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Eine Interpolationseigenschaft des Raumes BMO

Thomas Rychener

1. Einfuhrung und Ergebnis

Der Raum BMO der Funktionen von beschrànkter mittlerer Oszillation spielt in
der Théorie der Interpolation eine wichtige Rolle (fur die Définition von BMO ver-
weisen wir auf [3]). Wir geben im folgenden mit Hilfe der komplexen Méthode der

Interpolation (siehe [1]) interpolierende Râume zwischen BMO und den homogenen
bzw. inhomogenen Soboleffrâumen VI bzw. W% an. Die vorliegende Arbeit geht auf
eine Anregung von H. M. Reimann zuruck: in [6] wird bewiesen, dass der folgende
Zusammenhang zwischen BMO und der Théorie der quasikonformen Abbildungen
besteht:

SATZ (Reimann [6]). Ist q eine quasikonforme Abbildung von Rn auf sich, so ist
durai T(f)=foq~1 ein Isomorphismus von BMO festgelegt, und es gilt || JI(/)IU
^ C || / ||*/wr allefeBMO und eine nur von K und n abhângige Konstante C.

Bezeichnet V\ den Raum der lokal integrierbaren Funktionen / mit fXj^Ln
(y=l, 2,..., n) und \\f\\v"X—Ysj H/xJL so &k e*n entsprechendes Résultat auch fur
V\ (siehe [11]), und es stellt sich die Frage, ob zwischen V\ und BMO interpoliert
werden kann. Die Antwort auf dièse Frage gibt der in Abschnitt 1.4 formulierte Satz,
wonach die Râume Vf das Interpolationsproblem lôsen. Ein entsprechendes Résultat

gilt auch fur die Soboleffrâume Wl und BMO.
Ergebnisse dièses Typs sind fur BMO bekannt. Wir fûhren hier zwei wichtige

Beispiele an, in denen BMO als Grenzraum der Lipschitzràume Lip(f) fur t-+0 und
der Lp-Ràume fur p -? oo auftritt.

(1) (Stampacchia [7]). Sévtnpup2^\9Q<0<\. Ist Tein auf der Menge £ der

einfachen Funktionen definierter Operator mit

fur aile eeE, so folgt T(e)eLip(s)9 und es gilt

\\T(e)\\Up(s)<CAl-eAe2\\e\\ p

mit p-1^ (1-0)/^ + 0lp2 und s=0t.
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(2) (Fefferman und Stein [3]). Es bezeichne [ ~\e die komplexe Méthode der

Interpolation. Dann gilt fur 1 <p< oo, 0<6< 1 und q~1=6/p

Zunâchst beschreiben wir das Analytizitâtsverhalten des Riesz-Potentials von Funk-
tionen eines Testraumes ^Q (siehe 1.1). Zu diesem Zweck muss der Rieszkern |x|"n+'
in geeigneter Weise analytisch fortgesetzt werden. Weiter konstruieren wir in 1.2.

Approximationen der Einheit aus £*V I*1 1-4 fûhren wir die Râume Vf und Wf ein
und formulieren das Ergebnis der Interpolation zwischen BMO und den Soboleff-

ràumen, in dem wir in natûrlicher Weise auf gewisse Râume von Potentialen bezûglich
des Riesz- und des Besselkerns stossen (die Râume Vf, W%). Der Beweis stùtzt sich

auf die in [3] verwendeten Methoden.

Ll. Riesz-Potentiale von Sf0-Distributionen
Wir betrachten stets auf Rn definierte komplexwertige Funktionen. Fur x, yeRn

bezeichne <jc, y} das Skalarprodukt. Ist/eL1, so ist die Fouriertransformierte von/
gegeben durch

Im iibrigen halten wir uns an die Bezeichnungen in [8], Der eingangs erwàhnte Test-

raum £f0 besteht aus allen q> mit 0e@ und 0£supp$. Fur 1 <p<co ist yo dicht in
Lp bezûglich der ZANorm. Ausserdem ist S?o dicht in H1 bezûglich der //1-Norm
(siehe [8], S. 231). Unter einer ^-Distribution verstehen wir eine stetige Linearform
auf <$V

