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Sur les exposants de Lojasiewicz

J. BOCHNAK ET J. J. RISLER

Résumé

Dans une premiére partie, on démontre les inégalités de Lojasiewicz a 'aide de la théorie des
ensembles sous-analytiques de Hironaka, et on montre que les exposants de Lojasiewicz sont
toujours rationnels (théoréme 1).

Dans une deuxiéme partie, on étudie sous quelles conditions ’exposant de Lojasiewicz réel est
égal a I'exposant complexe.

0. Introduction

Soient f et g deux fonctions analytiques réelles (resp. sous-analytiques, resp.
analytiques complexes) sur un espace X. Si g 7! (0)<=f ~*(0), on définit I’exposant de
Yojasiewicz de f par rapport & g en x comme la borne inférieure des nombres réels 0
tels que I’on ait: | f|°< C|g| (ou C est une constante) au voisinage de x.

Monique Lejeune et Bernard Teissier ont récemment interprété algébriquement
cet exposant dans le cas analytique complexe [L—T7"] et montré qu’il était toujours
rationnel.

La premiére partie de ce travail montre un résultat analogue dans le cas réel
(ou cette fois, il suffit de supposer f et g sous-analytiques, ce qui permet de montrer
toutes les inégalités de Lojasiewicz [L]).

La seconde partie répond & une question qui nous avait été formulée par Bernard
Teissier: dans le cas analytique réel, ’exposant de Lojasiewicz est-il le méme si on le
calcule en complexifiant la situation? La proposition 3 donne, dans la cas d’un espace
normal, une condition nécessaire et suffisante pour qu’il en soit ainsi.

1. Fonctions sous-analytiques et exposants de Lojasiewicz

1.1. Ensembles sous-analytiques (Hironaka [H,])

Nous appelerons espace analytique réel, un espace annelé en R-algébres: (X, Oy),
séparé et localement isomorphe & un modéle local (défini par un nombre fini de fonc-
tions analytiques réelles nulles en 0) dans R* (cf. [H,]). Les questions abordées ici
étant de nature locale, X sera toujours supposé paracompact et de dimension finie.

Dans la suite (X, 0y) (ou X) désignera un espace analytique réel.
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DEFINITION 1 (Hironaka). Un sous-ensemble A de X est dit sous-analytique en

xeX, ¢’il existe un voisinage ouvert U de x dans X et une famille (f;;); <;<x de
1<j<2

morphismes analytiques propes: Y;; —» X ! U, (Y,; étant des espaces analytiques réels)
tels que:

An U=.Lk) (Im f;, —Im £;,).

On dit que A est sous-analytique dans X s’il I’est en tout point xe X.

La classe des sous-ensembles sous-analytiques est la plus petite classe de sous-
ensembles d’espaces analytiques réels contenant les ensembles semi-analytiques, et
stable par les opérations booléennes et les morphismes propres.

Nous aurons besoin des lemmes suivants: :

LEMME 1. ([H,, p. 482] «sélection d’une courbe »). Soit A un ensemble sous-
analytique de X, a€ A. 1l existe alors une fonction analytique t:]—1, +1[ - X telle que
7(0)=a, et ©(]0, L [) = 4.

LEMME 2. Soient X et Y deux espaces analytiques réels, n=X x Y — X la projection
canonique. Si V est un ensemble compact sous-analytique dans Y, et AcXxV un
ensemble sous-analytique dans X x Y, n(A) est sous-analytique dans X.

(Ce lemme s’applique en particulier au cas ou 4 est relativement compact et sous-
analytique dans X' x Y).

Démonstration. D’aprés [ H, ] il existe un espace analytique réel Yy, et un morph-
isme analytique propre ¢:Y; — Y tel que ¢ (Y;)= V. L’application #=n (idy X ¢) est
propre, et on a: n(4)=7#((id x ¢) ™! (4)), et donc n(A4) est sous-analytique comme
image d’un ensemble sous-analytique par un morphisme analytique propre.

1.2. Fonctions sous-analytiques
Soient K, L, P des ensembles sous-analytiques respectivement dans des espaces
analytiques X, Y, T.

DEFINITION 2. Une fonction continue f: K — L est dite sous-analytique si son
graphe I' ( f) est sous-analytique dans X' x Y.

Nous noterons x (K, L) ’ensemble des fonctions sous-analytiques de K dans L et
poserons x(K)=y(K, R).

