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Comment. Math. Helvetici 50 (1975) 493-507 Birkhâuser Verlag, Basel

Sur les exposants de Lojasiewicz

J. BOCHNAK ET J. J. RlSLER

Résumé

Dans une première partie, on démontre les inégalités de Lojasiewicz à l'aide de la théorie des
ensembles sous-analytiques de Hironaka, et on montre que les exposants de Lojasiewicz sont
toujours rationnels (théorème 1).

Dans une deuxième partie, on étudie sous quelles conditions l'exposant de Lojasiewicz réel est
égal à l'exposant complexe.

0. Introduction

Soient / et g deux fonctions analytiques réelles (resp. sous-analytiques, resp.
analytiques complexes) sur un espace X. Si g"1 (O)c/"1 (0), on définit l'exposant de

Lojasiewicz de/par rapport à g en x comme la borne inférieure des nombres réels 0

tels que Ton ait: |/|*<C|g| (où C est une constante) au voisinage de x.
Monique Lejeune et Bernard Teissier ont récemment interprété algébriquement

cet exposant dans le cas analytique complexe \_L-T~] et montré qu'il était toujours
rationnel.

La première partie de ce travail montre un résultat analogue dans le cas réel

(où cette fois, il suffit de supposer/et g sous-analytiques, ce qui permet de montrer
toutes les inégalités de Lojasiewicz [L]).

La seconde partie répond à une question qui nous avait été formulée par Bernard
Teissier: dans le cas analytique réel, l'exposant de Lojasiewicz est-il le même si on le

calcule en complexifiant la situation? La proposition 3 donne, dans la cas d'un espace

normal, une condition nécessaire et suffisante pour qu'il en soit ainsi.

1. Fonctions sous-analytiques et exposants de Lojasiewicz

1.1. Ensembles sous-analytiques (Hironaka [H2])
Nous appelerons espace analytique réel, un espace annelé en R-algèbres: (X, <PX),

séparé et localement isomorphe à un modèle local (défini par un nombre fini de fonctions

analytiques réelles nulles en 0) dans Rw (cf. [Hj). Les questions abordées ici
étant de nature locale, X sera toujours supposé paracompact et de dimension finie.

Dans la suite (X, Ox) (ou X) désignera un espace analytique réel.
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DÉFINITION 1 (Hironaka). Un sous-ensemble A de X est dit sous-analytique en

xeX, s'il existe un voisinage ouvert U de x dans X et une famille (fij)i^i^k de

morphismes analytiques propes: Yy-* X\ U, (Yu étant des espaces analytiques réels)
tels que:

AnU={j(Imfh-lmfh).

On dit que A est sous-analytique dans X s'il l'est en tout point xeX.
La classe des sous-ensembles sous-analytiques est la plus petite classe de sous-

ensembles d'espaces analytiques réels contenant les ensembles semi-analytiques, et
stable par les opérations booléennes et les morphismes propres.

Nous aurons besoin des lemmes suivants:

LEMME 1. ([H2, p. 482] «sélection d'une courbe»). Soit A un ensemble sous-

analytique de X,aeÂ. Il existe alors une fonction analytique t:] — 1, +1 [ -» X telle que

LEMME 2. Soient X et Y deux espaces analytiques réels, n Xx F-> X la projection
canonique. Si V est un ensemble compact sous-analytique dans Y, et AczXxV un
ensemble sous-analytique dans XxY,n(A) est sous-analytique dans X.

(Ce lemme s'applique en particulier au cas où A est relativement compact et sous-

analytique dans Xx Y).
Démonstration. D'après [H2] il existe un espace analytique réel Yt, et un morph-

isme analytique propre cp: Yt -* Y tel que ^(Y^^ F. L'application n n (idx x cp) est

propre, et l'on a: n(A) n((idxç)'1 (A)), et donc n(A) est sous-analytique comme
image d'un ensemble sous-analytique par un morphisme analytique propre.

1.2. Fonctions sous-analytiques
Soient K, L, P des ensembles sous-analytiques respectivement dans des espaces

analytiques X, Y, T.

