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Extremal Length, Extremal Regions and
Quadratic Differentials

by C. D. MiNDA') and B. Ropin?)

0. Introduction

This paper is devoted to the proof of two theorems; Theorem 1 is given in Section
9 and Theorem 2 in Section 12. The proofs of these theorems require a number of
auxiliary concepts and constructions (given in Sections 1-8 and 10-11), but the
theorems themselves can be stated without such preparation.

Let o be a 1-chain on an open Riemann surface X. We associate to ¢ (actually, to
the Z,-homology class of ¢) a quadratic differential @, a family & of crosscuts on X,
and a family #* of curves on X. # consists of all crosscuts which cross ¢ an odd
number of times; & * consists of boundaries 022 where Q is a Jordan open set con-
taining an element in the Z,-homology class of o (see Section 5). @ is characterized
in Proposition 4 (Section 8); if X is the interior of a compact bordered Riemann
surface, @ can also be described as follows: among all curves which are Z,-homolog-
ous to g, there is a unique one o, which has the greatest extremal distance from the
boundary of X (see Proposition 2, Section 8). Let w be the harmonic measure of g,
on X—a,. Then &=} (dw+i*dw)?.

Theorem 1 relates the extremal lengths of % and #* to the integral norm of ¢:

f )= i—gﬁ#uﬂ*)-

X

Theorem 2 is an analogous result for closed surfaces X and for reduced extremal
lengths.

In the simplest special case (X is simply connected and o is an arc), Theorem 1
reduces to an extremal length theorem of J. Hersch [1]. Some applications of Theo-
rems 1 and 2 are discussed briefly in Section 13.

1) Research partially supported by National Science Foundation Grant No. GP 39051.
2) Research partially supported by National Science Foundation Grant No. GP 38600.
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1. Intersection Numbers for 1-chains

Let y and o be singular 1-chains on a Riemann surface X. We wish to define the
intersection number y x §. Informally, y x § is the algebraic sum of the number of
times o crosses y from left to right; right to left crossings are counted with negative
values. A necessary condition for this intersection number to be defined is y<= X — 06
and 6 = X—0y. It is bilinear and skew-symmetric and depends only on the homology
class of y on X— 06 and the homology class of § on X —0y.

The formal definition of y x 6 can be given in terms of simplicial approximation.
Because y and 6 need not be cycles, care must be taken to prevent the endpoints of
one chain from shifting across the other chain. Take a triangulation of X so that the
points in dy are vertices in the triangulation and the points in 06 are barycenters. This
triangulation should be so fine that if a star in the barycentric subdivision contains a
point of either dy or 06, then that star is disjoint from the other chain. For such
triangulations we can replace y and é by their simplicial approximations and then
define the intersection number in the same manner as for cycles (Ahlfors-Sario [1,
pp. 67-72]).

An intersection number can still be defined when one of y and ¢ is a relative
1-chain. y is a relative 1-chain if y=) n;y; is a countable formal sum where n; is an
integer and for each compact set K< X the set of indices i for which n;#0 and
y; K #0 is finite. Let 6 be a finite 1-chain. Since y; x 6 #0 for at most finitely many
indices i, yxd=) n;(y;x d) is defined. In this situation y x 6 depends only on the
weak homology class of y on X' —04.

2. The Covering Surface X ()

Let o be an integral 1-chain on a Riemann surface X and set X' =X—do. We shall
construct a two-sheeted (possibly branched) covering surface of X. It will be denoted
by X or X (¢). In case o is a simple slit, this construction generalizes the classical
technique of cross-identifying the edges of the slits between two copies of X—o.

Fix a base point Q on X’. For yen, (X', Q) define A (y) to be the mod2 residue
class of y x . The group homomorphism

himy (X', Q) —Z, (1)

is trivial or surjective according to whether or not there is a yer, (X', Q) with yx o
=1(mod2). We shall express this condition as a homology property of ¢. To accom-
plish this we consider homology on X modulo the ideal boundary # of X with coeffi-
cients in Z,. If 6 and 7 are 1-chains, then the notation [6],=[7], (mod f) will mean
that 6 —7 is a cycle which is Z,-homologous to a dividing cycle. The following lemma
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is an analog of the fact that a cycle a on a Riemann surface is dividing if and only if
a x y=0 for all cycles y.

LEMMA 1. Let ¢ be a 1-chain on X. [6],=0(modp) if and only if yxo=0
(mod2) for all closed curves y on X'.

Henceforth, we shall assume that the given 1-chain ¢ is nontrivial in the sense that

[o], #0 (mod B). (2)

This means that either o is not a Z,-cycle or else ¢ is a Z,-cycle which is not Z,-
homologous to a dividing cycle. The homomorphism 4 in (1) is then surjective and
its kernel

G(o)={yeny (X', Q): yx =0 (mod2)} 3)

is a normal subgroup of 7, (X', Q) of index two. There is a normal, smooth, two-

sheeted covering surface X 'L, X" and the fundamental group of X’ is isomorphic
to G(o). Any yen, (X', Q) lifts to a closed curve 5 on X" if and only if ye G (o). There
is exactly one nontrivial cover transformation T:X’ - X’ and T is an involution.

It follows from Lemma 1 that for a planar surface X all finite 1-chains with the
same boundary give rise to the same two-sheeted covering surface X'.

Next, we extend X’ to a two-sheeted ramified covering of X. Let do=) n,P,
where the P; are distinct points of X and the n; are nonzero integers. If n; is even, then
a sufficiently small circle centered at P, lifts to two disjoint circles on X’. In such a
case we add two points to X’ corresponding to the centers of these circles. The pro-
jection map f and the cover transformation 7 both extend continuously to these added
points; f maps them to P; and T interchanges them. If n; is odd, then a small circle 7
centered at P; does not lift to a closed curve on X', but 21 does lift to a closed curve.
In this case we add a first-order branch point P, to X', extend the projection map f to
P, by f(P,)=P; and extend the cover transformation T so that P; becomes a fixed
point of T.

