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Comment. Math. Helvetici 50 (1975) 477491 Birkhauser Verlag, Basel

Bicartesian Squares of Nilpotent Groups?)

by PETER HiLTON and GUIDO MISLIN

0. Introduction

Our purpose in this paper is to draw attention to certain commutative squares of
homomorphisms which arise naturally in the study of nilpotent groups and, in partic-
ular, of their localization theory. It turns out that these squares are bicartesian (that is,
pullbacks and pushouts) in N, the category of nilpotent groups. This is a somewhat
remarkable fact, especially since, in general, N does not admit pushouts.

In the first of these squares (Section 2) we consider two families of primes, P, Q
such that Pu Q =11, the family of all primes, and a commutative square of homomorph-
isms in N,

G- H
oo ()
K L

in which ¢, o are P-bijective and ¥, ¢ are Q-bijective (see [H, HMR]). Such squares
turn out (Theorem 2.1) always to be bicartesian in N. They arise whenever we have a
nilpotent group G and its localizing maps,

G- Gp

||

GQ_‘) GPnQ'

Moreover every pair of homomorphisms ¢:G— H, y:G— K in N, with ¢ P-bijective
and y Q-bijective, can be imbedded in a square (), as can every pair of homomorphisms
0:H—- L, a:K- Lin N, with ¢ Q-bijective and o P-bijective. The results of this section
will be applied in a following paper [HM], in which we study an abelian group struc-
ture which may be imposed on the genus set of a finitely generated nilpotent group

1) Part of the content of this paper formed the subject matter of a talk given by the first author at
a topology conference held at Ohio State University in August, 1974.
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with finite commutator subgroup. We also draw attention to [K], in which (P, Q)-
squares are studied in connection with the localization of manifolds.

In Section 3 we study a square that may be constructed out of any nilpotent group
G. The p-localization maps e,: G — G, as p ranges over I1, determine an embedding %)

é:G—~G=[]G,;

we call G the local expansion of G. Rationalizing é, we obtain a commutative square

G G
J, 1 (%)
Go >—+ Go

and it turns out that (*x) is always bicartesian in N; our method of proof is, in this
case, homological. The square (**) is relevant to the study of homotopical localization
[HMR], and this connection is explained and elaborated in Section 3. In Section 4
we indicate further interesting properties of (**), including the fact that the bicartesian
property is preserved when we take the nth homology group H,, n>0.

The first section of the paper establishes some preliminary facts related to localiza-
tion theory which are used in the present paper and in its sequel [HM].

1. Preliminaries on Nilpotent Groups and Localization

In this section we establish some results which will be used in the sequel. Our first
result, crucial to the proof of Theorem 3.1, is certainly classical, so we give no proof.

PROPOSITION 1.1. Let G be a nilpotent group, let T be its torsion subgroup and
let T, be the p-component of T. Then

T=IT,,

the restricted direct product of the groups T,.
Our next result is used in Section 4 and will also be applied in [HM].

PROPOSITION 1.2. Let G be a nilpotent group, H a subgroup of G and let xeG
be such that e,xe H,, for all p where e,:G— G, is the p-localizing map. Then xe H.
Proof. Assume first that H is normal in G, H<1 G, with K= G/H. Then we have, for

2) We may employ the notations G, é in this paper, since we never discuss completions.
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each p, a map of exact sequences

=
!
Q
b

K
'ep 1“‘1) lev
| .
H,—G K

Then ex is an element of K such that e ex=1 for all primes p. This shows that ex=1
so xeH.

In the general case we exploit the fact that H is subnormal in G, that is, we can
find a normal series

H<aN<--<aN<G.
The argument above then shows successively that xe N,, xe N,_q,..., XeéN,, xe H.

COROLLARY 1.3. Let ¢:G— K be a homomorphism of nilpotent groups and let
H<G, LK. Then pH< L if and only if ¢ ,H,= L, for all p.

COROLLARY 1.4. Let G be a nilpotent group, H a subgroup of G. Then H< G
if and only if H,<G, for all p.

