges >0 ¢ (x, t)=P,. ¢ (x), wobei P,(x) der Poissonkern
fiir den oberen Halbraum R%"'={(x, t): xeR", t>0} ist.

LEMMA. Seien zeC und @€ %,. Dann gilt fiir ganzes k>0 mit k+ Re(z)>0 und
Dk= ( Z Rijj>k;
j=1

1
I'(k+z)

Lo (x)= J tTHTEE Do (x, 1) dt,
0

wobei R; die Riesztransformationen bezeichnen, die durch

R,.<p(x)=i§’|f¢(x), 0eF,s

definiert sind.
Beweis. Zur Vereinfachung sei Re(z)> — 1, also k=1. Fiir den allgemeinen Fall
geht der Beweis analog. Wegen

(R;D,,0) * (x)=2nx} x|  (x)

und der absoluten Konvergenz simtlicher zur Diskussion stehenden Integrale folgt,
dass die Fouriertransformierte der rechten Seite mit dem Ausdruck

a0
n

r(i+z)™* J‘tz2n Y xx|t o (x) e dr

j=1
0

iibereinstimmt. Also erhalten wir dafiir
2al (1+2) |x]| ¢ (x) f fFe” I g =(2r|x|) 7% ¢ (x),
0

woraus die Behauptung folgt.
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Bemerkung. Fiir J,@, o€ &, gibt es eine analoge Darstellung (siehe [4]); ist nim-
lich ¢ (x, )= W,.p(x) das Gauss-Weierstrassintegral von ¢, so gilt fiir ganzes k>0
mit k+ 3Re(z)>0:

J,(p(x):]‘(k+z/2)"1ft’”‘“z/z’e“’J_kgo(x, t)dt.
0

Aus der im Satz gegebenen Darstellung von I,¢ folgt, dass bei festem gpe.¥, die
Familie {I,¢: ze C} beziiglich L' analytisch ist. Dazu geniigt es, die Analytizitit von
(Lo, Y fiir jedes Y e L* nachzuweisen. Offenbar gilt

Lo,y = J 1D (-, 1), ¥ dt,
]

I'(k+z)

denn die Vertauschung der Integrationen folgt wegen der guten Qualitét von ¢ (siehe
[8], S. 225). Die behauptete Analytizitit ergibt sich nun durch Differentiation unter
dem Integral.

1.2. Approximationen der Einheit aus &%,
Es wird eine Schar {¢,: y>0} von Funktionen ¢, aus .#, konstruiert, sodass fiir
alle feL? (1<p<o0) gilt:

lim | fupy~£1l,=0.

y—0
Hierzu sei Y€ & so gewihlt, dass e 2, etwa

~. y |0 fiir [x|>20, >0
'/I(x)"{l fiir |x|<eo.

Daraus folgt insbesondere | ¥ (x) dx=1. Der Ansatz fiihrt zum Ziel:

@y (X)=y""Y (¥~ 1x)=y"p (px).

Zunichst ist e, fiir alle y>0. Ist ndmlich |x|<min(y~'¢, ye), so wird ¢,(x)
=y (yx)—y(y~'x)=0.

Zum Beweis der Approximationseigenschaft kénnen wir fe ¥, annehmen. Sei
daherf (x)=0fiir 0 <|x| <& und 1/o <|x|. (Ein solches o >0 existiert wegen O¢supp ).
Jetzt gilt:

W, ) “(x)=9 (3x) f (x)=0,
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sofern |x| <o oder y|x|>2¢ ist. Fiir y>2¢/o folgt daher ¥, *f=0, und somit ist

loy*f=f o <Woyxf=fl,+ s *f = IlY,xf=fl, firalle y<2¢/o.
Wegen [, (x) dx=1 ergibt sich hieraus die Behauptung (siehe [8], S. 62, 63).

1.3

Wir erinnern an einige Ergebnisse aus der Theorie der HP-Raume (siehe [3],
S. 183).

Ist feH' und Y€ mit |y (x) dx=1, so gehdrt sup,.o|¥,*f| zu L', und es gilt

f sup |, * f1 dx <A || fllgs .

y>0
R

Sei f lokal integrierbar, und Q, bezeichne einen achsenparallelen offenen Wiirfel mit
xeQ,. Wir definieren

M )=sup = [ 1),
et 4
1 [ 1
fx)=sup 0, 7 0)ad dy, wo Jo=jg Qf e

(siche [2], S. 153). Wir benétigen den folgenden Satz:

SATZ (Fefferman und Stein). Es sei fe L’ fiir ein 1 <r<oo und fe L? mit 1 <p < oo
und 1 <r<p. Dann ist MfeL?, und es gilt