DÉFINITION 2. Une fonction continue f:K^L est dite sous-analytique si son

graphe F(f) est sous-analytique dans XxY.
Nous noterons % (K, L) l'ensemble des fonctions sous-analytiques de K dans L et

poserons x(K)=

PROPOSITION 1. a) sifex(K,L)etgex(L,P)alorsgofex(K9P)
b) x(K) es* une ^-algèbre.
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Démonstration. Soit n:Xx YxT->XxT\& projection canonique. On a: F(gof)
7r[(r(/)xJP)n(JKxr(g)], d'où immédiatement le résultat a) en appliquant le

lemme 2, puisque la question est locale (on peut ainsi supposer L relativement
compact).

Le point b) résulte facilement de a).

EXEMPLES, a) La restriction à un ensemble sous-analytique d'une fonction
sous-analytique est encore sous-analytique.

b) Soit X un espace analytique réel plongé analytiquement dans R* : la restriction
de la distance euclidienne à XxX est une fonction semi-analytique (donc sous-

analytique) sur XxX.
Si A est sous-analytique et fermé dans X, la fonction ^rx-^dist (x, A) est sous-

analytique sur X (on peut en effet supposer A compact puisque la question est locale;
alors

T={(x, t)eXxR:ôA(x)^t} n({x,y, t}eXxAxR:d(x,y)^t})

est sous-analytique d'après le lemme 2, et r(6A) est la frontière de T). Remarquons

qu'en général F (ÔA) n'est pas semi-analytique, même si A est analytique.

c) PROPOSITION 2. Soit K un ensemble sous-analytique dans X,fex(K) telle

quef'1 (0) soit non vide et différent de K. Alors, pour aeR+, | f\*e%{K) si et seulement

sioceQ.
Démonstration. Montrons d'abord que si aeQ, \f\xex(K); posons a=p/q: on a

évidemment \f\ei{K) car son graphe est sous-analytique dans KxR puisque par
hypothèse le graphe de /est sous-analytique. On a donc \f\pe%(K) (proposition 1)

et \f\p/qex(K), puisque \f\p/q est égale à (pq°\f\p, çq étant l'application de R+ dans

R+ qui à x fait correspondre xifq: il suffit de remarquer que cpq est sous-analytique

(car le graphe y x1/q est égal au graphe de la fonction inverse x=yq) et d'appliquer
la proposition la).

Pour démontrer la réciproque, nous aurons besoin d'un lemme :

LEMME 3. Soit ^:[0, 1]-»R une fonction sous-analytique, telle que

pour 6 au voisinage de 0. // existe alors aeQ+, e>0, et <pex[0, e [vérifiant

<p(0)#0 tels que

(on peut même prendre (p analytique dans ]0, e [).
Démonstration. T(i/0n([0, l]xR) étant sous-analytique dans R2, on peut
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d'après le lemme 1 choisir une fonction analytique t:] — 1, +1[->R2 telle que
t(0) (0, 0) et t(]0, l[)c(r(iA)n [0, 1] x R)\(0, 0).

t est alors définie au voisinage de 0 par deux fonctions analytiques *:] — e',

e'[-»[°> 1] et j>:]-e/,e'[->R telles que:

9 q>2(0)^0,

On a donc ylf{tni(p1{t)) — tn2cp2{t) pour *e[0, e'[. Mais il existe, quitte à diminuer e',

une fonction h: [0, e[n [0, e'[ ayant les propriétés suivantes:

- h est analytique dans ]0, e\_ et sous-analytique dans [0, e[ (car le graphe de h

est égal à celui de tniçt (t));
- h(O) 01/nih1(O) avec A1(0)#0 (on a en effet Ai(0)=l/<Pi(A(0))). La fonction

\j/(6)=yoh(0) vérifie alors bien l'assertion du lemme. c.q.f.d.
Achevons maintenant la démonstration de la proposition 2: soit/e%(A^) telle que

Soit aef'1 (0) tel que a soit adhérent à K-f'1 (0); K-f'1 (0) étant sous-analytique,

on peut d'après le lemme 1 trouver une courbe analytique <p:] — 1, +1[->^T telle

que <p (0) a et <p (]0, 1 [) cK-f -1 (0).
On a alors/o9ex([0, 1]) (proposition 1) d'où/°(p(?) ^>1(/) pour te[0, êJ,

avec j^eQ-,., <Pi€x([0, £l[) et (0)#0 (Lemme 3).
On a de même un nombre jS2eQ+ e^ une fonction </>2ex([0, e2[) tels que

|/|ao(p(f) ^2(p2(f) avec ^2(^)^0» puisque |/|a est sous-analytique par hypothèse.
On a donc, pour f voisin de 0:

