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Comment Math Helvetici 50 (1975) 455-^75 Birkhauser Verlag, Basel

Extremal Length, Extremal Régions and

Quadratic Differentials

by C. D. Minda1) and B. Rodin2)

0. Introduction

This paper îs devoted to the proof of two theorems, Theorem 1 îs given in Section
9 and Theorem 2 m Section 12. The proofs of thèse theorems require a number of
auxiliary concepts and constructions (given m Sections 1-8 and 10-11), but the
theorems themselves can be stated without such préparation

Let a be a 1-cham on an open Riemann surface X. We associate to g (actually, to
the Z2-homology class of g) sl quadratic differential 4>, a family IF of crosscuts on X9

and a family ^"* of curves on X, !F consists of ail crosscuts which cross g an odd
number of times, ^"* consists of boundanes dQ where Q îs a Jordan open set con-
taming an élément in the Z2-homology class of g (see Section 5). $ îs charactenzed

m Proposition 4 (Section 8), if X îs the mtenor of a compact bordered Riemann
surface, # can also be descnbed as follows. among ail curves which are Z2-homolog-
ous to g, there îs a unique one g0 which has the greatest extremal distance from the

boundary of X (see Proposition 2, Section 8). Let a> be the harmonie measure of g0
on X— g0 Then #=i (dœ 4-1 * dco)2.

Theorem 1 relates the extremal lengths of F and <F* to the intégral norm of #:

1

Theorem 2 îs an analogous resuit for closed surfaces X and for reduced extremal
lengths.

In the simplest spécial case (X îs simply connected and a îs an arc), Theorem 1

reduces to an extremal length theorem of J. Hersch [1], Some applications of Theorems

1 and 2 are discussed bnefly in Section 13.

*) Research partially supportée by National Science Foundation Grant No GP 39051

2) Research partially supportée by National Science Foundation Grant No GP 38600
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1. Intersection Numbers for 1-chains

Let y and ô be singular 1-chains on a Riemann surface X. We wish to define the
intersection number y x <5. Informally, y x ô is the algebraic sum of the number of
times ô crosses y from left to right; right to left crossings are counted with négative
values. A necessary condition for this intersection number to be defined is y c X— dÔ

and ôcX—dy. It is bilinear and skew-symmetric and dépends only on the homology
class of y on X—dô and the homology class of ô on X—dy.

The formai définition of y x ô can be given in terms of simplicial approximation.
Because y and ô need not be cycles, care must be taken to prevent the endpoints of
one chain from shifting across the other chain. Take a triangulation of X so that the

points in ôy are vertices in the triangulation and the points in dô are barycenters. This

triangulation should be so fine that if a star in the barycentric subdivision contains a

point of either dy or ôÔ, then that star is disjoint from the other chain. For such

triangulations we can replace y and ô by their simplicial approximations and then
define the intersection number in the same manner as for cycles (Ahlfors-Sario [1,

pp. 67-72]).
An intersection number can still be defined when one of y and ô is a relative

1-chain. y is a relative 1-chain if y Y, ni7i is a countable formai sum where nt is an

integer and for each compact set KczX the set of indices i for which nt^0 and

yfn Kt£0 is finite. Let <5 be a finite 1-chain. Since yt x ô ^0 for at most finitely many
indices i, y x<5 ]T «;()>; x (5) is defined. In this situation yxô dépends only on the

weak homology class of y on X— dô.

2. The Covering Surface X(p)

Let a be an intégral 1-chain on a Riemann surface X and set X' X— da. We shall

construct a two-sheeted (possibly branched) covering surface of X. It will be denoted

by Je or X(a). In case c is a simple slit, this construction generalizes the classical

technique of cross-identifying the edges of the slits between two copies of X— a.

Fix a base point Q on X'. For yenï(Xf, Q) define h (y) to be the mod2 residue

class of y x a. The group homomorphism

h;nx{X',Q)->Z2 (1)

is trivial or surjective according to whether or not there is a yen± (Xf, Q) with yxa
1 (mod2). We shall express this condition as a homology property of a. To accom-

plish this we consider homology on X modulo the idéal boundary p of X with coefficients

in Z2. If S and t are 1-chains, then the notation [5]2 H2 (mod/?) will mean

that ô—x is a cycle which is Z2-homologous to a dividing cycle. The following lemma
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is an analog of the fact that a cycle a on a Riemann surface is dividing if and only if
a x y=0 for ail cycles y.

LEMMA 1. Let a be a l-chain on X. [(x]2 0(mod/?) if and only if yx<7=0
(mod2)/<9r ail closed curves y on X'.

Henceforth, we shall assume that the given l-chain g is nontrivial in the sensé that

(2)

This means that either g is not a Z2-cycle or else g is a Z2-cycle which is not Z2-
homologous to a dividing cycle. The homomorphism h in (1) is then surjective and
its kernel

G (g)= {yen, (X\ Q): y x g~0 (mod2)} (3)

is a normal subgroup of n1 (X\ Q) of index two. There is a normal, smooth, two-
sheeted covering surface Xf—>X' and the fundamental group of %' is isomorphic
to G (g). Any yenl (X'9 Q) lifts to a closed curve y on.?' if and only if y e G (g). There
is exactly one nontrivial cover transformation T.X' -+X' and T is an involution.

It follows from Lemma 1 that for a planar surface X ail finite 1-chains with the
same boundary give rise to the same two-sheeted covering surface Xr.

