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Comment. Math. Helvetici 50 (1975) 421-454 Birkhâuser Verlag, Basel

Déformation du crochet de poisson sur une variété symplectique

par Jacques Vey

Je me propose, dans cette note, de construire sur une variété symplectique X une
déformation formelle du crochet de Poisson, non-triviale en un sens qui sera précisé
au §4, du type suivant: les Xk (k entier ^ 1) seront des opérateurs bidifférentiels sur
l'algèbre Sx des fonctions C00 sur X, bilinéaires sur R, alternés, et tels que la série

t t2 t3
[M, !>l=[ll, !>]+-*! (U, V)+~X2 (M, !>) + - A3 (il, V) +- (1)

o jî 7!

(où u, veé'x et t est un paramètre) vérifie l'identité de Jacobi. De tels objets ont déjà
été considérés par M. Flato, A. Lichnerowicz et D. Sternheimer dans un travail récent

([12]), mais ces auteurs limitaient l'ordre des opérateurs sur chaque argument à 1.

Au contraire, dans la présente construction, l'ordre de Àt sur chaque argument est

2/+1, et ces opérateurs s'annulent dès que l'une des fonctions arguments est constante;
en fait la série (1) tente de relever de façon covariante sur X une déformation assez

bizarre du crochet de Poisson sur les séries formelles, qui ne semble pas avoir été

signalée jusqu'ici, et que j'ai dû décrire au § 1. En conséquence, les symboles principaux
des Àt sont explicites. Une formule universelle, décrite au §3, n° 3, permet, sous la
donnée d'une connexion linéaire D adaptée sur X, d'écrire explicitement l'opérateur At

(la connexion intervient en chaque point par son jet d'ordre 1); mais je n'ai pu en
faire autant pour les opérateurs suivants.

J'ai donc été obligé de recourir au procédé standard d'extension pas à pas de

déformations tronquées (cf. [10]), en repérant les obstructions éventuelles dans un

groupe H3 (<fx, $x) convenablement défini (§3). Par des techniques inspirées de

M. V. Losik et V. Guillemin, on aboutit à la proposition 1 du §3, d'où il ressort que ce

H3 se fournit de deux côtes: d'une part le H3 analogue relatif aux fonctions formelles,

que j'ai pu conjurer par les lourds calculs du §2; d'autre part, la cohomologie réelle

H*(X, R) de la variété: pour assurer l'existence de la déformation (1), je dois

supposer H3 (X, R)=0; et je ne sais pas si cette hypothèse est surperflue, ou si elle cache

une classe caractéristique.
Un aspect inquiétant de la formule (1) est le bouleversement qu'elle provoque sur

la stratification des jets: c'est un opérateur différentiel d'ordre infini, et je ne vois pas

comment prendre le problème de la convergence. De toute façon, mon incertitude est
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grande sur le statut de cette construction; mais il était tentant d'écrire des formules
où la courbure d'une connexion linéaire perturbe les lois de commutation.

§1. Déformation des algèbres symétriques

1.1. On désignera par k un corps commutatif de caractéristique nulle, et par T un
espace vectoriel de dimension finie sur k. Soit g un opérateur bidifférentiel à coefficients

constants sur T:

où ce, P sont des multi-indices, et les ca>p des constantes; si u et v sont deux fonctions
sur r, g(u9 v) est la fonction sur T

où u\a désigne la dérivée partielle de u d'indice a. On peut aussi considérer g comme
un élément de k [T®T], c'est-à-dire comme une fonction

de deux arguments £', £'' variant dans le dual T* de T. Sous les formes (1) ou (3), on
voit comment former les puissances successives gn de g, qui seront aussi des opérateurs
bidifFérentiels sur T à coefficients constants.

THÉORÈME 1. La multiplication

*)«£ -.8T(u9v)
»2*o ni

(u, v polynômes sur T, t paramètre) définit une déformation formelle de l'algèbre
associative k [T1] si et seulement si l'opérateur g vérifie l'identité

les trois arguments £', Ç"9 £'" variant dans T*. Tel est le cas par exemple si g est biliné-
aire.

En principe, on obtient une déformation formelle, c'est-à-dire une loi de &[[*]]
algèbre sur &[[/]]®&[r]. Mais si l'on fait la petite hypothèse que l'opérateur g n'a

pas de terme constant (c0, o—O), al°rs Pour chaque spécialisation du paramètre t, et
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pour chaque couple de polynômes u et v, la série Mtg(u, v) n'a qu'un nombre fini de

termes non nuls, et la loi est définie sur l'espace k [T].
Nous devons vérifier l'associativité. Un lemme tout d'abord:

LEMME 1. Soit F (x'9 x") une fonction sur T@T, et P (£) un opérateur différentiel
à coefficients constants. On a Videntité:

(Cette identité est évidente si P est d'ordre 1, et elle est multiplicative en P).
Ecrivons la multiplication à l'aide d'un opérateur bidifférentiel d'ordre infini:

Mf(u, v) exptg(Ç\ l;")-u{xf) v(x")\x>=x»=x.

De la sorte,

Mf(Mf{u, vp, w) exptg(Ç"9 £'") ([exprg(^, £")'u(x') v(x")\x,ssx*'] w{x'"))x»

et en comparant avec Mf{u, Mtg(v, w))9 on tombe sur la relation (4), qui est

automatiquement vérifiée quand g est bilinéaire.
Afin d'interpréter la condition (4), on considère le complexe C*n(T*f k) des

cochâmes du groupe additif T* opérant trivialement dans k qui sont des fonctions poly-
nomiales; si/(<^1,..., £p) est une/?-cochaîne, son cobord <5/est:

6f(tu...9 tp+l)=f(t2,..., {p+i)-/Ui + ^ ^3,..., tP+i)

Ainsi la condition (4) dit que ^(<^', ^) doit être un 2-cocycle. Interprétons les

cobords. Si h(Ç)eC^(T*9 k),

PROPOSITION 1. Soient g, gf deux opérateurs bidifférentiels sur T à coefficients

constants, vérifiant la condition de fermeture (4); et h un opérateur différentiel à coefficients

constants tel que g'=g+ôh. Posons, pour

Alors Mf(u9 v)=(aht)~1'Mgt(ochtu, ahtv): les deux déformations sont isomorphes.
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Ici encore, il est préférable de supposer les opérateurs sans terme constant, de

façon à ce que les séries en question fassent sens sur &[r] quand on spécialise le

paramètre. Quant à la preuve, elle est analogue à celle de l'associativité, en plus simple

1.2. Donnons maintenant les exemples principaux. Supposons d'abord T de
dimension 2, et soit p, q un système de coordonnées. Prenons

ô d du ôv

_ f dmu dmv

O)'L mi dirai'-

Pour /= 1, on reconnaît le produit des opérateurs différentiels polynomiaux à une
variable :

en lisant q=x, p~djdx. Il en est de même pour tout r#0, si on lit p comme tô/dx.
Par conséquent toutes ces algèbres Mf sont isomorphes pour t^O, et bien sûr non
isomorphes à k [/?, q] elle-même (elles sont non-commutatives).