^M<Pi(0la='N>2« d'où aJ2. c.q.f.d.
Pi

1.3. Exposants de Lojasiewicz (cas sous-analytique)
Soient X un espace analytique réel, K un compact contenu dans X, Si / et g sont

des fonctions continues sur K, on posera:
%(/,£) inf{aeR+:3C>0 telle que |/Wla<C|g(j;)| V^eAT}.

(La borne inférieure de l'ensemble vide est par définition égale à + 00); aK(f, g) est

par définition Vexposant de Lojasiewicz de / par rapport à g sur l'ensemble K.

THÉORÈME 1. Si K est sous-analytique dans X, et sifet g sont sous-analytiques

sur K, telles que Ë^g"1 (O)c/"1 (0), ocK(f, g) est rationnel.

COROLLAIRE 1. Soit K un compact sous-analytique dans un espace analytique
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réel X, gex(X\ Z=g~l (0); alors:

a* inf{aeR+:3c>0, |g(x)|^c(dist(x, Z))a

est rationnel.

COROLLAIRE 2. Soient A et B deux sous-ensembles fermés sous-analytiques
dans X, et K un compact sous-analytique dans X. Alors:

a* (A, B) inf {aeR+ : 3c>0, dist(x, ^) + dist(x, B)^Cdist(x, A nB)", VxeK}

est rationnel.
Ces deux corollaires sont des conséquences immédiates du théorème 1 (cf. l'exemple

b))
Remarques 1. a) Dans le cas semi-analytique, le fait que <%(/, g)< + oo si

^/^r~1(0)c:/~1(0) est du à Lojasiewicz ([L]). Hironaka ([HJ) démontre aussi ce

fait en utilisant les théorèmes de résolution des singularités pour les ensembles sous-

analytiques (cf. ([H2]). Le Théorème 1 doit aussi pouvoir être démontré par ces

méthodes.

b) Dans le cas analytique complexe, Lejeune-Teissier ([L-T] (Chap. I, §6))
montrent un théorème analogue en interprétant l'exposant de Lojasiewicz algébriquement

(avec K assez petit); cf. plus loin (II.2).
c) T. C. Kuo ([K]) a étudié ocK(ffg) pour des fonctions analytiques de deux

variables réelles et a montré la rationnalité dans ce cas.

Démonstration du théorème 1. On peut supposer y>0 et g^O sur K. Posons

(Autrement dit on considère les points u tel que g (u) soit minimal pour u parcourant
une «variété de niveau » de/

L'ensemble K* est sous-analytique puisqu'il s'écrit: £* Kx\n{B\A) où

et où n{x9 u) u (cf. le lemme 2).

Soit aef'1 (0) tel que a soit adhérent à K* (un tel a existe puisque K* est

compact).

D'après le lemme 1, il existe une courbe analytique t:]-1, l[-*X, telle que

T(0)=a, x(t)eK* pour fe]0, l[.
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On peut alors écrire:

avec ax et a2 rationnels (lemme 3).

Il suffit alors de montrer que aK(f, ^) a1/a2 pour prouver le théorème.
On a évidemment ax(/,^)^a1/a2, puisque at/a2 est l'exposant de Lojasiewicz

calculé pour les restrictions de /et g à la courbe t([0, e]) pour e convenable.
Montrons d'autre part que <xK(f9 g)^a1/a2: il faut voir qu'il existe une constante

C telle que f(x)ai/lX2 ^Cg(x) dans K (nous avons supposé/et g^O sur jK).
Choisissons />0 tel que/~1({)nT([0, e])#0 pour £e[0, /]; comme J^est

compact, il suffit de se borner aux xeK tels que/(x)e [0, /] (rappelons que par hypothèse

Mais pour un tel x, il existe wer([0, e]) tel que/(x) =/(w) et g(x)^g(u), d'où
l'assertion puisque on a choisi e assez petit pour que at/a2 soit l'exposant de Lojasiewicz

de/par rapport à g sur la courbe t([0, e]).

