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Comment. Math. Helvetici 50 (1975) 421-454 Birkhauser Verlag, Basel

Déformation du crochet de poisson sur une variété symplectique

par JACQUES VEY

Je me propose, dans cette note, de construire sur une variété symplectique X une
déformation formelle du crochet de Poisson, non-triviale en un sens qui sera précisé
au §4, du type suivant: les 4, (k entier >1) seront des opérateurs bidifférentiels sur
lalgebre &'y des fonctions C* sur X, bilinéaires sur R, alternés, et tels que la série

t 12 $3
[u, v],=[u, v] te Ay (u, v)+5~‘ A (u, v)+;7~' Js (1, V)4 (1)

(ol u, ve&y et ¢ est un parameétre) vérifie I'identité de Jacobi. De tels objets ont déja
été considérés par M. Flato, A. Lichnerowicz et D. Sternheimer dans un travail récent
([12]), mais ces auteurs limitaient I'ordre des opérateurs sur chaque argument & 1.
Au contraire, dans la présente construction, ’ordre de 4; sur chaque argument est
2i+ 1, et ces opérateurs s’annulent dés que I'une des fonctions arguments est constante;
en fait la série (1) tente de relever de fagon covariante sur X une déformation assez
bizarre du crochet de Poisson sur les séries formelles, qui ne semble pas avoir été
signalée jusqu’ici, et que j’ai dt décrire au § 1. En conséquence, les symboles principaux
des 4; sont explicites. Une formule universelle, décrite au §3, n° 3, permet, sous la
donnée d’une connexion linéaire D adaptée sur X, d’écrire explicitement ’opérateur 4,
(la connexion intervient en chaque point par son jet d’ordre 1); mais je n’ai pu en
faire autant pour les opérateurs suivants.

J’ai donc été obligé de recourir au procédé standard d’extension pas & pas de
déformations tronquées (cf. [10]), en repérant les obstructions éventuelles dans un
groupe H?(&y, €x) convenablement défini (§3). Par des techniques inspirées de
M. V. Losik et V. Guillemin, on aboutit 4 la proposition 1 du §3, d’ou il ressort que ce
H? se fournit de deux cotes: d’une part le H? analogue relatif aux fonctions formelles,
que j’ai pu conjurer par les lourds calculs du §2; d’autre part, la cohomologie réelle
H*(X, R) de la variété: pour assurer I'existence de la déformation (1), je dois sup-
poser H3 (X, R)=0; et je ne sais pas si cette hypothése est surperflue, ou si elle cache
une classe caractéristique.

Un aspect inquiétant de la formule (1) est le bouleversement qu’elle provoque sur
la stratification des jets: c’est un opérateur différentiel d’ordre infini, et je ne vois pas
comment prendre le probléme de la convergence. De toute fagon, mon incertitude est
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grande sur le statut de cette construction; mais il était tentant d’écrire des formules
ou la courbure d’une connexion linéaire perturbe les lois de commutation.

§1. Déformation des algébres symétriques

1.1. On désignera par k un corps commutatif de caractéristique nulle, et par 7 un
espace vectoriel de dimension finie sur k. Soit g un opérateur bidifférentiel & coeffi-
cients constants sur T

= 2 o (50) (%) @

ol «, B sont des multi-indices, et les ¢, , des constantes; si u et v sont deux fonctions
sur 7, g(u, v) est la fonction sur T

g(us U)—_‘- Zﬁ ca, ﬂulavlﬁ (2)

ol u|, désigne la dérivée partielle de # d’indice . On peut aussi considérer g comme
un élément de k [T@T], c’est-a-dire comme une fonction

g(&, é”)-‘-‘aZﬁ ¢, s (£) (&Y €)

de deux arguments &', &” variant dans le dual 7* de T. Sous les formes (1) ou (3), on
voit comment former les puissances successives g” de g, qui seront aussi des opérateurs
bidifférentiels sur 7" a coefficients constants.

THEOREME 1. La multiplication

£
M, 0)= Y " (u, 0)
nz0 N

(u, v polynémes sur T, t parameétre) définit une déformation formelle de I’algébre asso-
ciative k[ T'] si et seulement si I’opérateur g vérifie I’identité

g(E, &) —g (&' +¢&", &) +g (&, & +E")—g (&, &)=0 4)

"

les trois arguments &', &", £ variant dans T*. Tel est le cas par exemple si g est biliné-
aire.

En principe, on obtient une déformation formelle, c’est-a-dire une loi de k[[#]]
algebre sur k[[t]]®k [ T]. Mais si l’on fait la petite hypothése que ’opérateur g n’a

pas de terme constant (c,, o=0), alors pour chaque spécialisation du paramétre ¢, et
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pour chaque couple de polyndmes u et v, la série Mf(u, v) n’a qu’un nombre fini de
termes non nuls, et la loi est définie sur I'espace k[ T].
Nous devons vérifier ’associativité. Un lemme tout d’abord:

LEMME 1. Soit F (x', x") une fonction sur T®T, et P (&) un opérateur différentiel
a coefficients constants. On a l’identité:

P(E)F(x,x)=P(&'+E&)F(x',x")yroxrex-

(Cette identité est évidente si P est d’ordre 1, et elle est multiplicative en P).
Ecrivons la multiplication & ’aide d’un opérateur bidifférentiel d’ordre infini:

ME (u, v)=exptg (&', &) u(x') v (X" )yraxrex-
De la sorte,

M (M (u, vy, w)=exptg (", &) ([exprg (&', &) u(x") v (X" =xr] W (X") )xr = xm=s
=expig (&' +¢", &) exprg (&, &) u(x") v(x") w(x" )= vy =x
=expt(g(&'+¢&", E")+g(&, &) u(x") v(x") w(X")yexrexm=x

et en comparant avec M§(u, M,5(v, w)), on tombe sur la relation (4), qui est auto-
matiquement vérifiée quand g est bilinéaire.

Afin d’interpréter la condition (4), on considére le complexe C;,(T*, k) des co-
chaines du groupe additif 7* opérant trivialement dans k& qui sont des fonctions poly-
nomiales; si f(&;,..., £,) est une p-cochaine, son cobord Jf est:

5f(£1,---9 6p+1)=f(€2’-'-9 £p+l)—f(5l+£29 63,'“’ ép+l)
+f(€1, §2+é3$°“’ ép-H.).—'"+(—1)p+1f(€19-~-, cp)'

Ainsi la condition (4) dit que g(&’, &) doit étre un 2-cocycle. Interprétons les
cobords. Si ~(¢)eC,, (T*, k),

Sh(E, &)=h(&)=h(&'+E)+h(E).

PROPOSITION 1. Soient g, g' deux opérateurs bidifférentiels sur T @ coefficients
constants, vérifiant la condition de fermeture (4); et h un opérateur différentiel a coeffi-
cients constants tel que g’ =g+ 6h. Posons, pour uck[T],

or=expth(&)-u.

Alors MF (u, v)=(c")"1+ M%(c/tu, ov): les deux déformations sont isomorphes.
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Ici encore, il est préférable de supposer les opérateurs sans terme constant, de
fagon 4 ce que les séries en question fassent sens sur k[ 7] quand on spécialise le
parametre. Quant a la preuve, elle est analogue a celle de ’associativité, en plus simple

((a};)— '= “’:-z)'

1.2. Donnons maintenant les exemples principaux. Supposons d’abord T de di-
mension 2, et soit p, g un systétme de coordonnées. Prenons

0 (4, v) ou ov
g=-=>, &g, v)=— -
p' 9q op 0q
8"‘u 6"‘
ME (u, -

Pour t=1, on reconnait le produit des opérateurs différentiels polynomiaux a une
variable:

u=Y u,(5) (63) 0= 0,(%) (;f—)

en lisant g=x, p=0/0x. 1l en est de méme pour tout ¢#0, si on lit p comme #3/0x.
Par conséquent toutes ces algébres M? sont isomorphes pour #0, et bien siir non
isomorphes a k[ p, q] elle-méme (elles sont non-commutatives).

Plus généralement, supposons T" de dimension paire 2v, et soit p;, ¢; (1<i<v) un
syst¢éme de coordonnées. En prenant pour g

v Y ou oOv
u,v
8= ; : 8w v)= Zap,aq,

-

on obtient pour Mg, et t#0, I'algébre des opérateurs différentiels polynomiaux a v
variables, en lisant:

o \¢ 3 \@ ]
> uu(xl,...,xv)(tﬁ) (ta;c) pour Y u,(qq,.-- 4y) PT... D5

a multi-indice ax1

Sur le méme espace, prenons a présent I’opérateur:

M , Y Ou Ov
e u,v)=—) — —.
21: ’,ap & ( ) 1 0q; 0p;

Cette fois, on va obtenir pour M¥ I’algébre des opérateurs différentiels 4 v variables,
en ordonnant u et v par rapport aux g;, et en lisant x; pour p;, — d/0x; pour q;. Comme
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g'—g=0h, avec h

la proposition du n° 1 montre que la transformation a

1
o u=Y — K"
m>0 m!

réalise un isomorphisme de M¥ et M¥; c’est donc une sorte de transformation de
Fourier, mais au niveau des jets, qui échange positions et impulsions, avec un signe.
En jouant sur le fait que pour s, tek, M® =M%, et «f" =0, on voit que les o passent
continument de M% & M¥ en transitant par les M2*%

Cela dit, & mi-chemin entre M% et M¥', ou plutdt entre M5 et M, se trouve une
algébre remarquable. Soit y 'opérateur bidifférentiel:

V9 8 8 0
y=z A7 ”—_—I A
T 0p; 0q; 0q; Op;

?(u, v) est le crochet de Poisson [u, v] relatif & la structure symplectique dp, A dg,
+:--+dp,Adgq,: on a y=2g+ dh, et la déformation

12
M} (u, v)=uv+t[u, v]+-2— 2 (u, v)+ -

est une déformation associative de k[ p,..., g,] pilotée par le crochet de Poisson;
chaque spécialisation M, n’est évidlemment qu’un avatar de I’algébre des opérateurs
différentiels polynomiaux a v variables.