Let X (o) denote the covering surface X’ after all such points have been added.

Then X (a)—f—>X is a two-sheeted ramified covering with branch points over each point
in the Z,-boundary of 6. The cover transformation T is involutory and its only fixed
points are the branch points. We shall refer to X (¢) as the covering surface of X deter-
mined by ¢ if no confusion results we shall write X in place of X (s). Clearly, X is
independent of the particular base point Q selected on X’. Also, if [¢], =[0,], (mod B),
then X (¢)=X (,).
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3. The Sheet Structure of f((a)

The space X —f~!(a) can be partitioned into two sheets both of which are open
sets; they need not be connected. Fix a base point Qe X’ and let § be a point on X
lying over Q. Consider all arcs §:[0, 1] — X’ with 6 (0)=Q and 6(1)éo, and let & be
the unique lift of & to X with §(0)=0. The lower sheet of X (¢) (with respect to §)
consists of all points & (1) where & crosses ¢ an even number of times; the upper sheet
is the set of all §(1) for §’s which cross ¢ an odd number of times. These sheets are
well defined: if §(1)=0,(1), then 6,6 ! is in the group G(c), and so it crosses ¢ an
even number of times. Hence, § x o and 8, x ¢ have the same parity. The distinction

between ‘upper’ and ‘lower’ depends on the choice of the point § over Q. If Q~, the
other point on X over Q, were used in place of §, then the two sheets would be inter-
changed. In any case, the cover transformation T permutes the two sheets and f maps
each sheet homeomorphically onto X — ¢. Moreover, the two sheets, except possibly for
the labels ‘upper’ and ‘lower’, do not depend upon the selection of base point.

The sheets do depend upon the 1-chain o, and it is necessary to determine the
dependence explicitly. Let o and g, satisfy [¢],=[0,], (modB). Then X (¢)=X (0,)
as surfaces, yet they may have quite different sheet decompositions. Let U(g) and
L (o) denote the upper sheet and lower sheet of X (¢). We say that X (o) and X (,)
have the same sheet structure if, for any regular subregion Q< X such that Q>0 U g,
the set {U(o)nf1(X-Q), L(oc)nf~1(X—Q)} is the same as the set {U(cy)
N (X=Q), L(so)n S~ (X~ Q).

LEMMA 2. Let o and o, be 1-chains on X which satisfy [¢],=[0,], (modp).
Then X () and X (6,) have the same sheet structure if and only if [6],=[0,],.

(Let us now determine the number of covering surfaces X (¢) and the number of
sheet structures for a given surface X. Fix a 1-chain ¢ on X. Let H, ((X), Z,) denote
the subgroup of H, (X, Z,) generated by the dividing cycles. The homology group
modulo dividing cycles, or the relative homology group with respect to the ideal
boundary, is H; (X, Z,)/H, (B(X), Z,). We have seen that there is a one-to-one cor-
respondence between covering surfaces X (o) derived from 1-chains 6, with 8,6, = 0,0
and elements of H, (X, Z,)/H, (B(X), Z,). Each of these covering surfaces can gener-
ally be partitioned into sheets in many non-equivalent ways. Lemma 2 shows that for
a fixed covering surface X there is a one-to-one correspondence between H, (8(X), Z,)
and partitions of X into two sheets. In case X is compact, there is just one partition
of each covering surface X into two sheets. If X is planar, then all 1-chains o, with
0,0,=0,0 give rise to the same covering surface; however, there are 2"~! ways to
partition it into two sheets when X has connectivity n. Not every two-sheeted covering
surface can be obtained in this fashion because all of these have an even number of
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branch points and there exist two-sheeted coverings with an odd number of branch
points.)

If X is an open surface, let § denote the one-point ideal boundary. This one-point
compactification of X naturally induces a two-point compactification of X; the ideal
points are denoted by 3, and B,. The compactification is defined by stipulating that
a sequence {P,} on X converges to f, (respectively, 8,) if f(P,) » B and if {P,} is
eventually on the lower (respectively, upper) sheet of X. The compactification is
dependent on the Z,-homology class of . The function f extends to a continuous
function from the two-point compactification of X to the one-point compactification
of X and the cover transformation T interchanges j, and j,.

4. The Function i

In this section we shall assume that X¢O;. Let {Q} be an exhaustion of X such
that o< Q for each Q. Let f,=0Q and let f,, and B, be the lifts of B, to the lower
sheet and upper sheet, respectively. Suppose i, is the harmonic function on ™! (Q)
determined by the boundary values

ﬁn(ﬁ)'—'j if ﬁeﬁn, (j=0,1). 4)
By the maximum principle #, satisfies

ilq (P)+i,(T(P))=1 (%)

for all Pe f~1 (). As Q - X, il converges, uniformly on compacta, to a nonconstant
harmonic limit function #; #=limg_ 3 and D3(@)=limg.3Dy(iz), where
Q=f1(Q), D3 (@) is the Dirichlet integral of & over X and dig=i, is given by (4).
The symmetry property (5) continues to hold for the limit function:

a(P)+a(T(P))=1 (6)

for all PeX.

it depends upon the Z,-homology class of ¢ and the choice of base point. If a
different base point were selected, then either the same function # would be obtained
or else 1 —ii=iioT would be produced. Both these functions have the same Dirichlet

integral.
5. The Curve Families #, #*

A (general) crosscut on a Riemann surface X is an open arc d: (0, 1) — X such that
6(t) » B ast—0 and as t — 1. If X is the interior of a compact bordered surface, there
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is a classical notion of crosscut which is slightly different. The classical definition
requires points O, and Q, on the border of X such that lim,_, ;6 (¢)=Q; for j=0, 1. The
classical definition is not conformally invariant with respect to conformal mappings of
the interior of X. Given a family of general crosscuts on a compact bordered surface,
the subfamily of those which are not classical has infinite extremal length. Therefore,
the nonclassical crosscuts can be discarded at any stage without changing extremal
lengths.