2. Exposants de Lojasiewicz réels et exposants de Lojasiewicz complexes

2.1. Rappels sur les idéaux réels et la normalisation ([R])
Soient 0 une R algèbre analytique, /un idéal de 0, On dit que /est réel si l'algèbre

Ojl est ordonnable, i.e. si la condition suivante est vérifiée :sifu...,fp sont des éléments

de 0 tels que// + —,//e/ alors/,e/(l <i«/>).
Supposons que /soit un idéal premier de 0, et que dim(0//)=/*. Soit Jf un

représentant du germe à l'origine d'espace analytique réel défine par (P/I; on a alors:

PROPOSITION 1. Les conditions suivantes sont équivalentes:

a) / est réel;
b) / est Vidéal de tous les éléments de (9 nuls sur le germe de X à l'origine.
c) X possède un point lisse de dimension h dans tout voisinage de l'origine.
Passons maintenant à la normalisation. Si (X, (9X) est un espace analytique réel,

nous désignerons par (X, ®%) une complexification de (X, ®x)> et Par C^> @x) *a

normalisée de {X, (9%), (%9 @x) étant supposé réduit.

PROPOSITION 2. Supposons X réduit; alors il existe une complexification (X, Ox)

de (X, @x) telle que (X, (9%) soit muni d'une auto-conjugaison â (compatible avec la

conjugaison canonique a de X).
De plus, si ft :5f -? 2 est l'application canonique, et si x est un point de X tel que
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^x,*®rc solt intègre (ce qui est en particular le cas si (PXx est ordonnable), n~l (x)
est composé d'un nombre fini de points Je, réels (î.e fixes par d\ et (9% n-iix) est

isomorphe à 0x>x®RC
De plus si ®%x est normale ®xfx—*®x,xX®iiC est normale.
Nous renvoyons à [Ht] pour des détails sur les espaces analytiques réels et la

complexification, et à [R] pour la démonstration des propositions 1 et 2.

2.2 Inégalités de Lojasiewicz notations et rappels (cas analytique)
Soient (X, ®x) un espace analytique réel, x un point de Xy I un idéal cohérent sur

X engendré par des fonctions sur Xgu gp9 et K un voisinage compact de x. Si/est
une fonction sur X nous poserons :

a*(/,/) inf{aeR|3C>0 telle que |/(^)r<CSup|g,(^)|, VyeK}

et a(/, /) mfax(/, /) pour K parcourant les voisinages compacts de x dans X
(La borne inférieure de l'ensemble vide est par définition égale à + oo)

Soit X une complexification de X telle que les gt et / s'étendent en des fonctions

gt et/sur X, notions / l'idéal cohérent sur X engendré par les gr On pose alors:

où a^(/, /) a une définition analogue à celle de ax(/, /), et où £ parcourt l'ensemble

des voisinages compacts de x dans X tels que RnX=K
On pose de même: /?(/, I) mfKfiK(f, /), K parcourant les voisinages compacts

de x dans X.

pK(f9I) et f$(f,I) ne dépendent pas de la complexification choisie et Ton a

toujours:

fi (/, /) a été étudié par Lejeune-Teissier ([L-T]): sifx et Ix désignent les germes de

/ et / en x, ils montrent que fiK(f, I) fi(f, I) pour K assez petit, et que fi(f, /)
llvIx(fx) avec les notations de [L-T], Chap. I, §7.

On peut définir vIx(fx) comme étant le plus grand rationnel qjp tel que// soit

entier sur l'idéal Iqx (cf [L.T], Chap. I, §7).

Rappelons que dans un anneau commutatif A, un élément/est entier sur un idéal

/ s'il existe une relation de dépendance intégrale

/lf+a1/B-1 + ..-+an=0 avec a^V (K;<#i).

On a en particulier le lemme suivant:



500 J. BOCHNAK ET J. J. RISLER

LEMME 1. Soit 0 une R-algèbre analytique normale (Le. intègre et intégralement
close). Alors sifet g sont des éléments de @,P{f, g) est le pluspetit rationnelpjq tel que
fplgqe0.

Preuve. Il est en effet facile de voir que dans un anneau normal tout idéal principal
(g) est intégralement clos (i.e. si/est entier sur (g),fe(g)).