PROPOSITION 1. a) sifeyx(K, L) et gex(L, P) alors gofey (K, P)
b) x(K) est une R-algébre.
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Démonstration. Soit m: X x Y x T— X x T la projection canonique. On a: I'(go f)
=n[(F'(f)xP)n(KxTI(g)], d’ot immédiatement le résultat a) en appliquant le
lemme 2, puisque la question est locale (on peut ainsi supposer L relativement com-
pact).

Le point b) résulte facilement de a).

EXEMPLES. a) La restriction a un ensemble sous-analytique d’une fonction
sous-analytique est encore sous-analytique.

b) Soit X un espace analytique réel plongé analytiquement dans R*: la restriction
de la distance euclidienne & X' x X est une fonction semi-analytique (donc sous-
analytique) sur X x X.

Si A est sous-analytique et fermé dans X, la fonction §,:x — dist (x, A) est sous-
analytique sur X (on peut en effet supposer 4 compact puisque la question est locale;
alors

T={(x,t)eXxR:5,(x)<t}=n({x,y,t}eXxAxR:d(x, y)<t})

est sous-analytique d’aprés le lemme 2, et I'(d,) est la frontiére de 7). Remarquons
qu’en général I' (6,) n’est pas semi-analytique, méme si 4 est analytique.

¢) PROPOSITION 2. Soit K un ensemble sous-analytique dans X, fey(K) telle
que f 1 (0) soit non vide et différent de K. Alors, pour aeR,, | f|*€x(K) si et seulement
si e Q.

Démonstration. Montrons d’abord que si «e€Q, | f|*ex(K); posons a=p/q: on a
évidemment | f |ex(K) car son graphe est sous-analytique dans Kx R puisque par
hypothése le graphe de f est sous-analytique. On a donc | f |?€x(K) (proposition 1)
et | f|P/%ey(K), puisque | f |?/? est égale & @ °| f|”, @, étant I’application de R, dans
R, qui & x fait correspondre x!/?: il suffit de remarquer que ¢, est sous-analytique
(car le graphe y=x!/1 est égal au graphe de la fonction inverse x=y) et d’appliquer
la proposition 1a).

Pour démontrer la réciproque, nous aurons besoin d’un lemme:

LEMME 3. Soit :[0,1]— R une fonction sous-analytique, telle que y(0)=0,
W (6)%£0 pour 0 au voisinage de 0. Il existe alors 0€Q.,e>0, et pey [0, & [ vérifiant
© (0)#0 tels que

¥ (9):‘-9“(/’ (6) , VOe[0, ¢

(on peut méme prendre ¢ analytique dans 10, ¢[).
Démonstration. T () ([0, 1]xR) étant sous-analytique dans R’, on peut
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d’aprés le lemme 1 choisir une fonction analytique 7:]—1, +1[ —» R? telle que
7(0)=(0,0) et 7(]0, 1[)=(I' (¥)n [0, 1] x R)\(0, 0).

© est alors définie au voisinage de 0 par deux fonctions analytiques x:]—¢',
g'[-[0,1]ety:]—¢, &' [ > Rtelles que:

x(t)=t"@,(t), ¢,(0)#0, n;eN
y()=t"p,(t), ©,(0)#0, neN.

On a donc Y (t™ ¢, (¢))=1t"¢,(t) pour te[0, ¢'[. Mais il existe, quitte & diminuer &',
une fonction A:[0, e[ N [0, &'[ ayant les propriétés suivantes:

— t=h(0)<0=1"¢,(¢) pour te[0, &'[;

— h est analytique dans ]0, ¢[ et sous-analytique dans [0, ¢[ (car le graphe de A
est égal & celui de "¢, (1));

— h(6)=6""h,(0) avec h, (0)#0 (on a en effet &, (0)=1/¢p, (h(0))). La fonction
Y (0)=yoh(0) vérifie alors bien I’assertion du lemme. c.q.f.d.

Achevons maintenant la démonstration de la proposition 2: soit fey (K) telle que
| f1*ex(K).

Soit ae f 71 (0) tel que a soit adhérent 3 K—f ~1(0); K—f ~!(0) étant sous-analyti-
que, on peut d’aprés le lemme 1 trouver une courbe analytique ¢:]—1, +1[ — K telle
que ¢ (0)=a et (J0, I[)=K—f7"(0).

On a alors fopey ([0, 1]) (proposition 1) d’ou foe (t)=1’'¢,(¢) pour te[0, &],
avec f,€Q., @,€x([0, &[) et ¢,(0)#£0 (Lemme 3).

On a de méme un nombre B,€Q, et une fonction ¢,ex([0,¢,[) tels que
| %o (t)=1tP2p,(t) avec ¢, (0)#0, puisque | f |* est sous-analytique par hypothése.