Considérons maintenant la loi d’algébre de Lie sous-jacente & M,. Noter que les
opérateurs y" (u, v) sont alternativement symétriques et antisymétriques selon la parité
de n; en divisant par le facteur 2¢, et en prenant t2 comme nouveau paramétre rek,
on trouve une loi d’algébre de Lie:

n

t t .
Lt(u, v)=[u, U]+6’y3 (u, U)+"'+(—5m ')?(2 “)(u, v)+... (5)

qui est une déformation du crochet de Poisson. Cette déformation est pilotée par
Popérateur bidifférentiel y3/6 qui, d’aprés la théorie générale, va €tre un 2-cocycle de
I’algebre de Poisson k[T'] opérant dans elle-méme par la représentation adjointe. Il
apparaitra ultéricurement (§2, prop. 1) que ce cocycle n’est pas cohomologue a zéro.
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L’objectif principal du présent travail va consister, sous la donnée d’une variété sym-
plectique X, & construire des opérateurs A, sur X, dont les symboles principaux soient
les y,, et tels que la formule (5), avec les A, substitués aux y,, soit une déformation
formelle du crochet de Poisson sur X.

1.3. 1l reste a préciser le statut des déformations M parmi les déformations de
’algebre associative k[ T]. Clarifions tout d’abord la cohomologie du complexe
Cy,(T*, k) introduit au n° 1. Noter que les espaces APT s’injectent dans CZ, (T*, k)
en donnant les fonctions f (£, ..., £,) multilinéaires alternées des &;; et que ces fonc-
tions sont des cocycles.

PROPOSITION 2. La fleche APT— H}, (T*, k) ainsi définie est un isomorphisme.
En fait, tout cocycle est cohomologue a la somme antisymétrisée de ses termes multi-
linéaires.

Le méme énoncé a été démontré par Van Est [1] concernant les cochaines
différentiables; la preuve s’adapte aisément et repose sur le double complexe
Cp. (T*, Q%,(T)) des cochaines polynomiales du groupe additif 7* dans les formes
différentielles polynomiales.

COROLLAIRE. Soit g un opérateur bidifférentiel sur T a coefficients constants,
sans terme d’ordre zéro, qui soit un 2-cocycle. Les algébres associatives M, tek, sont
toutes isomorphes a des produits tensoriels d’algébres de polynémes et d’algébres d’opé-
rateurs différentiels polynomiaux.

En effet, I’énoncé précédent et la proposition du n° 1 permettent de supposer
g (&', £") bilinéaire alterné. On décompose alors T en somme directe d’un sous-espace
T, restreint auquel g est nul, et d’un sous-espace T, restreint auquel g est non dé-
générée.

Maintenant d’aprés la théorie générale, [10], les déformations infinitésimales d’une
algébre associative A sont repérées dans le groupe de cohomologie de Hochschild
H?*(A, A) de A opérant dans elle-méme par multiplication & droite et & gauche; le
groupe H?(A, A)indiquant les obstructions éventuelles a prolonger des déformations.

PROPOSITION 3. Les groupes de cohomologie de Hochschild H? (k[ T, k[T])
sont isomorphes a k[ T]®,AT.

Jesquisserai la preuve de ce résultat qui se trouve au moins implicitement dans la
littérature. En général, si 4 est une algébre associative sur k£, M un bimodule sur A4,
et A° I’algebre opposée,

H*(A, M)=Ext}g (4, M).
Posons k[T]=k[xy,..., x,]=S: S° est isomorphe & S, et S®S° & S [yy,..., ¥ul-
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Nous devons calculer:
H* (S, §)=Extsyy,, ...y (S, S)

ou S [y] opére sur les modules S de fagon S-linéaire, les y; opérant dans S=k [x] par
multiplication par x;. Maintenant, S [y,..., y,]~S [z,..., 2,], avec z;=y;—x;, et
cette fois, les z; opérent par zéro. Des lors, la résolution de Koszul du S [z]-module
S par des S [z]-modules libres indique que:

H*(S, S)=Ext§,;(S, S)

est une S-algébre extérieure sur n générateurs, c.q.f.d.

Il apparait finalement que les déformations infinitésimales de k[ 7] sont repré-
sentées par les opérateurs bidifférentiels sur 7, a coefficients polynomiaux, alternés,
de bi-ordre (1, 1)

0
ox",

J

d
g(x; &, &)=Y g;(x) e (8ij=—g;i)

et que ceux que nous avons intégrés sont ceux a coefficients constants. Je ne sais
pratiquement rien sur le cas général. Pour que la déformation définie par g se prolonge
a I'ordre 2, il faut que 'opérateur tridifférentiel

C(u’ v, w)=g(g (us 0)9 w)—g(u, g(U, W))

qui est de toute fagon un 3-cocycle, coborde; tous calculs faits, on trouve I’obstruction

c 0 0
G=Y Gy () — —
2 G (x) dx; 0x'} 0xy
0g:; og;
Giu= U Z“gj' <

‘—‘_ Ik~ &il ~
Gk T 0% 0x

(U indique I’antisymétrisation sur i, j, k).
Un exemple o elle est non nulle est fourni en dimension 3 par I'opérateu~

(8,2} ou Ov + ou Ov
’ _——_——_ X — T

A 6x1 ax3 3 BX2 ax3

§2. Cohomologies de champs symplectiques formels

2.1. On désigne toujours par k un corps de caractéristique nulle, et par T un espace
vectoriel sur k, de dimension paire, équipé d’une forme bilinéaire g alternée non dé-
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générée. Nous aurons a considérer les quatre algébres de Lie suivantes: 3 est ’algébre
des fonctions formelles £ [ [ T]], équipée du crochet de Poisson; S I’algébre des champs
symplectiques formels; s la sous-algebre de & formée par les champs nuls a I’origine;
et sp la sous-algebre de s formée par les champs linéaires symplectiques. Il est entendu
une fois pour toutes que les cohomologies de ces algébres sont calculées avec les
cochaines d’ordre fini. Le résultat clé est le suivant:

THEOREME 1. La cohomologie H*(s, k) (s opérant trivialement dans k) est
nulle en degré 1, de dimension 1 en degré 2, si la dimension de T est au moins 4, elle est
de dimension 1 en degré 3, et de dimension au moins 2 en degré 4.

Un générateur B de H2(s, k) s’explicite de la fagon suivante: soit U, Ves, u et v
des fonctions génératrices; alors

B(U, V)=g*(u, v) (0)

la puissance g* du crochet de Poisson étant définie comme au §1, n° 1. Pour exploiter
ce résultat (excessivement partiel, malheureusement), j’utiliserai le théoréme suivant,
dii & Gelfand et Fuks:

THEOREME 2. On a un isomorphisme naturel entre les cohomologies H* (s, k)
et H*(S, k[[T]]) de S opérant dans k[ T]] par dérivation.

On obtiendra une preuve élémentaire en adaptant les considérations du §3, n° 1;
la méthode la plus rapide consiste a décrire le S-module £ [[ 7]] par induction:

k[[T]]=Homy, (UGS, k)

U désigne le foncteur algebre enveloppante (noter que US=Us®ST); apres quoi,
pour comparer les deux groupes

H*(S, k[[T]])=Extye (k, K [[T]1])
H* (s, k)=Ext?, (k, k)

on utilise les «formules d’associativité» de [2], ch. X VI, §4 (formule (4) en particulier).

On passe de 13 facilement a la cohomologie H* (B, B) de P opérant dans elle-
méme par I’adjointe; cohomologie qui est pertinente aux questions de déformations
de k[[T]] comme algebre de Lie. Considérons la suite exacte d’algébre de Lie:

grad

0-k->P->&-0

le gradient U d’une fonction u étant défini par 1y,g= —du, et k étant injecté comme
fonctions constantes. L’application grad* injecte C*(S, k[[T]]) dans C*(*B, B),
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son image étant formé par les cochaines ¢ annulées quand I'un des arguments est une
fonction constante, 1;£=0. D’autre part, on obtient une dérivation de P (c’est-a-dire
un 1-cocycle de P dans PB) en posant:

ou=0yu—2u

0y désigne la dérivation par le champ H des homothéties. On vérifie sans peine que
tout cochaine ¢ s’écrit de fagon unique

6:&/\ £I+ é”
avec &’ et £” dans I'image de grad*, et on en déduit:

PROPOSITION 1. La cohomologie H*(P, P) est le produit tensoriel de
H*(S, k[[T]]), injectée par grad* et de I’algébre extérieure sur la dérivation a.

(Il est clair que la dérivation « est extérieure: elle n’annule pas les constantes). 1l
n’est pas difficile de pister le 2-cocycle B non trivial dans C?2(s, k), et de le retrouver
dans C2(PB, P) sous la forme

B (u, v)=g*(u, v)

C’est-a-dire précisément le pilote de la déformation d’algebre de Lie considérée au
§1, n° 2: cette déformation n’était donc pas triviale.

2.2. Pour aborder le calcul de H*(s, k), nous allons distinguer dans C*(s, k) le
sous-complexe C*(s, sp, k) des cochaines ¢ vérifiant 0,¢=1,=0 quel que soit
Uesp  s. On obtient une fleche i: H* (s, sp, k) — H* (s, k). D’autre part, le jet d’ordre
1 définit une projection j;:s—>sp, ce qui donne un morphisme ji:H*(sp, k)—
H* (s, k).

PROPOSITION 2. L’application jif®i: H*(sp, k)@ H*(s, sp, k) = H* (s, k) est
un isomorphisme.

En effet sp opére réductivement dans C* (s, k) (on se limite aux cochaines d’ordre
fini) et le terme E, de la suite spectrale de Hochschild-Serre relative a la sous-algébre

sp ([3], §6) devient:
E}?=H"(sp, k)®H" (s, sp, k).

Mais tous les termes de la «fibre» E5** sont relevés comme cocycles par ji: toutes les
différentielles sont donc nulles ce qui fournit le résultat annoncé (Cf. [3] théoréme 12).
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La cohomologie scalaire de sp est bien connue ([4], Th. 7.11.C): c’est une algébre
extérieure & v générateurs n, 1, ..., 5, (dim7T=2v) de degrés respectifs 3, 7,..., 4v—1.
Il apparait donc une classe n=jn; dans H*(s, k), et I’énoncé du théoréme 1 devient:

THEOREME 1bis. La cohomologie H* (s, sp, k) est nulle en degrés 1 et 3; elle
est de dimension 1 en degré 2, et de dimension au moins 2 en degré 4. Les assertions sur
les degrés 3 et 4 supposent la dimension de ’espace T au moins égale a 4.