Le fait que/p soit entier sur gq est donc ici équivalent hfpe(gq), soit fp/gq e (P.

c.q.f.d.
Nous allons considérer dans la suite la propriété suivante:

P(I): II existe dans Jun voisinage compact K de x tel que pour toute fonction /
analytique sur un voisinage de x dans X (donc sur un voisinage compact K' c K de x)
on ait:

P(I) ne dépend que du germe de Xtn x et de l'idéal Ix.

LEMME 2. Pour que P(I) soit vraie, il est nécessaire que ^Jlx soit un idéal réel

(yflx désignant la racine de Vidéal Ix dans Vanneau ®Xtx)-

Notons V(IX) le germe en x d'espace analytique réel défini par Ix; si y/lx n'est pas

réel, il existe d'après la proposition 1 un élément fxe0Xx tel que/*#.>//„ et tel que
fx s'annule sur V(IX). Mais alors aK(f, I) est fini si K est assez petit (cf. théorème 1)

et /?(/, /)= + oo d'après le théorème des zéros analytique complexe.

2.3. Cas où I est un idéal principal

PROPOSITION 3. Soit 0 une R-algèbre analytique normale (i.e. intègre et
intégralement close), g un élément de 0. Alors pour que P(g) soit vraie, ilfaut et il suffit

que ^/g soit un idéal réel.

Remarque. Il va résulter de la démonstration ci-dessous que si yjg est réel, 0 est

ordonnable.
Démonstration. D'après le lemme 2, la condition est nécessaire. Supposons donc

que y]g soit réel, et soit (X, 0x)un espace analytique réel normal, xeJftel que 0xfJC^0.
Nous supposerons que g s'étend en une fonction analytique sur X que nous noterons
encore g; soitfeO; nous pouvons aussi supposer (quitte à restreindre X) que/possède
un représentant analytique sur X, que nous noterons encore /. Soit K un voisinage

compact de x dans X assez petit pour que toutes les composantes irréductibles de

V(g) dans ^passent par x: on a. alors pK(f9g)=fi(f9 g) (cf. [L-T]), et il faut montrer

Soitpjq un rationnel tel queJp/^>ax(/, g); il suffit de voir que PK(f, g)<p/q (car
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cela montrera que PK(f,g)<<*K(f,g), et on a toujours pK(f,g)>aK(f,g)) i.e. que
fp/gqe<9 (lemme 1).

Supposons donc par l'absurde quefplgq$@; notions V(g) l'ensemble des zéros de

g dans X,

LEMME 3. // existe x'eKn V(g) tel que
a) X soit lisse au voisinage de x' {de dimension n à\m(9)
b) y/g&x,x' s°tt un idéal premier réel.

Démonstration. Soit X un complexifié de Xqm soit un espace normal (cf. proposition

2), de dimension w dim0, et tel que/et g s'étendent en des fonctions sur %

notées / et g.
Le lieu polaire de la fonction méromorphe fp/gq est alors non vide (car fplgq$@),

de codimension 1 dans X (car X est normal) et contenu dans l'ensemble V(g) des

zéros de g dans X: c'est donc la réunion de certaines composantes irréductibles de

v{g).
Comme l'idéal y/g est réel, tous les idéaux premiers minimaux contenant yjg sont

réels ([R]), et chaque composante irréductible de V{g) possède un point réel dans K
au voisinage duquel V(g) est lisse de dimension n—\ (proposition 1): il existe ainsi

sur chaque composante irréductible de V(g) un point réel au voisinage duquel F(g)
est lisse, car l'ensemble des points où V(g) est singulier est de dimension complexe <
à n — 2, donc sa partie réelle est de dimension réelle < à n — 2. Ceci entraîne qu'en un
tel point x', y/g est engendré par un élément régulier de 0Xt x. donc que yJg@XtX> est un
idéal premier réel.

Soit donc x' un tel point où de plus la fonction fp/gq ne soit pas holomorphe (ce

qui est équivalent à dire qjàsfplgq$®x,xr)'
Comme la partie réelle du lieu singulier de X est le lieu singulier de X (noté sing X;

cf. [HJ), on ne peut avoir V(g)csingX au voisinage de x', car X étant normal est

lisse en codimension 1. On peut donc supposer que x' est un point lisse de X (avec

toujours fp/gq$®x,X')> ce <lui achève de montrer le lemme 3.