On a donc, pour ¢ voisin de 0:

@, (DI*=1"¢, (1) dob a= Zz : c.q.f.d.

1

1.3. Exposants de Lojasiewicz (cas sous-analytique)

Soient X un espace analytique réel, K un compact contenu dans X. Si f et g sont
des fonctions continues sur K, on posera:

ax (f, g)=inf{xeR,:IC>0 telle que | f(¥)|*<Clg(¥)| VyeK}.
(La borne inférieure de I’ensemble vide est par définition égale & + o0); ax( f, g) est
par définition /’exposant de Lojasiewicz de f par rapport a g sur ’ensemble K.

THEOREME 1. Si K est sous-analytique dans X, et si f et g sont sous-analytiques
sur K, telles que ®#g ™1 (0)=f ~1(0), ax (f, g) est rationnel.

COROLLAIRE 1. Soit K un compact sous-analytique dans un espace analytique
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réel X, geyx(X), Z=g~*(0); alors:
o*=inf {aeR, : Ic>0, [g (x)| > (dist (x, Z))* VxeK}
est rationnel.

COROLLAIRE 2. Soient A et B deux sous-ensembles fermés sous-analytiques
dans X, et K un compact sous-analytique dans X. Alors:

a* (A4, B)=inf {aeR,: ¢ >0, dist (x, 4)+dist (x, B)>C dist (x, 4 n B)*, VxeK}

est rationnel.

Ces deux corollaires sont des conséquences immédiates du théoréme 1 (cf. 'exemple
b))

Remarques 1. a) Dans le cas semi-analytique, le fait que agx(f,g)<+oo si
@#g"1(0)=f"1(0) est du a Lojasiewicz ([L]). Hironaka ([H;]) démontre aussi ce
fait en utilisant les théorémes de résolution des singularités pour les ensembles sous-
analytiques (cf. ([H,]). Le Théoréme 1 doit aussi pouvoir étre démontré par ces
méthodes.

b) Dans le cas analytique complexe, Lejeune-Teissier ([L-T] (Chap. I, §6))
montrent un théoréme analogue en interprétant I’exposant de Lojasiewicz algébrique-
ment (avec K assez petit); cf. plus loin (I1.2).

c) T. C. Kuo ([K]) a étudié ax(f, g) pour des fonctions analytiques de deux
variables réelles et a montré la rationnalité dans ce cas.

Démonstration du théoréme 1. On peut supposer f>0 et g0 sur K. Posons
K*={ueK\f~*(0), /(x)=F () =g (x)>g ()},

(Autrement dit on considére les points  tel que g (#) soit minimal pour u parcourant
une «variété de niveau» de f ).

L’ensemble K* est sous-analytique puisqu’il s’écrit: K*=K;\n(B\4) ou
Kl =K\f~1 (0)9

A={(x,u)eK; x K, :g(x)>g (u)}
B={(x, u)e K, x K :f(x)=F(u)}

et ol 7 (x, u)=u (cf. le lemme 2). L

Soit ae f ~1(0) tel que a soit adhérent & K* (un tel a existe puisque K* est com-
pact).

D’aprés le lemme 1, il existe une courbe analytique 1:]-1,1[ = X, telle que
7(0)=a, t(t)eK* pour t€]0, 1[.
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On peut alors é&crire:

fot(t)=t"g:(t), (¢1(0)#0)
got(t)=1"¢,(t), (92(0)#0)

avec a, et a, rationnels (lemme 3).

11 suffit alors de montrer que ax ( f, g)=a,/a, pour prouver le théoréme.

On a évidemment oy (f, g)=a,/a,, puisque a,/x, est 'exposant de Lojasiewicz
calculé pour les restrictions de f et g & la courbe 7([0, ¢]) pour & convenable.

Montrons d’autre part que ag ( f, g)<a,/a,: il faut voir qu’il existe une constante
C telle que f(x)*/**< Cg(x) dans K (nous avons supposé f et g=>0 sur K).

Choisissons />0 tel que f ™! (&) n ([0, €]) #0 pour £€[0, /]; comme K est com-
pact, il suffit de se borner aux xeK tels que f(x)e[0, /] (rappelons que par hypothése
g~ (0)=f77(0));

Mais pour un tel x, il existe uet ([0, ¢]) tel que f(x)=f(u) et g(x)=>g(u), d’ou
’assertion puisque on a choisi ¢ assez petit pour que «,/x, soit ’exposant de Lojasie-
wicz de f par rapport a g sur la courbe ([0, ¢]).