IMSfl,< 4,011,

Bemerkung. Der Beweis dieses Satzes stiitzt sich auf das Zerlegungslemma von
Calderén und Zygmund, sieche dazu [8], S. 17. Offenbar ist feBMO genau gann,
wenn fe L®. Diese Tatsache zusammen mit dem obigen Satz erweisen sich als dusserst
niitzlich fiir die Interpolation. Aus der bekannten Abschitzung | Mf || ,< A4, f ||, und
dem obigen Satz erhalten wir insbesondere die Aequivalenz von | £, und | f [l -

1.4
Die Raume V! 1<p<oo, —o0 <t<c0.

DEFINITION. V7 ist der Raum der #,-Distributionen f mit f=1,g, ge L. Mit
der Norm | f |y »=Igll, ist ¥ vollstindig. Lésst sich I,g insbesondere mit einer
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L’ integrierbaren Funktion # identifizieren, so setzen wir I,g=h. Analog dazu ist
WFP=J,(L?) als Raum der temperierten Distributionen f definiert mit f=J,g, geL?

und ”f”w,r=“g”p-
Bemerkung. Fiir ganzes k>0 fallt W/ mit dem entsprechenden Soboleffraum zu-

sammen (siehe [8], S. 135); es ist ferner leicht zu zeigen, dass V¥ mit dem Raum der
& o-Distributionen zusammenfillt, deren Ableitungen k-ter Ordnung zu L? gehéren,
und es ist

I llve= 3 1D7:1,.
lil=k
SATZ. Der Dualraum von V¥ (1<p<oo, teR) ldsst sich mit V?, identifizieren,
wobei p’ der zu p konjugierte Index ist. Analog ist W”, der Dualraum von WP (siehe [2]).
Beweis. Sei deV?, und Y =1, mit pe%,. Dann gilt:

[<d, Y| =<4, Lp>| =KL, p>|<|Id| y llol ,=dllvp _ ¥llve,

d induziert also eine beschrinkte Linearform auf V7, denn %, ist dicht in V7. Ist
umgekehrt d eine beschriankte Linearform auf V7, so folgt aus Yy =L¢, pe&,:

ld (V)I=1d (L)l <Alol

und d erzeugt daher eine beschriankte Linearform auf L?, also existiert genau ein
geL” mit

d(d’)=d(1t¢)=<g’ (P>’ (pe‘?O'

Wegen ¢=1_,) folgt somit d (Y)=<I_.g, V).

Zwischen den Soboleffriumen und BMO besteht der folgende, von Stein und
Zygmund in [10] bewiesene Zusammenhang: fiir 0<6<1 ist namlich Vi« BMO
und W}® = BMO. Diese Tatsache legt die Vermutung nahe, dass BMO in natiitlicher
Weise Grenzraum von ¥? und W7 fiir p— oo und 7 0 ist. Es gilt der

SATZ. Es sei [ |, die komplexe Methode der Interpolation (siehe [1], S. 113fT).
Dann gilt fiir 0<6<1, 1<p<oo und g0=p, kO=t:

[BMO, VFlo=VZ, [BMO, WZ]e=W{.

Im folgenden geben wir den Beweis fiir den Fall der homogenen Soboleffraume ¥V},
denn fiir W7 verlduft er vollstindig analog (mit %’ an Stelle von %, und J,). Weiter
setzen wir k=1 und p=n, was den Beweis technisch vereinfacht. Der Beweis des all-
gemeinen Falles verlduft analog.
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2. Beweis

Im folgenden sei [ By, B,]q, [Bo, Bi]® die komplexe Methode der Interpolation.
Mit F bezeichnen wir stets eine auf D= {ze C: 0<Re(z) <1} definierte Funktion mit
Werten in By + By, die in D beziiglich || - || g, + 5, stetig und in D analytisch sei. Ausser-
dem ist F fiir Re(z)=0 B,-wertig und stetig beziiglich ||| 5, und es gelte dort
| F (iv)|| g, — O fiir |v] > co. Analoge Bedingungen sollen fiir Re(z)=1 beziiglich B,
gelten (siehe [1], S. 113ff). Ist B, oder B, reflexiv, so auch [ By, B, ], und [ By, B;],
= [By, B;]° (siehe [1], 9.5., 12.2.).

HILFSSATZ 1. Firn>=1 und 0<0<1 gilt
[BMO, V{],cVf, 6Op=n.

Beweis. Seien B,=BMO, B, =V7{ und F:D— BMO eine Funktion mit den oben
aufgefiihrten Eigenschaften. Wir setzen fiir festes fe V{: % ,={F:F ()=f}, ferner

|F|| £, =max (sup | F (iv)llx, sup [|F (1+iv)lly,)

veR veR

If lg,=inf{IFllg,: FeF}.