Montrons maintenant la proposition 3: comme @XtX> est régulier, donc factoriel,

on peut écrire:

fplgq Vv< avec à$JJl dans QXtX,.

Mais Jv est un idéal réel dans 0XtX, (puisque s]g@x,x> étant premier on a yfji*= y/g
dans ®Xx,) et donc À ne s'annule pas sur K(/i) au voisinage de x' (proposition 1),

ce qui est contradictoire avec l'hypothèse plq>ocK(f> g) qui entraîne que fp/gq(y) est

bornée pour yeK. c.q.f.d.

COROLLAIRE 1. Soit 0 une R-algèbre analytique ordonnable, Ô sa normalisée
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(qui est une somme directe d'un nombre fini de UL-algèbres analytiques' cf. [R],), g un

élément de 0. Alors si ^JgO est un idéal réel, P(g) est vraie.
Montrons d'abord un lemme:

LEMME 4. Soient 0 et & deux R-algèbres analytiques, <p 0'
'

-* 0 un mophisme, I
un idéal de 0 etf un élément de 0. Alors on a'

Démonstration. Soient X et X' deux espaces analytiques réels, n un morphisme
de X' dans x, x'eX' et xeX, tels que: ®Xtx--*®> ®x',x -+®'> n(x')=x> le morphisme:
@x',xr ~* ®xfX S01t égal à cp. Soit i^un voisinage compact de x dans X: on a évidemment

et

car îs g est une fonction analytique sur K telle que gxel,

1 (K)

ce qui démontre aisément le lemme
_Montrons maintenant le corollaire 1: si Ton pose 0=©f=i ®» on a, d'après le

lemme 4:

d'où

On a de même /K/,g)^supf/K/0l5 g^d- Montrons qu'en fait: P(f,g)
j8(/(Pf, g®i). Soit (X, 0x) un espace analytique réel tel que #*,*—?#, X un complexifié
de X, tel que/et g se prolongent en des fonctions holomorphes / et g sur X.

On a les équivalences suivantes: p/q<P(f,g)ofp/gq est non borné dans un
voisinage de x dans %o il existe un / tel quefp/gq$(9ioplq<P(f(9i, gOt) (lemme 1).

On a doncfiif, g)<P(f0t, *0,)<supf/?(/0|, £0,), d'où finalement fi(f, g)=
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Mais, par hypothèse, ^g0t est réel pour 1 ^ i <p, et donc a (f(Ph g0t) p (fOh gO{)
d'après la proposition 3; on a donc:

ce qui achève la démonstration du corollaire.
Remarque 1. Si 0 est une R-algèbre analytique ordonnable, et ge(P, la condition

y/gO réel implique que P(g) est vraie, donc que yfg® est réel (lemme 2); la réciproque
est fausse comme le montre l'exemple suivant:

Prenons 0=R{X, Y, Z}jZ{X2 + Y2)- Y5 : 0 est une R-algèbre analytique intègre
et ordonnable. Si g est l'image de X2 + Y2 dans d), yjg est réel dans 0 (V(g) est l'axe
des z), mais yjgd) n'est pas réel (l'ensemble des zéros de g dans le germe analytique

correspondant à 0 est réduit à un point:
si X désigne l'espace analytique défini par l'équation Z(X2 + Y2)— Y5=0 dans

R3 et X son complexifié, l'image réciproque dans la normalisation J? de X d'un point
M de l'axe des Z différent de l'origine consiste en effet en deux points non réels de Jf,

X étant irréductible en M et pas X: cf [R]).
Il est facile dans ce cas de voir que P(g) n'est pas vraie (si/est l'image de Y dans

2.4. Cas où I est un idéal intersection complète
L'idée de ce paragraphe est de faire éclater /pour pouvoir appliquer le corollaire 1

(ou de prendre l'éclatement normalisé de /pour pouvoir appliquer la proposition 3).
Soient 0 une R-algèbre analytique ordonnable, /= (gl9..., gp) un idéal de 0 engendré

par une suite régulière, X un espace analytique réel tel que (PXt x -+ 0 et que les gt
s'étendent en des fonctions sur X (notées encore gf).

Soit n:X'->Xl'éclatement de l'idéal / dans X [HJ.