Une fois les instruments mis en place, les assertions concernant les degrés 1 et 2
n’offrent pas de difficulté réelle. En effet, 'algébre B, c’est-a-dire k[[7]] comme
espace vectoriel, est un produit direct

P=[] S"T*;

mz20
si &, neT™*, et k, [ des entiers >0,
[ n']=ki(&n) & n'"teskTIm2T™

(les parenthéses désignent la forme fondamentale g sur 7 ou sur 7*). On définit une
graduation d’algebre de Lie sur § en posant

‘]3(")=S"+2T* (p>—2)

et la dérivation extérieure o multiplie par p les éléments de P?). La sous-algebre s
s’obtient en supprimant les deux premiers termes de la graduation:

§= H SkT* — H SB(P)

k22 p=0

dans la suite, on écrira s plutot que PP . C’est ici le lieu de rappeler qu’en tant que
sp-modules, les S*T et S*T* sont irréductibles (et méme absolument, c’est-a-dire qu’ils
restent irréductibles apres cloture algébrique des scalaires) (cf. [4], ch. VI).

Cela dit, les 1-cochaines d’ordre fini forment une somme directe:

C'(s, k)= @ S"T

mz0
et par conséquent, il n’y a pas de 1-cochaine non nulle sp-invariante (c’est-a-dire
annulée par tous les 0y, Uesp). A fortiori, C* (s, sp, k)=0, et H' (s, sp, k)=0.

On dira qu’une r-cochaine f'est de support (py, p,, ..., p,) (ol les p; sont des entiers
20,p,=2p,=--2p,20)sisavaleur f(Uy,..., U,) sur des champs U;€s ne dépend que
des composantes des U, sur "), ..., s, Toute cochaine (d’ordre fini) est somme de
telles cochaines; et une cochaine f de support donné (py, ..., p,) s’identifie naturelle-
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ment 3 une forme linéaire f’ sur:
s(m)®s(p2)® s ®S(Pr)

soumise 3 cette seule condition que si certains des p; sont égaux, ' doit étre alternée
sur les arguments correspondants; si U, es?V, etc.

f(Uy,..., U)=f"(Uy,..., U,).

Il nous faut aussi tirer parti de la dérivation «. Noter d’abord que a(s)<s, et que
sur s (et ©) a coincide avec la dérivée de Lie 05 du champ des homothéties. Si ’on
fait opérer o (ou 6y) sur les C"(s, k) par transposition:

(@f) (Uyy U,)=$f(U1,..., «U, ..., U,)

o est une dérivation de I’algébre extérieure C*(s, k), commutant avec la différentielle
d; pour une r-cochaine f de support (py,..., p,),

af=(py+e+p,)f

ce que nous exprimerons en disant que f est de poids (p; + - +p,). On voit ainsi que
les cochaines de poids donné p forment un sous-complexe C, (s, k), et que C*(s, k)
est la somme directe des C, (s, k) pour p>0. Comme o (ou 0;) commute avec les 0y,
Uesy, cette graduation passe au sous-complexe des basiques C* (s, sp, k), etdelaa
H* (s, sp, k).

Examinons maintenant le degré 2:

C*(s,k)= @® Hom(sP®s?, k)

p>q>0

A ceci prés que si p=g, on doit se borner aux formes alternées. Prendre les cochaines
annulées par les 1y, Uesp, revient & limiter la somme a p>g2>1 (puisque sp=
=5(? gg); et finalement

C%(s,sp, k)= @® Hom(sP®s?, k)’

p2gq=1

avec la méme réserve sur antisymétrie, et ou (?)°? est le foncteur «invariants par le
groupe symplectique linéaire de 7» (ou par ’algébre de Lie sp, ce qui revient au méme).

LEMME 1. Si I#m, il n’y a pas de forme linéaire non nulle Sp-invariante sur
S'T*@S™T*. Si l=m, il y en a une seule (& scalaire prés), qu’on peut définir par:

x, Y= (x, p)

(x, yeT *), et qui est symétrique ou antisymétrique selon que l est pair ou impair.
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Preuve. La forme fondamentale g définit un isomorphisme Sp-équivariant de T
et T*, ce qui permet de considérer que nous cherchons les applications linéaires de
S'T dans S™T Sp-équivariantes. Si /% m, il n’y en pas (2 part 0) puisque les Sp-modules
irréductibles S'T et S™T sont non isomorphes (lemme de Schur); et si /=m, il n’y en
a qu’un seul (& scalaire prés). Pour I’expliciter comme forme bilinéaire sur S'T*, on
observe que les «puissances parfaites» x', xeT, engendrent linéairement S'T*; il n’y
a plus alors qu’a écrire une expression homogeéne de degré / sur chaque argument
X, ¥, et Sp-invariante.

On notera B, la forme bilinéaire ainsi définie sur $”)=S?*2T*; remarquer que
ces formes sont non-dégénérées (a cause de lirréductibilité des s comme Sp-mo-
dules), et que B, est la forme de Killing sur s(°?=gp. Enfin f, est de poids 2p.

Nous avons donc 4 présent entre les mains une base B, B3, fs, ... de C? (s, sp, k).
Toutes ces cochaines étant de poids différents, la recherche des 2-cocycles sera achevée
dés que nous saurons celles des 8, (p impair) qui sont fermées.

LEMME 2. Soit { une forme r-linéaire alternée sur s)=S3T*, Sp-invariante.
Soit my:5—51) la projection naturelle. La r-cochaine ni{eC’ (s, k) est un cocycle
sp-basique.

Preuve. Que n’i{ soit basique est évident; son support est (1, 1,..., 1). Clest le
moment de rappeler la définition de la différentielle. Si f est une r-cochaine,

df(Uyy ..., U,py)= Z (—1)i+j S(LUU;1, Uy, 55, U r)-

1<i<j<r+1

Montrons que d(n7{)=0. De toute fagon, c’est une cochaine sp-basique, ce qui limite
la vérification a des arguments U;es®", p,>1. Alors dans tous les termes, le crochet
[U,U;] tombe dans un $77, p’>2, et on obtient 0.

Il résulte de ce lemme que B, est un 2-cocycle, stirement non homologue a zéro vu
I’absence de 1-cochaines basiques.

LEMME 3. Le cobord df,eC>(s, sp, k) avec p impair >3 a une composante non
nulle de support (p,p—1, 1).

C’est-a-dire: la restriction de dB, 4 s ®s? D ®s") n’est pas identiquement nulle.
Calculons-la sur des «puissances parfaites»:

By xPT2AYPHIAZ =3 (p+1) (. 2) B, (x"* 2, yP2?)
=3(p+1) (» 2) (x, ) (x,2)%,
X, ¥, z variant dans T*, cette expression n’est pas identiquement nulle.

Nous trouvons bien finalement que H (s, sp, k) est de dimension 1, engendré par
la classe de B,. Il n’y a plus qu’a s’assurer que f, coincide bien avec le 2-cocycle décrit
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au n° 1, ce qui ne présente pas de difficultés (surtout si I'on fait jouer I'unicité dans
le lemme 1).

2.3. J’en arrive a la section la plus pénible de la preuve; il s’agit de décrire
C3(s, sp, k), puis Z3(s, sp, k).

LEMME 4. 1l n’existe de forme linéaire Sp-invariante non nulle sur S*T*®S'T*
®S™T* que si la somme des trois entiers k, I, m est paire, et si chacun d’eux est inférieur
ou égal a la somme des deux autres. Auquel cas, toutes ces formes sont proportionnelles
a la forme f ;. ) définie par:

x5 L 2 (x, p) (%, 2)f (v, 2)* (%, y, zeT*)

avec

_——k+l+m _k—l+m _k+il-m
A T T

En effet la théorie classique des invariants ([4], th. 6.1.A) indique que les formes
invariantes sont du type indiqué. En ajustant les exposants a, 8, y de fagon a ce que le
degré en x soit k, etc., on est conduit aux expressions ci-dessus; et pour ce que ces
derni¢res fournissent des entiers >0, il faut que k+/+m soit pair, et que le trio
(k, I, m) constitue un triangle.

ANNEXE AU LEMME 4. Sideux des entiers, disons k et |, sont égaux, la forme
Sk, 1, m) DPrésente sur les deux premiers arguments une symétrie ou une antisymétrie selon
que le troisiéme entier (ici m) et la demi-somme (k + 1+ m)/2 sont méme parité ou non.

Ceci va nous permettre d’indexer les 3-cochaines invariantes par leur support.
Précisons: soit (p, ¢, r) un support, p=>q=>r>0. Les 3-cochaines invariantes de sup-
port (p, g, r) sont les formes linéaires invariantes sur:

Sp+ 2T*®Sq+ 2T*®Sr+ ZT*

présentant les antisymétries correspondant aux égalités éventuelles entre p, g et r. Con-
venons de dire qu’un support (p, ¢, r) est admissible si les trois entiers k=p+-2,
I=q+2, m=r+2 satisfont les hypothéses du lemme 4 et, s’il y a des égalités entre
eux, les conditions d’antisymétrie décrites dans I’annexe; enfin notons f, , .=
=f(p+2,q+2,r+2)- Alors les cochaines f, , ., (p, g, r) parcourant les trois admissibles,
forment une base de I’espace C3 (s, k)°7; et si on se limite aux trios p=g>r>1, de
I’espace C3(s, sp, k). Noter que le poids de f, ;. , est p+g+r, et qu’il est forcément
pair.
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Il s’agit maintenant de déterminer les 3-cocyles. La décomposition de C*(s, sp, k)
selon les poids de a permet d’abord de ne considérer que des cocycles de poids déter-
miné; un tel cocycle Z se présentera comme une somme de f, , ,, affectés de coeffi-
cients variés, indexée par les trios p=>qg=>r>1 admissibles d’un poids déterminé.
Rangeons les trios (p, g, r) dans 1’ordre alphabétique: (p, g, r) précéde (p’, ¢, r') si
p>p',ousip=p’ etg>q’,ousi p=p’, gq=q' et r>r’; et rangeons les termes de la
somme Z dans cet ordre; nous pouvons normaliser le cocycle Z de fagon que le terme
de téte ait le coefficient 1. La démonstration va se faire en trois temps.