2. Exposants de Lojasiewicz réels et exposants de Lojasiewicz complexes

2.1. Rappels sur les idéaux réels et la normalisation ([R])

Soient ¢ une R algébre analytique, 7 un idéal de 0. On dit que 7 est réel si I’algebre
O/I est ordonnable, i.e. si la condition suivante est vérifiée: sifj, ..., f, sont des éléments
de O tels que f*+--, f,/ el alors f;el (1<i<p).

Supposons que / soit un idéal premier de @, et que dim (0/I)=h. Soit X un repré-
sentant du germe a I’origine d’espace analytique réel défine par @/I; on a alors:

PROPOSITION 1. Les conditions suivantes sont équivalentes:

a) I est réel;

b) I est I'idéal de tous les éléments de O nuls sur le germe de X a I'origine.

¢) X posséde un point lisse de dimension h dans tout voisinage de I’origine.

Passons maintenant & la normalisation. Si (X, @x) est un espace analytique réel,
nous désignerons par (X, 03) une complexification de (X, Ox), et par (X, 0%) la
normalisée de (X, 03), (X, 0x) étant supposé réduit.

PROPOSITION 2. Supposons X réduit; alors il existe une complexification (X, 03)
de (X, Oy) telle que (%, 0§)~soit muni d’une auto-conjugaison & (compatible avec la
conjugaison canonique o de X ).

De plus, si #:X - X est ’application canonique, et si x est un point de X tel que
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Ox,,QrC soit intégre (ce qui est en particular le cas si Oy , est ordonnable), ™! (x)
est composé d’un nombre fini de points %; réels (i.e. fixes par @), et 0% ,-1, est iso-
morphe a @X_x®RC.

De plus si 0% , est normale (DX,xlwx,xi@RC est normale.

Nous renvoyons a [H;] pour des détails sur les espaces analytiques réels et la
complexification, et 2 [R] pour la démonstration des propositions 1 et 2.

2.2. Inégalités de Lojasiewicz: notations et rappels (cas analytique)

Soient (X, @Oy) un espace analytique réel, x un point de X, I un idéal cohérent sur
X engendré par des fonctions sur X g, ..., g,, €t K un voisinage compact de x. Si f est
une fonction sur X nous poserons:

og (f, I)=inf {xeR|IC>0 telle que |f(»)|*<C Sup|g;(y)l, VyeK}

et a(f, I)=infay(f, I) pour K parcourant les voisinages compacts de x dans X.
(La borne inférieure de ’ensemble vide est par définition égale & + o0).

Soit X une complexification de X telle que les g; et f s’étendent en des fonctions
& et fsur X; notions I Iidéal cohérent sur X engendré par les g;. On pose alors:

Be(fi D=inf ox (7 1)

ot ag(f, T) a une définition analogue & celle de ax ( f, 1), et ol K parcourt I'ensemble
des voisinages compacts de x dans X tels que KnX=K.

On pose de méme: B(f, I)=infx Bk (f, I), K parcourant les voisinages compacts
de x dans X.

Bx(f, I) et B(f,I) ne dépendent pas de la complexification choisie et I'on a

toujours:

ax (f, 1)<Bx (1)
«(f, [)<B(f,1)

B(f, I) a été étudié par Lejeune-Teissier ([L-T]): sif, et I, désignent les germes de
fet Ien x, ils montrent que Bx (f, I)=PB(f, I) pour K assez petit, et que B(f, [)=
=1/¥,_(f,) avec les notations de [L-T], Chap. L, §7.

On peut définir ¥, (f,) comme étant le plus grand rationnel g/p tel que f” soit
entier sur I'idéal I? (cf. [L.T], Chap. I, §7).

Rappelons que dans un anneau commutatif 4, un élément f est entier sur un idéal
I 8’1l existe une relation de dépendance intégrale:

fr4a fr 4 +a,=0 avec ajel’ (1<j<n).

On a en particulier le lemme suivant:
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LEMME 1. Soit O une R-algébre analytique normale (i.e. intégre et intégralement
close). Alors si f et g sont des élements de O, B( f, g) est le plus petit rationnel p/q tel que
fPlgtel.

Preuve. 1l est en effet facile de voir que dans un anneau normal tout idéal principal
(g) est intégralement clos (i.e. si f est entier sur (g), fe(g)).

Le fait que f? soit entier sur g? est donc ici équivalent a fPe(g?), soit fF/g?e0.

c.q.f.d.