DEFINITION. Fur zeC ist das Riesz-Potential I2q> einer Funktion q>e^0 defi-

niert durch

und das Riesz-Potential einer ^-Distribution/gemâss

Das Bessel-Potential Jzq> einer Funktion <peS? ist durch
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festgelegt und dementsprechend das Bessel-Potential einer temperierten Distribution/
durch

Fur Iz<p, (pe£f09 lâsst sich eine Integraldarstellung angeben (desgleichen fur Jzcp,

(pe£f). Dazu sei fur beliebiges t>0 cp(x9 t)=Pt*(p(x)9 wobei Pt(x) der Poissonkern
fur den oberen Halbraum JK++1 {(x91): xeRn, t>0} ist.

LEMMA. Seien zeC und q>e^0. Dann gilt fur ganzes k^O mit k + Re(z)>0 und

0

wobei Rj die Riesztransformationen bezeichnen, die durch

definiert sind.

Beweis. Zur Vereinfachung sei Re(z)> - 1, also k= 1. Fur den allgemeinen Fall
geht der Beweis analog. Wegen

und der absoluten Konvergenz sâmtlicher zur Diskussion stehenden Intégrale folgt,
dass die Fouriertransformierte der rechten Seite mit dem Ausdruck

00

1 [fin £ xj\x\-l0(x)e-2n^tdt
oo

ùbereinstimmt. Also erhalten wir dafùr

0

woraus die Behauptung folgt.
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Bemerkung. Fur Jzq>, cey, gibt es eine analoge Darstellung (siehe [4]); ist nàm
lich (p(x91)= Wt*cp(x) das Gauss-Weierstrassintegral von q>, so gilt fur ganzes
mitÂ;+iRe(z)>0:

[ -% J-kq>(x,i)dt.

Aus der im Satz gegebenen Darstellung von Izq> folgt, dass bei festem çeS^0 die
Familie {Iz(p: zeC} bezûglich L1 analytisch ist. Dazu geniigt es, die Analytizitàt von
</z<p, xj/y fur jedes ij/eL™ nachzuweisen. Offenbar gilt

denn die Vertauschung der Integrationen folgt wegen der guten Qualitât von cp (siehe

[8], S. 225). Die behauptete Analytizitàt ergibt sich nun durch Differentiation unter
dem Intégral.

1.2. Approximationen der Einheit aus ^0
Es wird eine Schar {(py: y>0} von Funktionen cpy aus £f0 konstruiert, sodass fur

alle/eZ/(l</?<oo)gilt:

lim 11/^,-/11^=0.

Hierzu sei ij/eS^ so gewàhlt, dass $ei^, etwa

° fûr
l fur \x\<q.

Daraus folgt insbesondere J \l/(x) dx= 1. Der Ansatz fiihrt zum Ziel:

Zunâchst ist (pye^0 fur aile j;>0. Ist nâmlich \x\<min(y~1Q,yQ), so wird Qy{x)

Zum Beweis der Approximationseigenschaft kônnen wir/6^0 annehmen. Sei

daher/(x)=0fur0<|jc|<aund \ja<\x\. (Einsolchesa>0existiert wegen0£supp/).
Jetztgilt:
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sofern |*|«r oder y\x\>2g ist. Fur y>2q\a folgt daher r/ry*/=O, und somit ist

l!^*/-/llp^li^*/-/llp+l|iAi/,*/llP=ll^*/~/llp fur aile y<2Qja.

Wegen J \j/y{x) dx 1 ergibt sich hieraus die Behauptung (siehe [8], S. 62, 63).

1.3

Wir erinnern an einige Ergebnisse aus der Théorie der H P-Râume (siehe [3],
S. 183).