Premier temps: 1l est exclu que le terme de téte soit un f, , , avec r>1.

Raisonnons par I’absurde et supposons que le terme de téte dans Z soit f, , ,,
avec r>1. Le cobord df, ,, est une 4-cochaine qui s’appuie sur les supports
(p'sq’sr’, s") obtenus en décomposant tour & tour chacun des entiers p, g, r de toutes
les fagons possibles en somme de deux entiers > 1; cela résulte de ce que:

s= []s®,

p=20

est une graduation d’algebre de Lie, et aussi de ce que C*(s, sp, k) est un sous-
complexe. En particulier, df, ,, a une composante de support (p,q,r—1,1),
p=q>r—121, etil est assez clair que c’est le seul & en avoir une parmi les df,. .-,
(p',q',r')<(p, g, r). Donc I’égalité dZ=0 exige que la composante de support
(p, g,r—1, 1) dans df, ,, , soit nulle. Calculons-la: j’écris f pour f, . ,; et x,y,z,¢
varient dans 7*:

df(xp+2’ yq+2, zr+l’ t3)= _3(r+1) (Z, t)f(xp+2’yq+2, Zrt2)

quantité qui ne saurait étre identiquement nulle: c’est la contradiction cherchée.

Interméde. Le terme de téte est donc un f, , 4, p>q=>1. Mais pour que le trio
(p, g, 1) soit admissible, il faut que p+2<(q+2)+3, et que (p+2)+(q+2)+(1+2)
soit pair. Ceci ne laisse que deux possibilités: (p, p—3,1) et (p, p—1, 1); dans un
poids déterminé 2d, la premiére se présente avant la seconde: (d+1,d—2,1)>
>(d,d—1,1).

Deuxiéme temps: Il est exclu que le terme de téte dans le cocycle Z soit f,, ,_ ;.

Supposons le contraire. Evidemment, p>4; d’autre part, f, ;,1=f(s, 3, 3) €st exclue
par une symétrie partielle sur les deux derniers arguments. Donc p>5. Le cobord
df,, ,- 3,1 a une composante de support (p, p—4, 1, 1); et si nous excluons provisoire-
ment le cas p=>5, le seul trio suivant (p, p—3, 1) 3 en faire autant est (p, p—4, 2).
Ecrivons fpour f, ,-3,1, & POUT f,, ,—4, 2; €t soit A le coefficient de g dans Z. La con-
dition dZ=0 exige que df+ Adg, restreinte a:

5P RsP~ N Qs QM)
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soit nulle. Or:

df(xp+29 yp—Z’ 23’ t3)=3 (p—2) (y, z)f(xp+2’ yp-3z2, t3)
=3(P=2) (3 1) f(x"* 2, yP 7312, 2%)
dg(xP*2, P72, 2%, 13)=9(z,¢t) g (x** %, yP~2, 2%t ?).

C’est ici que je dois supposer la dimension de T au moins égale 4 4, afin que les six
produits (x, y), (x, z),... soient algébriquement indépendants ([4], th. 6.1.B). Le
lemme 4, appliqué au trio (p, p—3, 1), c’est-a-dire (p+2, p—1, 3) en degrés sur ST*,
montre que «=0: dans ’expression de f; il n’y a pas de couplage entre les deux derniers
arguments. Donc, par-dela les nécessaires polarisations, il est clair que (z, ¢) n’appa-
rait pas dans ’expression de df. Si donc df + Adg est aussi nulle qu’elle le prétend, A est
forcément nul, et la composante de df sur le support (p, p—4, 1, 1) est nulle. Or, dans
’expression qui en est donnée ci-dessus, (y, t) n’apparait pas dans le premier terme:
c’est la contradiction désirée.

Reste en suspens le cas exceptionnel p=35. Dans ce cas, le trio (p, p—4, 2) n’est
pas dans le bon ordre; et quand on I’y remet, il coincide avec (5, 2, 1). Il s’avére ainsi
que dfs , ; a une composante de support (5, 1, 1, 1) et qu’aucun des trios qui suivent
(5, 2, 1) n’en fait autant. Si donc f5 , ; était le terme de téte d’un cocycle, la compo-
sante (5, 1, 1, 1) de son cobord devrait étre nulle. Calculons-la: (j’écris f pour f5, , ;)

df (x7, 3,23, 83)=9(y, z) f (x7, y*2%, 1*) =9 (, 1) f (x7, y?t?, 2°)
+9(z, 1) f(x7, 222, y?),

avec x, y, z, teT*. D’un autre cte, pour a, b, ceT*,
f(@@,b% c*)=(a, b)* (a, c)’

ce qui montre que (y, z) n’apparaitra pas dans les deux derniers termes de I’expression
de df, alors qu’il factorise dans le premier. Donc la composante (5, 1, 1, 1) de dfs ;4
est non nulle, ce qui termine le deuxi¢me temps.

Interméde. 11 résulte de ce qui précéde que dans un poids 2p donné, il ne peut y
avoir qu’un cocycle au plus (2 scalaire prés), qui sera piloté par f, ,_;, ;. Supposons
p impair. On a vu au n° 2 que le bord de la 2-cochaine 8, C? (s, sp, k) a une compo-
sante non nulle de support (p, p—1, 1): donc tout cocycle de poids 2p lui sera pro-
portionnel. Nous concluons: un 3-cocycle dont le terme de téte est f, ,—, 1, avec p
impair, est un cobord.

Troisiéme temps: Il est exclu que le terme de téte d’un 3-cocycle soit f, ,1,1, avec
p pair.
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Evidemment, p>2; nous allons supposer provisoirement p>4. Le cobord
df, ,-1,1 @ une composante de support (p—1,p—1,1, 1), et le seul trio admissible
parmi ceux qui le suivent 4 en faire autant est (p—1, p—1, 2). Posons f=f, ,_;.1,
g=fp-1,p-1, 2, €t s0it 4 le coefficient de g dans le cocycle Z piloté par f. Pour exprimer
fet g, nous allons utiliser les formes bilinéaires §, introduites au n° 2 apreés le lemme 1:

ﬁp (xp+ 2, yp+ 2)=__(x, y)p+2
F (Pt pprl 23 =(p, z) B, (xP* 2, yPz?)
g (xP*L, yPtl 2= (x, y)P 71 B, (x2y?, %)

la premiére formule est la définition de f,; les deux autres sont forcément vraies a
scalaire prés, puisqu’elles définissent des invariants ayant les degrés requis, et que
ceux-ci sont uniques d’aprés le lemme 4.

Nous avons vu que dZ=0 exige que la composante de df+ Adg sur le support
(p—1,p—1, 1, 1) soit nulle. On trouve d’autre part:

df @+, b7*, ¢%,d%)=3(p+1) [(a, ¢) f (a°c?, b7 "', d°)— (a,d) f (a"d* b"7!, C°)
—(b, C)f(bl’cz’ a"“, d3)+(b, a')f(b”dz, ap+1’ c3)
=3(p+1) [(a, c) (b, d) B, (a"c?, bPd?)
—~(a, d) (b, c) B, (a®d?, b°c?)
— (b, ¢) (a,d) B, (B%c?, a?d®) + (b, d) (a, ¢) B, (b°d, a%c?)]

et c’est maintenant que joue la parité de p: si p était impair, f, serait antisymétrique
et on trouverait 0; mais comme nous supposons p pair,

df (a®*', b**1, *, d*)=6(p+1) [(a, ¢) (b, d) B, (a"c?, bPd?)
—(a, d) (b, c) B, (a"d?, bPc?)].

Du c6té de g, le calcul donne:

dg(ap+1, bp+1’ C‘3, d3)= ""'9(6, d)g(ap+1’ bp+1, cde)
=-9(c,d) (a,b)*"! B, (a?b?, c?d?).

Cette expression ne contient pas (a, b)’. Au contraire, dans I'expression de df (...),
les polarisations font apparaitre (a scalaire prés):

(a, b)* [(a, c) (b, )~ (a, d) (b, ©)] (<, 4)*

il est donc impossible que df+ A dg soit nulle sur le support (p—1,p—1,1,1). La
possibilité d’un 3-cocycle piloté par f, ,—1,1 avec p pair, p=4, se trouve éliminée.
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Epilogue. Il nous reste a examiner la cochaine exceptionnelle £, ;,,. Observer que
c’est la seule 3-cochaine de poids 4: il s’agit donc de savoir si ¢’est ou non un cocycle.
Son bord est entiérement porté par le support (1, 1, 1, 1).

LEMME 5. Les 4-cochaines sp-basiques de support (1, 1, 1, 1) (ou de poids 4, ce
qui revient au méme) forment un espace de dimension 3.

Soit F une forme quadrilinéaire invariante sur s')=S3T*; avec x, y, z, t variant
dans T*, F (x?, y3, 23, t?) va se présenter comme une somme de mondmes:

(%) (%, 2/ (x, 1) (3, 2)° (3, £) (2, 1)

ceci d’aprés la théorie des invariants ([4], th. 6.1.A). En ajustant les exposants «, f3, ...
pour avoir le degré 3 sur chaque variable, on trouve, a I’ordre prés des variables,
trois possibilités:

(%) (2, 1)*
(%, 7)* (%, 2) (5, 1) (2, 1)°
(%, y) (%, 2) (x, 1) (3, 2) (9, £) (2, ).

Si ’on antisymétrise ces polyndmes, le premier donne f§; A f;; le troisiéme est spon-
tanément alterné, il sera noté d; pour le second, on obtient une somme de trois termes,

(6, 2)* [(x, 2) (5, 1) = (%, £) (3, 2)] (2, 1)’

et les deux termes analogues fournis par les partitions (x, z; y, t) et (x, ¢; y, z) du stock
de variables; cette cochaine sera notée y.
Il est commode d’écrire:

f2.1.1(a* b3, )=(b, c) B, (a*, b>c?)
en sorte que:

df2,1,1 (x3, y3s 239 t3)= - 18 [(xa y) (Z, t) 52 (x2y2’ 22t2)
—(x,2) (3, ) B2 (x%2%, y*t?)
+(x, 1) (3, 2) B2 (x%¢2, y’2?)].
Par polarisation,

B2 (x%y?, 22 2)=4[(x,2)* (5, t)2+4(x, 2) (x, 1) (0, 2) (3, 1)+ (%, £)? (9, 2)°]
et aprés la substitution finale, on obtient:

df2’1’1=3y—365.
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Ce résultat a deux conséquences. D’abord, f, ; ; n’est pas un cocycle, et ceci
achéve de démontrer que H?>(s, sp, k)=0. D’autre part, toutes les 4-cochaines de
support (1, 1, 1, 1) sont des 4-cocycles (lemme 2 du n° 2) de poids 4; s’ils sont coho-
mologues a zéro, c’est qu’on peut leur trouver une primitive de poids 4, laquelle ne
peut étre que f, ; ;. On voit ainsi que dim H*(s, sp, k)>2.