An open subset Q of X is called a Jordan open set if Q is relatively compact and
its border consists of a finite number of Jordan curves. We shall be interested in the
extremal lengths of the following curve families on X' =X—do:

& : all crosscuts 6 on X such that d x e=1 (mod?2).
F*: all 0Q, where Q is a Jordan open subset of X and Q contains a 1-chain o,

satisfying [oq],=[0],.
In order to investigate # and & * we introduce two related curve families on X:

& : all open arcs on X which tend to j, in one direction and tend to f, in the
other direction.
Z*: all curves on X which separate f, and j,.

We may apply a well known extremal length theorem (cf. Ahlfors-Sario [1],
Marden-Rodin [1], Strebel [1]) to these curve families on X to obtain the following
result.

LEMMA 3. A(F*)=1"Y(#)=D3(#). If X€ O, then Dz (ii)=0; otherwise X¢ Oy
and 0 < D3 (1) < c0.

Our goal is to employ Lemma 3 in deriving a corresponding result on X for the
curve families # and #*. Two of the simplest tools for relating extremal length on
X to extremal length on X are given in Lemmas 4 and 5.

LEMMA 4. Let ¢ and 9 be curve families on X and X respectively. If f (é)c g,
then A(9)<2i(9).

LEMMA 5. Let 4 and % be curve families on X and X, respectively, such that the
extremal metric for & is T-invariant. If every ye¥9 can be lifted to a €%, then
A(Z)=2A(9).

It is easy to see that the families & and # satisfy the hypotheses of both Lemmas
4 and 5. We first note that any §e.# goes from one sheet of X to the other; therefore,
f(8) crosses ¢ an odd number of times. Hence f(#)c=%. Conversely, if €%, then
both lifts of § belong to &#. Furthermore, the extremal metric for # and £* is
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c’z'vso = |dii+i*dii| which is T-invariant. These considerations immediately give us
AMF)=24(F)=2D%" (@). @)

Next, we wish to establish a corresponding result for #* and £ *.

The families #* and & * satisfy the lifting property required in Lemma 5. To see
this, let y*=0QeF*, where Q is a Jordan open subset of X and contains an element
og of [o],. Take Q, to be the union of all noncompact components of X—C1Q;
then Q, is a neighborhood of the ideal boundary f of X. Consider the upper and lower
sheets of X defined relative to o,; these sheets are equivalent to those defined by o.
Q, can be lifted homeomorphically to the lower sheet of X; denote the lifted set by
Q. Then @, is a neighborhood of B, and §4=08, is an element of #*. Since §4 is a
lift of some of the contours of y* (the lifts of the remaining contours are not relevant),
we conclude that y* can be lifted to an element in #*. Lemma 5 now implies that

A(F*)22A4(F*)=2D3 (@i). (8)

We cannot use Lemma 4 to prove the opposite inequality because &#* and £ * do
not satisfy the projection hypothesis of that lemma. If #* could be modified so that
the new family satisfied the hypotheses of both Lemmas 4 and 5, then the remaining
proof would be easier. We have been unable to find a reasonable modification of this
sort. (Of course, one could take #* to be the family f(& *), but this device would not
be useful for applications unless we also possessed an intrinsic description of f(F#*)
directly in terms of X.) Instead, we shall prove the desired inequality for (% *) by
investigating the level lines of #.

6. Level Lines of i

In this section we assume that X is the interior of a compact bordered surface.
Then X is also the interior of a compact bordered surface and each level line
%,={PeX:ii(P)=k}, 0<k <1, is a finite cycle on X. Orient %, so that & is less than k
to the left of 7,.

The cover transformation 7 sends %, to —%; _,. For 3 <k <1 define 1, to be f(%;);
7, 18 a cycle on X'=X—0do. The case k=14 is exceptional; 7,,, projects to a 1-chain
traced once in each direction. We shall define the projection 7, ,, as follows. Observe
that all of the branch points of X belong to 7, 12 First, express 7, as a sum &g +d;,
where &, and &, are 1-chains which satisfy Td,= —d; (%, and &; are not uniquely
determined by these conditions). Set 7, ,, =f(&); note that the orientation of 1, , is
ambiguous. This will not matter, however, since we shall be using Z,-homology.
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LEMMA 6. If X is the interior of a compact bordered Riemann surface, then
112€[0],.

Proof. We first note that o and 7, , have the same Z,-boundary. The only possible
boundary points of 7, , are at the projections P; of the branch points P; of X. Suppose
P, is a critical point of # of multiplicity n (n=1 means that i is regular at P,;). One can
prove that » must be odd. Hence, P; is in the Z,-boundary of 7, ;.

We now demonstrate that [o],=[7,,], by showing that 6 x 6=0x 1,,, (mod?2)
for all crosscuts § on X. Let 6 be a crosscut of X parametrized on the interval (0, 1).
By deforming 6 if necessary we may assume that it intersects 7, ,, in a finite number of
transversal crossings. Let § be a fixed lift of §; we can assume that lim, | 46 (¢)=f,.
Now, éx ¢ is even or odd according to whether lim,,,8(¢)=p, or lim,,5(¢)=p,.
If lim, ; ; 6 ()= B,, then i has the value 0 at both ends of  so that #(5(¢)) takes the
value 1/2 an even number of times for 0 <z <1. This means that § x %, /2 1s even. On
the other hand, if lim,,,8(¢)=p;, then & has different values at the endpoints of 4,
and # (8 (¢)) assumes the value 1/2 an odd number of times. In this case § x %, ,, is odd.
Thus § x ¢ and & x T;,, have the same parity. The number of crossings § x %, ,, is the
same as the number of crossings é x 7, ,, (distinct crossing points of 6 and %, /2 May
correspond to multiple crossing points of  and 7,,,). Therefore, d xo and § x 74,
have the same parity.