Next, we extend X' to a two-sheeted ramified covering of X. Let dG—^niPi
where the Pt are distinct points of X and the n{ are nonzero integers. Ifnt is even, then
a sufficiently small circle centered at Pt lifts to two disjoint circles on R'. In such a

case we add two points to Xr corresponding to the centers of thèse circles. The
projection map/and the cover transformation Tboth extend continuously to thèse added

points ;/maps them to Pt and T interchanges them. If nt is odd, then a small circle t
centered at Pt does not lift to a closed curve on X\ but 2t does lift to a closed curve.
In this case we add a first-order branch point P( to Xf, extend the projection map/to
?i by f(Pi)=Pi and extend the cover transformation T so that Pt becomes a fixed

point of T.

Let X(g) dénote the covering surface X' after ail such points hâve been added.

Then J? (g) —? X is a two-sheeted ramified covering with branch points over each point
in the Z2-boundary of g. The cover transformation T is involutory and its only fixed

points are the branch points. We shall refer to %(g) as the covering surface ofXdeter-
mined by g; if no confusion results we shall write % in place of X(g). Clearly, X is

independent of the particular base point Q selected on Xf. Also, if [g]2 [Po\i (mod j8),

thenX((r)=X(<T0).
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3. The Sheet Structure of X(<x)

The space X—f'1 (a) can be partitioned into two sheets both of which are open
sets; they need not be connected. Fix a base point QeX' and let g be a point on X
lying over Q. Consider ail arcs ô:[0, 1] -+Xr with ô(0) Q and ô(l)$a, and let 8 be

the unique lift of ô to X with 8(0) Q. The lower sheet ofX(a) (with respect to Q)
consists of ail points 8(1) where ô crosses a an even number of times ; the upper sheet

is the set of ail £(1) for <5's which cross <r an odd number of times. Thèse sheets are
well defined: if 8(l) 80(l)9 then ÔqÔ'1 *s in the group G(a)9 and so it crosses a an
even number of times. Hence, ô x a and ôoxa hâve the same parity. The distinction

between 'upper' and 'lower' dépends on the choice of the point Q over Q. If Q9 the
other point on X over Q, were used in place of Q9 then the two sheets would be inter-
changed. In any case, the cover transformation T permutes the two sheets and/maps
each sheet homeomorphically onto X— a. Moreover, the two sheets, exceptpossibly for
the labels 'upper' and iower', do not dépend upon the sélection of base point.

The sheets do dépend upon the 1-chain a, and it is necessary to détermine the

dependence explicitly. Let a and a0 satisfy [<r]2= [co]2 (mod/?). Then X(a)=X(a0)
as surfaces, yet they may hâve quite différent sheet décompositions. Let U(a) and

L(a) dénote the upper sheet and lower sheet of X(a). We say that X(a) and X(aQ)
hâve the same sheet structure if, for any regular subregion Qcz X such that Q^> a u a09

the set {U(a)r\f~1(X-Q\ L(a)nf~1(X-Q)} is the same as the set {U(a0)

LEMMA 2. Let a and aQ be l-chains on X which satisfy [ff]2 M2 (modjS).
Then X(a) andX(a0) hâve the same sheet structure if and only if [c]2 [o"o]2-

(Let us now détermine the number of covering surfaces X(o) and the number of
sheet structures for a given surface X. Fix a 1-chain a on X. Let H1 (P(X)9 Z2) dénote
the subgroup of Ht (X9 Z2) generated by the dividing cycles. The homology group
modulo dividing cycles, or the relative homology group with respect to the idéal

boundary, is Ht (X9 Z2)/Hi (P(X)9 Z2). We hâve seen that there is a one-to-one cor-
respondence between covering surfaces % (cr0) derived from l-chains <r0 with 32(TO ô2<r

and éléments of Hx (X, Z2)/H1 (P(X)9 Z2). Each of thèse covering surfaces can gener-
ally be partitioned into sheets in many non-equivalent ways. Lemma 2 shows that for
a fixed covering surface X there is a one-to-one correspondence between Ht (j8 (X)9 Z2)
and partitions of JT into two sheets. In case X is compact, there is just one partition
of each covering surface % into two sheets. If X is planar, then ail l-chains a0 with
d2a0=d2a give rise to the same covering surface; however, there are 2n"1 ways to
partition it into two sheets when Zhas connectivity n. Not every two-sheeted covering
surface can be obtained in this fashion because ail of thèse hâve an even number of
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branch points and there exist two-sheeted coverings with an odd number of branch
points.)

If X is an open surface, let /? dénote the one-point idéal boundary. This one-point
compactification of X naturally induces a two-point compactification of X; the idéal
points are denoted by /50 and &. The compactification is defined by stipulating that
a séquence {?„} on X converges to /?0 (respectively, &) if f(Pn) ->/? and if {Pn} is

eventually on the lower (respectively, upper) sheet of Je. The compactification is

dépendent on the Z2-homology class of a. The function / extends to a continuous
function from the two-point compactification of X to the one-point compactification
of X and the cover transformation T interchanges j50 and fix.

4. The Function Ci

In this section we shall assume that X$OG. Let {Q} be an exhaustion of X such

that a c Q for each Q. Let pQ dQ and let ftQ0 and ftQl be the lifts of pQ to the lower
sheet and upper sheet, respectively. Suppose iïD is the harmonie function on/"1 (Q)
determined by the boundary values

)=j if Pepaj t/=0,l). (4)

By the maximum principle ûQ satisfies

i (5)

for ail Pe/'1 (Q). As Q -* X, ûQ converges, uniformly on compacta, to a nonconstant
harmonie limit function û; w lim3_^wft and D£(M) lim£_>£i)ft(w3), where

Q=f~l (Q), Dx(û) is the Dirichlet intégral of û over X and w« ^ is given by (4).
The symmetry property (5) continues to hold for the limit function:

a(P)+a(T(P))=i (6)

for ail PeX.
û dépends upon the Z2-homology class of a and the choice of base point. If a

différent base point were selected, then either the same function û would be obtained

or else 1 — û—ûoT would be produced. Both thèse fonctions hâve the same Dirichlet
intégral.