PROPOSITION 4. Pour que la propriété P {I) soit vraie, il suffit qu'il existe x'eX'
tel que:

a) n(x') x
b) @X'tx' s°iï une ^-algèbre ordonnable

c) y/I@x',x' s°i* un Idéal réel.

Démonstration. Posons & &X',x" D'après le corollaire 1 et les conditions b) et c),

si/60, il existe un voisinage compact K' de x' dans X' tel que:

Or, on a évidemment:

n(Kf)czK.
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II suffit donc de voir que /?(/$', /$') /?(/, /), ce qui va résulter du lemme suivant:

LEMME 5. Avec les mêmes notations que ci-dessus, on a:

P(f>O Hf0x:x;Mx:X') Vx'eJf tel que n(x') x.

Démonstration. I étant intersection complète et x' se projetant sur x, toutes les

composantes irréductibles du diviseur exceptionnel (défini par K9Xf) passent par x'
(si on a choisi X assez petit pour que toutes les composantes irréductibles de V(I)
passent par x). Dans la carte affine où I(9X> est engendré par gt par exemple, le

morphisme n : X' -> X est en effet défini par le morphisme :

Le diviseur exceptionnel est donc dans cette carte le produit de V(I) par un espace
lisse de dimension/?— 1.

Soit X' un complexifié de X\ n:X'-^X' sa normalisation; n'1 (xf) est alors un
ensemble fini, et toutes les composantes irréductibles du diviseur défini par I(9~z. passent

par un point de n'1 {x') (car une telle composante se projette par n sur une
composante du diviseur exceptionnel dans X' qui passe par x).

Il résulte alors d'une proposition de Lejeune-Teissier ([L-T] Chap. I, §4, Th. 4.11.

et 2.2.7) que 0(f, I)=P(f0x-tx'> I®x>,x>)> V/(/)= l/j8(/, /) se calculant à l'aide des

composantes du diviseur exceptionnel de l'éclatement normalisé de /. c.q.f.d.
Nous allons maintenant chercher des conditions sur / qui permettent d'appliquer

la proposition 4.

Supposons 6Xx de dimension n, et soit I=(gu...,gn) un idéal intersection complète

primaire pour l'idéal maximal de 0Xx. Si ÀeR(n~1)n, nous noterons ïx l'idéal
engendré par n— 1 combinaisons linéaires des gt:

/. [ y Ugi) avec À

Pour X dans un ouvert dense de R(lï 1)n, lx définit un germe de courbe de J en x
(on peut montrer que cette courbe est réduite pour A assez général si 0 est réduite,
mais nous n'utiliserons pas cette propriété).

PROPOSITION 5. Soit 0 une R-algèbre analytique ordonnable de dimension n,

I—{gi>>~> gt) un idéd engendré par une suite régulière. Alors, s'il existe un ouvert non
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vide UdeR(n~l)ntel que pour ÀeU, y/lx soit un idéal réel, la propriété P (/) est \ énfiée
Démonstration Choisissons une carte de l'éclatement n X' -> X (X étant un

représentant du germe défini par 0 au point x), telle que n corresponde a l'injection

Les points x'eX' tels que n(x') x sont paramétrés par R""1 (car le diviseur
exceptionnel réduit Dred est l'espace affine a n-1 dimensions) un tel point équivaut à la
donnée de n— 1 nombres réels z2, zn

L'hypothèse implique que, quitte à modifier les générateurs de /en les remplaçant
par des combinaisons linéaires des gt, il existe un ouvert i/'cR""1 tel que si

(z2, ,zn)eU\ la racine de l'idéal engendre par (giZ.-g,)^^,,) est un idéal réel
dans 0

Soit donc x' un point de X' vérifiant tt(x') x et dont les coordonnées z2, zn

sont telles que (z2, zn)e U'
Soit X' un complexifie de X' au voisinage de x\ D le diviseur exceptionnel défini

par 10x D son complexifie
Comme U' est un ouvert, nous pouvons supposer de plus que
(a) le heu singulier de X ' au voisinage de x' est égal a 3 (ou est vide) (Cette

condition est en effet vérifiée sur un ouvert dense de /), car si Dcsing^', il en résulte

que D a singX ' en prenant des complexifications convenables (cf [HJ), et l'ensemble
des points de D ou D^smgX' est analytique de dimension complexe ^n — 2, donc
sa partie réelle est de dimension réelle ^n — 2)