PROPOSITION 1.5. Let ¢:G—K be a homomorphism of nilpotent groups.
Localizing at P yields

G Sk
Gr B K,

and hence an induced homomorphism3) é:coker ¢ — coker ¢pp. Then é P-localizes.
Proof. First, consider the map ¢G — ¢pGp induced by e. It is plain that ¢pGp, as
a quotient of Gp, has gth roots for every geP’, and such roots are unique since ¢pGp
is a subgroup of Kp. Thus ¢pGp is P-local. It is then easy to show that ¢G — ¢pGp is
P-bijective so that (see [H]) it P-localizes.
Thus essentially we have the following situation. Let H< K and let A be the normal

closure of H in K. Similarly, let (E) be the normal closure of Hp in Kp. Then we claim

3) Note that the cokernel in G, the category of groups, coincides with the cokernel in N.
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that (ITP) is the P-localization of H. Indeed, it is plain that
(E)Eﬁ P

and we claim that the inclusion is an identity. For this it suffices to show that (Hp)
is P-local, since plainly e sends H to (—ﬁ;). We must show that (f{_;) has unique gth
roots for geP’. The uniqueness is evident since (H5) is a subgroup of Kp; and the

existence follows from Blackburn’s Theorem [B], since every element of (Hp) is a
product of conjugates of elements of Hp, and every element of Hp is a ¢/-power for an
arbitrary positive integer f.

The proof of the proposition is now completed by observing that localization is
exact [H].

Now let G, H, KeN_, the category of nilpotent groups N with nil N<c, and let
¢:G—- H, y:G— K. We may form the pushout in N,

GEH
'”l l@ (1.3)
K- L

and we claim that, for any family of primes P,

PROPOSITION 1.6. In the pushout diagram (1.3),
(i) @ is P-surjective if and only if & is P-surjective;
(ii) if ¢ is P-bijective, o is P-bijective.
Proof. Let Loc: N, — N_p be the P-localization functor, where N, is the subcate-
gory of N, consisting of the P-local groups of N_.. Then Loc is left adjoint to the em-
bedding and so commutes with pushouts. Thus

Gp 25 H,

lllpl l” (1.4)

Kp—" Lp
ap

is a pushout diagram in N_p. Now it follows from Proposition 1.5 that N, has coker-
nels and indeed that the cokernel in N, coincides with the cokernel in N, and hence
with the cokernel in N (or G). However, in the category N, a homomorphism « is
surjective if and only if cokera is trivial. From (1.4) we infer that coker ¢p=cokerop,
and hence ¢, is surjective if and only if o is surjective. By [H], this is equivalent to
the first assertion of Proposition 1.6.
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Now certainly we may infer from (1.4) that ¢p is invertible (in N_p) if op is invert-
ible. However an invertible morphism of N, is just an isomorphism so ¢p is an iso-

morphism if ¢p is an isomorphism and this is equivalent to the second assertion of
Proposition 1.6.

Finally let G, H, KeN and let ¢: H— G, y: K— G. We may form the pullback in
N (or G),

M5

H
al ld’ (1.5)
K—G

and we claim that, for any family of primes P,

PROPOSITION 1.7. In the pullback diagram (1.5),
(i) ¢ is P-injective if and only if ¢ is P-injective;
(ii) if ¢ is P-bijective, o is P-bijective.
Proof. It is shown in [HMR] that localization commutes with pullbacks, in N.
Now in the pullback diagram
M, H,

"‘“l 1¢p (1.6)
Kp TGP

it is clear that ¢p is injective if and only if 6 is injective (since ¢p, op have isomorphic
kernels) and that o, is invertible if ¢p is invertible. Again by [H] these statements are
equivalent to the assertion of the proposition.

2. Commutative (P, Q)-squares

Let P, O be families of primes such that PU Q =11, the family of all primes and let

G- H
e 1)
K L

be a commutative square in N. Then we prove
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THEOREM 2.1. Suppose, in (2.1), that ¢, o are P-bijective and that i, ¢ are
Q-bijective, with Pu Q=1I1. Then
(i) (2.1) is a pullback in N
(i) (2.1) is a pushout in N
(iii) if H, KeN,, then G, LeN,
(iv) every element x in L is expressible as

x=pacb=ab'9a’, a,ad'eH, b,b'ekK.

Proof. (i) Form the pullback of g, ¢ in N. We obtain a diagram

\\a

# G-—;yH
lllf’ le
K— L

By Proposition 1.7 (ii) we infer that ¢’ is P-bijective and ¥’ is Q-bijective. Since ¢, ¢’
are P-bijective, so is w; since ¥, Y’ are Q-bijective, so is w. Thus w is P-bijective and
Q-bijective, and so, since PUQ=1II, w is an isomorphism. Thus (2.1) is a pullback
in N.