LEMMA 7. Let X be the interior of a compact bordered Riemann surface. For
1/2<k <1 define

O.={PeX:1-k<ii(P)<k}, Q=f(G)).

Then , is a relatively compact open subset of X, 1, is its border, and 1, ,, < £,.
From Lemmas 6 and 7 we obtain the following result.

LEMMA 8. If X is the interior of a compact bordered Riemann surface, then
T,€F* for each k, 1]2<k <.

7. Extremal Length Relations on Open Surfaces

Because of the symmetry (6), # corresponds to a 2-valued harmonic function on X.
We can choose a single-valued branch on X—1,,,. Specifically, for PeX —1,,, let
u(P) be the larger of the two values #(f ~! (P)). u is a harmonic function on X —1, ;.
If X is the interior of a compact bordered Riemann surface, then u is determined by
its boundary values u(P)=1/2 if Pety,,, and u(P)=1 if Pep. Its Dirichlet integral
and flux are related by

D3 (#1)=Dy (u)=4% fp*du=%f xdu  (3<k<l).
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There is a standard method to obtain an upper bound for extremal length by using
Schwarz’ inequality. We omit the finitely many t,’s which pass through a critical
point of u and use u to form the real part of a local parameter on the complement of
the set of critical points. If ¢(z) |dz| is any linear density on X, then, because 1, &% *
(Lemma 8), we obtain L? (#*, ¢)/4 (X, ¢) <4Dx(u)=2D; (i), and hence,

A(F*)<2D; ®@). ©)
We collect the results (7), (8), (9) and obtain:

LEMMA 9. On any open Riemann surface X, A(F*)>2Dx(#)=4A"'(F). If X is
the interior of a compact bordered Riemann surface, then A(F*)=2Dx(&i). Dx(#)
vanishes if and only if Xe Og.

We can now state a preliminary form of the extremal length theorem.

PROPOSITION 1. If X is an open Riemann surface and o a nontrivial 1-chain on X,
then A(F*)=41"1(F)=2D3(a).

Proof. In case X is the interior of a compact bordered Riemann surface, then this
is an immediate consequence of Lemma 9. If X is not the interior of a compact bor-
dered Riemann surface, let {Q,} be a regular exhaustion of X such thate < Q,, for alln,
each Q, is the interior of a compact bordered surface and the sequence {€,} is increas-
ing. Suppose @, is the covering surface of Q, determined by . Let %, and & be the
analogous curve families defined for Q,; then A(#)=41"1(F,)=2D3, (iI,)-

Since {Q,} is an increasing sequence, the curve families % also increase with n.
Moreover, F* =% so limA(Z,)=A(F*). In our construction of & we noted that
lim D3 (@,)= D5 (). Therefore, A (F*)=2Dj (i).

The proof that 21~ (%)= Dy (@) is more involved. Every crosscut § in &,
contains a subarc in & ,, s0 A(F,)<A(F ,,,) for all n. Also, each crosscut in & con-
tains a subarc in %, so A(F,)<A(F). Thus, limA(F,)<A(F). The opposite in-
equality may be proved by making use of an extremal length technique attributed to
Beurling and first developed by Wolontis [1]. The same method has been used and
extended by others (Marden-Rodin [1], Minda [1, 2], Strebel [1], Suita [1]). The
technique is very topological ; crosscuts from the families #, must be pieced together
to form a crosscut of X belonging to #. This process will show that limA(#,) = A(F).
Because the proof is very long and is so similar to the proofs given in the preceding
references, especially Strebel [1], it is omitted here. The proof is then completed by
observing A (#)=limi(#,)=1im2D5" (#,)=2D% (#).

8. Extremal Regions and Quadratic Differentials on Open Surfaces

In this section we discuss extremal properties of the level curve 7,,, and of a
quadratic differential &, on X which is derived from the function #%. Proposition 2 is
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an extension of the Grotzsch Extremal Region Theorem. Proposition 4 characterizes
the quadratic differential @, determined by a 1-chain ¢. This result provides a general
setting in which to extend the results of Hersch [1] concerning certain elliptic func-
tions and their relations to extremal length problems in a disk.

The extremal problems and uniqueness properties that we obtain refer only to ¢
and X, notto X. As a consequence, we shall be able to reformulate Proposition 1 in
terms that are intrinsic to X (see Section 9, Theorem 1).

By the harmonic measure of a closed subset o = X is meant the harmonic function
, on X —a with boundary values 1 on « and 0 on f. The extremal distance from o to 8
is denoted by A(a, B). It is well-known that A(a, B)=Dyx ' (w,).

PROPOSITION 2. Let X be the interior of a compact bordered Riemann surface
and let o be a nontrivial 1-chain on X. Among all 1-chains which are Z.,-homologous to
there is a unique one o, which has the greatest extremal distance from B. Specifically,
0, is the level curve t,,, of u; the harmonic measure of o, is w,,=2(1—u). We have

A(Ty,2, B)=max {A(a, B): ae[o],}, (10)
DX(wn/z)=min {DX(wa): OCE[o-]2}’ (11)
(11,2, B)=Dx " (w,,,,)=34Dx ' (u)=4D5 (). (12)

Proof. Given ae[c], form X=X (¢)=X(«) and #. Lift the harmonic measure w,
to X by defining &, (P)=w,(P) if P is on the lower sheet of X («) and P lies over P,
and define @,(T(P))=2—a&,(P). Set ®,(P)=1 if P lies over a. The harmonic func-
tion # on X has the same boundary values as the piecewise harmonic function 1,
From Dirichlet’s principle we obtain Dx (#) < D3 (3@,) and equality holds if and only
if #=1@,. Since 1,,,€[0], (Lemma 6) and #=1d,, ,, it follows that Dy(w,, ,)
< Dy(w,) and equality holds if and only if w,=w,, ,. Necessary and sufficient for
w,=w,, , is that « and 7, ,, coincide as Z,-chains. This establishes (10), (11) and (12).