Nous allons considérer dans la suite la propriété suivante:

P(I): Il existe dans X un voisinage compact K de x tel que pour toute fonction f
analytique sur un voisinage de x dans X (donc sur un voisinage compact K’ =K de x)
on ait:

ag: (f, I)=Px- (f, 1)=B ([, I).
P(I) ne dépend que du germe de X en x et de I'idéal 7.

LEMME 2. Pour que P(I) soit vraie, il est nécessaire que \/ I_x soit un idéal réel
(\/ }; désignant la racine de I'idéal I, dans I'anneau Oy ).

Notons V(1,) le germe en x d’espace analytique réel défini par I; si \/ I,; n’est pas
réel, il existe d’aprés la proposition 1 un €lément f,e0y, , tel que f, ¢\/ };, et tel que
f, s’annule sur ¥ (I,). Mais alors ag ( f, I) est fini si K est assez petit (cf. théoréme 1)
et B(f, I)= + oo d’aprés le théoréme des zéros analytique complexe.

2.3. Cas ou I est un idéal principal

PROPOSITION 3. Soit O une R-algébre analytique normale (i.e. intégre et inté-
grablement close), g un élément de 0. Alors pour que P(g) soit vraie, il faut et il suffit
que /g soit un idéal réel.

Remargque. 11 va résulter de la démonstration ci-dessous que si /g est réel, O est
ordonnable.

Démonstration. D’aprés le lemme 2, la condition est nécessaire. Supposons donc
que /g soit réel, et soit (X, Ox) unespace analytique réel normal, xe X tel que Oy % 0.
Nous supposerons que g s’étend en une fonction analytique sur X que nous noterons
encore g; soit fe @; nous pouvons aussi supposer (quitte a restreindre X ) que f posséde
un représentant analytique sur X, que nous noterons encore f. Soit K un voisinage
compact de x dans X assez petit pour que toutes les composantes irréductibles de
¥V (g) dans K passent par x: on a alors S (f, g)=PB(f, g) (cf. [L-T]), et il faut montrer

que ax (f, 8)=Px (/. 8)-
Soit p/q un rationnel tel que p/q> ok (f, g); il suffit de voir que Bk (f, g)<p/q (car
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cela montrera que i (f, g) <ok (f, g), et on a toujours B (f, g)=ax(f, g)) i.e. que
f?/g?e€@ (lemme 1).

Supposons donc par I'absurde que f?/g?¢@; notions ¥ (g) I'’ensemble des zéros de
g dans X.

LEMME 3. 1l existe X' e Kn V(g) tel que

a) X soit lisse au voisinage de x' (de dimension n=dim0)

b) \/g0x,, soit un idéal premier réel.

C) fp/gq¢@X,x" -

Démonstration. Soit X un complexifié de X qui soit un espace normal (cf. proposi-
tion 2), de dimension n=dim0, et tel que f et g s’étendent en des fonctions sur X
notées f et g.

Le lieu polaire de la fonction méromorphe f?/§? est alors non vide (car f?/g?¢0),
de codimension 1 dans X (car X est normal) et contenu dans I’ensemble V' (g) des
zéros de ¢ dans X: c’est donc la réunion de certaines composantes irréductibles de
v (@).

Comme I’idéal \/ g est réel, tous les idéaux premiers minimaux contenant \/ g sont
réels ([R]), et chaque composante irréductible de ¥'(g) posséde un point réel dans K
au voisinage duquel V(g) est lisse de dimension n—1 (proposition 1): il existe ainsi
sur chaque composante irréductible de ¥(g) un point réel au voisinage duquel V' (§)
est lisse, car I’ensemble des points oit V() est singulier est de dimension complexe <
4 n—2, donc sa partie réelle est de dimension réelle < a n—2. Ceci entraine qu’en un
tel point x’, /g est engendré par un élément régulier de Uy . donc que J&0x,, estun
idéal premier réel.

Soit donc x’ un tel point ou de plus la fonction f?/g? ne soit pas holomorphe (ce
qui est équivalent a dire que f?/g?¢0x ,.).

Comme la partie réelle du lieu singulier de X est le lieu singulier de X (noté sing X’;
cf. [H,]), on ne peut avoir ¥(g)csingX au voisinage de x', car X étant normal est
lisse en codimension 1. On peut donc supposer que x’ est un point lisse de X (avec
toujours f?/g?¢0x ..), ce qui achéve de montrer le lemme 3.

Montrons maintenant la proposition 3: comme 0Oy . est régulier, donc factoriel,
on peut écrire:

fPlg?=ilu avec A¢/pu dans Oy ...