Plus généralement, supposons Tde dimension paire 2v, et soit ph qt (1 </< v) un
système de coordonnées. En prenant pour g

A 3 d *duôv
Ç

on obtient pour Mf, et f^O, l'algèbre des opérateurs différentiels polynomiaux à v

variables, en lisant:

£ ua(xl9...9xv)lt-- ] ...(t pour Y,uMu"->4v)pÎ•••PÏv-
«multi-indice \ OXlJ \ OXV/ *

Sur le même espace, prenons à présent l'opérateur:

Cette fois, on va obtenir pour Mf l'algèbre des opérateurs différentiels à v variables,

en ordonnant u et v par rapport aux qh et en lisant x( pomph - djdxt pour q(. Comme
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g'—g=ôh9 avec h

la proposition du n° 1 montre que la transformation a*

m1

réalise un isomorphisme de M\ et Aff c'est donc une sorte de transformation de

Founer, mais au niveau des jets, qui échange positions et impulsions, avec un signe.
En jouant sur le fait que pour s, tek, Mrsg M|f, et af ajf, on voit que les a* passent
continûment de M\ à M\ en transitant par les M\+sôh

Cela dit, à mi-chemin entre M\ et M\ ou plutôt entre M\ et M\, se trouve une
algèbre remarquable Soit y l'opérateur bidifferentiel

* d d
_

d ô

idÂdq:~Wdp:

y (u, v) est le crochet de Poisson [w, v] relatif à la structure symplectique dpx a dqx

+ +dp, a dqv on a y 2g + ôh, et la déformation

MJ(m5 t;) uu + r[M, i?]+ T2(«, v) +

est une déformation associative de k[pl9 ,qx~\ pilotée par le crochet de Poisson;
chaque spécialisation MJ n'est évidemment qu'un avatar de l'algèbre des opérateurs
différentiels polynomiaux à v variables

Considérons maintenant la loi d'algèbre de Lie sous-jacente à Mty Noter que les

opérateurs yn(u, v) sont alternativement symétriques et antisymétriques selon la parité
de n, en divisant par le facteur 2t, et en prenant t2 comme nouveau paramètre tek,
on trouve une loi d'algèbre de Lie

^ ^ (2w+>, i>)+ (5)

qui est une déformation du crochet de Poisson. Cette déformation est pilotée par
l'opérateur bidifferentiel y3/6 qui, d'après la théorie générale, va être un 2-cocycle de

l'algèbre de Poisson k[T] opérant dans elle-même par la représentation adjointe. Il
apparaîtra ultérieurement (§2, prop. 1) que ce cocycle n'est pas cohomologue à zéro.



426 JACQUES VEY

L'objectif principal du présent travail va consister, sous la donnée d'une variété sym-
plectique X, à construire des opérateurs Xn sur X, dont les symboles principaux soient
les yn, et tels que la formule (5), avec les Xn substitués aux yn, soit une déformation
formelle du crochet de Poisson sur X.

1.3. Il reste à préciser le statut des déformations Mf parmi les déformations de

l'algèbre associative &[r]. Clarifions tout d'abord la cohomologie du complexe
C*n(r*, k) introduit au n° 1. Noter que les espaces APT s'injectent dans C£n(T*, k)
en donnant les fonctions/^,..., Çp) multilinéaires alternées des £g; et que ces fonctions

sont des cocycles.

PROPOSITION 2. La flèche ApT-^Hpn(T*, k) ainsi définie est un isomorphisme.
En fait, tout cocycle est cohomologue à la somme antisymétrisée de ses termes
multilinéaires.

lut même énoncé a été démontré par Van Est [1] concernant les cochaînes

différentiables; la preuve s'adapte aisément et repose sur le double complexe
Cp°n(T*9 Qqpn(T)) des cochaînes polynomiales du groupe additif T* dans les formes
différentielles polynomiales.

COROLLAIRE. Soit g un opérateur bidifférentiel sur T à coefficients constants,
sans terme d'ordre zéro, qui soit un 2-cocycle. Les algèbres associatives Mf, tek, sont

toutes isomorphes à des produits tensoriels d'algèbres de polynômes et d'algèbres
d'opérateurs différentiels polynomiaux.

En effet, l'énoncé précédent et la proposition du n° 1 permettent de supposer
g(Ç', <T) bilinéaire alterné. On décompose alors Ten somme directe d'un sous-espace
Tx restreint auquel g est nul, et d'un sous-espace T2 restreint auquel g est non
dégénérée.

Maintenant d'après la théorie générale, [10], les déformations infinitésimales d'une

algèbre associative A sont repérées dans le groupe de cohomologie de Hochschild
H2 {A, A) de A opérant dans elle-même par multiplication à droite et à gauche; le

groupe H2 (A9 A) indiquant les obstructions éventuelles à prolonger des déformations.

PROPOSITION 3. Les groupes de cohomologie de Hochschild Hp(k[T~\, k[T])
sont isomorphes à k[T~](g)kApT.

J'esquisserai la preuve de ce résultat qui se trouve au moins implicitement dans la
littérature. En général, si A est une algèbre associative sur k, M un bimodule sur A,
et A° l'algèbre opposée,

Posons A:[r]=ik[x1,...,xB] 5': S0 est isomorphe à S, et S®S0 à S |>i,...,}>„].
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Nous devons calculer:

où S [y] opère sur les modules S de façon S-linéaire, les yt opérant dans S=k [x] par
multiplication par xt. Maintenant, S [yu--.,yn~]^S [zj,..., zn], avec z,=.y,-je,, et
cette fois, les z( opèrent par zéro. Dès lors, la résolution de Koszul du S [z]-module
S par des S [z]-modules libres indique que:

est une S-algèbre extérieure sur n générateurs, c.q.f.d.
Il apparaît finalement que les déformations infinitésimales de £[r] sont

représentées par les opérateurs bidiiférentiels sur 7", à coefficients polynomiaux, alternés,
de bi-ordre (1,1)

g(x; Ç, n=I*y(*) ^j l» (gij= Sj,)

et que ceux que nous avons intégrés sont ceux à coefficients constants. Je ne sais

pratiquement rien sur le cas général. Pour que la déformation définie par g se prolonge
à l'ordre 2, il faut que l'opérateur tridiflférentiel

C(w, v, w)=g(g(u, v\ w)~g(u,g(v, w))

qui est de toute façon un 3-cocycle, coborde; tous calculs faits, on trouve l'obstruction

GYG M
8

r 9Ï V Or Or

(i,j,k) l GXl OXt

(?l indique l'antisymétrisation sur i9j, k).
Un exemple où elle est non nulle est fourni en dimension 3 par l'opérateu-

du dv du ôv

dxx dx3
3

dx2 dx3

§2. Cohomologies de champs symplectiques formels

2.1. On désigne toujours par k un corps de caractéristique nulle, et par Tun espace

vectoriel sur k, de dimension paire, équipé d'une forme bilinéaire g alternée non dé-
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générée. Nous aurons à considérer les quatre algèbres de Lie suivantes: *P est l'algèbre
des fonctions formelles k [[71]], équipée du crochet de Poisson; S l'algèbre des champs
symplectiques formels; s la sous-algèbre de S formée par les champs nuls a l'origine;
et sp la sous-algèbre de s formée par les champs linéaires symplectiques. Il est entendu

une fois pour toutes que les cohomologies de ces algèbres sont calculées avec les

cochaînes d'ordre fini. Le résultat clé est le suivant:

THÉORÈME 1. La cohomologie H*(s,k) (s opérant trivialement dans k) est

nulle en degré 1, de dimension 1 en degré 2; si la dimension de T est au moins 4, elle est

de dimension 1 en degré 3, et de dimension au moins 2 en degré 4.

Un générateur p de H2(s, k) s'explicite de la façon suivante: soit U, Fes, u et v

des fonctions génératrices; alors

la puissance g3 du crochet de Poisson étant définie comme au § 1, n° 1. Pour exploiter
ce résultat (excessivement partiel, malheureusement), j'utiliserai le théorème suivant,
dûàGelfandet Fuks:

THÉORÈME 2. On a un isomorphisme naturel entre les cohomologies H* (s, k)
et #*(®, &[[T]]) de S opérant dans k[[Tj] par dérivation.