Ist/e/f1 und i/teS? mit J \j/(x) dx=\, so gehôrt supy>0\\l/y*f\ zu L1, und es gilt

f sup
J y>0

sup\il/y*f\dx^A\\f\\Hl./y
y0

Rn

Sei/lokal integrierbar, und Qx bezeichne einen achsenparallelen offenen Wiirfel mit
xeQx. Wir definieren

J- \\f(y)\dy,
Qx \Qx\ J

Qx

/(x) sup-i- f \f(y)-fQJdy, wo4=l f/W^,
Qx 12x1 J 16x1 J

Qx Qx

(siehe [2], S. 153). Wir benôtigen den folgenden Satz:

SATZ (Fefferman und Stein). EsseifeUfur einl^r<oo undfeLp mit \<p<oo
und l^r^p. Dann ist MfeLp, und es gilt

\\Mf\\p^Ap\\f\\p.

Bemerkung. Der Beweis dièses Satzes stiitzt sich auf das Zerlegungslemma von
Calderôn und Zygmund, siehe dazu [8], S. 17. Offenbar ist/eBMO genau gann,
wenn/eL00. Dièse Tatsache zusammen mit dem obigen Satz erweisen sich als âusserst

nûtzlich fur die Interpolation. Aus der bekannten Abschâtzung || Mf ||
p ^ Ap || /1| p und

dem obigen Satz erhalten wir insbesondere die Aequivalenz von \\f\\p und || /1| p.

1.4

DieRàume Vf, \<p<oo, -oo</<oo.

DEFINITION. Vf ist der Raum der ^0-E>istributionen/mit/=/rg, geLp. Mit
der Norm II /11^^ 11 ^11

p
*st vt vollstândig. Lâsst sich Itg insbesondere mit einer
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27-integrierbaren Funktion h identifizieren, so setzen wir Itg=h. Analog dazu ist
Wf~Jt{Lp) als Raum der temperierten Distributionen/definiert mit f=Jtg, geLp
und\\f\\WtP=\\g\\p.

Bemerkung. Fur ganzes k>0 fallt W£ mit dem entsprechenden Soboleffraum zu-
sammen (siehe [8], S. 135); es ist ferner leicht zu zeigen, dass V% mit dem Raum der
<2VDistributionen zusammenfâllt, deren Ableitungen fc-ter Ordnung zu Lp gehôren,
und es ist

SATZ. Der Dualraum von Vf (\<p<oo, teR) lâsst sich mit Vplt identifizieren,
wobeip' der zup konjugierte Index ist. Analog ist Wplt der Dualraum von Wf (siehe [2]).

Beweis. Sei deV-t und il/ It(p mit cpeSf0. Dann gilt:

d induziert also eine beschrânkte Linearform auf Vf, denn 3?0 ist dicht in Vf. Ist
umgekehrt deine beschrânkte Linearform auf Vf, so folgt aus \l/=It(p,

und d erzeugt daher eine beschrânkte Linearform auf Lp, also existiert genau ein

geLF' mit

Wegen <p=/_ri/r folgt somit d (^)=</^fg, \j/}.
Zwischen den Soboleffrâumen und BMO besteht der folgende, von Stein und

Zygmund in [10] bewiesene Zusammenhang: fur O<0<\ ist nâmlich F^cBMO
und ^e"/ffcBMO. Dièse Tatsache legt die Vermutung nahe, dass BMO in natùilicher
Weise Grenzraum von Vf und Wf fur p -* oo und t -* 0 ist. Es gilt der

SATZ. Es sei [ ]0 die komplexe Méthode der Interpolation (siehe [1], S. 113ff).
Dann gilt fur O<0<1, \<p<oo und qO=p, k0 t:

[BMO, Vf]9=V*9 [BMO, Wf\t=W*.

Im folgenden geben wir den Beweis fur den Fall der homogenen SobolefFrâume Vp,

denn fur W£ verlâuft er vollstândig analog (mit 9" an Stelle von Sf'o und J2). Weiter
setzen wir fc= 1 und/?=/î, was den Beweis technisch vereinfacht. Der Beweis des all-
gemeinen Falles verlâuft analog.
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2. Beweis

Im folgenden sei \_B0, B^, [2?0, Bt~\e die komplexe Méthode der Interpolation.
Mit Fbezeichnen wir stets eine auf D= {zeC: 0^Re(z)<l} definierte Funktion mit
Werten in Bo + BXi die in D bezûglich || • || Bo+Bl stetig und in D° analytisch sei. Ausser-
dem ist F fur Re(z) 0 5o-wertig und stetig bezûglich ||*|Ibo> und es gelte dort
I|F(/ï>)IIbo-*0 ^r M-*00» Analoge Bedingungen sollen fiir Re(z)=l beziiglich Bt
gelten (siehe [1], S. 113ff). Ist Bo oder Bx reflexiv, so auch [Bo, Bx~\e und [£0, Bt]e

l], 9.5., 12.2.).