Mais ,/p est un idéal réel dans Oy ,. (puisque Jg0x. - étant premier on a /u= /g
dans 0y ,.) et donc A ne s’annule pas sur ¥V (u) au voisinage de x’ (proposition 1),
ce qui est contradictoire avec I’hypothése p/q>ax(f, g) qui entraine que f?/g?(y) est
bornée pour yeK. c.q.f.d.

COROLLAIRE 1. Soit O une R-algébre analytique ordonnable, O sa normalisée
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(qui est une somme directe d’'un nombre fini de R-algébres analytiques: cf. [R]), g un

élément de 0. Alors si /g0 est un idéal réel, P(g) est vraie.
Montrons d’abord un lemme:

LEMME 4. Soient O et O’ deux R-algébres analytiques, ¢:0' — 0 un mophisme, I
un idéal de O et f un élément de 0. Alors on a:

o (f, )=a(f0, 10")
B )=B(f0,10).

Démonstration. Soient X et X’ deux espaces analytiques réels, 7 un morphisme
de X’ dans x, x'eX’ et xe X, tels que: Oy . —0, Oy, o= 0, n(x')=x, le morphisme:
Ox., = Oy, , soit égal & ¢. Soit K un voisinage compact de x dans X: on a évidemment

ag (f, I)Zp-1 (k) (fom, Iom)

et

Bx (fs I)Z Br-1 ) (fom, Iom),

car is g est une fonction analytique sur X telle que g, €/,
IfOI*<Clg(¥)l  VyeK=|fen(z)I*<|gon(z)] Vzen ' (K)

ce qui démontre aisément le lemme. _
Montrons maintenant le corollaire 1: si I’on pose O0=@?_, 0,, on a, d’aprés le
lemme 4:

a(f,g)=>a(f0,80,) (1<i<p),
d’ou
«(f, g)=sup;a(f0, g0;).

On a de méme B(f, g)=sup;B(f0;, g0;). Montrons qu’en fait: B(f, g)=sup;
B(f0;, 0,). Soit (X, Ox) un espace analytique réel tel que 05 ,— 0@, X un complexifié
de X, tel que f et g se prolongent en des fonctions holomorphes f et & sur X.
On a les équivalences suivantes: p/q<B(f, g)<>f?/§? est non borné dans un
voisinage de x dans X <> il existe un i tel que f?/g?¢0,<>p/q <B(f0;, g0;) (lemme 1).
On a donc B(f, g)<B(f9;, g0;)<sup,B(f0;, g0,), d’on finalement B( f, g)=sup;
B(f0, 80;).
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Mais, par hypothése, /g0, est réel pour 1 <i<p,etdonca(f0,, g0,)=p(f0, g0,
d’aprés la proposition 3; on a donc:

B(f. 8)=a(f, g)=sup;a(f0,;, g0;)=sup,B(f0; g0,)=B(f, g)
ce qui achéve la démonstration du corollaire.

Remarque 1. Si O est une R-algébre analytique ordonnable, et ge @, la condition
/80 réel implique que P (g) est vraie, donc que /g0 est réel (lemme 2); la réciproque
est fausse comme le montre ’exemple suivant:

Prenons O=R{X, Y, Z}/Z(X?*+Y?)—Y?: 0 est une R-algébre analytique intégre
et ordonnable. Si g est 'image de X*+ Y2 dans @, /g est réel dans 0 (V(g) est I’axe
des z), mais /g0 n’est pas réel ('ensemble des zéros de g dans le germe analytique
correspondant a 0 est réduit a un point:

si X désigne I’espace analytique défini par I’équation Z (X 2+ ¥?)—Y*=0 dans
R3 et X son complexifié, 'image réciproque dans la normalisation X de X d’un point
M de ’axe des Z différent de I’origine consiste en effet en deux points non réels de b'd
X étant irréductible en M et pas X: cf [R]).

I1 est facile dans ce cas de voir que P(g) n’est pas vraie (si f est 'image de Y dans

0, a(f,g)=2et B(f,8)=5)

2.4. Cas ou I est un idéal intersection compléte

L’idée de ce paragraphe est de faire éclater / pour pouvoir appliquer le corollaire 1
(ou de prendre I’éclatement normalisé de I pour pouvoir appliquer la proposition 3).

Soient @ une R-algébre analytique ordonnable, /= (g, ..., g,) un idéal de ¢ engen-
dré par une suite réguliére, X un espace analytique réel tel que Uy ,— O et que les g;
s’étendent en des fonctions sur X (notées encore g;).