(ii) We first observe that Ge N, if H, KeN_ because G is embedded in Hx K.
To prove (ii) we must show that (2.1) is a pushout in N_,, for every ¢’>c. First, let
LeN,, d=c. Form the pushout of ¢, ¥ in N, and so obtain a diagram

GhH

|

K— L \°

N

By Proposition 1.6 (ii) we infer that ¢’ is P-bijective and ¢ is Q-bijective. As above, we
deduce that w is both P-bijective and Q-bijective, hence an isomorphism, so that (2.1)
is a pushout in N,

Now form the pushout of ¢, Y in N_. Such a pushout is a commutative diagram in
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N,, so we obtain

7
'\\;

where (@, ) is the pushout of (¢, ¥) in N_. Again we infer that w is an isomorphism,
so that (2.1) is, in fact, a pushout in N, and we have proved that Le N, completing
the proof of (iii). It is moreover now clear that (2.1) is a pushout in N_. for every
¢’ =c, so that (ii) is also proved.

It remains to prove (iv). Now, given xe L, there exist me P', ne Q’, he H, ke K, with

s~ m

y o

x"=0k, x"=gh.

But PuQ=II, so that m, n are mutually prime and there exist integers r, s with
rm+sn=1. Then

x=x"""=gk"- oh*=gh*-ak".

COROLLARY 2.2. Let g:H— L, 6:K— L in N with g Q-bijective, o P-bijective,
Py Q=I1. Form the pullback of g, ¢ in N,

G- H
g -
K L

Then (2.2) is also a pushout in N.

COROLLARY 2.3. Let ¢:G— H,y:G— Kin N_with ¢ P-bijective, y Q-bijective,
Pu Q=II. Form the pushout of ¢, ¥ in N,

¢iH

wl g (2.3)
K-—: L

Then (2.3) is a pullback and pushout in N.
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COROLLARY 2.4. Under the hypotheses of Corollary 2.3, form the pushout of
o, ¥ inG,

¢
—

X ——

G
d
K

Then T°**R=T°*2R, where I'! is the ith term of the lower central series.

-

EXAMPLE. We note that, for any nilpotent group G, the square

G - Gp
|
€eQ rp
J’ rQ l o (2'4)

made up of localization maps ep, €y, and rationalization maps rp, ry, with PU Q=1I,
satisfies the conditions of Theorem 2.1, provided that P~ Q =0, that is, provided that
{P, Q} is a partition of II. Of course, even if {P, Q} is not a partition, we obtain an
example by replacing G, in (2.4) by Gp,.,.

Remark. If we apply the homology functor H, (with integer coefficients) to the
square (2.1) we again get a (P, Q)-square

H,G » H,H

l 1 (2.5)

HXK-H,L.
Thus (2.5) is bicartesian. It follows that (2.1) gives rise to a Mayer-Vietoris sequence
in integral homology (which, in fact, breaks up into short exact sequences). The
existence of such a sequence is of interest since the homomorphisms ¢, Y of (2.1) are
not assumed to be injective — and, in any case, (2.1) is a pushout in N, not in G.

3. A Commutative Square in N.

In this section we study a commutative square associated with a given nilpotent
group G. Let

6=I16;: (3.1)
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we refer to G as the local expansion of G. Then the localizing maps e,: G — G, induce
an embedding

é:G~G (3.2)

of G in its local expansion. The square in question is obtained by rationalizing (3.2),
thus,

é
b

Q

r

' (3.3)

0

—

Q
Q— O

>
oéo

Then (3.3) was studied in [HMR] in the special case that G is a finitely-generated
abelian group. This study was relevant to homotopical localization. We will point
out, at the end of the section, that the general properties of (3.3) also have applications
in homotopy theory. Note that Go=(G),; we rationalize the local expansion of G.

Since nil G=nil G, it is plain that (3.3) is a diagram in N, if G is in N_. We will
prove

THEOREM 3.1. The diagram (3.3) is a pullback in G and a pushout in N . Hence
it is bicartesian in N.

Proof. We first prove that (3.3) is a pushout in N_. It follows from Proposition
1.1 that é maps the torsion subgroup 7 of G isomorphically onto the torsion subgroup
of G. To see this it suffices to recall that localization commutes with the torsion sub-
group functor and then to remark that the torsion subgroup of G is obviously the

restricted direct product np T,. We will therefore also write T for the torsion sub-
group of G, so that é| T=1. We may factor (3.3) as

P

G

I~

G

|
¥ 3
GIT—G|T (3.4)

s
T

Go = Gy

12

Moreover, ¢ is injective since é is injective, and 7:G/T—G, 7:G/T—G, are again
rationalization maps, so we will write r for 7. Further it is easy to see that (3.3) is a
pushout in N, if and only if the lower square of (3.4)is a pushout in N.. Note, however,
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that € is not the canonical embedding in the local expansion unless G has p-torsion
for only finitely many primes p.
Our next observation is that é induces