5. The Curve Families SF, &*

A (gênerai) crosscut on a Riemann surface X is an open arc ô : (0,1 -» X such that

ô(t)-+fi &st -+0 and as t -» 1. IfX is the interior of a compact bordered surface, there
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is a classical notion of crosscut which is slightly différent. The classical définition
requires points Qo and Q1 on the border ofXsuch that \\mt^jô (t) Qj fory=0, 1. The
classical définition is not conformally invariant with respect to conformai mappings of
the interior of X. Given a family of gênerai crosscuts on a compact bordered surface,
the subfamily of those which are not classical has infinité extremal length. Therefore,
the nonclassical crosscuts can be discarded at any stage without changing extremal
lengths.

An open subset Q of X is called a Jordan open set if Q is relatively compact and
its border consists of a finite number of Jordan curves. We shall be interested in the
extremal lengths of the following curve families on X' X— da:

& : ail crosscuts ô on X such that S x a= 1 (mod2).
^*: ail dQ, where Q is a Jordan open subset of X and Q contains a 1-chain an

satisfying [crj0]2=[(7]2.

In order to investigate & and J^* we introduce two related curve families on X:

«# : ail open arcs on X which tend to j50 in one direction and tend to jSj in the
other direction.

#*: ail curves on X which separate j80 and fiv

We may apply a well known extremal length theorem (cf. Ahlfors-Sario [1],
Marden-Rodin [1], Strebel [1]) to thèse curve families on X to obtain the following
resuit.

LEMMA 3. A(#*) A"1 (^) D%(û). IfXeOG, then D$(û) 0; otherwise

andO<D%(û)<ao.
Our goal is to employ Lemma 3 in deriving a corresponding resuit on X for the

curve families ^ and &*. Two of the simplest tools for relating extremal length on
X to extremal length on X are given in Lemmas 4 and 5.

LEMMA 4. Let & and ê be curve families on X andX respectively.

then ë

LEMMA 5. Let @ and & be curve families on X andX9 respectively, such that the

extremal metric for <$ is T-invariant. If every ye& can be lifted to a ye@9 then

It is easy to see that the families & and # satisfy the hypothèses of both Lemmas
4 and 5. We first note that any #e# goes from one sheet of% to the other; therefore,

f(S) crosses g an odd number of times. Hence/(#)c:^\ Conversely, if ôe^9 then

both lifts of ô belong to #. Furthermore, the extremal metric for # and #* is
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dso \dû+i*dù\ which is J-invariant. Thèse considérations immediately give us

k(^)=2X(^)=2Dg1(û). (7)

Next, we wish to establish a corresponding resuit for &* and #*.
The families &* and #* satisfy the lifting property required in Lemma 5. To see

this, let y* dQe^r*, where Q is a Jordan open subset of Xand contains an élément

oQ of [o"]2. Take Qo to be the union of ail noncompact components of X— C\Q\
then Qo is a neighborhood of the idéal boundary fi of X. Consider the upper and lower
sheets of X defined relative to <jq; thèse sheets are équivalent to those defined by a.
Qo can be lifted homeomorphically to the lower sheet of X; dénote the lifted set by
Ûo. Then Qo is a neighborhood of j50 and y* dQ0 *s an élément of #*. Since y* is a

lift of some of the contours of y* (the lifts of the remaining contours are not relevant),
we conclude that y* can be lifted to an élément in «#*. Lemma 5 now implies that

/l(J?'*)^2A(#*) 2i)î(M). (8)

We cannot use Lemma 4 to prove the opposite inequality because &r* and #* do
not satisfy the projection hypothesis of that lemma. If^* could be modified so that
the new family satisfied the hypothèses of both Lemmas 4 and 5, then the remaining
proof would be easier. We hâve been unable to find a reasonable modification of this
sort. (Of course, one could take ^* to be the family/(#*), but this device would not
be useful for applications unless we also possessed an intrinsic description of/(#*)
directly in terms of X.) Instead, we shall prove the desired inequality for A(«^"*) by
investigating the level lines of û.

6. Level Lines of fi

In this section we assume that X is the interior of a compact bordered surface.

Then X is also the interior of a compact bordered surface and each level line

Tk= {PeX:û(P)=k}9 0<k<\, is afinitecycle onX. Orient xk so that wis less than k
to the left of ffc.

The cover transformation T sends %k to -rt_fc. For % <k < 1 define xk to be/(ffc);
xk is a cycle on X' X-da. The case k=i is exceptional; f1/2 projects to a 1-chain

traced once in each direction. We shall define the projection t1/2 as follows. Observe

that ail of the branch points of X belong to f1/2. First, express f1/2 as a sum a0 + &u
where a0 and a± are 1-chains which satisfy T6to= -^ (a0 and ax are not uniquely
determined by thèse conditions). Set t1/2=/(a0); note that the orientation of t1/2 is

ambiguous. This will not matter, however, since we shall be using Z2-homology.
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LEMMA 6. If X is the interior of a compact bordered Riemann surface, then

Proof. We first note that a and t1/2 hâve the same Z2-boundary. The only possible
boundary points of t1/2 are at the projections Pt of the brandi points Pt ofX. Suppose

Pi is a critical point of û of multiplicity n (n 1 means that û is regular at Pt). One can

prove that n must be odd. Hence, Pt is in the Z2-boundary of t1/2.
We now demonstrate that [<t]2 [ti/2]2 by showing that ôxa ôxr1/2 (mod2)

for ail crosscuts ô on X. Let <5 be a crosscut of X parametrized on the interval (0, 1).