We now consider an arbitrary open Riemann surface X, not necessarily the interior
of a compact bordered surface. We shall need an extremal length characterization of
harmonic measures in this general situation. Let B; be a closed subset of the ideal
boundary S of X. Here B is regarded as the Kerékjarto-Stoilow ideal boundary of X.
We say that f; has positive capacity if the extremal distance from g; to a fixed con-
tinuum in X is finite.

Suppose f is partitioned into two disjoint nonempty closed subsets f, and f;.
The harmonic measure of f, is the harmonic function on X which has boundary
values 0 on f, and 1 on f,. (The precise definition refers to a limit of the corresponding
harmonic measures on an exhaustion of X.) The following characterization of the
harmonic measure will be used in the proof of Proposition 4.

T1/2°
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PROPOSITION 3. Let f,, B, be a partition of the ideal boundary of X into disjoint
nonempty closed sets of positive capacity. The harmonic measure of B, is uniquely
determined up to an additive constant as the harmonic function w on X which satisfies
the conditions:

(i) Dy (w) <o,
(ii) [s dw=1 for almost all crosscuts & from B, to B;.

The constructions that we have developed provide a method of associating a
quadratic differential &= ¢ (z) dz? to a l-chain ¢. Given g, form X and #. Equation
(6) shows that (dii+i*dii)? is a T-invariant holomorphic quadratic differential on X.
The invariance means that it can be transferred to X. In this way we obtain a (mero-
morphic) quadratic differential ®=¢(z) dz*> on X; &= (du+ixdu)’> on X—o. To
indicate the dependence on ¢ we shall sometimes write ®=®,=¢,(z) dz>.

On X', ¢ is locally the square of an analytic function. Hence ¢ has no poles on X,
and all of its zeros there are of even order. At a branch point projection Peda, P will
have a simple pole if P=f"!(P) is not a critical point of #; otherwise, ¢ will have a
zero of odd order at P. The norm of ®=¢(z) dz? is defined as [[x|¢ (z)| dx dy=| P||

and we see that || @] =Dy (u)=4Dj3 (#). Furthermore, Re j\/ ¢ (z) dz=[+du.

PROPOSITION 4. Let ¢ be a nontrivial 1-chain on a Riemann surface X¢0O,.
There is a unique quadratic differential ®= ¢ (z) dz* on X which satisfies the following
conditions:

() el <o,

(ii) There is a germ \/ (ﬂ?) dz on X' which can be continued along all paths on X’
and the continuation satisfies

(a) Ref, \/¢(z) dz=0if yen,(X') and y x 6 =0 (mod 2),
(b) Re |, \/ ¢ (z)dz=1 for almost all crosscuts & such that é x ¢ is an odd
positive integer.

Proof. The quadratic differential @, satisfies properties (i), (ii)-a and (ii)-b. To
verify the uniqueness, consider another such quadratic differential @. Let w(P)
=Re [§ ME) dz. Property (ii)-a shows that w lifts to a single-valued harmonic
function w on X'. Property (i) shows that Dz (W) <co. Therefore, W has removable
singularities at the branch points; we can consider W as a Dirichlet-finite harmonic
function on X. Property (ii)-b implies that |3 dw=1 for almost all crosscuts § on X
which join B, to jB,. By Proposition 3, dw=di. Consequently &=,

The orthogonal trajectories of a quadratic differential ¢ (z) dz* are the solutions
of ¢ (z) dz% <0. The orthogonal trajectories of &, are therefore the level curves of u.
If X is the interior of a compact bordered Riemann surface, then these trajectories
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are 1,€#* (0<k<%), as well as the special trajectory 7,,,€[0],. We therefore have
the following result.

LEMMA 10. The properties (i) and (ii) of Proposition 4 uniquely determine ®,.
If X is the interior of a compact bordered Riemann surface, then there is a unique set
6 of orthogonal trajectories of @, such that 6o€[0c],; X—06, is the extremal region of
Proposition 2.

9. The Main Theorem for Open Surfaces

The two-sheeted covering surface X () and the associated function # have played
an auxiliary role in our results. They were needed as a tool in the proofs; the final
result can now be stated without reference to them.

THEOREM 1. Let ¢ be a nontrivial 1-chain on the hyperbolic Riemann surface X.
There is a quadratic differential ®, on X which is uniquely determined by properties (i)
and (ii) of Proposition 4. Let & and F* be the curve families defined in Section 5. Then

A(F*)=41"1(F)=4]2,] .

If X is the interior of a compact bordered surface, then there is a collection o of ortho-
gonal trajectories of @, such that o is Z,-homologous to 6. 6, has the greatest extremal
distance from B among all I-chains which are Z,-homologous to 6. On X —ao, we have
2 Re \/ &, =dw, where w is the harmonic measure of 6, and where the square root with
positive real part is selected.

10. Reduced Extremal Length Relations on Closed Surfaces

Throughout this section we assume that X is a closed Riemann surface. Suppose
o is a 1-chain on X and X is the two-sheeted covering surface of X determined by o.
X is also a closed Riemann surface. Fix a point PeX—o. In this situation we are
interested in the following curve families:

Fp: all crosscuts 6 on X —P such that § x e=1 (mod2).
F3: all 0Q, where Q is a Jordan open subset of X—P and Q contains a 1-chain

0'9 SatiSfying [0'9]2 = [0]2.
We are concerned with the reduced extremal length of the family %, and the re-

duced modulus of the family & ;. To aid in our study of these families we define two
related curve families on X. Let P, and P, be the two distinct points on X lying over P.
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& p: all arcs on X which join P, to P,.
F3: all closed curves on X which separate B, and P,.