§3. Cohomologie de champs symplectiques différentiables

3.1. Dans ce paragraphe et dans le suivant, X désignera une variété symplectique,
g son tenseur fondamental, &y ’algébre des fonctions C* sur X équipée du crochet de
Poisson, & x 1’algébre des champs de vecteurs symplectiques. Je noterai C (¥, €x)
le complexe des cochaines sur & x a valeurs dans &y (ou %y opére par dérivation)
qui s’expriment comme opérateurs multidifférentiels; et C; (€, &) ’objet analogue
relatif & ’action adjointe de &y sur elle-méme. Mon but dans cette section est de
montrer que la connaissance de H* (s, R) (que je n’ai pas) et des classes caractéristiques
ordinaires de X permet le calcul des cohomologies Hj (Fy, &x) et HJ (€x, Ex);
d’ailleurs je m’occuperai surtout de la premiére.

Il sera commode d’utiliser la technique des faisceaux. Soit €* le faisceau différentiel
des germes de cochaines de champs symplectiques dans les fonctions (c’est un faisceau
de germes d’opérateurs multidifférentiels d’un certain type, dont les sections globales
constituent CJ (¥, €x)), et ‘€* le faisceau correspondant pour les fonctions (dont
les sections globales constituent C (&, €y)).

LEMME 1. Les faisceaux de cohomologie locale H#*(€*) et H#*('"€*) sont des
faisceaux constants, de fibre H* (S, R[[T]])=H*(s, R) et H* (B, P) respectivement.

(On note P, S, s les algebres formelles du §2 portées par un espace vectoriel
symplectique 7 de méme dimension que X).

Soit aeX, et C une carte symplectique centrée en a (i.e. dans ces coordonnées
locales, les composantes g/ du tenseur fondamental sont des constantes). Une co-
chaine fe€?, une 2-cochaine par exemple, s’écrit en coordonnées:

f(U, V)=Y fop-D*u-DPv

ou U, V sont des champs symplectiques au voisinage de a, u et v des fonctions généra-
trices (uniques a constante prés); la sommation porte sur les multi-indices de dériva-
tion «, f non nuls (u et v ne doivent intervenir que par leurs gradients), et les f,, sont
des germes de fonctions C® en a.

Deux sous-complexes se manifestent. D’abord les formes différentielles, qui cor-
respondent aux termes d’ordre 1 sur tous les arguments: |x|=]8]|=1. Ensuite le sous-
complexe B.%* des cochaines basiques par rapport a la sous-algébre T des transla-
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tions de la carte C: ce sont les cochaines dont tous les indices de dérivation a, B sont
d’ordre >1 et dont les coefficients f,; sont des fonctions constantes. Maintenant, le
phénomeéne clé, c’est que la carte C identifie B¢%* au complexe C*(s, R) porté par
’espace vectoriel modéle T. Une fagon pédestre de le voir est d’observer que B,€*
est ’algébre extérieure sur R engendrée par les 1-cochaines w,

0, U—Due&, |a|=2
que C*(s, R) est la R-algébre extérieure engendrée par les 1-cochaines
@,:U—D*u(0)eR [a>2

et que les formules de dérivation de w, et @, sont les mémes:

. fo
do,=-% 3 g’ (ﬂ) Dpte, N Dy,
i, J ﬁ+v=>a
» 1717

Cela étant, il est clair que sur la carte C, le faisceau €* se décompose en produit
tensoriel:

€*=Q*®C* (s, R)

du faisceau des germes de formes différentielles Q* et de ’espace vectoriel C*(s, R).
Passant & la cohomologie, on obtient un isomorphisme de #*(¢*) et du faisceau
constant H*(s, R) qui a priori est lié 4 la carte C, comme le précédent. Toutefois,
’algébre de Lie s opére trivialement sur sa cohomologie (c’est la formule de Cartan:
Oy=diy+iyd, Ues) et donc aussi le groupe (connexe) des jets de difféomorphismes
symplectiques stabilisant I’origine. Par conséquent, I'isomorphisme de 5#* (¢*) et du
faisceau constant de fibre H* (s, R) est insensible au choix de la carte symplectique en
a, et donc globalise sur X.

Le faisceau de cohomologie locale #* (‘€*) est justiciable d’un traitement ana-
logue; on s’appuie sur la suite exacte de faisceaux:

grad

0-R-oE > -0

et on paraphrase les considérations du §2, n° 1.

Une fois observé que les faisceaux €* et ‘€* sont fins (ce sont des germes d’opéra-
teurs multidifférentiels ), nous nous trouvons en position pour appliquer les théorémes
classiques de cohomologie des faisceaux ([5], th. 4.6.1., p. 178).

PROPOSITION 1. Les cohomologies H} (¥x, €x) et Hj (€, &) sont les abou-
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tissements respectifs de deux suites spectrales:

EZ=H"(s, R)®H” (X, R)
‘B3 =H* (B, P)OH’ (X, R).

3.2. Pour aller plus avant, il nous faut rappeler une construction qui est devenue
traditionnelle dans ce genre de questions. Soit X une variété (j’oublie un instant la
structure symplectique), et R, X le fibré des repéres d’ordre 1 sur X: fibré principal de
groupe GL(n, R). Alors la cohomologie du complexe Q*(R,X)¢X™® des formes
différentielles sur R, X invariantes par le groupe structural s’interpréte comme la co-
homologie d’un espace Q(X) ainsi construit: le complexifié du fibré tangent, TX,
a pour groupe structural GL (n, C); on fait une réduction au groupe compact maximal
U (n), et Q(X) est le fibré U (n)-principal correspondant. Pareillement, pour une
variété symplectique X, soit RS X le fibré des repéres symplectiques d’ordre 1 (i.e.,
contrairement au n® 1, ceux dans lesquels la forme fondamentale prend la forme réduite
positions-impulsions): c’est un fibré principal de groupe Sp(n, R). Alors la cohomo-
logie du complexe Q* (RS, X)%? ™™ g’interpréte comme la cohomologie d’un espace
QS (X) ainsi construit: le complexifi¢ du fibré tangent a pour groupe structural
Sp (n, C); on fait une réduction au groupe compact maximal Sp(n) (qui est aussi le
compact maximal du groupe linéaire quaternionique), et Q.S (X) est le fibré Sp(n)-
principal ainsi construit. Cette construction permet d’énoncer le théoréme:

THEOREME 2. On a un isomorphisme naturel:
H} (% €x)=H*(0S (X), R)®H* (5, 5p, R).

Le calcul de la cohomologie de QS (X) est un probléme standard de classes carac-
téristiques; la faiblesse du théoréme est ’ignorance de H*(s, sp, R). Toutefois, je
n’aurai a ’appliquer qu’en degré <3.

Pour prouver commodément ce théoréme, il faut réinterpréter C (& y, €x) comme
le complexe Q* (RS, X)¢ des formes différentielles sur le fibré RS, X des repéres sym-
plectiques d’ordre infini, invariantes par le groupe structural G des jets de difféomor-
phismes symplectiques préservant 1’origine (par formes différentielles sur RS X, on
entend évidemment la limite inductive des formes sur les espaces de repéres RS, X
d’ordre fini). L’interprétation se fait de la fagon suivante: si Uy, ..., U,€ Fy, ils se
relévent comme champs de vecteurs sur RS_X, G-invariants; si ¢ est une forme
G-invariante sur RS X, la fonction (£, U; A ... AU,» est G-invariante, donc c’est une
fonction sur X (cf. [6]).

Cela dit, on reprend la décomposition du §2, n° 1:

H*(s, R)=H*(sp, R)®H* (s, 5p, R)
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et on examine successivement le sort de H*(sp, R), ou plutét de ses générateurs
primitifs #,;, puis de H*(s, sp, R).

(1) La projection n: RS, X — RS, X, qui correspond dans les algébres de Lie struc-
turales, au morphisme j, :s - $p, induit:

7*: Q¥ (RS, X )57 ® _, 0* (RS X)° .

La donnée d’une connexion permet de construire des formes #j;€ Q* (RS, X )% ™
égales a #; sur les fibres, dont le bord di; est basique, et représente la classe de Pon-
triagin symplectique p;(X). Au moyen de n* on remonte #;, dans Q*(RS,X)%=
C3(¥x, €x), et on voit que dans la premiére suite spectrale de la proposition 1,

meH4i—-1 (sp, R)J;_‘_)l i1 (s, R)=E(2)’ 4i-1

n, transgresse vers p € H*/(X, R)=E;"°. Dés lors, la sous-suite spectrale engendrée
par j{ H*(sp, R) et H*(X, R) s’organise comme la suite spectrale de Leray du fibré
0S (X) (ou plutdt du complexe Q* (RS, X)S7 ("®)),

(2) Tout revient maintenant & démontrer que les classes de:

H%(s, sp,R) G E3'?

ont des relévements fermés dans Q* (RS, X)¢=CJ (¥, €x). J utiliserai pour ce faire
une technique due a J. L. Koszul [7]. La projection

j1:G—Sp(n, R)

a pour fibre un groupe nilpotent contractile. Donc il existe une section
o:RS; X—> RS X

qu’on peut considérer comme une application G-équivariante
6:RS X - Sp(n, R)\G

(G opére a droite sur les deux espaces). Il en résulte un morphisme de complexes:
a*:C* (s, 5p, R)=Q* (Sp (n, R)\G)® - @* (RS, X)°.