By deforming ô if necessary we may assume that it intersects t1/2 in a finite number of
transversal crossings. Let S be a fixed lift of ô; we can assume that limnoo*(t)=ft0.
Now, Sx a is even or odd according to whether lim,tl£(7)=/î0 or limfîl^(/)=j§1.
If lim, t $(t)=fi0, then û has the value 0 at both ends of S so that û(S(t)) takes the
value 1/2 an even number of times for 0<f <1. This means that £xf1/2 is even. On
the other hand, if limtn$(t j51, then û has différent values at the endpoints of 3,

and û(S(t)) assumes the value 1/2 an odd number of times. In this case S x f1/2 is odd.
Thus ô x a and S x f1/2 hâve the same parity. The number of crossings S x f1/2 is the

same as the number of crossings ô x t1/2 (distinct crossing points of § and f1/2 may
correspond to multiple crossing points of ô and t1/2). Therefore, ôxa and <5xt1/2
hâve the same parity.

LEMMA 7. Let X be the interior of a compact bordered Riemann surface. For

\j2<k<\ define

Qk={PeX:l-k<û(P)<k}9 Qk=f(Qk).

Then Qk is a relatively compact open subset of X, xk is its border, and t1/2c= Qk.

From Lemmas 6 and 7 we obtain the following resuit.

LEMMA 8. If X is the interior of a compact bordered Riemann surface, then

for each k, 1/2<A:<1.

7. Extremal Length Relations on Open Surfaces

Because of the symmetry (6), û corresponds to a 2-valued harmonie function on X.
We can choose a single-valued brandi on X— t1/2. Specifically, for PeX— t1/2, let

u(P) be the larger of the two values w(/"1 (P)). w is a harmonie function on X— t1/2.
If X is the interior of a compact bordered Riemann surface, then u is determined by
its boundary values w(P)=l/2 if Pgt1/2, and u(P)=l ifPep. Its Dirichlet intégral
and flux are related by

*(S) ZMW)=i f *du i f *du
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There is a standard method to obtain an upper bound for extremal length by using
Schwarz' inequality. We omit the finitely many tfc's which pass through a critical
point of u and use u to form the real part of a local parameter on the complément of
the set of critical points. If q(z) \dz\ is any linear density on X, then, because TkeJ*"*
(Lemma 8), we obtain L2 (#"*, q)/A (X9 q) ^ 4DX (u) 2D~X (w), and hence,

A(jr*)<2Z>i(fl). (9)

We collect the results (7), (8), (9) and obtain:

LEMMA 9. On any open Riemann surface X, À^)^2Dx(û)=4X~l {^). IfX is
the interior of a compact bordered Riemann surface, then A(^"*) 2Dx(w). D%(u)
vanishes ifand oniy ifXeOG.

We can now state a preliminary form of the extremal length theorem.

PROPOSITION 1. IfXisan open Riemann surface and a a nontrivial l-chain on X,
then À(#r*)=4À~1 (3sr) 2D%(û).

Proof In case X is the interior of a compact bordered Riemann surface, then this
is an immédiate conséquence of Lemma 9. If X is not the interior of a compact
bordered Riemann surface, let {Qn} be a regular exhaustion of Zsuchthatcrc Qn for ail w,

each Qn is the interior of a compact bordered surface and the séquence {Qn} is increas-

ing. Suppose Ûn is the covering surface of Qn determined by a. Let &'„ and ^"* be the

analogous curve families defined for Qn; then À(^*) 4X~l (^rn) 2D^n(ûn).
Since {Qn} is an increasing séquence, the curve families 3^* also increase with n.

Moreover, J*"* \J J*~* so limA(Jr*) /l(#"*). In our construction of û we noted that
\imDdn(ûn) Dz(û). Therefore, A(^*) 22)*(fl).

The proof that 2X 1(&r) Dx(û) is more involved. Every crosscut ô in c^n+1
contains a subarc in ^"n, so A(^'n)^/l(JrM+1) for ail n, Also, each crosscut in & con-
tains a subarc in &n so X(^r)^K^\ Thus> HmA^J^A^). The opposite
inequality may be proved by making use of an extremal length technique attributed to
Beurling and first developed by Wolontis [1]. The same method has been used and
extended by others (Marden-Rodin [1], Minda [1, 2], Strebel [1], Suita [1]). The

technique is very topological; crosscuts from the families &\ must be pieced together
to form a crosscut ofX belonging to J5". This process will show that limk Ç^n) > X (J*").

Because the proof is very long and is so similar to the proofs given in the preceding
références, especially Strebel [1], it is omitted hère. The proof is then completed by
observing A(Jr) lim>l(Jrn) lim2Z)^1 (ûn) 2D~x'i (û).

8. Extremal Régions and Quadratic Differentials on Open Surfaces

In this section we discuss extremal properties of the level curve t1/2 and of a

quadratic differential <Pff on X which is derived from the function w. Proposition 2 is
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an extension of the Grôtzsch Extremal Région Theorem. Proposition 4 characterizes
the quadratic differential <Pa determined by a 1-chain a. This resuit provides a gênerai
setting in which to extend the results of Hersch [1] concerning certain elliptic func-
tions and their relations to extremal length problems in a disk.

The extremal problems and uniqueness properties that we obtain refer only to a
and X, not to X. As a conséquence, we shall be able to reformulate Proposition 1 in
terms that are intrinsic to X (see Section 9, Theorem 1).

By the harmonie measure of a closed subset acX is meant the harmonie function
coa on X— a with boundary values 1 on a and 0 on p. The extremal distance from a to P

is denoted by A(a, P). It is well-known that À (a, p) Dx~1 (eoa).