éy:H,(G; Z/p)=H,(G;Z[p) forall n,p. (3.5)

To see this, fix p and write G=G,x G, where G=[],,, G,. Notice that each G, is
p’-local; so therefore is G, and so therefore too is H,G, n> 1.1t follows that H, (G; Z/p)
=0, n>1. Thus the projection n,:G,x G — G, induces an isomorphism

ny:H,(G,xG; Z[p)=H,(G,; Z|p);
for, by the Kiinneth formula,

H,(G,xG;Z/p)= & H,(G,;Z/p)®H,(G;Z/p),

r+s=n

the tensor product being taken over the field Z/p. But, since Z/p is p-local,
eo: H,(G; Z|p)=H,(G,; Z]p),

and (3.5) now follows from the fact that e, = ,é.
We now complete the proof that (3.3) is a pushout in N_.
We first prove a result corresponding to (3.5), namely,

ée: H,(G/T; Z/p)=H,(G|T; Z|p) forall n,p. (3.6)

The proof of (3.6) is along precisely the same lines as that of (3.5); namely, we fix
p, so that

G/T=G,/T,xG|T,,

where G, as in (3.5), is [1,%, G, Since G and T, are both p'-local, so is G/Tp., and
the rest of the argument proceeds as for (3.5), in view of the fact that (G/T),=G,/T,.
Now form a pushout diagram

G/T>> 6T

I I ¢ (3.7)

Gy — P

a
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in G; we then have

G/T>>G|T

rI IQ
Go = P (3.8)

Go

The pushout (3.7) gives rise to a Mayer-Vietoris sequence in homology; from this
and (3.6) we immediately infer that

ox: H,(Go; Z|p)=H,(P; Z|p).
But since H,G, is rational, n>>1, this implies that
H,(P;Z[p)=0, nz1, allp. (3.9)

Now plainly r,:H,(G/T; Q)= H,(Gy; Q), r«: H,(G/T; Q)= H,(G,; Q). From the
former isomorphism and the Mayer-Vietoris sequence we infer that

ox: H,(G; Q= H,(P; Q). (3.10)

This with the latter isomorphism implies that
oy H,(P; Q)= H,(Go; Q). (3.11)

Since H,G, is rational, n>1, so that H,(Go; Z/p)=0, n>1, all p, we may now
infer from (3.9) and (3.11) that

wy: H,P=H,G,. (3.12)

By the Stallings-Stammbach Theorem, (3.12) implies that  induces an isomorphism

w;: P|I* 1P G,y 1G, (3.13)
for all i>0. In particular, we may take i=c, so that w induces

w,:P[l*1P=G,. (3.14)
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But if 7 projects P onto P/[“*!P, then w=w,t and

G/T>>GIT
|
Gy — P[T**'P
is a pushout diagram in N_. This proves that the lower square of (3.4), and hence (3.3),
is a pushout diagram in N_. Since Ge N, it follows that Ge N, for all d>¢, so that
(3.3) is a pushout diagram in N, for all d>c¢, and hence a pushout diagram in N.
We now prove that (3.3) is a pullback diagram in G. Of course, we may abandon the
categorical definition and simply prove that if xeG, yeG, with rx=é,y, then there
exists ge G with ég=x, rg=y (the uniqueness of g follows because ¢ is injective). We
will invoke the following principle.

PROPOSITION 3.2. Let S be an assertion about nilpotent groups such that
(i) S is true of all abelian groups;

(ii) if N>>G-»Q is a central extension of nilpotent groups and if S is true of N and
Q, then S is true of G.

Then S is true of all nilpotent groups.

Proposition 3.2 follows from an easy induction on nilpotency class. Now consider
the assertion S that (3.3) is a pullback (we need not specify the category). Then S is
true of all abelian groups G since (3.3) is a pushout (in Ab) and é is injective. It thus
remains to establish property (ii) of Proposition 3.2. But this is easy, noting the fact
that local expansion and rationalization are exact functors (preserving centrality,
though this is not important here). Thus Theorem 3.1 is completely proved.

We close this section by giving an application of Theorem 3.1 to homotopy theory.
Given a nilpotent space X [HMR] we may form the square analogous to (3.3)

X 5%

1, . l (3.15)
Xo— Xo.

THEOREM 3.3. The square (3.15) is a weak pullback in the homotopy category.
The meaning of this theorem is the following. Replacing r: X — X, by a fibre-map,
we may form the pullback

) E’¢

1" N l' (3.16)
Xo—Xo
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and hence we obtain a map w: X — X such that vw=r, uw=¢é. Then we claim that w
is a homotopy equivalence. We remark that no finiteness assumptions are being im-
posed here.