On obtiendra une preuve élémentaire en adaptant les considérations du §3, n° 1 ;

la méthode la plus rapide consiste à décrire le S-module &[[T]] par induction:

U désigne le foncteur algèbre enveloppante (noter que UQ=U$®ST); après quoi,

pour comparer les deux groupes

on utilise les «formules d'associativité» de [2], ch. XVI, §4 (formule (4) en particulier).
On passe de là facilement à la cohomologie H*(ty, ^3) de ^3 opérant dans elle-

même par l'adjointe; cohomologie qui est pertinente aux questions de déformations
de &[[^F]] comme algèbre de Lie. Considérons la suite exacte d'algèbre de Lie:

le gradient U d'une fonction u étant défini par 1^= —du, et k étant injecté comme
fonctions constantes. L'application grad* injecte C*(S, ^[[T]]) dans
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son image étant formé par les cochaînes £ annulées quand l'un des arguments est une
fonction constante, ^£ 0. D'autre part, on obtient une dérivation de ^ (c'est-à-dire
un 1-cocycle de *P dans ty) en posant:

olu 6Hu — lu

9H désigne la dérivation par le champ H des homothéties. On vérifie sans peine que
tout cochaîne Ç s'écrit de façon unique

avec £' et £" dans l'image de grad*, et on en déduit:

PROPOSITION 1. La cohomologie //*($, $) est le produit tensoriel de

H*(Q,k [[Tj]), injectée par grad* et de l'algèbre extérieure sur la dérivation a.

(Il est clair que la dérivation a est extérieure: elle n'annule pas les constantes). Il
n'est pas difficile de pister le 2-cocycle fi non trivial dans C 2 (s, k), et de le retrouver
dans C2(^3, ^}) sous la forme

c'est-à-dire précisément le pilote de la déformation d'algèbre de Lie considérée au

§1, n° 2: cette déformation n'était donc pas triviale.

2.2. Pour aborder le calcul de i/*(s, k\ nous allons distinguer dans C*(s, k) le

sous-complexe C*(s, sp, k) des cochaînes £ vérifiant 0^= *[/£ quel que soit

C/esp c? $. On obtient une flèche i:H* (s, sp, k) -> H* (s, &). D'autre part, le jet d'ordre
1 définit une projection y^rs-^sp, ce qui donne un morphisme j*:H*(8p, fc)-*

PROPOSITION 2. L'application j?®i: H* (sp, A:)®i/* (s, sp, *) -* /f* (s, *) w/
wn isomorphisme.

En effet sp opère réductivement dans C*(s, /:) (on se limite aux cochaînes d'ordre

fini) et le terme E2 de la suite spectrale de Hochschild-Serre relative à la sous-algèbre

*P ([3], §6) devient:

EZ>q=H«(sp, k)®Hp (s, sp, k).

Mais tous les termes de la «fibre» E%% * sont relevés comme cocycles par./* : toutes les

différentielles sont donc nulles ce qui fournit le résultat annoncé (Cf. [3] théorème 12).
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La cohomologie scalaire de sp est bien connue ([4], Th. 7.1 l.C): c'est une algèbre
extérieure à v générateurs *h, rç2» •••> *?v (dimr=2v) de degrés respectifs 3, 7,..., 4v— 1.

Il apparaît donc une classe */=v?rçi dans H3 (s, k)9 et l'énoncé du théorème 1 devient:

THÉORÈME 1 bis. La cohomologie H* (s, sp, k) est nulle en degrés 1 et 3; elle
est de dimension 1 en degré 2, et de dimension au moins 2 en degré 4. Les assertions sur
les degrés 3 et 4 supposent la dimension de Vespace T au moins égale à 4.

Une fois les instruments mis en place, les assertions concernant les degrés 1 et 2

n'offrent pas de difficulté réelle. En effet, l'algèbre $, c'est-à-dire &[[r]] comme
espace vectoriel, est un produit direct

si £, neT*9 et k91 des entiers

(les parenthèses désignent la forme fondamentale g sur T ou sur 71*). On définit une
graduation d'algèbre de Lie sur ^$ en posant

et la dérivation extérieure a multiplie par p les éléments de ^3(p). La sous-algèbre s
s'obtient en supprimant les deux premiers termes de la graduation :

n n

dans la suite, on écrira s(p) plutôt que ty(p\ C'est ici le lieu de rappeler qu'en tant que
sp-modules, les S'Tet SkT* sont irréductibles (et même absolument, c'est-à-dire qu'ils
restent irréductibles après clôture algébrique des scalaires) (cf. [4], ch. VI).

Cela dit, les 1-cochaînes d'ordre fini forment une somme directe:

Cl{s>,k)= 0 SmT

et par conséquent, il n'y a pas de 1-cochaîne non nulle sp-invariante (c'est-à-dire
annulée par tous les 9V, C/esp). A fortiori, C1 (s, sp, &)=0, et H1 (s, sp, k)=0.

On dira qu'une r-cochaîne/est de support (pl9 pl9 ...,pr) (où lespt sont des entiers

> 0, Pi ^p2 > • • • ^/?r ^ 0) si sa valeur/ (Ui9...9 Ur) sur des champs £/fes ne dépend que
des composantes des C/f sur s(pi),..., s(Pr). Toute cochaîne (d'ordre fini) est somme de

telles cochaînes; et une cochaîne/de support donné (/>i,..., pr) s'identifie naturelle-
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ment à une forme linéaire / ' sur

soumise à cette seule condition que si certains des pt sont égaux,/' doit être alternée

sur les arguments correspondants, si U1s^px)9 etc.

j(Uu..,Ur)=f(Ul9 ,Ur).

Il nous faut aussi tirer parti de la dérivation a. Noter d'abord que a (s)es, et que
sur s (et S) a coïncide avec la dérivée de Lie 0H du champ des homothéties. Si Ton
fait opérer a (ou 9H) sur les Cr(s, k) par transposition:

(a/Ml/!,. ,l/r) £/(l/i, ,al/,, ,Ur)
1

a est une dérivation de l'algèbre extérieure C*(s, /c), commutant avec la différentielle

d, pour une r-cochaîne/de support (pu ,pr)9

ce que nous exprimerons en disant que /est de poids (pt + ••+/?,.). On voit ainsi que
les cochaînes de poids donné/? forment un sous-complexe C*(s, &), et que C*(s, A:)

est la somme directe des C* (s, k) pour /?^0. Comme a (ou 0H) commute avec les 9Ut

t/esp, cette graduation passe au sous-complexe des basiques C*(s, sp, A:), et de là à

H*{$9*p9k).
Examinons maintenant le degré 2 •

C2(s,k)= © Hom(s(p)®s(î>,)fc)

à ceci près que si p q9 on doit se borner aux formes alternées. Prendre les cochaînes

annulées par les iv, Uesp, revient à limiter la somme à p>q>\ (puisque sp
=s(0) q: s); et finalement

C2(s,sp,fc)= 0 Hom(sip)®siq\k)Sp

avec la même réserve sur l'antisymétne, et où (?)Sp est le foncteur «invariants par le

groupe symplectique linéaire de T» (ou par l'algèbre de Lie sp, ce qui revient au même).

LEMME 1. Si l^m, il n'y a pas de forme linéaire non nulle Sp-invanante sur

SlT*®SmT*. Si l—m, il y en a une seule (à scalaire près), qu'on peut définir par

(x, yeT*), et qui est symétrique ou antisymétrique selon que l est pair ou impair.
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Preuve. La forme fondamentale g définit un isomorphisme S/?-équivariant de T
et T*9 ce qui permet de considérer que nous cherchons les applications linéaires de

S'T dans STS/?-équivariantes. Si l^m, il n'y en pas (à part 0) puisque les S/?-modules
irréductibles S'ret STsont non isomorphes (lemme de Schur); et si l=m, il n'y en
a qu'un seul (à scalaire près). Pour l'expliciter comme forme bilinéaire sur SlT*, on
observe que les «puissances parfaites» xl, xeT, engendrent linéairement SlT*; il n'y
a plus alors qu'à écrire une expression homogène de degré / sur chaque argument
x, y, et S/?-invariante.

On notera f$p la forme bilinéaire ainsi définie sur s(p) Sp+2T*; remarquer que
ces formes sont non-dégénérées (à cause de l'irréductibilité des s(p) comme ^-modules),

et que p0 est la forme de Killing sur s(0) sp. Enfin fip est de poids 2p.
Nous avons donc à présent entre les mains une base j8l5 /?3, /?5,... de C2(s, sp, k).

Toutes ces cochaînes étant de poids différents, la recherche des 2-cocycles sera achevée

dès que nous saurons celles des f$p (p impair) qui sont fermées.