Let us recall the definitions of reduced extremal length and reduced modulus (cf.
Ahlfors-Beurling [1, 2], Minda [1, 2]). Suppose that Z; is a local coordinate defined in
a neighborhood of P, such that %;(P;)=0 (j=0, 1). For r>0 and sufficiently small,
let B;(r)={0eX:|%;(0)|<r} be the closed disk of radius r centered at P, and let
&;(r)={0eX:|z;(Q)|=r} be its boundary. If ro,r, >0 are sufficiently small, set
X(ro,r)=X—(Bo(ro)uBi(r1)); X(ro,ry) is the interior of a compact bordered
Riemann surface. Define

Fp(re, ry): all arcs on X (ro, r,) which connect &, (ro) to & (r,),
F3(ro, r1): all closed curves on X (ro, r;) which separate d, (r,) from &, ().

The quantity A(# p(ro, 1))+ (1/2%) log(rory ) increases if either r, or r, decreases;

(ro, 71)"‘(0, 0)

A(Fp)= lim I:;t(ﬁP("o, "1))‘*‘2]” log ("o"1):|

is called the reduced extremal length of the family & p. The number 1(#;) depends
upon the choice of local coordinates at &, and P, in such a way that exp [ — 271 (£ )]
|dZ,| |dZ,| is an invariant form. Let M (%) denote the modulus of a curve family ¥,
i.e., the reciprocal of the extremal length. The expression M (Z}(ro, ry))+1/(2n)
log(ryr,) increases whenever either r, or r; decreases;

AED= i M o) ()]

(ro,r1)—(0, 0) 2n
is called the reduced modulus of the family & 3. As before, exp [ —2nM (£})] |dZ,|
|dZ,| is an invariant form.

For fixed values of 7o and r,, Lemma 3 implies that A (£ p (ro, 1)) =M (F 3 (ro,11))-
Therefore, (£ p)=M (#}) whenever both quantities are computed with respect to
the same pair of local coordinates. These reduced quantities can be expressed in terms
of a canonical harmonic function. Let & be a harmonic function on X with a positive
logarithmic singularity at 7, and a negative logarithmic singularity at P,; that is,
5(%;)+ (—1)*! log|Z,| has a removable singularity at Z;=0. The function 7 is only
determined up to an additive constant; however, ¥ is uniquely specified if we require
that §oT= —7. We shall assume that this is true. Then A(Zp(r, r))=—(1/r)logr
= (1/2n)? Dx r.», (%), which gives 1(F)=(1/2r)? Dx (%), where D3 (%) is the reduced
Dirichlet integral of # defined by

Dz (®)= lim [D% (ro.ry (7)+2m log (rory)].

(ro,r1)=(0, 0)
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That (£ )= (1/2r)? D% (¥) is a special case of a known result (Minda [2, Theorem
3]). Clearly, exp[ — (1/2r) D% (8)] |dZ,| |d2,| is an invariant form.

The reduced extremal length 1(% ) and the reduced modulus ¥ (#3) are defined
as follows. Let z be a local coordinate defined in a neighborhood of P, B(r) the closed
disk of radius r centered at P and () the boundary of this disk. Set X (r)=X—B(r)
and

Zp(r): all crosscuts 6 on X(r) such that  x s=1 (mod2),
F3(r): all 0Q, where Q is a Jordan open subset of X (r) and © contains a 1-chain

o satisfying [oq],=[0],.

The quantity A(Fp(r))+ (4/2n) logr (note the presence of the factor 4 in place
of 1) increases if r decreases and

~

A (ﬁ'ﬁ:lif; [/1 (Z» (r))+£:~t log r]

is called the reduced extremal length of the family % p. exp [ — (n/2) L(Fp)] |dz| is an
invariant form. The reduced modulus M (¥}) is defined by

- 1
M (ZF3)=lim I:M (Fr(r)+ 5 log r]
r—0 T

and exp [ —2nM (¥ 3)] |dz| is invariant.

It is easy to relate these various reduced quantities. Fix a local parameter z at P
with z(P)=0. Let 2, be the lift of this local parameter to a neighborhood of P;
(j=0, 1), then Z,0T=%,. Relative to these local coordinates it is clear that X (r, r)
is the two-sheeted covering surface of X (r)defined by 6. From Equation (7), A (Z (r))
=2A(Fp(r, 1)) so that

4 o 1
Fp (r)+57—; log r=2[A (Zp(r, r))+5r log r{l .
Consequently, 4(% p)=24(Z p). Similarly, Equation (8) and Lemma 9 together give
M(F3(r))=4M(F3(r, r)) which implies that M (F})=31M (#}).
If we gather together the results of this section, we obtain the following result

which is the analog of Proposition 1 for closed surfaces.

PROPOSITION 5. If X is a closed Riemann surface, o is a nontrivial 1-chain on
X and Pe X —o, then

~ 1 .
1(F)=401 (F5)= - Dz (¥).
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Recall that  satisfies the symmetry condition 5= —o7T. For — o0 <k <oo define
6= {PeX:5(P)=k}. Each 6, is a finite cycle on X; orient &, so that §is less than k
to the left of ;. The cover transformation T'maps &, onto —&_, and 6,€.% p for all k.
The projection of 6, onto X'is a 1-chain traced once in each direction. As in Section 6
it is possible to define a projection g, of G, onto X such that [o6,],=[c],. § projects
to a 2-valued harmonic function on X; a single-valued branch can be defined on X — o,
by letting v (Q) be the larger of the two values #( f ! (Q)). Then v is the Green’s func-
tion of the surface X—o, with pole at P. The reduced Dirichlet integral of vis

Dy (v)= 3Dx (@)
11. Extremal Regions and Quadratic Differentials on Closed Surfaces

In this section we discuss extremal properties of the level curve g, and a quadratic
differential ¥, on X which is derived from the function #. Proposition 6 is an analog of
Proposition 2, while Proposition 7 characterizes the quadratic differential ¥, deter-
mined by a 1-chain o.