PROPOSITION 2. Let X be the interior of a compact bordered Riemann surface
and let abea nontrivial 1-chain on X. Among ail \-chains which are Z2-homologous to g
there is a unique one a0 which has the greatest extremal distance from p. Specifically,
a0 is the level curve t1/2 of u; the harmonie measure of a0 is coao 2(1 — u). We hâve

(a,)?):aeM2}, (10)

Dx(c»tl/2)=min {Dx(a>J: ae|>]2}, (11)

A(t1/2,P)=n^ (coZi/2) iDxl (u^iD-1 (ù). (12)

Proof Given ae[d]2 form X=X(<j)=X(oi) and w. Lift the harmonie measure œa

to X by defining œa(P) coa(P) if P is on the lower sheet of X(oc) and P lies over P,
and define œa(T(P)) 2-œa(P). Set coa(P)= 1 if P lies over a. The harmonie function

iïonl has the same boundary values as the pieeewise harmonie function %œa.

From Dirichlet's principle we obtain Z>j(w)<Z)j(^d)a) and equality holds if and only
if û=iœa. Since T1/2e[(r]2 (Lemma 6) and û=%œXi/29 it follows that Dx((otl/2)
^Dx(coa) and equality holds if and only if coa œTl/2. Necessary and sufficient for

wa=œXl/2 is that a and t1/2 coincide as Z2-chains. This establishes (10), (11) and (12).
We now consider an arbitrary open Riemann surface X, not necessarily the interior

of a compact bordered surface. We shall need an extremal length characterization of
harmonie measures in this gênerai situation. Let j87- be a closed subset of the idéal

boundary P of X. Hère P is regarded as the Kerékjârtô-Stoilow idéal boundary of X.
We say that Pj has positive capacity if the extremal distance from Pj to a fixed con-
tinuum in X is finite.

Suppose P is partitioned into two disjoint nonempty closed subsets po and px.
The harmonie measure of pt is the harmonie function on X which has boundary
values 0 on j80 and 1 on px. (The précise définition refers to a limit of the corresponding
harmonie measures on an exhaustion of X.) The following characterization of the

harmonie measure will be used in the proof of Proposition 4.
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PROPOSITION 3. Let p0, 0t be a partition ofthe idéal boundary of X into disjoint
nonempty closed sets of positive capacity. The harmonie measure of pt is uniquely
determined up to an additive constant as the harmonie function œ on X which satisfies
the conditions:

(i) Dx(co) <oo,
(ii) §ôd(o=l for almost ail crosseuts à from fl0 to pt.

The constructions that we hâve developed provide a method of associating a

quadratic differential # </>(z) dz2 to a 1-chain a. Given <r, form X and w. Equation
(6) shows that (dû+i*dû)2 is a T-invariant holomorphic quadratic differential on X.
The invariance means that it can be transferred to X. In this way we obtain a (mero-
morphic) quadratic differential 0 (f)(z)dz2 on X\ <P (du + i*du)2 on X— cr. To
indicate the dependence on g we shall sometimes write 4>=<P<r <j)(T(z) dz2.

On X', 4> is iocally the square of an analytic function. Hence <P has no pôles on X\
and ail of its zéros there are of even order. At a branch point projection Peda, $ will
hâve a simple pôle if P=f~1(P) is not a critical point of û; otherwise, <P will hâve a

zéro of odd order aXP. The norm of <P (j>(z)dz2 is defined as JJx|(/>(z)l dxdy*=\\$\\
and we see that ||^||=Dx(w)=iD^(w). Furthermore, ReJ

PROPOSITION 4. Let a be a nontrivial Uchain on a Riemann surface X$OG.
There is a unique quadratic differential $ </> (z) dz2 on X which satisfies the following
conditions:

(i) 11*11 < oo,

(ii) There is a germ <J<f> (z) dz on Xr which can be continued along ail paths on X'
and the continuation satisfies

(a) Re Jy J(Hz)dz=0 ifye^(Xf) andyxa 0 (mod2),

(b) Re\ôyj(j){z)dz=\ for almost ail crosscuts ô such that ôxa is an odd

positive integer.

Proof The quadratic differential $a satisfies properties (i), (ii)-a and (ii)-b. To
verify the uniqueness, consider another such quadratic differential 0. Let w(P)

Re Jq v^Kz) dz. Property (ii)-a shows that w lifts to a single-valued harmonie

function wonl'. Property (i) shows that D%,(w)<co. Therefore, w has removable

singularises at the branch points; we can consider w as a Dirichlet-finite harmonie

function on X. Property (ii)-b implies that j~ôdw= 1 for almost ail crosscuts 3 on J?

which join &> to fa. By Proposition 3, dw dû. Consequently $ $a.

The orthogonal trajectories of a quadratic differential <f> (z) dz2 are the solutions

of <j) (z) dz2 <0. The orthogonal trajectories of #ff are therefore the level curves of u.

If X is the interior of a compact bordered Riemann surface, then thèse trajectories
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are Tfc€^"* (0<k<i), as well as the spécial trajectory T1/2e[V]2. We therefore have
the following resuit.

LEMMA 10. The properties (i) and (ii) of Proposition 4 uniquely détermine <Pff.

If X is the interior of a compact bordered Riemann surface, then there is a unique set

<r0 of orthogonal trajectories of <Pa such that ffoe[(j]2 ; X— a0 is the extremal région of
Proposition 2.

9. The Main Theorem for Open Surfaces

The two-sheeted covering surface X (a) and the associated function û have played
an auxiliary rôle in our results. They were needed as a tool in the proofs; the final
resuit can now be stated without référence to them.

THEOREM 1. Let a be a nontrivial 1-chain on the hyperbolic Riemann surface X.
There is a quadratic differential <Pff on X which is uniquely determined by properties (i)
and (ii) ofProposition 4. Let !F and &** be the curve familles defined in Section 5. Then

IfXis the interior of a compact bordered surface, then there is a collection a0 of orthogonal

trajectories of$a such that a0 is Z2-homologous to a. a0 has the greatest extremal
distance from fï among ail l-chains which are Z2-homologous to a. On X—a0 we have

2 Re ^/<P<r d(û, where a> is the harmonie measure ofa0 and where the square root with

positive real part is selected.