LEMME 2. Soit £ une forme r-linéaire alternée sur ^X) SZT*, Sp-invariante.
Soit 7i1:s-)-s(1) la projection naturelle. La r-cochaine n*ÇeC(s9k) est un cocycle
Zip-basique.

Preuve. Que n*Ç soit basique est évident; son support est (1, 1,..., 1). C'est le

moment de rappeler la définition de la différentielle. Si/est une r-cochaîne,

df(Uu...,Ur+1)= I (-l)'+y/([I/,l/7],U1....L.;....Ur+1).

Montrons que d{n\Q §. De toute façon, c'est une cochaîne sp-basique, ce qui limite
la vérification à des arguments t/jes^,/^ 1. Alors dans tous les termes, le crochet

[PiUj] tombe dans un s(p/), p'^2, et on obtient 0.

Il résulte de ce lemme que fix est un 2-cocycle, sûrement non homologue à zéro vu
l'absence de 1-cochaînes basiques.

LEMME 3. Le cobord dPpeC3(z9 sp, k) avec p impair ^3 a une composante non
nulle de support (p,p— 1, 1

C'est-à-dire: la restriction de dfip à s(p)®5(p"1)®5(1) n'est pas identiquement nulle.
Calculons-la sur des «puissances parfaites»:

x9 y, z variant dans T*9 cette expression n'est pas identiquement nulle.
Nous trouvons bien finalement que H2 (s, sp, k) est de dimension 1, engendré par

la classe de fiv II n'y a plus qu'à s'assurer que f}x coïncide bien avec le 2-cocycle décrit
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au n° 1, ce qui ne présente pas de difficultés (surtout si Ton fait jouer l'unicité dans
le lemme 1).

2.3. J'en arrive à la section la plus pénible de la preuve; il s'agit de décrire
C3 (s, sp, k), puis Z3 (s, sp, k).

LEMME 4. // n'existe de forme linéaire Sp-invariante non nulle sur SkT*®SlT*
®SmT* que si la somme des trois entiers k, /, m estpaire, et si chacun d'eux est inférieur
ou égal à la somme des deux autres. Auquel cas, toutes ces formes sont proportionnelles
à la forme fikthm) définie par:

x\ y\ zm^(x, yy (*, zf (y, zf (x, y, zeT*)

avec

k-l+ m k + l-mra==

En effet la théorie classique des invariants ([4], th. 6.1.A) indique que les formes
invariantes sont du type indiqué. En ajustant les exposants a, /?, y de façon à ce que le

degré en x soit k, etc., on est conduit aux expressions ci-dessus; et pour ce que ces

dernières fournissent des entiers ^0, il faut que k + l+m soit pair, et que le trio
(k, /, m) constitue un triangle.

ANNEXE AU LEMME 4. Si deux des entiers, disons k et l, sont égaux, la forme
fik, i, m) présente sur les deux premiers arguments une symétrie ou une antisymétrie selon

que le troisième entier (ici m) et la demi-somme {k + l + m)j2 sont même parité ou non.
Ceci va nous permettre d'indexer les 3-cochaînes invariantes par leur support.

Précisons: soit (p, q, r) un support, p^q^r^O. Les 3-cochaînes invariantes de

support (p, q,r) sont les formes linéaires invariantes sur:

Sp+2T*®Sq+2T*®Sr+2T*

présentant les antisymétries correspondant aux égalités éventuelles entre/?, q et r.
Convenons de dire qu'un support (p,q,r) est admissible si les trois entiers k~p + 2,

l=q + 2, m r + 2 satisfont les hypothèses du lemme 4 et, s'il y a des égalités entre

eux, les conditions d'antisymétrie décrites dans l'annexe; enfin notons /p,4,r=
=/(p+ 2,q+ 2, r+ 2>- Alors les cochaînes/Pj qt r, (p, q, r) parcourant les trois admissibles,
forment une base de l'espace C3(s, k)Sp; et si on se limite aux trios p^q^r^ 1, de

l'espace C3(s, sp, k). Noter que le poids defPt9tr est p + q + r, et qu'il est forcément

pair.
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II s'agit maintenant de déteiminer les 3-cocyles. La décomposition de C* (s, sp, k)
selon les poids de a permet d'abord de ne considérer que des cocycles de poids
déterminé; un tel cocycle Z se présentera comme une somme de/P)€>r, affectés de coefficients

variés, indexée par les trios p^q^r^l admissibles d'un poids déterminé.

Rangeons les trios (/?, q, r) dans l'ordre alphabétique: (p, q, r) précède (pf, q', rr) si

p>p\ ou si /?=/?' et q>qr, ou si/?=/?', q q' et r>r'\ et rangeons les termes de la

somme Z dans cet ordre; nous pouvons normaliser le cocycle Z de façon que le terme
de tête ait le coefficient 1. La démonstration va se faire en trois temps.

Premier temps: II est exclu que le terme de tête soit unfPiqr avec r> 1.

Raisonnons par l'absurde et supposons que le terme de tête dans Z soit fp> q> r,
avec r>l. Le cobord dfPtqtt. est une 4-cochaîne qui s'appuie sur les supports
(p', q',r'', sf) obtenus en décomposant tour à tour chacun des entiers/?, q, r de toutes
les façons possibles en somme de deux entiers ^ 1 ; cela résulte de ce que :

est une graduation d'algèbre de Lie, et aussi de ce que C*(s, sp, k) est un sous-

complexe. En particulier, dfPtqtr a une composante de support (/?, q, r—1, 1),

p^q>r— 1 ^ 1, et il est assez clair que c'est le seul à en avoir une parmi les dfp.tq,tr,,
(p'><l'>r')^(P9cI>r)' Donc l'égalité dZ=0 exige que la composante de support
(p,q,r— 1, 1) dans dfpqtF soit nulle. Calculons-la: j'écris /pour fPtqtr\ et x,y,z,t
varient dans T* :

quantité qui ne saurait être identiquement nulle : c'est la contradiction cherchée.

Intermède. Le terme de tête est donc unfPtqtU p^q^l. Mais pour que le trio
(p, q, 1) soit admissible, il faut que/?+2<(#+2) + 3, et que (p+ 2) + (q+2)+(l+2)
soit pair. Ceci ne laisse que deux possibilités: (p,p—3, 1) et (p,p— 1, 1); dans un
poids déterminé 2d9 la première se présente avant la seconde: (d+l, d—2,1)^
>(</,!/-1,1).

Deuxième temps: II est exclu que le terme de tête dans le cocycle Z soitfPtP-.3tl.
Supposons le contraire. Evidemment,/?^4; d'autre part,/41f t =/(6,3,3) est exclue

par une symétrie partielle sur les deux derniers arguments. Donc/?^5. Le cobord

dfp,P-3ti a une composante de support (p,p—4, 1, 1); et si nous excluons provisoirement

le cas /?=5, le seul trio suivant (p,p — 3,1) à en faire autant est (p,p—4, 2).

Ecrivons/pour/p>p_3>x, g pour/p>p-4) 2l et soit X le coefficient de g dans Z. La
condition dZ=0 exige que df+Àdg, restreinte à:
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soit nulle. Or:

C'est ici que je dois supposer la dimension de Tau moins égale à 4, afin que les six

produits (x,y\ (x, z),... soient algébriquement indépendants ([4], th. 6.1.B). Le
lemme 4, appliqué au trio (p9p-3, 1), c'est-à-dire (/? + 2,/?-1, 3) en degrés sur ST*,
montre que <x=0: dans l'expression de/, il n'y a pas de couplage entre les deux derniers

arguments. Donc, par-delà les nécessaires polarisations, il est clair que (z, t n'apparaît

pas dans l'expression de df. Si donc df+Àdg est aussi nulle qu'elle le prétend, À est

forcément nul, et la composante de dfsur le support (/>,/>—4, 1, 1) est nulle. Or, dans

l'expression qui en est donnée ci-dessus, (y, t) n'apparaît pas dans le premier terme:
c'est la contradiction désirée.