Beachte, dass aus V7 =BMO folgt B,®B; ~BMO. Es sei {¢;: >0} eine unter 1.2
beschriebene Schar von Funktionen aus &, und fiir zeD setzen wir S;(z, x)=
=1_,p,*F (z, x), wobei sich die Faltung auf x bezieht; weiter werden wir des 6fteren
die Angabe von x unterdriicken. Ist e: R" x R"— C eine messbare Funktion mit |e|=1,
so sei (immer fiir festes d>0)

1
Q.

Us(ai )= | (5005 D=5 (g e 0 a1
Qx

Schliesslich sei fiir ze D
P, (z)=f Us;(2)g(2)dz,
Rn

wobei g (z, x) wie folgt konstruiert wird: g (x) sei eine einfache Funktion mit [ g|l,/,-¢
=1. Ist etwa g=|g| e*, so setzen wir fiir z=u+iv

g(z)=|g|®"™ /""" e",

also ist || g(iv)ll; =1 g (0)lnjn-0=11&llnjn-o= | g (1 + V)|l sjn-1=1. Wir zeigen nun, dass
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@, von zuldssigem Wachstum ist. Zunéchst ist

1@ (2)| < Us(2)ll o g (21 <lIsup Us (2)ll g ()1 < IS5 (25 g (214 -

Ox, e

Da weiter (27 |x|) fiir ve R ein H'-Multiplikator mit Norm <4 (1+]v|)"*! ist (siche
[3], S. 150), folgt aus z=u+iv und I,=1;,*1,:

”Sa(z)”*=”I-z(Po*F(z)”*<”I-z(Pa”HI ”F(Z)”*="I~iu(1—u‘P6)”H1 ”F(Z)”*
<A+ - .05l 51 | F (2)] -

Aus der Analytizitit von {I,¢;: ze C} beziiglich L' folgt sofort diejenige beziiglich H'!
(siehe 1.1), insbesondere existiert also supg<, <y [/~ 495l 1, und es ist mit einer von g
und ¢, abhingigen Konstanten 4, ,

D5 (2)| < Ag,, (1 +10])" " IF (2)] -

Die Abhingigkeit der Schranke von ¢4 verschwindet fiir z=iv und z=1+v; sei zu-
nichst z=iv. Dann ist:

1P ()| <1 Us(i0) | o g (0) 111 < 1S5 ()= - ;00 5% F (i)l .

Auf Grund der Dualitit zwischen H' und BMO folgt, dass (2r|x|)*" fiir beliebiges
ve R BMO-Multiplikator mit Norm <A4(1+]|v|)"*?! ist, und wie oben erhilt man:

1S5 (@)l x <AL +]0])"* ! [ @aF (i0) ]

Wegen [l@;ll; <2||yll; gilt mit einer nur von [y||; abhdngigen Konstanten A4,:
|®; (iv)| <Ay (1+ o))" sup IF (iv)ll -

Es sei jetzt z=1+iv:

|2, (1+ )| < Us (L+iv)l, g (1+i0)llnjn—1 < IIQ S|t11|)=1 Us (1+iv)ll,=

=[18;(1+iv)ll, (siehe 1.3).

Hieraus folgt mit einer nur von » abhingigen Konstanten 4 (im allgemeinen Fall
1 <p< o ist A auch von p abhingig, hier haben wir zur Vereinfachung k=1 und p=n
gesetzt):

185 (1 +iv)ll, <2 MS; (1 +iv)], <A S5(1+7v)l,
und daher wegen I_,@,*F (1+iv)=1I_;,ps%I_F (1+iv):

|Ps(1+iv)| <A ;,@s%1_F (1+iv)]],.
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(2m|x])* ist LP-Multiplikator fiir 1 <p<oo mit Norm <A (1+]v|)"*!, und es wird
mit einer nur von [¢; abhidngigen Konstanten A4,:

|®; (1+iv)| <A, (1+]0])""" sup |F (1+iv)]y,n.

veR

Die Regularititseigenschaften von @; folgen unmittelbar aus der Analytizitit von
{I,p:zeC} und g (-, z) (siehe 1.1), und damit sind simtliche Voraussetzungen fiir das
verallgemeinerte Drei-Linien-Lemma erfiillt (siehe [12], S. 100, Bd. 2). Setzen wir
51= SUP, g |F (iv)llx und s, =sup, g I F (1+iv)|y » so folgt:

|D5(0)] < 4o, , max(sy, s;)=A4q y|IFllz,

Diese Abschidtzung hangt von  ab, genauer von ||| ,. Dies ist aber unwesentlich, da
Y fest vorgegeben ist. Wegen sup {|®;(0)|: [Igll,/n-0=1, g einfach} =] U;(8)|l,,s und
der Unabhéngigkeit der Konstanten 4, , von e und Q, folgt

185 ()l nj0<Ag,y | Fll5,

und auf Grund des Satzes in 1.3.