Soit m: X’ — X I’éclatement de I'idéal I dans X [H,].

PROPOSITION 4. Pour que la propriété P(I) soit vraie, il suffit qu'il existe x'e X'
tel que:

a) n(x)=x

b) Oy . soit une R-algébre ordonnable

c) \/ I"@X,,x. soit un idéal réel.

Démonstration. Posons 0’ =0y. ... D’aprés le corollaire 1 et les conditions b) et c),
si fe0, il existe un voisinage compact K’ de x’ dans X’ tel que:

e (f0', 10")=B(f0',10").
Or, on a évidemment:

ax (f, =ox (f0',10") pour =n(K')<=K.
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11 suffit donc de voir que B(f0’, I0')=B(f, I), ce qui va résulter du lemme suivant:

LEMME 5. Avec les mémes notations que ci-dessus, on a:
B(f,D)=B(f0x ,,10x ) Vx'eX telque m(x')=x.

Démonstration. I étant intersection compléte et x’ se projetant sur x, toutes les
composantes irréductibles du diviseur exceptionnel (défini par I0y.) passent par x’
(si on a choisi X assez petit pour que toutes les composantes irréductibles de V(1)
passent par x). Dans la carte affine ou I0y. est engendré par g, par exemple, le
morphisme n: X’ — X est en effet défini par le morphisme:

0)( [229 veey Zp]
—

(Zigl _gi)

Ox

Le diviseur exceptionnel est donc dans cette carte le produit de ¥ (/) par un espace
lisse de dimension p—1.

Soit X' un complexifié¢ de X', #: X' — X’ sa normalisation; ! (x’) est alors un
ensemble fini, et toutes les composantes irréductibles du diviseur défini par I0%. pas-
sent par un point de 7' (x") (car une telle composante se projette par # sur une com-
posante du diviseur exceptionnel dans X’ qui passe par x').

Il résulte alors d’une proposition de Lejeune-Teissier ([ L-T] Chap. I, §4, Th. 4.11.
et 2.2.7) que B(f, I)=PB(fOx. ., 10x. ), ¥;(f)=1/B(f, I) se calculant a I'aide des
composantes du diviseur exceptionnel de I’éclatement normalisé de 1. c.q.f.d.

Nous allons maintenant chercher des conditions sur / qui permettent d’appliquer
la proposition 4.

Supposons O , de dimension n, et soit I=(gy, ..., g,) un idéal intersection com-
pléte primaire pour I'idéal maximal de Oy . Si AeR™ ™", nous noterons I, I'idéal
engendré par n— 1 combinaisons linéaires des g;:

Iz=(z A{gi) avec A=(%]).
i=1 j=1,.,n=1

Pour A dans un ouvert dense de R®~1)" [, définit un germe de courbe de X en x
(on peut montrer que cette courbe est réduite pour A assez général si @ est réduite,
mais nous n’utiliserons pas cette propriété).

PROPOSITION 5. Soit O une R-algébre analytique ordonnable de dimension n,
I=(gy,..., 8,) un idéal engendré par une suite réguliére. Alors, s'il existe un ouvert non
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vide U de R"~V)" tel que pour Ae U, \/ I, soit un idéal réel, la propriété P(I) est vérifiée.
Démonstration. Choisissons une carte de ’éclatement n: X’ — X (X étant un repré-
sentant du germe défini par @ au point x), telle que © corresponde a I'injection:

0(Z,,..., Z,]

(/N
(glzi_gi)

Les points x'e X’ tels que 7 (x")=x sont paramétrés par R"~! (car le diviseur excep-
tionnel réduit D, ., est 'espace affine & n—1 dimensions): un tel point équivaut 2 la
donnée de n—1 nombres réels z,, ..., z,.

L’hypothése implique que, quitte & modifier les générateurs de I en les remplagant
par des combinaisons linéaires des g;, il existe un ouvert U'<R"™! tel que si
(z2,--+» 2,)€U’, la racine de I'idéal engendré par (g,z;—g;)2<i<m €St un idéal réel
dans 0.

Soit donc x” un point de X’ vérifiant n(x’)=x et dont les coordonnées z,,..., z,
sont telles que (z,,..., z,)eU’.

Soit X’ un complexifié de X’ au voisinage de x’, D le diviseur exceptionnel défini
par 10y., D son complexifié.