Reste en suspens le cas exceptionnel/? 5. Dans ce cas, le trio (/?,/? —4, 2) n'est

pas dans le bon ordre; et quand on l'y remet, il coincide avec (5, 2, 1). Il s'avère ainsi

que #5,2,1 a une composante de support (5, 1, 1, 1) et qu'aucun des trios qui suivent

(5, 2, 1) n'en fait autant. Si donc/5> 2,i était le terme de tête d'un cocycle, la composante

(5, 1, 1, 1) de son cobord devrait être nulle. Calculons-la: (j'écris/pour/5|2t j)

+ 9(zit)f(x\z2t29y3),

avec x, y, z, teT*. D'un autre côte, pour a, b,

ce qui montre que (y, z) n'apparaîtra pas dans les deux derniers termes de l'expression
de df, alors qu'il factorise dans le premier. Donc la composante (5, 1, 1, 1) de df5t 2ti
est non nulle, ce qui termine le deuxième temps.

Intermède. Il résulte de ce qui précède que dans un poids 2p donné, il ne peut y
avoir qu'un cocycle au plus (à scalaire près), qui sera piloté par/p>p_lfl. Supposons

p impair. On a vu au n° 2 que le bord de la 2-cochaîne ppeC2 (s, sp, k) a une composante

non nulle de support (p,p-1, 1): donc tout cocycle de poids 2p lui sera

proportionnel. Nous concluons: un 3-cocycle dont le terme de tête est fPtP-lflf avec p
impair, est un cobord.

Troisième temps: II est exclu que le terme de tête d'un 3-cocycle soitfPtP-ltl, avec

p pair.
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Evidemment, p^2\ nous allons supposer provisoirement p^4. Le cobord
dfp,p-i,i a une composante de support (/>—1,/>—1, 1, 1), et le seul trio admissible

parmi ceux qui le suivent à en faire autant est (p — l,p — 1, 2). Posons f=fPtP-iti,
g=fp-i,p-i,2> et s°it ^ Ie coefficient de g dans le cocycle Z piloté par/. Pour exprimer

/et g, nous allons utiliser les formes bilinéaires f$p introduites au n° 2 après le lemme 1 :

f(x'+ \ y'+1, z3) (y, z) fip (x'+ \ y'z2)

g (x'+1, y-+1, z4)=(x, y)"-1 fi2 (x2y2, zA)

la première formule est la définition de fip; les deux autres sont forcément vraies à

scalaire près, puisqu'elles définissent des invariants ayant les degrés requis, et que
ceux-ci sont uniques d'après le lemme 4.

Nous avons vu que dZ=0 exige que la composante de df+Xdg sur le support
(p—l,p—\, 1, 1) soit nulle. On trouve d'autre part:

#(a"+1, f*1, c\ d3)=3 (p+l) [(a, c)f(a"c2, b>+1, d3)-(a, d)f{a'd\ b"+1, c3)

-(b, c)f(b"c2, a"+\ d3) + (b, d)f(b>d2, a"+1, c3)

3(p+1) [(a, c) (*, d) pp (a"c2, b>d2)

-{a,d){b,c)pp{a"d2,b"c2)

- (b, c) (a, d) /?p{b"c2, a"d2 + (b, d) (a, c) fSp {b'd2, a"c2)-]

et c'est maintenant que joue la parité de p : si p était impair, fip serait antisymétrique
et on trouverait 0; mais comme nous supposons/? pair,

\ b*+\ c\ d3) 6(p+1) [(û, c) (b, d) pp(a*c\ b'd2)

Du côté de g, le calcul donne:

b*+\ c\ J3)= -9(c, d)g{a*+\ b>+19 c2d2)

Cette expression ne contient pas (a, b)p. Au contraire, dans l'expression de df
les polarisations font apparaître (à scalaire près):

(a,byi(a,c)(b,d)-(a,d)(b,cK(c,d)2

il est donc impossible que df+ldg soit nulle sur le support (p — l,p—l, 1, 1). La
possibilité d'un 3-cocycle piloté par fpp_ltl avec p pair, p^ 4, se trouve éliminée.
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Epilogue. Il nous reste à examiner la cochaîne exceptionnelle f2ti,i. Observer que
c'est la seule 3-cochaîne de poids 4: il s'agit donc de savoir si c'est ou non un cocycle.
Son bord est entièrement porté par le support (1, 1, 1, 1).

LEMME 5. Les 4-cochaînes $p-basiques de support (1, 1, 1, 1) (ou de poids 4, ce

qui revient au même) forment un espace de dimension 3.

Soit F une forme quadrilinéaire invariante sur s(i)~S3T*; avec x, y, z, t variant
dans r*, F(x3, y3, z3, t3) va se présenter comme une somme de monômes:

ceci d'après la théorie des invariants ([4], th. 6.LA). En ajustant les exposants a, /?,...

pour avoir le degré 3 sur chaque variable, on trouve, à l'ordre près des variables,
trois possibilités :

(x,y)2(x,z)(y,t)(z,t)2
(x,y)(x,z)(x,t)(y,z)(y,t)(z>t).

Si l'on antisymétrise ces polynômes, le premier donne fit a /?, ; le troisième est

spontanément alterné, il sera noté ô ; pour le second, on obtient une somme de trois termes,

{x,yf[{x,z){y,t)-{x,t){y,z)-]{z,tY

et les deux termes analogues fournis par les partitions (x, z; y, t) et (x, t; y, z) du stock
de variables; cette cochaîne sera notée y.

Il est commode d'écrire:

en sorte que:

4Ta,i.i (*3, A z3, '3)= -18 [(*, y) (z, t) p2 (*V, z2t2)

-(x,z)(y,t)p2(x2z2,y2t2)
+ (x,t)(y,z)p2(x2t2,y2z2)].

Par polarisation,

P2(x2y2, z2t2)=i[,(x, z)2 (y, t)2+4(x, z) (x, t) (y, z) (y, 0+0, t)2 (y, zf]
et après la substitution finale, on obtient:
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Ce résultat a deux conséquences. D'abord, /2,i,i n'est pas un cocycle, et ceci
achève de démontrer que if3 (s, sp, k)=0. D'autre part, toutes les 4-cochaînes de

support (1,1,1,1) sont des 4-cocycles (lemme 2 du n° 2) de poids 4; s'ils sont coho-
mologues à zéro, c'est qu'on peut leur trouver une primitive de poids 4, laquelle ne

peut être que/2>ifl. On voit ainsi que dim//4(s, sp, k)^2.

§3. Cohomologie de champs symplectiques différentiables

3.1. Dans ce paragraphe et dans le suivant, X désignera une variété symplectique,

g son tenseur fondamental, êx l'algèbre des fonctions C00 sur Xéquipée du crochet de

Poisson, £fx l'algèbre des champs de vecteurs symplectiques. Je noterai C*(^, $x)
le complexe des cochaînes sur £fx à valeurs dans Sx (où £fx opère par dérivation)
qui s'expriment comme opérateurs multidifférentiels; et C*(é'x, £x) l'objet analogue
relatif à l'action adjointe de êx sur elle-même. Mon but dans cette section est de

montrer que la connaissance de H* (s, R) (que je n'ai pas) et des classes caractéristiques
ordinaires de X permet le calcul des cohomologies H*(6^X9 é*x) et H*(êX9 êx\,
d'ailleurs je m'occuperai surtout de la première.

Il sera commode d'utiliser la technique des faisceaux. Soit #* le faisceau différentiel
des germes de cochaînes de champs symplectiques dans les fonctions (c'est un faisceau
de germes d'opérateurs multidifférentiels d'un certain type, dont les sections globales
constituent C*(^x, $x)\ et '^* Ie faisceau correspondant pour les fonctions (dont
les sections globales constituent C*(Sx, $x)).