Given a nontrivial 1-chain « = X and a point Pe X —a, let g, be the Green’s function
of X— o with logarithmic singularity at P. Thus, g, has boundary values 0 on a, and
if z is a local coordinate at P with z(P)=0 then in a neighborhood of z=0, g,(z)=
=w,(z)—log|z|, where w, is harmonic at z=0. Define

ga<P>=1in(1)(ga(Z)+10ngI); (13)

the form exp(—g,{P)) |dz| is invariant. g,{P) is related to the classical Robin’s
constant. The reduced extremal distance from a to P is denoted by A(«, P). It is known
that Z(a, P)=(1/2n) g,{ P> (Ohtsuka [1]). One can also prove

LEMMA 11. g, {(P>=(1/2n) Dyx(g.)-

PROPOSITION 6. Let X be a closed Riemann surface and o a nontrivial 1-chain
on X. Fix a point Pe X —a. Among all 1-chains which are Z,-homologous to ¢ on X—P,
there is a unique one o, which has the greatest reduced extremal distance from P.
Specifically, o, is the level curve 6, of v and g, ,=v is the Green’s function for X— o,
with logarithmic singularity at P. We have

X (0o, P)=max {1 (a, P): [a—0],=0 on X—P}, (14)
Dy (g,,)=max {Dy (g,): [x—0],=0 on X—P}, (15)

Koo D1=(52) Bx0=(3,) Dataw) (16



470 C.D.MINDA AND B, RODIN

Proof. Given a l-chain « on X—P which is Z,-homologous to o, construct
X=X (0)=X(«) and the function #. Lift the Green’s function g, to X by defining
£,(0)=g,(Q) if § is on the upper sheet of X (x) and @ lies over Q, and Z,(T(0),
=—§,(0). Set §,(0)=0if Q lies over «. Then g, is a piecewise harmonic function on
X having a positive logarithmic singularity at P, and a negative logarithmic singularity
at P,, where P, is the point on the upper sheet lying over P and P, is the point on the
lower sheet over P. Set w=g,—17, then W is piecewise harmonic on all of X. Fix a
local coordinate z at P and let Z; be the induced coordinate at P; with Z,0T=3.

Now, we derive an analog of the Dirichlet principle in this setting. From
g,=0+W, we get

D3, r) (ga) =Dy (r, r) (f’) + D3 ¢, n (W’) +2D5% ) (7, W’) .

If we apply Stokes’ Theorem to the mixed Dirichlet integral and let r — 0, then we
obtain

Dy (8.)=Dx () + D (5)+4r [W (P,)— W (Po)].

The equalities W(P,)=g,(P,> — (P>, §,(P;y=(—1)*"' g, (P, 5{(P>=(—1)y""
v{P), together with the fact that the reduced Dirichlet integrals on X are twice the
corresponding quantity on X, give

ﬁx(ga)'_4nga<P>=DX (ga_v)"}'ﬁx (U)—4TW<P> .

Making use of Lemma 11, we have

Dy (v)=Dx(g,—v)+Dx (g.).

Consequently, Dy (v)> Dy (g,) and equality holds if and only if v=g,. This is sufficient
to establish the proposition.

A quadratic differential ¥ =y (z) dz*> can be associated with a 1-chain ¢ on a
closed Riemann surface X. Given o, form X and #. The fact that §o 7= — & shows that
(di+i+d?)? is a T-invariant meromorphic quadratic differential on X. This invariance
condition implies that it can be projected to X. In this manner we obtain a meromorphic
quadratic differential ¥ =y (z) dz* on X and ¥=(dv+i*dv)* on X—0. We shall
sometimes write ¥ =¥,=y,(z) dz? to indicate the dependence on o.

Because  is locally the square of an analytic function on X' —P, ¥ has no poles
on X’'—P and all of its zeros are of even order. Let J be a branch point of X. ¥ will
have a simple pole at 0= (Q) if § is not a critical point of #, and otherwise will have
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a zero of odd order at Q. The reduced norm of ¥ =y (z) dz? is

K¥»=Ilim U‘f l¢ (2)| dx dy+2r log r] .

r—0
X

¥ has a pole of order 2 at P and if z is a local parameter at P with z(P)=0, then
W (2)=(1/z*)+(a—4/z)+ao+ . Clearly, {¥y=Dy(v) and Re [ /¥ (z) dz=] +db.

PROPOSITION 7. Let ¢ be a nontrivial 1-chain on a closed Riemann surface X.
Fix a point Pe X—a. There is a unique meromorphic quadratic differential ¥ =y (z) dz*
on X which satisfies the following conditions:

(1) ¥ has a pole of order 2 at P and the initial coefficient of the Laurent expansion
of Y (2) is 1, ¥ has no poles on X' — P and poles of at most the first order at the points
of do.

(i) Any germ /i (z) dz on X' —P can be continued along all paths on X' —P and
the continuation satisfies Re |, \/ Y (z) dz=0 if yen,(X'—P) and yx 0=0 (mod2).

Proof. The quadratic differential ¥, has properties (i) and (ii). To prove that it is
unique, consider another such quadratic differential ¥. Let w(Q)=Re (2, \/ Y (z) dz.
Property (ii) shows that w lifts to a single-valued harmonic function w on X' — { B, P, },
where P,, P, are the two points lying over P. Property (i) shows that w has a positive
logarithmic pole at one of the points P,, P, and a negative logarithmic pole at the
other. Also, w has removable singularities at the branch points because ¥ has at most
simple poles at the projection of the branch points. Thus, W is harmonic on X except
for two logarithmic singularities, so it follows that w= + i+ constant. From this we
see that ¥ =Y,.

The orthogonal trajectories of ¥, are the level curves of v. These are just o,
(0<k <) together with the special trajectory go€[o],. The following result has
been established.