Proof of Theorem 3.3. Applying the nth homotopy group functor to (3.15) we ob-
tain a square

w,X i n,X
l sor L (3.17)

Tch o™ Tch 0

of type (3.3) which is therefore a pullback and a pushout in N. Applying the Mayer-
Vietoris homotopy sequence to (3.16) we get an exact sequence
U, U%} {r*, —éox) {us, vs} rq

---n,,X{—-—> 1,X®n,X, S Xy o X—o X xm X2, Xy (3.18)

éoxq’

where the final two arrows are obtained by composing r,, é,4 With the projections
g, X xn, Xo—om X, q 71, % x 1, X, - 1y X, respectively ; and exactnessat n, £ x m, X,
asserts that r& = éq,n if and only if there exists {en, X with u,{=¢, v,{=n. (Actually,
to complete the argument we only need the easy ““if” part of this last assertion).

It now follows easily from the fact that (3.17) is bicartesian, and from (3.18) that
w induces isomorphisms

we mX=n,X, n=l,

so that w is a homotopy equivalence, provided we know that X is connected. This in
turn follows from Proposition 11.7.11 of [HMR] and Proposition 3.4 below.

PROPOSITION 3.4. In the square (3.3), each element of G, is expressible as

z=rx-éyy
=&,y rx’,

zeGy, x, X' €G, y, ¥ €G,.

Proof. We apply Proposition 3.2 to the assertion S of Proposition 3.4. Then (i)
holds since (3.3) is a pushout square. An elementary computation establishes (i)
(here the centrality of N is essential), so that Proposition 3.4, and hence Theorem 3.3,
follows.

Remark. A proof of Theorem 3.3, for spaces X of finite type, is given in [HMR],
but the argument that X is connected is there omitted.



490 PETER HILTON

4. Further Properties of the Square (3.3)

In this section we make further deductions about the square (3.3)

and a deduction from Theorem 3.1.

THEOREM 4.1. The induced homology square

Hpd

H,G - H,G

I oo | @)
HnGO > HnGQ

is bicartesian for all n>1, with H,é, H,é, injective.

Proof. Let M be the mapping cone of the map K (G, 1) - K(G, 1) associated with
é. It follows from (3.5) that H,(M; Z/p)=0 for all n>1 and all primes p. Thus H,M
is a rational vector space, n>1.

Now the maps n,:G— G, induce H,n,:H,G— H,G, and hence # :H,G— H,G,
such that

foH é=6:HG— H,G.

Since é is injective, so is H,é — and hence also H,é,. We thus obtain the diagram, with
exact rows, and with M the mapping cone of K(G,, 1) = K(G,, 1),

) 4
H.G 4, HG-»HM

e I

H,G, —» H,G,—~»H,M

But since H,M is rational, it follows that r: H,M =~ H,M. Thus (4.1) is a pushout and,
H,é being injective, therefore bicartesian.

THEOREM 4.2. In (3.3) cokeré is a rational group. Further, if xe G and x"€ éG
for some n>1, then xe€éG.
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Proof. Since (3.3) is a pushout in N, the induced map cokeré— cokeré, is an
isomorphism, the cokernels being taken in N. However, the cokernel in N coincides
with the cokernel in G. Moreover, it follows from Proposition 1.5 that the induced
map is rationalization. Thus coker é is rational.

To prove the second assertion of the theorem we invoke Proposition 3.2. For if G
is abelian then the assertion is an immediate consequence of the fact that cokeré is

rational. Now suppose given a central extension N »—»G-f»Q (where we think of N
as a central subgroup of G) and assume our assertion true for N and Q. We write
8:G—» (0, etc., for the surjections induced by ¢. Let xeG with x"=éy, yeG. Then
(6x)"=éey, so that Ex=éz, ze Q. Let z=¢g, geG, so éx=28ég. Thus x=(ég) h, heN.
Then éy=x"=(ég") h", so that h"€éG, say

W=éu, ueG.

Now the element ue G is such that e ,ue N, for all primes p. Thus by Proposition 1.2
it follows that ue N, and our assertion for N implies that A= év, ve N. Thus finally
x=2¢&(gv) and our assertion is proved for G.

THEOREM 4.3. Let nilG<c and let

I

P

é
>
r
[ 4
—

Qe Q

0

be a pushout in G. Then o is injectiveand [°**P=TI°*2P. Moreover, P[[**" is a rational
group.
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