LEMME 1. Les faisceaux de cohomologie locale J^*(^*) et Jf*(/(#*) sont des

faisceaux constants, défibre H* (S, R [[r]]) #* (s, R) et H* ($, ^3) respectivement.
(On note ^J, ©, s les algèbres formelles du §2 portées par un espace vectoriel

symplectique T de même dimension que X).
Soit aeX, et C une carte symplectique centrée en a (i.e. dans ces coordonnées

locales, les composantes giJ du tenseur fondamental sont des constantes). Une co-
chaîne/e^*, une 2-cochaîne par exemple, s'écrit en coordonnées:

où U, V sont des champs symplectiques au voisinage de a, u et v des fonctions génératrices

(uniques à constante près); la sommation porte sur les multi-indices de dérivation

a, P non nuls (u et v ne doivent intervenir que par leurs gradients), et les/a/? sont
des germes de fonctions C00 en a.

Deux sous-complexes se manifestent. D'abord les formes différentielles, qui
correspondent aux termes d'ordre 1 sur tous les arguments: |a| \fi\ 1. Ensuite le sous-

complexe Bçxtë* des cochaînes basiques par rapport à la sous-algèbre % des transla-
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tions de la carte C: ce sont les cochaînes dont tous les indices de dérivation a, p sont
d'ordre > 1 et dont les coefficients fafi sont des fonctions constantes. Maintenant, le

phénomène clé, c'est que la carte C identifie B^të* au complexe C*(s, R) porté par
l'espace vectoriel modèle T. Une façon pédestre de le voir est d'observer que B^të*
est l'algèbre extérieure sur R engendrée par les 1-cochaînes œa

que C*(s, R) est la R-algèbre extérieure engendrée par les 1-cochaînes

côa:U^Dau(0)eR |a|>2

et que les formules de dérivation de coa et œa sont les mêmes:

UJ fi+rs
\fiU\\

Cela étant, il est clair que sur la carte C, le faisceau fé7* se décompose en produit
tensoriel :

du faisceau des germes de formes différentielles Q* et de l'espace vectoriel C*(s, R).
Passant à la cohomologie, on obtient un isomorphisme de •#"*(#*) et du faisceau

constant H* (s, R) qui a priori est lié à la carte C, comme le précédent. Toutefois,
l'algèbre de Lie s opère trivialement sur sa cohomologie (c'est la formule de Cartan:
Ou^diu + iud, L/es) et donc aussi le groupe (connexe) des jets de difféomorphismes
symplectiques stabilisant l'origine. Par conséquent, l'isomorphisme de Jf* (#*) et du
faisceau constant de fibre H * (s, R) est insensible au choix de la carte symplectique en

a, et donc globalise sur X,
Le faisceau de cohomologie locale Jf*(/(^*) est justiciable d'un traitement

analogue; on s'appuie sur la suite exacte de faisceaux:

et on paraphrase les considérations du §2, n° 1.

Une fois observé que les faisceaux #* et f<£* sont fins (ce sont des germes d'opérateurs

multidifférentiels), nous nous trouvons en position pour appliquer les théorèmes

classiques de cohomologie des faisceaux ([5], th. 4.6.1., p. 178).

PROPOSITION 1. Les cohomologies H^(^Xi êx) et H%(£x, êx) sont les abou-
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tissements respectifs de deux suites spectrales:

Ep2>q=Hq($,R)®Hp(X,R)

3.2. Pour aller plus avant, il nous faut rappeler une construction qui est devenue

traditionnelle dans ce genre de questions. Soit X une variété (j'oublie un instant la

structure symplectique), et RtX le fibre des repères d'ordre 1 sur X: fibre principal de

groupe GL(n, R). Alors la cohomologie du complexe Q*(R1X)GL(n>R) des formes
différentielles sur RtX invariantes par le groupe structural s'interprète comme la

cohomologie d'un espace Q(X) ainsi construit: le complexifié du fibre tangent, TCX,

a pour groupe structural GL(n, C); on fait une réduction au groupe compact maximal
U («), et Q (X) est le fibre U (n)-principal correspondant. Pareillement, pour une
variété symplectique X, soit RStX le fibre des repères symplectiques d'ordre 1 (i.e.,
contrairement au n° 1, ceux dans lesquels la forme fondamentale prend la forme réduite

positions-impulsions): c'est un fibre principal de groupe Sp(n, R). Alors la cohomologie

du complexe Q*(RS1X)Sp(nR) s'interprète comme la cohomologie d'un espace

QS (X) ainsi construit: le complexifié du fibre tangent a pour groupe structural

Sp(n, C); on fait une réduction au groupe compact maximal Sp(n) (qui est aussi le

compact maximal du groupe linéaire quaternionique), et QS (X) est le fibre Sp («)-
principal ainsi construit. Cette construction permet d'énoncer le théorème:

THÉORÈME 2. On a un isomorphisme naturel:

Hî {^x, #x) H* (QS (X), R)®H* (s, sp, R).

Le calcul de la cohomologie de QS (X) est un problème standard de classes

caractéristiques; la faiblesse du théorème est l'ignorance de i/*(s, sp, R). Toutefois, je
n'aurai à l'appliquer qu'en degré ^3.

Pour prouver commodément ce théorème, il faut réinterpréter C* (^x, $x) comme
le complexe Q*(RSCCX)G des formes différentielles sur le fibre RS^X des repères
symplectiques d'ordre infini, invariantes par le groupe structural G des jets de difféomor-
phismes symplectiques préservant l'origine (par formes différentielles sur RS^X, on
entend évidemment la limite inductive des formes sur les espaces de repères RSkX
d'ordre fini). L'interprétation se fait de la façon suivante: si Ul9..., Upe6^x, ils se

relèvent comme champs de vecteurs sur RS^X, (7-invariants; si £ est une forme
G-invariante sur RS^X, la fonction <£, Ut A a Up} est G-invariante, donc c'est une

fonction sur X (cf. [6]).
Cela dit, on reprend la décomposition du §2, n° 1 :

H* (s, R)=//* (sp, R)®H* (s, sp, R)
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et on examine successivement le sort de //*(sp, R), ou plutôt de ses générateurs
primitifs rfh puis de //*(s, sp, R).

(1) La projection niRS^X-* RStX, qui correspond dans les algèbres de Lie
structurales, au morphismey^s-^sp, induit:

f*(w'R)

La donnée d'une connexion permet de construire des formes fjieQ*(RSlXYP(n'K)
égales à ^f sur les fibres, dont le bord dr\i est basique, et représente la classe de Pon-
triagin symplectique pt(X). Au moyen de ;r* on remonte fjt dans Q*(RSo0X)G~
C*(^x> &x\ et on v°it Que dans la première suite spectrale de la proposition 1,

rjt transgresse wers pteH4i(X9 R) £4l'°. Dès lors, la sous-suite spectrale engendrée
pary'1*//*(5p, R) et H*(X, R) s'organise comme la suite spectrale de Leray du fibre
QS (X) (ou plutôt du complexe (2*(i?S1Ar)5p("'R)).

(2) Tout revient maintenant à démontrer que les classes de :

ont des relèvements fermés dans Q* (RS^X)G C* (yx, £x). J'utiliserai pour ce faire
une technique due à J. L. Koszul [7]. La projection

jï:G-+Sp(n,R)

a pour fibre un groupe nilpotent contractile. Donc il existe une section

cr:RS1X-+RSa0X

qu'on peut considérer comme une application G-équivariante

<r:RS<x>X-+Sp(n,R)\G

(G opère à droite sur les deux espaces). Il en résulte un morphisme de complexes:

<7* : C* (s, sp, R) Q* (Sp (*, R)\G)C

C'est cette flèche a* qui effectue le relèvement d'un cocycle ÇeC*(s, sp, R) comme

cocycle dans C* (S?X9 êx) (il n'est pas difficile de vérifier que a% coïncide avec C sur
les fibres de RS^X, (cf. [7], p. 140, (1.2)). Une façon d'énoncer ce résultat est de dire

que les classes dans H* {^x, éx) ainsi obtenues à partir de classes dans H* (s, sp, R)
sont non-caractéristiques.
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Pour ce qui est de C*{Sx, êx\ sa suite spectrale ne diffère de la précédente que

par l'ajout de la dérivation extérieure ae/71 (*p, $) (§2, n° 1); en fait (xeH1 ($, sp, $)
a fE%** et on peut s'assurer que a transgresse vers la classe de la forme fondamentale
dans H2(X, R) £22'0 (cf. [8]).