C’est cette fléche o* qui effectue le relévement d’un cocycle {e C* (s, sp, R) comme
cocycle dans CJ (¥, €x) (il n’est pas difficile de vérifier que o*{ coincide avec { sur
les fibres de RS X, (cf. [7], p. 140, (1.2)). Une fagon d’énoncer ce résultat est de dire
que les classes dans H (¥, €x) ainsi obtenues & partir de classes dans H*(s, sp, R)
sont non-caractéristiques.
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Pour ce qui est de C (€, &), sa suite spectrale ne différe de la précédente que
par I’ajout de la dérivation extérieure ae H' (P, B) (§2, n° 1); en faitae H* (B, sp, PB)
~'E2'! et on peut s’assurer que « transgresse vers la classe de la forme fondamentale
dans H?(X, R)=E2° (cf. [8]).

3.3. Lerelévement de la classe fe H 2 (s, sp, R) peut s’expliciter assez simplement.
Convenons de dire qu’une connexion linéaire D sur la variété symplectique X est
adaptée si elle est sans torsion et si Dg=0. De telles connexions sont abondantes
localement, et supportent les recollements par partition de I"unité.

THEOREME 3. Un calcul universel permet de construire, sur toute variété sym-
plectique équipée d’une connexion linéaire adaptée, un opérateur bidifférentiel

M:iBxxEx—Ey

bilinéaire sur R, alterné, d’ordre 3 sur chaque argument, annulant les constantes, et qui
est un 2-cocycle non trivial pour la représentation adjointe de I’algébre de Poisson & y.

En fait, on va faire apparaitre 1, dans Z ? (¥, &), ou il relévera fe H? (s, sp, R)
=FEJ%; aprés quoi, si # et v sont deux fonctions, de gradients U et ¥, on posera
A1 (u, v)=24, (U, V). Nous nous inspirons ici d’une construction de J. L. Koszul ([7],
prop. 6.1).

Faisons observer tout d’abord que si D et D’ sont deux connexions adaptées, leur
différence D— D’ peut étre considérée comme une section de S3T*X: pour 4, B, C
champs de vecteurs sur X, on pose:

A, B, C—g(DB—D/B, C)

la symétrie sur 4 et B résulte de I’absence de torsion, et la symétrie sur B et C de la
condition Dg=0. Ceci s’applique 4 une connexion D’ déduite de D par un difféo-
morphisme symplectique; et en passant au cas infinitésimal, on voit que les dérivées
de Lie 0yD d’une connexion adaptée D par un champ symplectique U sont des sec-
tions de S*T*X. Dans un syst¢tme de coordonnées ou les coefficients g;; de g sont
constants, et ou u est une fonction génératrice de U,

(BUD)ijk =Ujijk— Z’ r :"j"lkh + “Ihghh'gkk'r ;‘J 1w

les I }k sont les coefficients de D, et Z' indique une sommation circulaire sur i, j, k.

Nous disposons maintenant d’un 1-cocycle U 0,D de &y a valeurs dans I’expace
I'yS3T*X des formes différentielles symétriques de degré 3, sur lesquelles ¥y opére
par dérivation de Lie; ce cocycle n’est sirement pas trivial, puisqu’il n’y a pas de
connexion invariante par tous les difffomorphismes symplectiques.
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D’autre part, la forme g définit sur S3T*X une forme bilinéaire alternée g3:
g &, n°)=g&n)’

pour &, neT*X; et cette forme est invariante par I’action linéaire tangente des difféo-
morphismes symplectiques. Donc I’application:

2 (U, V)=g>(8yD, 0,D)
est un 2-cocycle de ¥y dans &y. En coordonnées locales comme précédemment,

2 (U, V)=8"g"g" (up—--) (virjue—")

ce qui manifeste que le symbole principal est bien le 2-cocycle 8 tel qu’il a été décrit
au §2, n° 1, prop. 1. Dire que le calcul est universel, c’est dire que si I’on a une autre
variété X', équipée de structures analogues, et un difféomorphisme local de (X, g, D)
et (X', g, D’), il échange les opérateurs A; construits sur I’'une et sur l'autre: c’est
bien évident.

Nous disposons maintenant d’une déformation infinitésimale de I’algébre de Pois-
son &y. La question se pose dés lors, qui sera débattue au §4: est-ce que 4, 4 l’instar
du cocycle formel g qu’il reléve, est le pilote d’'une déformation formelle de &?

3.4. Mais nous aurons besoin de deux variantes, un peu techniques, de la proposi-
tion 1 dun®1.

Tout d’abord, soit A une piéce de X, c’est-a-dire une sous-variété a bord lisse de
méme dimension. Soit CJ (&, &y, A) le sous-espace des cochaines identiquement
nulles sur 4, et ,€* le faisceau correspondant. Dans la représentation locale du n° 1,
ce sont les cochaines dont les coefficients f, 5 sont des fonctions identiquement nulles
sur A. Il en résulte une décomposition locale:

A%* ——'AQ*@C* (5, R)

ou ,0* désigne le faisceau des germes de formes différentielles nulles sur A. Ce faisceau
est fin; sa cohomologie locale est nulle en degré >0 (c’est une variante facile du lemme
de Poincaré), et en degré 0 on obtient un certain faisceau 4R dont la cohomologie sur
X donnera la cohomologie des formes différentielles sur X nulles sur A4, c’est-a-dire
H* (X, A, R) (cf. [9], ch. XII).

Revenant 3 ,€*, nous voyons d’abord que c’est un sous-complexe de €*, et que
sa cohomologie locale est:

#*(,&*)= RQH* (s, R).

En outre ,%* est un faisceau fin. Donc:
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PROPOSITION 1bis. La cohomologie H3 (Fx, Ex; A) de C;(FLx, Ex; A) est
I’aboutissement d’une suite spectrale:

EPi=H(s, R)Y®H” (X, 4, R).

La deuxiéme variante porte sur la fibre, et nécessite un bref retour sur la situation
formelle. Soit 'F,,C* (s, R) ’espace des cochaines nulles dés que 'un des arguments
appartient 3 un s®, p>m: ce sont les cochaines sur I’algébre quotient:

5/ ® S(P)

p>m

ou dans les notations du n° 1, ’algébre extérieure sur les @,, 2 < |a| <m+ 2. Soit d’autre
part:

"F,C*(5,R)= @ C; (5, R)

P<s

la somme des cochaines de poids <s; une base en est donnée par les:

Dy A ... AD,,  avec |ag|+---+]o,|—2g<s.

ay

Ce sont deux filtrations croissantes d-stables de C*(s, R); on notera
'F,"F,C*="F,C* (s, R)n"F,C* (3, R).

LEMME 2. Dés que m>1 et s>2, l'injection 'F,"F,C* — C*(s, R) induit un iso-
morphisme des cohomologies de degré < 3.
En effet, pour m et s>0, on a aussi une factorisation

H*('F,/F,C*)=H* (sp, R)\Q H* ('F,,"F,C*, 5p)

avec la cohomologie sp-basique, et il suffit de voir que celle-ci coincide avec
H* (s, sp, R) en degré > 3. Or les 1-cochaines basiques sont aussi nulles dans 'F,," F,C*
que dans C*(s, R); le 2-cocycle de base f=p; est dans le sous-complexe dés que
m>=1 et s=2; quant aux 3-cocycles du sous-complexe, ce sont des 3-cocycles de
C*(s, sp, R), donc des df, (§2, n° 3): il n’y a plus qu’a constater que df, n’est dans
le sous-complexe que si B, y est déja, ce qui est trivial.

Transplantons maintenant ces deux filtrations sur Cj (¥, &), ou plutdt sur le
faisceau €* correspondant. Relativement & une carte symplectique C, nous avons une
factorisation:

€*=Q*®C*(s, R)
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et nous poserons:
'F,6*=Q*®'F,,C* (s, R)
"FE*=Q*Q"F,C* (s, R).

Comme les filtrations 'F, "F sur C*(s, R) sont invariantes par le groupe des jets de
difféomorphismes symplectiques préservant I’origine, les 'F, "F sur €* sont indépen-
dantes du choix de la carte C. Une autre fagon de voir consiste & observer que l’identi-
fication de €* a Q*®C*(s, R) est canonique pour le symbole principal, et que la
contrainte porte sur lui: pour 'F,, ’ordre de dérivation sur la fonction génératrice de
chaque argument ne doit pas dépasser m+2; pour "F,, la somme des ordres des
dérivations d’ordre >3, qui sont en nombre r, ne doit pas dépasser s+ 2r. On peut
aussi remarquer que

"FuC* (L, Ex)=Q2* (RSp+ 2X)G

dans les notations du n° 2.
Toujours est-il que les faisceaux:

'F,%* "F&* 'F,"F%*='F,C*"F%*

sont aussi fins que les précédents; si I’on forme la suite spectrale de Godement pour
le faisceau 'F,,"F . $*, avec m>1, s>2, on constate, compte-tenu du lemme 2, qu’elle
coincide avec la suite spectrale du faisceau €* (prop. 1) en degré complémentaire
g<3. Donc:

PROPOSITION 2. Dés que m=1 et s=2, I'injection
,Fm”FsC: (yx, éeX) - C: (‘VJD gX)

induit un isomorphisme des cohomologies de degré <3.
Noter pour finir qu’on peut croiser les deux variantes, la relative et la filtrée, et

considérer les complexes
'F,'F.C3 (Lx, Ex; A)

relatifs & une piéce 4. Les techniques précédentes donnent immédiatement:
PROPOSITION 2bis. Soit A une piéce de X. Dés que m=>1 et s=2, linjection:
'F'F,CI ( x, €53 A) > C5 (Fx, Ex3 4)

induit un isomorphisme des cohomologies de degré <3.
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§4. Déformation covariante du crochet de poisson

4.1. Les notations du §3 restent en vigueur: X est une variété symplectique, &y
’algebre des fonctions C* sur X, munie du crochet de Poisson, et & ’algébre de Lie
des champs de vecteurs C * symplectiques. Forts des résultats du précédent paragraphe,
nous pouvons maintenant viser ’objectif principal du présent travail.

THEOREME 3. Soit X une variété symplectique, dont nous supposons que
H? (X, R)=0. Il existe des opérateurs bidifférentiels A; sur X
AiiEx X Ex— &y
bilinéaires sur R, alternés, annulant les constantes, d’ordre 2i+ 1 sur chaque argument,
tels que la série:
i

t
[u, v],=[u, v]+g:1 @it Ai(u,v)  (u,veéy, t paramétre)

soit une déformation formelle non triviale du crochet de Poisson sur & y.