”Sa (9)I|n/o>A 1S5 (9)||n/e=A ”I_,,(P,;*F (G)Hn/o=A ”(Pa*l—of“n/o-

Man beachte, dass aus fe V| folgt: f=1,g, ge L", und dass daher die #-Distribution
I_oqpsxf=q@s%I_, fmit der Funktion ¢,* I, _ ,g identifiziert wird (siche die Definition
der V/-Raume in 1.4). Da 4,4 , von 6 nicht abhidngt, erhdlt man aus 1.2 die Ab-
schitzung

lim H(Pa*l—oflln/e: “I—ef”n/e<A9,¢ ”F”fe

d—0

mit einer nur von 0 und |||, abhidngigen Konstanten A4,,,, also

||f“V9p<Aa,:w inf IIF”fg:Ae,w "f”fg-

Fe%¢o

HILFSSATZ 2. Seien n>1,0<0<1 und n’ der zu n konjugierte Index. Dann gilt
fir g '=1-0+0/n'

[Vﬁ'n H'}yc V4.

Beweis. Esist I, (H')< L" (siehe [9], S. 60), also H' < ¥ ,. F sei eine Funktion
von D in V", mit den iiblichen Eigenschaften und B,=H !, Fiir festes fe H! und
F o={F:F (0)=f} wihlen wir nach dem Muster von 1.2 wieder eine Approximation
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der Einheit aus %, und setzen bei festem 6 >0
Ty(z, x)=1,0:%F (z, x);

Ts(z) lasst sich mit einer L™ -integrierbaren Funktion identifizieren, denn es ist mit
F(2)=1_,G(z), G(z)eL” und peFy:

<T6(Z)’ ¢>=<Iz¢6*I~IG(Z)’ (P>=<I-—1 +z(P6*G(Z)’ (P>

Es sei weiter g eine einfache Funktion mit || g[|,,,=1 und fiir zeC, g(z, x)=|g|*/? ",
wenn g=|g| e gesetzt wird. Es ist dann | g (iv)ll o =118 (0)aje=8llne =g (1 +iv)l,
=1. Setzen wir fiir >0 g,(z, x)=¢;*g(z, x) und

&, (2)= f Ty(z x) g (2, x) dx,

so folgt aus der Analytizitit von I,¢, und F diejenige von &;(z); ebenso erhilt man
die Stetigkeit von ®;(z) in 1.4. Man zeigt weiter, dass

D5(2)|<Ag,, o (1+[0])" HIF (2)llym_,

und @;(z) somit von zuldssigem Wachstum ist. Zur Abschitzung der Randwerte von
®,(z) verwenden wir die in 1.3 aufgefiihrte Charakterisierung von H'. Zunichst gilt:

sup | T; (iv, x)| =sup |, * I;,F (iv, x)| <2 sup |, * I, F (iv, x)|,
$>0

>0 >0
also
1@, (iv)| < || T (iv)ll4 “go(i”)"oo<”:‘:Inga(iv)lux los*g (iv)llw
das heisst
|95 ()] <Ay 1 iy@s% F (i0)ll 41,
wobei 4, nur von ||y, abhdngt. Insgesamt erhalten wir
@5 (iv)| < Ay (1+[0])"" 1 || F (iv)l .
wobei A4, nicht von 6 >0 abhingt. Analog gilt fiir z=1+v

1B, (1+iv)| <Ay, (1+0])"** |F (1+iv)]ly_ o,

und es folgt |®;(0)| < 4,, | F | 5, mit einer von é unabhéngigen Konstanten 4, ,. Wie
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im Beweis von Hilfssatz 1 ergibt sich hieraus

l@25%1oF (O)lnjn-0< Ao,y IIFll 5,

fiir alle F mit F (0) =f, und durch Grenziibergang 6 —0

1S lve_oe<Ae,yll f 5,

Aus Hilfssatz 2 folgt unter Beriicksichtigung von 1.4 durch Uebergang zum Dualraum
[VZ,, H]e =[V], BMO]’> V¥ und hieraus wegen der Reflexivitit von V7 fiir n>2
und Hilfssatz 1 die Beziehung [V{, BMO],=V?, w.z.b.w.
Bemerkung. Dem soeben bewiesenen Satz entnehmen wir die bekannten Resultate
(siehe [5]):
Seien 1 <py, p, <o und k4, k, positive ganze Zahlen. Dann gilt fiir p~* = (1 —0)/p,
+0/p,, k=(1-0) k;+ 6k, mit 0<0<1

[Vklil’ Vk?]a == Vkp’ [VVkI:l’ pVkI;z]ﬂ = VVkp :
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