10. Reduced Extremal Length Relations on Closed Surfaces

Throughout this section we assume that X is a closed Riemann surface. Suppose

a is a 1-chain on X and X is the two-sheeted covering surface of X determined by a.
X is also a closed Riemann surface. Fix a point PeX—cr. In this situation we are
interested in the following curve families :

^P: ail crosscuts ô on X—P such that ô x <r= 1 (mod2).
&%: ail dû, where Q is a Jordan open subset of X—P and Q contains a 1-chain

aQ satisfying [^]2 [<r]2.

We are concerned with the reduced extremal length of the family 1FF and the
reduced modulus of the family J*"*. To aid in our study of thèse families we define two
related curve families on 2. Let ^0 an^ &i be the two distinct points on X lying over P.
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«#P: ail arcs on X which join Po to Px.

#*: ail closed curves on X which separate Po and Px.

Let us recall the définitions of reduced extremal length and reduced modulus (cf.
Ahlfors-Beurling [1, 2], Minda [1, 2]). Suppose that Zj is a local coordinate defined in
a neighborhood of Pj such that zj{Pj) 0 (y'=0, 1). For r>0 and sufficiently small,
let Bj(r)={QeX:\zj(Q)\^r} be the closed disk of radius r centered at Ps and let

àj(r)={QeX:\zj(Q)\ r} be its boundary. If r0, rt>0 are sufficiently small, set

X(r09 rt) X — (B0(r0)^>B1(r1)); J?(ro, j^) is the interior of a compact bordered
Riemann surface. Define

e#P(r0, rt): ail arcs on X(r0, rt) which connect &0(r0) to a1 (rj),
#p(r0, rx): ail closed curves on X(r09 rt) which separate a0 (r0) from <*! (ri).

The quantity A(#P(r0, rt)) + (\/2n) \og(r0rt) increases if either r0 or r1 decreases;

1

lim U(.0p(ro,r1)) +
(ro.ri)-(O, 0) L Z7t

l
J

is called the reduced extremal length of the family #P. The number I (^P) dépends

upon the choice of local coordinates at Po and Px in such a way that exp [—2nX (<^V)]

\dzo\ Idz^ is an invariant form. Let M{^) dénote the modulus of a curve family ^,
i.e., the reciprocal of the extremal length. The expression M(#J(r0> r1))+l/(27c)

increases whenever either r0 or rx decreases;

\ lîrn/ ——• lilll | .»..» y^ r \m U7 • vit ' l̂u

is called the reduced modulus of the family #P. As before, exp [- 2ttJ(? (#*)] \dzo\

\dzt\ is an invariant form.
For fixed values of r0 and rx, Lemma 3 implies that X (#P {ro,rt)) M(#P (r0, rx

Therefore, 1(#P) M(#P) whenever both quantities are computed with respect to
the same pair of local coordinates. Thèse reduced quantities can be expressed in terms

of a canonical harmonie function. Let v be a harmonie function on X with a positive

logarithmic singularity at Px and a négative logarithmic singularity at Po; that is,

t5(zi)+(-l)J+1 log|zy| has a removable singularity at £, The function v is only
determined up to an additive constant; however, v is uniquely specified if we require

that voT=—v. We shall assume that this is true. Then A(#P(r, r))= -(1/tc) logr
(1/2ti)2 Dj(rfr)(S), which gives 1(«#p) (1/2ti)2 ^ (0), where 5^ (S) is the reduced

Dirichlet intégral of v defined by

(ro,ri)-(O,O)
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That X(^p) (l/2n)2 D%{v) is a spécial case of a known resuit (Minda [2, Theorem

3]). Clearly, exp[ — (Ijln) Dx(v)~] \dzo\ \dzt\ is an invariant form.
The reduced extremal length X (^p) and the reduced modulus Si (^"*) are defined

as follows. Let z be a local coordinate defined in a neighborhood ofP, B(r) the closed
disk of radius r centered atP and a(r) the boundary of this disk. Set X(r) X-B(r)
and

^p(r): ail crosscuts S on X(r) such that â x o= 1 (mod2),
J^J(r): ail ÔQ, where Q is a Jordan open subset ofX(r) and & contains a 1-chain

<7fl satisfying [aJ2=[ff]2.

The quantity À(^P(r)) + (4l2n)logr (note the présence of the factor 4 in place
of 1) increases if r decreases and

lim \X (&p (r)) +
-4

log H
|->oL 2n J

is called the reduced extremal length of the family ^P. exp [ — (tt/2) 1(^p)] \dz\ is an
invariant form. The reduced modulus M («^"p) is defined by

logri
J

and exp[-27ii(î(Jrp)] |<fc| is invariant.
It is easy to relate thèse various reduced quantities. Fix a local parameter z at P

with z(P)=0. Let z,. be the lift of this local parameter to a neighborhood of Pj
(y=0, 1), then z0or=z1. Relative to thèse local coordinates it is clear that JC(r,r)
is the two-sheeted covering surface ofX( r defined by a. From Equation (7), X {^P r

2A(#P(r,r))sothat

Consequently, X(^rP)=2X(^p). Similarly, Equation (8) and Lemma 9 together give

M(^î(r))=lM(#î(r, r)) which implies that M(^t) i^(^t)-
If we gather together the results of this section, we obtain the following resuit

which is the analog of Proposition 1 for closed surfaces.