3.3. Le relèvement de la classe fieH2 (s, sp, R) peut s'expliciter assez simplement.
Convenons de dire qu'une connexion linéaire D sur la variété symplectique X est

adaptée si elle est sans torsion et si Dg=0. De telles connexions sont abondantes

localement, et supportent les recollements par partition de l'unité.

THÉORÈME 3. Un calcul universel permet de construire, sur toute variété
symplectique équipée d'une connexion linéaire adaptée, un opérateur bidifférentiel

bilinéaire sur R, alterné, d'ordre 3 sur chaque argument, annulant les constantes, et qui
est un 2-cocycle non trivial pour la représentation adjointe de l'algèbre de Poisson Sx.

En fait, on va faire apparaître Xx dans Z 2 (&*x, $x\ où il relèvera fieH2 (s, sp, R)
E%'2; après quoi, si u et v sont deux fonctions, de gradients U et V, on posera

A1(w, v)=À1(U, V). Nous nous inspirons ici d'une construction de J. L. Koszul ([7],
prop. 6.1).

Faisons observer tout d'abord que si D et D' sont deux connexions adaptées, leur
différence D — D' peut être considérée comme une section de S3T*X: pour A, B, C

champs de vecteurs sur X, on pose:

la symétrie sur A et B résulte de l'absence de torsion, et la symétrie sur B et C de la

condition Dg=0. Ceci s'applique à une connexion D' déduite de D par un difféo-

morphisme symplectique; et en passant au cas infinitésimal, on voit que les dérivées

de Lie 6VD d'une connexion adaptée D par un champ symplectique U sont des
sections de S3T*X. Dans un système de coordonnées où les coefficients gtj de g sont

constants, et où u est une fonction génératrice de U,

les Fjfc sont les coefficients de D, et £ ' indique une sommation circulaire sur i,j, k.
Nous disposons maintenant d'un 1-cocycle Ut-+OVD de Sfx à valeurs dans l'expace

FXS*T*X des formes différentielles symétriques de degré 3, sur lesquelles £fx opère

par dérivation de Lie; ce cocycle n'est sûrement pas trivial, puisqu'il n'y a pas de

connexion invariante par tous les difféomorphismes symplectiques.
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D'autre part, la forme g définit sur S3T*X une forme bihnéaire alternée g3*

pour £, rieT*X; et cette forme est invariante par l'action linéaire tangente des difféo-
morphismes symplectiques. Donc l'application

est un 2-cocycle de Sfx dans êx. En coordonnées locales comme précédemment,

h(U,V)=g"'g»'gkl<'(ulijk—-)(ty,*- ¦¦)

ce qui manifeste que le symbole principal est bien le 2-cocycle P tel qu'il a été décrit
au §2, n° 1, prop. 1 Dire que le calcul est universel, c'est dire que si l'on a une autre
variété X\ équipée de structures analogues, et un difféomorphisme local de (X, g, D)
et (X\g\ D'), il échange les opérateurs Xt construits sur l'une et sur l'autre: c'est
bien évident.

Nous disposons maintenant d'une déformation infinitésimale de l'algèbre de Poisson

êx. La question se pose dès lors, qui sera débattue au §4: est-ce que Àl9 à l'instar
du cocycle formel /? qu'il relève, est le pilote d'une déformation formelle de $x!

3.4. Mais nous aurons besoin de deux variantes, un peu techniques, de la proposition
1 dun° 1.

Tout d'abord, soit A une pièce de X, c'est-à-dire une sous-variété à bord lisse de

même dimension. Soit C^{^x> &X,A) le sous-espace des cochaînes identiquement
nulles sur A, et $* le faisceau correspondant. Dans la représentation locale du n° 1,

ce sont les cochaînes dont les coefficients fap sont des fonctions identiquement nulles

sur A. Il en résulte une décomposition locale.

où AQ* désigne le faisceau des germes de formes différentielles nulles sur A. Ce faisceau

est fin; sa cohomologie locale est nulle en degré >0 (c'est une variante facile du lemme
de Poincaré), et en degré 0 on obtient un certain faisceau ^R dont la cohomologie sur
Adonnera la cohomologie des formes différentielles sur X nulles sur A, c'est-à-dire

H*(X9A,R)(cf. [9], ch. XII).
Revenant à AV*9 nous voyons d'abord que c'est un sous-complexe de V*, et que

sa cohomologie locale est:

$, R).

En outre $* est un faisceau fin. Donc:
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PROPOSITION Ibis. La cohomologie H^(^x, SX\A) de C^(^x, $X\A) est

Vaboutissement d'une suite spectrale:

E£>q H«($, R)®Hp(X, A, R).

La deuxième variante porte sur la fibre, et nécessite un bref retour sur la situation
formelle. Soit 'FmC*(s, R) l'espace des cochaînes nulles dès que l'un des arguments
appartient à un sCp), p>m: ce sont les cochaînes sur l'algèbre quotient:

s/ e s(p)

p>m

ou dans les notations du n° 1, l'algèbre extérieure sur les côa, 2 < |a|< m + 2. Soit d'autre

part:

"FsC*(s,R)= 0 C*(s,R)

la somme des cochaînes de poids <s; une base en est donnée par les:

œai a Acôa<? avec |a1| + «-- + |afl|

Ce sont deux filtrations croissantes ^-stables de C*(s, R); on notera

'Fm''FsC* 'FmC* (s, R)n >FgC* (s, R).

LEMME 2. Z)^ quem^l et s^2, l'injection 'Fm"FsC*-+C*(s, R) i/ufoiï w« wo-

morphisme des cohomologies de degré < 3.

En effet, pour m et s^O, on a aussi une factorisation

if* ('Fm'F,C*) H* (sp, R)®#* ÇFm*FsC*9 sp)

avec la cohomologie sp-basique, et il suffit de voir que celle-ci coïncide avec

H* (s, sp, R) en degré ^ 3. Or les 1-cochaînes basiques sont aussi nulles dans 'FJ'FSC*

que dans C*(s, R); le 2-cocycle de base /? /?i est dans le sous-complexe dès que
m>l et s^2\ quant aux 3-cocycles du sous-complexe, ce sont des 3-cocycles de

C*(s, sp, R), donc des dpp (§2, n° 3): il n'y a plus qu'à constater que dfip n'est dans

le sous-complexe que si Pp y est déjà, ce qui est trivial.
Transplantons maintenant ces deux filtrations sur C* (<$fx> $x\ ou plutôt sur le

faisceau ^* correspondant. Relativement à une carte symplectique C, nous avons une

factorisation:
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et nous poserons :

Comme les filtrations 'F, "F sur C*(s, R) sont invariantes par le groupe des jets de

difféomorphismes symplectiques préservant l'origine, les 'F, "F sur fé7* sont indépendantes

du choix de la carte C. Une autre façon de voir consiste à observer que l'identification

de #* à D*®C*(ô, R) est canonique pour le symbole principal, et que la
contrainte porte sur lui: pour 'Fm9 l'ordre de dérivation sur la fonction génératrice de

chaque argument ne doit pas dépasser m+ 2; pour "Fs, la somme des ordres des

dérivations d'ordre ^3, qui sont en nombre r, ne doit pas dépasser s + 2r. On peut
aussi remarquer que

dans les notations du n° 2.