LEMMA 12. The properties (i) and (ii) of Proposition 7 uniquely determine ¥, on
a closed Riemann surface X. There is a unique set a, of orthogonal trajectories of ¥,
such that o, €[o],; X—o0, is the extremal region of Proposition 6.
12. The Main Theorem for Closed Surfaces

We now gather together our results for closed surfaces.

THEOREM 2. Let ¢ be a nontrivial 1-chain on the closed Riemann surface X. Fix
PeX—o. There is a quadratic differential ¥, on X which is uniquely determined by
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properties (i) and (ii) of Proposition 1. Let % p and F § be the curve families defined in
Section 10. Then

A(Fp)=4M (7} )""5(( Y-

There is a collection o of orthogonal trajectories of ¥, such that o, is Z.,-homologous
to 0. 6, has the greatest reduced extremal distance from P among all I-chains on X — P
which are Z.,-homologous to 6. On X — o, we have Re \/ §;=dg, where g is the Green’s
function for X—ao, with logarithmic singularity at P and where the square root with
positive real part is selected.

13. Examples and Applications

In this section we briefly illustrate the variety of applications and problems suggested
by Theorems 1 and 2.

(a) Estimates of ||®,| and {®,Y. In the special case that ¢ is an arc and X is a
simply connected hyperbolic plane region, Theorem 1 reduces to a theorem of J.
Hersch [1]. Let 4 be the hyperbolic distance between the endpoints of ¢. If we use
Hersch’s computations, we find that

|®,l=2v(e”?"), (17)

where v(r) is the modulus of the doubly connected domain obtained by removing
the interval [0, r] (0 <r<1) from the unit disk. Explicitly,

K(\/I:‘[) B X
v(r)=—2—1—(—(—;—)—— where K(r)-!\/(l_xz) (1——r2x2)‘

The following useful estimates hold (Hersch [1]):

(\/1+r+\/2r)2 4 g4(1+r)

1—r (r) n l—r

1 4
v(r)=-—1log-+0(r?) as r—0, (18)
2r r

v(r)= (1+0(1—r)) as r-1.

s
4log(8/1—r)
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We can also express Theorem 2 explicitly in the simply connected case. Let X be
the Riemann sphere, let o be an arc from z, to oo (z, #0), and let the origin be selected
as base point. One can then show that

P,y =2nlogd|z,|. (19)

We know of no estimates comparable to those above in case ¢ is a union of arcs
or in case X is not simply connected. That such estimates might be useful can be seen
from the applications below, and from the applications given in Hersch [1].

(b) Wolff’s lemma. Let ¢ be an arc in X, and let f be a K-quasiconformal homeo-
morphism of X onto Y. Let &y (respectively, #) be the family of crosscuts on X
(respectively, Y) which cross o (respectively, f (¢)) an odd number of times. Then
K7U(Fy)<A(Fx)=|2,| "' <KA(Fy). Given a conformal metric on Y, let m be the
infimum of the lengths of the crosscuts in %, and let 4 be the area of Y. Then
K '(m*A)< K 'A(Fy)<|D,]l 7", so that

m< \/ K4 . (20)
19,1l

We shall show that (20) is a sharper, as well as more general, form of Wolff’s

lemma (J. Wolff [ 1, pp. 217-218]). To reduce (20) to Wolff’s lemma, choose X to be

the unit disk, choose ¢ to be an arc from the origin to § (0<d <1), choose f to be

conformal (K=1), and choose Y to be a bounded plane region with the euclidean

metric. Thus m is the infimum of the lengths of crosscuts in Y which separate f(0)
from f(6). From (20) and (17) we obtain

, A A

" <2v(e'2")=v((1—5)/(1+6))=4Av(5)’ 1)

where we have used the identity v(r) v((1—r)/(1+r))=% (Hersch [1, p. 317]). We
now have m<2 \/Av(é); if we estimate v(d) from (18),

n 1 i 1
5 =y pem— p— - L)
vt )<4log[(\/1+5+\/26)2/1—-5]<4108(1/1'”5)

we obtain, essentially, the original form of Wolff’s lemma:

\/ A
"“Vieg(1/1=8)’
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(c) Extremal regions. Theorems 1 and 2 are relevant to the subject of extremal
regions and distortion theorems. In the simplest special case (X is simply connected
and o is an arc) Theorem 1 yields Grétzsch’s extremal region theorem: Among all
arcs in {|z|>1} which join z=R to z=o0 (1 <R<w) the segment 6= [R, o] has
the greatest extremal distance from the circle {|z|=1}, and this extremal distance is
HI®| T =v(R).

In the simplest special case Theorem 2 yields the related result: Among all arcs
which join z=Rtoz=00 (0 <R <o0), the segment 6= [ R, co] has the greatest reduced
extremal distance from z=0; the value with respect to the identity local coordinate is
Z(0, 6)=(1/2n) log4R. (The Koebe one-quarter theorem is an easy consequence.)

Theorems 1 and 2 might be applied to more general extremal regions and distortion
theorems by letting X be nonsimply connected or letting o be a union of arcs.

(d) Conformal metrics. Let P and Q be points on an open Riemann surface X.
We use Theorem 1 to define d(P, Q)=inf 1(F*(0))=4 inf ™! (¥ (¢))=4inf ||D,|,
where the infimum is taken over all arcs ¢ on X with do=P— Q. It can be shown that
d(P, Q)is a metric on X. The relationship between this metric and the metric of S. G4l
[1, 2] and of M. Lavrentieff [1] are striking but are not yet completely understood.
Properties and uses of this metric will be treated in a future paper.

(e) Geometric inequalities. In general, extremal length and conjugate extremal
length statements lead to length-area inequalities of differential geometry (Rodin [1]).
The inequalities that arise in this way from Theorem 1 are especially interesting because

the extremal metric |ﬁ| cannot be realized as the euclidean metric on a plane region.
A number of problems arise concerning the sharpness of the inequalities and how they
can be improved with regard to the euclidean metric.
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