En d’autres termes, la loi [u, v],, qui est alternée, vérifie 'identité de Jacobi. Ce
qu’on va voir en fait, c’est que si ’on a construit des opérateurs 4,, 4,,..., 4;, ayant
pour symboles principaux les puissances impaires du crochet de Poisson (cf. §1, n° 2),
en sorte que la loi:

(k) _
[u, v} =[u, v]+1szi$k 2irD)!

i

Ai(u, v)

vérifie Iidentité de Jacobi a I’ordre k (c’est-a-dire modulo 0(z**1)), alors il existe un
opérateur A,., dont le symbole principal est la puissance (2k+ 3)éme du crochet de
Poisson, et tel que:

k+1

(k+1)__ (k)
[uﬁ v]t _[u’ v]l +(2k+3)!

i+ 1 (8, 0)

vérifie 1'identité de Jacobi a 'ordre k+ 1. Cette déformation est non triviale dans le
sens que A; n’est pas cohomologue & zéro dans Cf (&, &x). Si X est équipée d’une
connexion adaptée D, on peut prendre pour A, I'opérateur fourni par le théoréme 2.

Je ne vois pas comment aborder le légitime probléme de la convergence de la série;
la déformation garde un caractére formel. Je ne sais pas non plus si I’hypothése topo-
logique H? (X, R)=0 est nécessaire ou superflue (voir les remarques du début du n® 5).
Les opérateurs 1; seront construits comme 2-cochaines dans C?(Fy, €y), et relevés
dans C?(&y, &) par le gradient:

A;(u, v)=2;(gradu, gradv)
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comme aussi bien le crochet de Poisson lui-méme; d’ailleurs on posera
Ao (u, v)=[u, v]=g(gradu, gradv).

En composant les 4; avec le gradient, on obtient des opérateurs bidifférentiels de .
dans Sy, et la série du théoréme définit une déformation formelle de I’algébre de Lie
F .

Je commencerai par rappeler briévement le scenario général de la théorie des dé-
formations d’algebres de Lie. Une déformation formelle de I’algébre de Lie g (réelle,
pour fixer les idées), est une structure d’algébre de Lie R [[¢]]-linéaire sur R[[¢]]®g.
Autrement dit: on se donne des applications L;:g x g — g, R-bilinéaires alternées, et
on pose, pour 4, veg s R[[?]]®g,

[u, v]e=[u, v]+¢Ly (u, v)+ 1%L, (u, v)+ -

qui est un élément de R[[¢]]®q; les L; doivent s’arranger pour que 'identité de
Jacobi soit satisfaite. On est libre de considérer les L; comme des 2-cochaines de g
dans elle-méme (avec la représentation adjointe): alors I'identité de Jacobi a 'ordre 1
signifie que L, est un 2-cocycle. La vérification de I’identité a I’ordre k£ n’implique que
les k premiers opérateurs L,..., L,; si 'on a pu les construire de fagon a vérifier
I’identité a ’ordre k, et si ’on cherche un L,,, qui arrange 'identité a ’ordre £+ 1,
on trouve une équation:

[y Lisy (0, w)]1 =Y Liw 1 ([w, v], w)=F (Ly, ..., L) (u, v, w)

a vérifier quels que soient u, v, w dans g ().’ indique une sommation circulaire). En
termes de 2-cochaines, on demande donc que:

de+1=F(L1, ey Lk)

ou F(Ly,..., L,) est une 3-cochaine fabriquée a partir de L,,..., L, par des formules
universelles qu’il est inutile d’expliciter ici. Cela étant, le fait que ’identité de Jacobi
soit satisfaite 4 I’ordre k implique de fagon mécanique que la 3-cochaine F (L, ..., L,)=
Z, ., est un cocycle. On se trouve alors devant I’alternative suivante:

a) ou bien la classe de Z,,, dans H>(g, g) est non nulle: alors le processus de
construction de la déformation formelle est obstrué;

b) ou bien Z,,, est homologue & zéro: on prend alors pour L,,, une de ses
primitives, et on passe au cran suivant (qui donnera lieu a une alternative analogue).

En particulier, si par chance H*(g, g)=0, n’importe quel 2-cocycle sera le terme
de téte d’une déformation formelle de g. Je renvoie a [10] pour I'importante question
de I’équivalence des déformations, qui permet par exemple de qualifier de triviale
(& ’ordre 1) une déformation pilotée par un 2-cocycle L; homologue a zéro.
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Dans le contexte symplectique, le 2-cocycle ;€ Z2 (Fx, €x) qui pilote la déforma-
tion appartiendra 2 la classe fe HZ (¥ x, €x) mise en évidence au §3, n° 3. Puisqu’on
prend les A; dans CZ (¥, &) (injecté dans C7 (&, &) par grad*), les obstructions
éventuelles apparaitront dans le H? (¥, €x). Examinons ce groupe. Soit f un géné-
rateur de H ?(s, R) et n un générateur de H> (s, R) (§2, th. 1) on peut prendre n=jn,,
5, étant un générateur de H>(sp, R). La suite spectrale du §3, n° 1, fait apparaitre
trois types de classes dans H> (S, €y):

a) d’abord, la classe neE5*> passe dans le £, et donc dans H? (¥, &) si et
seulement si la classe de Pontriagin p; (X) est nulle;

b) ensuite, les produits BQE, e H' (X, R), qui constituent le E}*2=EL 2;

c) et finalement H3 (X, R) s’injecte dans H (¥, &€x) (puisque E;*'=0 et que
E3’? passe dans le E,,).

Corrélativement, la preuve du théoréme 3 se fait en trois étapes: d’abord on se
place dans des circonstances topologiques telles que H,; (¥, €x)=0, le seul probléme
étant alors de contrdler les symboles principaux; ensuite on montre que si p, (X)=0,
la classe n ne peut obstruer la construction de la déformation; et pas davantage les
classes du deuxiéme type, comme on le voit finalement. Il suffit alors d’avoir mis la
condition H3(X, R)=0 dans les hypothéses du théoréme pour en avoir terminé la
preuve; on trouvera néanmoins au n° 5 quelques remarques sur les obstructions éven-
tuelles de ce type, ainsi que sur la dimension 2, qui est exclue de cette preuve comme
du théoréme 1.

4.2. Premiére étape: On suppose H' (X, R)=H?(X, R)=0, et p,(X)#0 (Cest le
cas par exemple pour les produits de droites projectives complexes (P'C)" v >2, traités
comme variétés symplectiques de dimension 2v).

Suivons le scenario général et supposons les opérateurs 4,,..., 4, construits, 4;
ayant pour symbole principal la (2i+ 1 )}éme puissance du crochet de Poisson, en sorte
que la loi:

#
o<7<k (2i+1)!

[u’ U]fk)= A (u’ v)

vérifie I'identité de Jacobi a I'ordre k. Il nous faut un opérateur A,,,;€CZ(Fx, €x)
solution de ’équation:

d}‘k+1=Ck+1 (1)

ou {,,, est un certain 3-cocycle construits & partir de 4,,..., 4,. Vu les circonstances
topologiques, H; (¥, €x)=0 et I’équation (1) posséde des solutions. Mais nous
voulons contréler leur symbole principal. Soit donc 4; ., € CZ (¥, €x)une 2-cochaine
ayant pour symbole la puissance (2k+3) du crochet, et par ailleurs quelconque:
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d’aprés les définitions du §3, n° 4, 4, , et son bord appartiennent a

"Far1"Fars 2C4 (L x> €x).

D’autre part, (. et di;,, ont le méme symbole principal, parce que le calcul au
niveau des symboles revient a verifier I'identité de Jacobi pour la déformation L,
construite sur les fonctions formelles au §1,n°2 (formule (5)). Par conséquent, la
différence {;,,—dA,4, a la filtration 'F,,,, (I'ordre sur chaque argument n’a pas
augmenté) et la filtration "F,, ., (Pordre total a diminué d’au moins 1). D’aprés la
proposition 2 du §3, n°4, H>*('Fy411"Fax+1Cs (L, €x))=0, et nous aurons une
2-cochaine A;, ,, de filtrations "F,, ,,"F4,+., vérifiant:

Cerr=dNr+dAiyy.

La 2-cochaine A, ,;=4;,,+ 4+ résoud alors notre probléme.

4.3. Deuxiéme étape: Jaurai besoin du lemme suivant. Convenons d’appeler dé-
formation tronquée de longueur k sur la variété X une suite d’opérateurs 4,,..., A, €
C}(¥x, €x) ayant les symboles principaux requis, et tels que la loi:

ti

[, 0]= ¥ s hi(w,v)

o<T<k (2i+1)!

vérifie ’identité de Jacobi a 'ordre k.

LEMME 1 (la greffe). Soit X une variété symplectique, A une piéce non vide dans X.
Supposons H'(X, A, R)=H?>(X, A, R)=0. Soit Ay,..., A, une déformation tronquée
définie au voisinage de A. Il existe une déformation tronquée 1., ..., X, définie sur X
entiére, et qui coincide avec la précédente sur A.

Preuve. Supposons déja construits 4;,..., 4; (i>1). L’hypothétique opérateur 1,
est soumis aux deux contraintes suivantes:

Zi+1|.4=}'i+1
dzi+1=Zi+1

ou Z;,, est un 3-cocycle construit a partir de 1;,..., 4. Ces deux contraintes ne sont
pas grossiérement incompatibles, en ce sens que sur 4, {;,,;=dA;+, (une méme for-
mule universelle construit ;. et {;,; & partir de 4,,..., 4; et Zives Ay).

Soit maintenant 4!, , une 2-cochaine sur X, coincidant avec 4;,; sur 4; on a donc,
sur la piece A, dA},;=C;+1=Ci41, €t le 3-cocycle {;,, —dA;,, est nul sur A. Faisons
jouer la proposition 1bis du §3, n°4: puisque H°(X, A, R)=H'(X, 4,R)=
=H3(X, 4, R)=0, on trouve H> (¥, £x; A)=0, et nous obtenons une 2-cochaine

n

i+1, Nulle sur A, vérifiant:
Cm —dAiy=diy,
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aprés quoi on prend A;,., =4;,,+4{, . Le contrdle des symboles principaux se fait
sans difficulté avec la proposition 2bis, §3, n° 4.