PROPOSITION 5. If X is a closed Riemann surface, a is a nontrivial 1-chain on

XandPeX-a, then

5
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Recall that v satisfies the symmetry condition v= — voT. For — oo <k<ao define

ôk={PeX:v(P) k). Each ôk is a finite cycle on X; orient âk sothattns less than k
to the left of âk. The cover transformation Tmaps âk onto — à_k and ôke^p for ail k.
The projection of ô0 onto Xis a 1-chain traced once in each direction. As in Section 6

it is possible to define a projection a0 of â0 onto X such that [po~\2 M 2- # projects
to a 2-valued harmonie function on X; a single-valued branch can be defined on X— a0

by letting v(Q) be the larger of the two values vif'1 (Q)). Then v is the Green's function

of the surface X~o0 with pôle at P. The reduced Dirichlet intégral of v is

Dx(v)=iD~x(v).

11. Extremal Régions and Quadratic Differentials on Closed Surfaces

In this section we discuss extremal properties of the level curve <r0 and a quadratic
differential Wa on Xwhich is derived from the function t5. Proposition 6 is an analog of
Proposition 2, while Proposition 7 characterizes the quadratic differential Wff deter-
mined by a 1-chain a.

Given a nontrivial 1-chain acland a point PeX— a, let ga be the Green's function
of X— a with logarithmic singularity at P. Thus, ga has boundary values 0 on a, and

if z is a local coordinate at P with z(P) 0 then in a neighborhood of z 0, ga(z)
wa(z) — log|z|, where wa is harmonie at z 0. Define

g.<P> Um(s.(z) + log|z|); (13)
z->0

the form exp(—ga(P}) \dz\ is invariant. ga<P> is related to the classical Robin's
constant. The reduced extremal distance from a to P is denoted by 1 (a, P). Tt is known
that X(a,P) (ll2n)ga(P} (Ohtsuka [1]). One can also prove

LEMMA 11.

PROPOSITION 6. Let X be a closed Riemann surface and a a nontrivial 1-chain

on X. Fix a point PeX-a. Among ail l-chains which are Z2-homologous to a on X--P,
there is a unique one a0 which has the greatest reduced extremal distance from P.

Specifically, a0 is the level curve <x0 of v and gao v is the Green s function for X-o0
with logarithmic singularity at P. We hâve

(a,/>):[a~(7]2 0 on X-P}, (14)

m&x{5x(ga):[ot-a-]2=O on X-P}, (15)
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Proof. Given a 1-chain a on X—P which is Z2-homologous to a9 construct
%=%(cr) 3C(a) and the function v. Lift the Green's fonction ga to X by defining
L{Q)=g*{Q) if Q is on the upper sheet of l(a) and Q lies over Q, and ga(r((î),

— ga((ï). Set ga(Ô) O if lies over a. Then ga is a piecewise harmonie function on
JT having a positive logarithmic singularity at Pt and a négative logarithmic singularity
at Po, where P± is the point on the upper sheet lying over P and Po is the point on the
lower sheet over P. Set w ga-v, then w is piecewise harmonie on ail of X. Fix a

local coordinate z at P and let Zj be the induced coordinate at Ps with zo°T=z1.
Now, we dérive an analog of the Dirichlet principle in this setting. From

ga=u + \v, weget

*>X (r, r) (««) ^f (r, r) 00 + Djt (r, r) W+ 2Z)} (r, r) (S, w)

If we apply Stokes' Theorem to the mixed Dirichlet intégral and let r -> 0, then we
obtain

The equalities jjj ^ /y
i?<P>, together with the fact that the reduced Dirichlet intégrais on X are twice the

corresponding quantity on X, give

Making use of Lemma 11, we hâve

Consequently, Sx(v)^Dx(ga) and equality holds if and only if v=ga. This is sufficient

to establish the proposition.
A quadratic differential W \J/(z)dz2 can be associated with a 1-chain d on a

closed Riemann surface X. Given a, form ÎC and v. The fact that v°T— —v shows that
(dv + i*dv)2 is a T-invariant meromorphic quadratic differential on X. This invariance

condition implies that it can be projected to X. In this manner we obtain a meromorphic
quadratic differential W ij/(z)dz2 on X and Y=(dv+i*dv)2 on X-a. We shall
sometimes write W= Wa=\l/ff(z) dz2 to indicate the dependence on a.

Because \j/ is locally the square of an analytic function on X'-~P9 W has no pôles

on X'—P and ail of its zéros are of even order. Let Q be a branch point of X. ¥ will
hâve a simple pôle at Q =/ (Q) if Q is not a critical point of v9 and otherwise will hâve
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a zéro of odd order at Q. The reduced norm of ¥* ^(z) dz2 is

X(r)

\<t>{z)\ dx dy + 2n logrl

has a pôle of order 2 at P and if z is a local parameter at P with z(P) 0, then
2

-. clearly> €Vy &x(v) and Re

PROPOSITION 7. Le* (jfefl nontrivial l-chain on a closed Riemann surface X.
Fix a point PeX—a. There is a unique meromorphic quadratic differential W \j/(z) dz2

on X which satisfies the following conditions:

(i) W has a pôle of order 2 at P and the initial coefficient of the Laurent expansion
of ifr (z) is 1, W has no pôles on X' —P and pôles of at most thefirst order at the points
Of 3(7.

(ii) Any germ /\j/(z) dz on X'—P can be continued along ailpaths on X'—P and

the continuation satisfies Re$yy/il/(z)dz=0 if yenl(Xr—P) and yxcx 0 (mod2).
Proof. The quadratic differential Wo has properties (i) and (ii). To prove that it is

unique, consider another such quadratic differential W. Let w(g) Re J£o >/^(z) dz.

Property (ii) shows that w lifts to a single-valued harmonie function vv on % ' — {Po, Pt},
where Po, Px are the two points lying over P. Property (i) shows that w has a positive
logarithmic pôle at one of the points Po, Px and a négative logarithmic pôle at the
other. Also, w has removable singularities at the branch points because V? has at most
simple pôles at the projection of the branch points. Thus, w is harmonie on X except
for two logarithmic singularities, so it follows that w= ±0+constant. From this we
seethat W=Wa.