HILFSSATZ 1. Fur n>l undQ<0<1 gilt

[BMO, VÏ]9<zVf9 6p n.

Beweis. Seien B0 BMO, Bx Vl und F:/)-»BMO eine Funktion mit den oben

aufgefiihrten Eigenschaften. Wir setzen fur festes/eF":^0= {F:F(0)=/}, ferner

veR veR

Beachte, dass aus FjczBMO folgt B0®Bt^BMO. Es sei {<pâ: ô>0} eine unter 1.2

beschriebene Schar von Funktionen aus £f0, und fiir zeD setzen wir Sô(z, x)
I-z(pô*F (z, x), wobei sich die Faltung auf x bezieht; weiter werden wir des ôfteren

die Angabe von x unterdrucken. Ist e:RnxRn-*C eine messbare Funktion mit \e\ 1,

so sei (immer fur festes <5>0)

Uê (z, x)=~ J (Sô (z, 0 - Sô (z)Qx) e (x, t) dt.

Schliesslich sei fur zeD

wobei g(z, x) wie folgt konstruiert wird: g(x) sei eine einfache Funktion mit ||g||n/n_fl

1. Ist etwa g=\g\ eis, so setzen wir fur z=u+iv

also ist U{iv)h U(0)hi.-»= \\gLm-e= Il*(l + «»)ll./.-i 1- Wir zeigen nun, dass
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<PÔ von zulâssigem Wachstum ist. Zunâchst ist

Qx,e

Da weiter (2n \x\)iv fur veR ein //^-Multiplikator mit Norm ^A (1 + \v\)n+* ist (siehe

[3], S. 150), folgt aus z=u + iv und Iz Iiv*Iu:

Aus der Analytizitât von {Izq>ô: zeC} bezùglichL1 folgt sofort diejenige beziiglich H1

(siehe 1.1), insbesondere existiert also supo<u^i WI-uVôWhi* unc^ es ist m& einer von S

und cp6 abhângigen Konstanten A^^

Die Abhângigkeit der Schranke von cpô verschwindet fur z — iv und z=l+iv; sei

zunâchst z=iv. Dann ist:

|#,(z)|< II ^O'f)ILk(^)lli< lis,(i»)iu=\\r_iv<pâ*F(iv)u.

Auf Grund der Dualitât zwischen H1 und BMO folgt, dass (27î|x|)'" fur beliebiges
veR BMO-Multiplikator mit Norm <j4(l + |f|)"+1 ist, und wie oben erhâlt man:

Wegen ||(p4||i<2||i^||1 gilt mit einer nur von H^Hx abhângigen Konstanten A^:

veR

Es sei jetzt z=

iv)\ < II Uô(l + iv)\\
_QX'e
=\\5ô(l + iv)\\n (siehe 1.3).

Hieraus folgt mit einer nur von n abhângigen Konstanten A (im allgemeinen Fall
1 <p < oo ist A auch von p abhângig, hier haben wir zur Vereinfachung k 1 und p n

gesetzt):

und daher wegen I-
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(2n\x\)iv ist Lp-Multiplikator fur l<p<oo mit Norm </4(l + |i;|)"+1, und es wird
mit einer nur von ||^||j. abhàngigen Konstanten A^:

veR

Die Regularitâtseigenschaften von <PÔ folgen unmittelbar aus der Analytizitàt von
{Izcp : zeC} und g(•, z) (siehe 1.1), und damit sind sâmtliche Voraussetzungen fur das

verallgemeinerte Drei-Linien-Lemma erfullt (siehe [12], S. 100, Bd. 2). Setzen wir

Kltt, so folgt:

Dièse Abschâtzung hângt von ij/ ab, genauer von H^Hi- Dies ist aber unwesentlich, da

\j/ fest vorgegeben ist. Wegen sup{1^(0)1: \\g\\n/H-9=l, g einfach} ||^(0)||n/a und
der Unabhângigkeit der Konstanten A9^ von e und Qx folgt

und auf Grund des Satzes in 1.3.