Revenons a notre probléme d’obstruction, et soit X une variété symplectique, sur
laquelle nous faisons la seule hypothése topologique que p, (X)e H* (X, R) est nulle.
Alors apparait dans H; (¥, €x) la classe  provenant de:

ni e H? (sp, R)5 H3 (s, R)=ES

Je noterai encore n un 3-cocycle de cette classe. Il s’agit de montrer que la classe 7 ne
peut pas faire obstacle au passage d’une déformation tronquée de longueur k a une
déformation tronquée de longueur k+1.

Procédons par ’absurde et supposons construits sur X une déformation tronquée
de longueur k, 4,,..., 4, telle que lorsqu’on forme le 3-cocycle {, ., dont ’hypothé-
tique 4, devrait &tre une primitive, on découvre qu’il n’est pas cohomologue & zéro
et qu’il s’écrit

(xs1=Kn+BAro+o+dr (2)

avec K une constante non nulle, Be Z? (¥ x, €x) le 2-cocycle de base (f=4,, si I’on
veut), g et o des formes différentielles fermées sur X, de degrés 1 et 3, et te CZ (S y, Ex).
(Noter aussi que la proposition 2, §3, n° 4 montre que la difficulté subsiste méme si
’on abandonne toute prétention sur le symbole principal de 4,.,,). Soit 4 une piéce
contractile, incluse dans une carte symplectique V. Si l'on restreint 1’équation (2) a
Iintérieur 4 de A, les 3-cocycles B A g, o deviennent cohomologues a zéro, mais non
pas le cocycle n (qui provient toujours du générateur de H3 (s, R)=EJ*? dans la suite
spectrale de la variété 4). Donc la restriction ¢, |, n’est pas cohomologue 2 zéro, et
la déformation tronquée 4|4, ..., 4|5 restreinte 3 4 est non moins obstruée que sur X.

Maintenant, plongeons la carte symplectique ¥ dans une variété symplectique Y
telle que H'(Y, R)=H?(Y, R)=0et p, (Y)+0. Puisque 4 est contractile, le lemme 1
s’applique: soit 4,, ..., 4, une déformation tronquée a ’ordre & sur ¥, coincidant avec
Afs..., A sur A. La premiére étape fournit un opérateur A, sur Y qui prolonge d’un
cran la déformation tronquée 4,, ..., 4,, et du méme coup, par restriction, la déforma-
tion A;a, .. s Ax)a SUr A. C’est donc que le 3-cocycle { k+1]a €tait cohomologue & zéro:
contradiction.

4.4. Troisiéeme étape: Le passage d’une déformation tronquée de longueur k£ & une
déformation de longueur £+ 1 ne peut pas étre obstrué par une classe de filtration 1
dans H] (¥y, €x) (c’est-3-dire provenant de E}**=H' (X, R)® H?(s, R).

On raisonne encore par ’absurde: soit 4,,..., 4, une déformation de longueur &k
sur une variété symplectique X, telle que le 3-cocycle {,,; soit non cohomologue a
zéro. D’aprés la deuxiéme étape, sa classe dans le H; (£, &) est de filtration >1,
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et on a une écriture:
kv1=PBAo+o+dr (3)

avec g et o des formes différentielles fermées sur X, de degrés 1 et 3, te C2 (L, €x);
et nous supposons la classe de ¢ dans H' (X, R) non nulle. Soit ¢ une sous-variété
de X, difféomorphe au cercle S!, telle que:

fe#O

c

et soient A et ¥ deux voisinages tubulaires de ¢, 4 étant une piéce. Si ’on restreint
’équation (3) & ¥, o devient cohomologue a zéro, mais non pas 8 A g. Par conséquent,
la déformation restreinte & ¥, (ou aussi bien a I'intérieur de 4), Ag|vs++es Ay, Subit
une obstruction du méme type. Nous pouvons désormais oublier la variété X.

Nous pouvons aussi supposer le fibré normal N & c trivial; car sinon, il le devient
sur un revétement a deux feuillets ¢ de c¢; et en remontant sur le revétement ¥ corre-
spondant les opérateurs multidifférentiels 4,,..., 4;, nous y retrouverons une situation
obstruée du méme type. Finalement, nous sommes ramenés aux variétés suivantes:
c est le cercle

2, .2
xi+x3=1, Xy=-+=X,,=0

dans R?*, 4 et V en sont deux voisinages tubulaires, A< V, et ¥ est muni de la struc-
ture symplectique héritée de X.
On obtient un voisinage B du disque:

2 2
x1+x1<1, X3=-=X,,=0

en ajoutant 3 4 une poignée d’indice 2 <2v. Observons qu’il n’y a pas d’obstruction
homotopique & prolonger la 2-forme fondamentale g de 4 (ou V) a B: car la classe
de g dans H?2(4, R) est nulle (et pour cause), et le fibré tangent 74 est trivial, méme
vis-2-vis du groupe structural U (v) (=, BU (v)=0). Donc, d’aprés la théorie de Gro-
mow ([11], p. 133), g se prolonge en une structure symplectique au voisinage de B.
Comme H'(B, A,R)=H?(B, 4, R)=0, le lemme 1 s’applique et fournit une défor-
mation de longueur &, 4,, ..., 4, sur B, qui coincide sur 4 avec la déformation obstruée
As..., Ax. Mais B est contractile: la deuxiéme étape montre qu’on peut allonger d’un
cran /., la déformation 1, ..., 1, et du méme coup par restriction la déformation
prétendument obstruée 4,,..., 4, sur 4: contradiction.

4.5. Au terme de cette preuve, il apparait que I’obstruction a allonger d’un cran
une déformation tronquée de longueur k& sur la variété symplectique X, se trouve, si
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elle existe, dans la filtration 3 du H,; (¥, €y), c’est-a-dire dans H3(X, R). On peut
s’assurer que cette classe a une intégrale nulle sur toute sous-variété de X difféomorphe
@ la sphére S*; la preuve est analogue au n° 4 ci-dessus si la dimension de X est au
moins 6; elle est un peu plus délicate en dimension 4 (la poignée a le mauvais indice).

Oublions encore un moment qu’il nous reste a récupérer le cas de la dimension 2
(qui a été exclu par le recours au théoréme 1), et faisons une remarque générale. Dans
le cas des fonctions formelles, la déformation du crochet de Poisson L, était déduite
d’une déformation M, du produit associatif des fonctions (§1, n° 2) elle-méme pilotée
par le crochet de Poisson. La question se pose donc assez naturellement: sur une
variété X, construire une suite d’opérateurs bidifférentiels pu,: &y x &5 — &, biliné-
aires sur R, en sorte que la série:

(uv);=uv+tpy (u, V)+12p; (u, V)+-+  (u, vedy)

soit une déformation associative du produit de fonctions. Une telle construction est
régie par une «cohomologie de Hochschild diagonale» facile & décrire. L’espace A?
des p-cochaines est constitué par les opérateurs multidifférentiels:

fi8xx - xEx—Ex

R-linéaires sur leurs p arguments (pas de condition de symétrie); et la différentielle 6,
de degré +1, est donnée par la formule:

Of (tyy ooy tps )=ty [ty eves Upyy)—f (Ugth, Uz, .oy Upiy)
Ff (g Ugthyy Ugy ey Upg)+ o+ (= 1P f Uy, ooy ) Uyrq .

Soit H (€, €x) la cohomologie de ce complexe. A cause de la commutativité de
I’algébre associative &y, la différentielle 6 est linéaire sur & : ce fait permet de localiser
ou globaliser sans encombre, et, compte-tenu de la proposition 3 du §1, n° 3, on n’est
pas trop surpris de trouver un isomorphisme:

Hi(€x, €x)=Tx(A°TX)

avec les sections globales du fibré APTX; I'isomorphisme identifie une section
Uy A ... AU, (U; champs de vecteurs sur X) avec I'opérateur multidifférentiel:

Uy, ..., u>déterminant |0y, (u;)Il  (uy, ..., u,€€x)

ou plutdt avec sa classe de cohomologie.

Dans ce contexte associatif, la construction d’une déformation formelle se fait
suivant les mémes lignes que pour les déformations d’algébre de Lie précédemment
considérées. Si I’on dispose d’une déformation associative tronquée de longueur &,
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c’est-a-dire d’une loi:
(o) =uv+ 1y (u, v)+ -+ 15, (u, ),

avec {1y, ..., uy€A?, vérifiant 'associativité A 'ordre k, on aura besoin pour I’allonger
d’un cran d’une cochaine g, , ; €42 solution de I’équation:

Ofir1 =01

ou o, est une 3-cochaine construite a partir de yq,..., 4, qui est automatiquement
un cocycle; et I’équation posseéde des solutions selon que «, ., est ou non cohomologue
a zéro dans le complexe A*. La grande différence avec les constructions précédentes,
c’est que H3 (&, €x) est ’énorme espace I'y (A3TX).

C’est maintenant que le cas de la dimension 2 se distingue par sa simplicité. Sup-
posons la variété X symplectique, et prenons pour y, le crochet de Poisson. Puisque
H} (€, €x)=0, on ne rencontre pas d’obstruction & former une série illimitée:

(uv),=uv+1[u, v] +k§2 *w (u, v)

qui soit associative; puis en posant:

[, 1= [(u0),— (vu), ] 2¢

on obtient une déformation du crochet de Poisson lui-méme.
Je dirai encore quelques mots du cas général. L’identification de H3(&y, €x) a
I'yx(A*TX) engage a essayer pour u, n’importe quel opérateur bidifférentiel du type:

ou ov

ax' ox’’

i (u,0)=Y g (x g'=-¢"
i, J

en coordonnées locales. Pour construire u,, on se heurte & une premiére obstruction,
la classe de o,, qui est donnée dans I'y A*TX par la formule de G au §1, fin n° 3. Si u,
est une structure symplectique, ou si plus généralement il est parallélisé par une con-
nexion sans torsion D, cette obstruction s’annule. Dans le cas ou y, est symplectique,
j’ai pu m’assurer de I’existence de formules universelles donnant, & partir d’une con-
nexion adaptée D, une déformation associative tronquée de longueur 4, dont les sym-
boles principaux sont ceux de M, (§1, n°2).
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