Comme U’ est un ouvert, nous pouvons supposer de plus que:

(a): le lieu singulier de X' au voisinage de x’ est égal 3 D (ou est vide). (Cette
condition est en effet vérifiée sur un ouvert dense de D, car si Dcsing X', il en résulte
que DcsingX '’ en prenant des complexifications convenables (cf. [H,]), et I'ensemble
des points de D ou D #sing X’ est analytique de dimension complexe <n—2, donc
sa partie réelle est de dimension réelle <n-—2).

Nous allons montrer que sous ces hypothéses, on peut appliquer la proposition 4
au point x’, ce qui montrera la proposition 5.

a) On a n(x")=x par hypotheése;

b) il faut montrer que Oy. . est ordonnable, i.e. que si #; est un idéal premier
minimal de Oy. .., V(%) a des points lisses de dimension # dans tout voisinage de x’
(proposition 1). (0. .. est un anneau réduit puisque O est ordonnable donc réduit et
que ’éclatement est un morphisme birationnel).

Raisonnons par I’absurde: supposons qu'une composante X = V(%) de X’ dans
un voisinage de x’ ne soit pas réelle; si on note |D| 'ensemble sous-jacent a4 D, il
résulte de la condition (o) que |X{|=|D| au voisinage de x’ (si X n’est pas réelle,
tout point réel de X appartient en effet au lieu singulier de X”).

L’intersection de X avec la variété V' d’équations (Z;=z,;),<;<, n’a donc au
voisinage de x qu’un point réel (& savoir le point x"). Montrons que ceci est impossible:
la condition (o) entraine que la variété V (complexifiée de V') rencontre la partie lisse
de X au voisinage de x’, et donc que ¥'nX| est réunion de certaines composantes
irréductibles de C. Or l’intersection de ¥ avec X’ est isomorphe canoniquement (par
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I’application =) 3 la courbe d’équations: (z;g;—&;),<i<» dans X, dont toutes les
composantes sont supposées avoir des points réels autres que x dans tout voisinage
de x (proposition 1).

c) Montrons enfin que \/ 10y, .. est un idéal réel. (Ox., . est une somme directe
finie de R-algébres analytiques puisque Oy. .. est ordonnable par b) (proposition 2)).

Posons (5x,,x,= @ 0, ou les 0, sont des R-algébres analytiques locales.

Soit X un complexifié de X’ au voisinage de x’, #: X’ — X' sa normalisation, X’
étant muni de sa conjugaison canonique & (proposition 2); tous les points (en nombre
fini) de #7' (x') sont fixes par & (car Oy. ,. est ordonnable), et si xi est un de ces
points, Ox. .., est isomorphe au complexifié de I'un des @;, O par exemple (proposi-
tion 2).

Mais, pour les points y de D voisins de x’, la méme remarque est applicable, car,
d’aprés b), Oy, est aussi ordonnable; I'image réciproque de D par n’ a donc une
partie réelle (i.e. fixe par 6) de dimension n— 1 (puisqu’elle s’envoie surjectivement sur
|D|) au voisinage de xj, ce qui implique que \/ I 01=\/ g1 0, est réel puisqu’il est
premier (proposition 1). c.q.f.d.

Remarque 2. On peut voir facilement que la réciproque de la proposition 5 n’est pas
vraie. Voici cependant I’exemple d’un idéal ne vérifiant pas I’hypothése de la propo-
sition 5, et pour lequel P(I) n’est pas vérifiée. Prenons O=R {x, y}, I=(x*+y?, y°).

La courbe (C,) d’équation: z(x*+y?)—y°>=0 n’a des points réels autres que
Porigine que pour z=0.

L’éclatement X’ est défini par 'anneau: R{x, y} [z]/(z (x*+y?)—»>), le diviseur
D a pour ensemble sous-jacent 1’axe des z, et le seul point x’ de D o1 0. . soit ordon-
nable est I’origine.

11 est facile de voir que P(I) n’est pas vérifiée (cf. Remarque 1).

Remarque 3. On pourrait se poser la question suivante: soit (f)<=R{xy,..., x,}
un idéal réel tel que I'idéal Jacobien de f, J(f) soit primaire pour I'idéal maximal
( f est alors une hypersurface a singularité isolée): a-t-on a(f, J(f))=B(f, J(f))?
(ou méme, la propriéte P(J( f)) est-elle vraie?)

La réponse est négative comme le montre ’exemple suivant, aimablement com-
muniqué par M. Merle: f=y>—x!'2+yx!°eR{X, Y}.

La courbe J( f ), («courbe polaire associée & f ») n’est pas réelle, car son équation
est: 5y*+x'1%+A(—12x" +10yx®)=0.
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