The orthogonal trajectories of Wa are the level curves of v. Thèse are just <rk

(0<k<co) together with the spécial trajectory <r0e[a22* The following resuit has

been established.

LEMMA 12. The properties (i) and (ii) of Proposition 1 uniquely détermine Wa on

a closed Riemann surface X. There is a unique set <r0 of orthogonal trajectories of Wa

such that cr0 e [a]21 X~0o is tne extremal région ofProposition 6.

12. The Main Theorem for Closed Surfaces

We now gather together our results for closed surfaces.

THEOREM 2. Let a be a nontrivial l-chain on the closed Riemann surface X. Fix
PeX-o. There is a quadratic differential Wff on X which is uniquely determined by
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properties (i) and (ii) of Proposition 7. Let ^P and !F% be the curve J?amitiés defined in
Section 10. Then

There is a collection a0 of orthogonal trajectories of xFa such that aQ is 7j2-homologous
to a. a0 has the greatest reduced extremal distance from P among ail l-chains on X—P

which are 7j2-homologous to a. On X—a0 we hâve Re y/Wa dg, where g is the Green's

function for X— a0 with logarithmic singularity at P and where the square root with

positive real part is selected.

13. Examples and Applications

In this section we briefly illustrate the variety ofapplications and problems suggested

by Theorems 1 and 2.

(a) Estimâtes of \\&a\\ and C^<r^- In the spécial case that a is an arc and X is a

simply connected hyperbolic plane région, Theorem 1 reduces to a theorem of J.

Hersch [1]. Let h be the hyperbolic distance between the endpoints of g. If we use

Hersch's computations, we find that

i|#J=2v(e-2*), (17)

where v(r) is the modulus of the doubly connected domain obtained by removing
the interval [0, r] (0<r<l) from the unit disk. Explicitly,

v(r)-" 7' ; ' where Jg(r)-j „ *

The following useful estimâtes hold (Hersch [1]):

4 UfiTr+Jïy 1 <4|o8_
n \ — r v(r) n l—r

^4) as r->0, (18)
2iz

as
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We can also express Theorem 2 explicitly in the simply connectée! case. Let X be
the Riemann sphère, let a be an arc from z0 to oo (z0 t*0), and let the origin be selected

as base point. One can then show that

We know of no estimâtes comparable to those above in case a is a union of arcs
or in case X is not simply connected. That such estimâtes might be useful can be seen
from the applications below, and from the applications given in Hersch [1].

(b) Wolff's lemma. Let a be an arc in X, and let/ be a J^-quasiconformal homeo-
morphism of X onto Y. Let &x (respectively, ^Y) be the family of crosscuts on X
(respectively, Y) which cross a (respectively, / (<r)) an odd number of times. Then
K~1À(^'Y)^À(^rx) \\$J ~l^KÀ(^Y). Given a conformai metric on F, let m be the
infimum of the lengths of the crosscuts in &Y and let A be the area of Y. Then

^\\<Pa\\-\ so that

<20)

We shall show that (20) is a sharper, as well as more gênerai, form of Wolff's
lemma (J. Wolff [1, pp. 217-218]). To reduce (20) to Wolff's lemma, choose Jifto be

the unit disk, choose a to be an arc from the origin to ô (0<<5<l), choose/to be

conformai (K=l), and choose 7 to be a bounded plane région with the euclidean
metric. Thus m is the infimum of the lengths of crosscuts in Y which separate /(0)
from/((5). From (20) and (17) we obtain

where we hâve used the identity v(r) v((l -r)/(l +r))=i (Hersch [1, p. 317]). We

now hâve m^2y/Av(ô); if we estimate v((5) from (18),

we obtain, essentially, the original form of Wolff's lemma:

%A
m<
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(c) Extremal régions. Theorems 1 and 2 are relevant to the subject of extremai

régions and distortion theorems. In the simplest spécial case (X is simply connected
and a is an arc) Theorem 1 yields Grôtzsch's extremal région theorem: Among ail
arcs in {|z|>l} which join z=R to z=oo (1<7*<go) the segment <t=[jR, oo] has

the greatest extremal distance from the circle {|z| l}, and this extremal distance is

In the simplest spécial case Theorem 2 yields the related resuit: Among ail arcs
which join z=R to z oo (0 < R < oo the segment a [JR, oo] has the greatest reduced

extremal distance from z=0; the value with respect to the identity local coordinate is

1(0, a) (l/2n)log4R. (The Koebe one-quarter theorem is an easy conséquence.)
Theorems 1 and 2 might be applied to more gênerai extremal régions and distortion

theorems by letting X be nonsimply connected or letting a be a union of arcs.

(d) Conformai metrics. Let P and Q be points on an open Riemann surface X.
We use Theorem 1 to define d(P, Q)=inf A(jF*(<t))=4 inf A"1 (J*»)=4 inf ||tfj,
where the infimum is taken over ail arcs aonl with da=P—Q.lt can be shown that
d(P9 Q) is a metric on X. The relationship between this metric and the metric of S. Gâl
[1, 2] and of M. Lavrentieff [1] are striking but are not yet completely understood.

Properties and uses of this metric will be treated in a future paper.
(e) Géométrie inequalities. In gênerai, extremal length and conjugate extremal

length statements lead to length-area inequalities ofdifferential geometry (Rodin [1]).
The inequalities that arise in this way from Theorem 1 are especially interestingbecause

the extremal metric |>/#| cannot be realized as the euclidean metric on a plane région.
A number of problems arise concerning the sharpness of the inequalities and how they
can be improved with regard to the euclidean metric.
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