Man beachte, dass aus/e V\ folgt: f=Ilg, geLn, und dass daher die y0-Distribution
I-e(pô*f=(pô*I_dfmit der Funktion (pô*I1-eg identifiziert wird (siehe die Définition
der Ff-Râume in 1.4). Da Aettjf von ô nicht abhângt, erhâlt man aus 1.2 die Ab-
schàtzung

/
ô->0

mit einer nur von 9 und II ^ II i abhàngigen Konstanten A0tijfi also

w inf

HILFSSATZ 2. Seien n>l,0<6<l und n' der zu n konjugierîe Index. Dann gilt

Beweis. Es ist /t (H1)czLn' (siehe [9], S. 60), also H1 c Vnlx. Fsei eine Funktion

von D in Vnlx mit den ûblichen Eigenschaften und B0 Hi. Fur festes feH1 und

^e= {F:F(0)=f} wâhlen wir nach dem Muster von 1.2 wieder eine Approximation
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der Einheit aus ^Q und setzen bei festem <5>0

Tô(z9x) Iz<pô*F(z9x);

Tô(z) lâsst sich mit einer Ln-integrierbaren Funktion identifizieren, denn es ist mit
F(z) I_iG(z)9 G{z)eLn> und

Es sei weiter g eine einfache Funktion mit ||gL/0= 1 und fur zeC9 g(z9 x) \g\z/0 eîs,

wenng |g|^isgesetztwird. Esistdann \\g(iv)\\O0 \\g(d)\\n/9=\\g\\n/e=\\g(l+iv)\\n
1. Setzen wir fur <5>0 gô(z9 x) cpô*g(z9 x) und

Tô(z9x)gô(z9x)dx9
Rn

so folgt aus der Analytizitât von lzq>ô und Fdiejenige von $ô{z)'9 ebenso erhâlt man
die Stetigkeit von <PÔ (z) in 1.4. Man zeigt weiter, dass

und #5(z) somit von zulâssigem Wachstum ist. Zur Abschâtzung der Randwerte von
<Pô(z) verwenden wir die in 1.3 aufgefuhrte Charakterisierung von H1. Zunâchst gilt:

sup |Tô (iv9 x)\ sup \(pô * IivF (iv9 x)\ <2 sup \i//ô * IÎVF (iv9 x)\,
<5>O â>0 Ô>0

also

das heisst

wobei A^ nur von \^\\ abhàngt. Insgesamt erhalten wir

\<P*(iv)\<A+(l + \v\y+1 \\F(iv)\\Hi.

wobei A$ nicht von ô>0 abhângt. Analog gilt fur z=l+iv

und es folgt \<PÔ (0)\ < A0t ^ HFH^ mit einer von ô unabhângigen Konstanten AOt ^ Wie
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im Beweis von Hilfssatz 1 ergibt sich hieraus

fur aile F mit F (9) =/, und durch Grenzùbergang ô -»0

Aus Hilfssatz 2 folgt unter Berùcksichtigung von 1.4 durch Oebergang zum Dualraum
\VH1U H%, [Vnu BMO]0z> VI und hieraus wegen der Reflexivitât von V\ fur «>2
und Hilfssatz 1 die Beziehung \Vnu BMO]0= Vp9 w.z.b.w.

Bemerkung. Dem soeben bewiesenen Satz entnehmen wir die bekannten Resultate
(siehe [5]):

Seien 1 <pl9p2 < oo undku k2 positive ganze Zahlen. Dann gilt fur/7"1 (1 — Q)JP\

mitO<0<l

Vf,
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