Nous allons montrer que sous ces hypothèses, on peut appliquer la proposition 4

au point x\ ce qui montrera la proposition 5

a) On a n(x') x par hypothèse,
b) il faut montrer que (9X x est ordonnable, î e que si ^ est un idéal premier

minimal de (9X x V{^x) a des points lisses de dimension n dans tout voisinage de x'
(proposition 1). (&x x est un anneau réduit puisque 0 est ordonnable donc réduit et

que l'éclatement est un morphisme birationnel)
Raisonnons par l'absurde supposons qu'une composante X[ K(^) de X' dans

un voisinage de x' ne soit pas réelle, si on note |i>| l'ensemble sous-jacent à D, il
resuite de la condition (a) que \X[\ \D\ au voisinage de x' (si X[ n'est pas réelle,

tout point réel de X[ appartient en effet au heu singulier de X')
L'intersection de X[ avec la variété V d'équations (Z/ zi)2^^n n'a donc au

voisinage de x qu'un point réel (à savoir le point x') Montrons que ceci est impossible

la condition (a) entraîne que la variété V (complexifiée de V) rencontre la partie lisse

de X[ au voisinage de x', et donc que Ve\X[ est reunion de certaines composantes

irréductibles de C Or l'intersection de V avec X' est isomorphe canomquement (par
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l'application n) à la courbe d'équations: (zfgi--gf)2<»<« dans X, dont toutes les

composantes sont supposées avoir des points réels autres que x dans tout voisinage
de x (proposition 1).

c) Montrons enfin que -JlQX'%x* est un idéal réel. {®x>iX> est une somme directe
finie de R-algèbres analytiques puisque @X',xr est ordonnable par b) (proposition 2)).

Posons ®x>tX> © ®i °ù les 0t sont des R-algèbres analytiques locales.

Soit Xf un complexifié de X' au voisinage de x\ n:Xf -» J'sa normalisation, £ '

étant muni de sa conjugaison canonique â (proposition 2); tous les points (en nombre

fini) de ir"1 {x') sont fixes par d (car ®x>tX> est ordonnable), et si x[ est un de ces

points, 0;r,x"i est isomorphe au complexifié de l'un des 0h ®X par exemple (proposition

2).
Mais, pour les points y de D voisins de x\ la même remarque est applicable, car,

d'après b), Gx,ty est aussi ordonnable; l'image réciproque de D par ri a. donc une

partie réelle (i.e. fixe par d) de dimension n — 1 (puisqu'elle s'envoie surjectivement sur

\D\) au voisinage de x'[9 ce qui implique que >//^i=-N/^i^i est r^e' puisqu'il est

premier (proposition 1). c.q.f.d.
Remarque 2. On peut voir facilement que la réciproque de la proposition 5 n'est pas

vraie. Voici cependant l'exemple d'un idéal ne vérifiant pas l'hypothèse de la proposition

5, et pour lequel P(I) n'est pas vérifiée. Prenons 0 R{x, y}, I=(x2+y29 y5).
La courbe (Cz) d'équation: z(x2+y2)-y5 0 n'a des points réels autres que

l'origine que pour z=0.
L'éclatement X' est défini par l'anneau: R{x, y} \/\l{z(x2+y2)—y5), le diviseur

D a pour ensemble sous-jacent l'axe des z, et le seul point x' de D où ®x*tX' soit ordonnable

est l'origine.
Il est facile de voir que P(I) n'est pas vérifiée (cf. Remarque 1).

Remarque 3. On pourrait se poser la question suivante: soit (/)cR{x1,..., xn}

un idéal réel tel que l'idéal Jacobien de/, /(/) soit primaire pour l'idéal maximal

(/est alors une hypersurface à singularité isolée): a-t-on a(/,/(/))=j8(/,/(/))?
(ou même, la propriété P(/(/)) est-elle vraie?)

La réponse est négative comme le montre l'exemple suivant, aimablement

communiqué par M. Merle:/=^5-x12+^loeR{ir, F}.
La courbe /(/ )A («courbe polaire associée à/ ») n'est pas réelle, car son équation

est: 5y4+x
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