Toujours est-il que les faisceaux:

.V*t 'Fm"FsV*='FmC*n"FsV*

sont aussi fins que les précédents ; si l'on forme la suite spectrale de Godement pour
le faisceau 'Fm"F$*9 avec m^ 1, s^2, on constate, compte-tenu du lemme 2, qu'elle
coïncide avec la suite spectrale du faisceau ^* (prop. 1) en degré complémentaire

3. Donc:

PROPOSITION 2. Dès que m^ 1 et s*?2, l'injection

'Fm"FsC* <JTX% *x) - C* (STX9 éx)

induit un isomorphisme des cohomologies de degré ^3.
Noter pour finir qu'on peut croiser les deux variantes, la relative et la filtrée, et

considérer les complexes

relatifs à une pièce A. Les techniques précédentes donnent immédiatement:

PROPOSITION 2bis. Soit A une pièce de X. Dès que m^l et s^2, l'injection:

'Fm"FsCÎ {?Xt Sx; A)^C* (S?x, êx; A)

induit un isomorphisme des cohomologies de degré ^ 3.
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§4. Déformation covariante du crochet de poisson

4.1. Les notations du §3 restent en vigueur: X est une variété symplectique, êx
l'algèbre des fonctions C00 sur X, munie du crochet de Poisson, et <9*x l'algèbre de Lie
des champs de vecteurs C00 symplectiques. Forts des résultats du précédent paragraphe,
nous pouvons maintenant viser l'objectif principal du présent travail.

THÉORÈME 3. Soit X une variété symplectique, dont nous supposons que
H3(X, R) 0. // existe des opérateurs bidifférentiels At sur X

Ai:é>xx#x-+é>x
bilinéaires sur R, alternés, annulant les constantes, d'ordre 2/+1 sur chaque argument,
tels que la série:

t
[m, v}t [m, v] + £ /0. nt h(u>v) {u,veêx, t paramètre)

soit une déformation formelle non triviale du crochet de Poisson sur S\.
En d'autres termes, la loi [w, v]t, qui est alternée, vérifie l'identité de Jacobi. Ce

qu'on va voir en fait, c'est que si l'on a construit des opérateurs Àl9 A2,..., Xk, ayant
pour symboles principaux les puissances impaires du crochet de Poisson (cf. § 1, n° 2),
en sorte que la loi:

[«,»]«-[«,»]+ I ^
vérifie l'identité de Jacobi à l'ordre k (c'est-à-dire modulo 0(/*+1)), alors il existe un
opérateur Àk+1, dont le symbole principal est la puissance (2& + 3)ème du crochet de

Poisson, et tel que:

lu. »]r 1}=l>,

vérifie l'identité de Jacobi à l'ordre k+ 1. Cette déformation est non triviale dans le

sens que Xt n'est pas cohomologue à zéro dans C* ($x, $x). Si X est équipée d'une
connexion adaptée D, on peut prendre pour Xt l'opérateur fourni par le théorème 2.

Je ne vois pas comment aborder le légitime problème de la convergence de la série;
la déformation garde un caractère formel. Je ne sais pas non plus si l'hypothèse
topologique H3 (X, R)=0 est nécessaire ou superflue (voir les remarques du début du n° 5).
Les opérateurs Xt seront construits comme 2-cochaînes dans Cj (^X9 &x), et relevés

dans Cl(êX9 é?x) par le gradient:

Xt(u, î>)=Af(grad«, gradt;)
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comme aussi bien le crochet de Poisson lui-même; d'ailleurs on posera

Xo (w, v) [w, v] g (grad u, grad v).

En composant les Xt avec le gradient, on obtient des opérateurs bidifférentiels de <9*x

dans S?X9 et la série du théorème définit une déformation formelle de l'algèbre de Lie

Je commencerai par rappeler brièvement le scénario général de la théorie des

déformations d'algèbres de Lie. Une déformation formelle de l'algèbre de Lie g (réelle,

pour fixer les idées), est une structure d'algèbre de Lie R \\t]]-linéaire sur R [[f]]®9-
Autrement dit: on se donne des applications L,:g x g-> g, R-bilinéaires alternées, et

on pose, pour u, veq q:

[u, v}t=[u9 v] + tL±(u9 v) + t2L2 (w, t>) + .»

qui est un élément de R[[f]]®g; ^es Lt doivent s'arranger pour que l'identité de

Jacobi soit satisfaite. On est libre de considérer les Lt comme des 2-cochaînes de g
dans elle-même (avec la représentation adjointe): alors l'identité de Jacobi à l'ordre 1

signifie que Lt est un 2-cocycle. La vérification de l'identité à l'ordre k n'implique que
les k premiers opérateurs Ll9...9Lk; si l'on a pu les construire de façon à vérifier
l'identité à l'ordre k, et si l'on cherche un Lk+l qui arrange l'identité à l'ordre k+\9
on trouve une équation:

£' [a, Lfc+1 (v, w)]-£' Lk+i([u, y], w) F(Lu Lk) (u, v9 w)

à vérifier quels que soient u, v, w dans g (£' indique une sommation circulaire). En

termes de 2-cochaînes, on demande donc que:

dLk+i=F(Lu...,Lk)

où F(Li9..., Lk) est une 3-cochaîne fabriquée à partir de Li9..,9 Lk par des formules
universelles qu'il est inutile d'expliciter ici. Cela étant, le fait que l'identité de Jacobi
soit satisfaite à l'ordre k implique de façon mécanique que la 3-cochaîne F (Lt,..., Lk

Zk+l est un cocycle. On se trouve alors devant l'alternative suivante:

a) ou bien la classe de Zk+1 dans //3(g, g) est non nulle: alors le processus de

construction de la déformation formelle est obstrué;

b) ou bien Zk+1 est homologue à zéro: on prend alors pour Lk+l une de ses

primitives, et on passe au cran suivant (qui donnera lieu à une alternative analogue).
En particulier, si par chance H3(q, g)=0, n'importe quel 2-cocycle sera le terme

de tête d'une déformation formelle de g. Je renvoie à [10] pour l'importante question
de l'équivalence des déformations, qui permet par exemple de qualifier de triviale
(à l'ordre 1) une déformation pilotée par un 2-cocycle Lt homologue à zéro.
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Dans le contexte symplectique, le 2-cocycle ^eZ2(S^x, £x) qui pilote la déformation

appartiendra à la classe peH% {•9?x, êx) mise en évidence au §3, n° 3. Puisqu'on
prend les A, dans C2(^x, &x) (injecté dans C2(éx, êx) par grad*), les obstructions
éventuelles apparaîtront dans le H% (<^X9 $x\ Examinons ce groupe. Soit fi un
générateur de H2(z9 R) et rj un générateur de H3 (s, R) (§2, th. 1) on peut prendre r\ =jf*/i,
y\x étant un générateur de //3(sp, R). La suite spectrale du §3, n° 1, fait apparaître
trois types de classes dans H3(£?X9 êx):

a) d'abord, la classe rjeE%'3 passe dans le E^ et donc dans Hj{^x, êx} si et
seulement si la classe de Pontriaginpx(X) est nulle;

b) ensuite, les produits /?®£, ÇeH1^, R), qui constituent le El'2-El;2;
c) et finalement H3(X9 R) s'injecte dans Hj{^x, êx) (puisque E\%1=§ et que

E%*2 passe dans le Eœ).

Corrélativement, la preuve du théorème 3 se fait en trois étapes: d'abord on se

place dans des circonstances topologiques telles que Hj {&*X9 <^x) 0> le seul problème
étant alors de contrôler les symboles principaux; ensuite on montre que ûpx (X) 0,

la classe rj ne peut obstruer la construction de la déformation; et pas davantage les

classes du deuxième type, comme on le voit finalement. Il suffit alors d'avoir mis la
condition H3(X9 R) 0 dans les hypothèses du théorème pour en avoir terminé la

preuve; on trouvera néanmoins au n° 5 quelques remarques sur les obstructions
éventuelles de ce type, ainsi que sur la dimension 2, qui est exclue de cette preuve comme
du théorème 1.

4.2. Première étape: On suppose Hl(X9 R) H3(X, R) 0, et px(X)±§ (c'est le

cas par exemple pour les produits de droites projectives complexes (P1C)V v ^ 2, traités

comme variétés symplectiques de dimension 2v).
Suivons le scénario général et supposons les opérateurs Xu...,Àk construits, Af

ayant pour symbole principal la (2/+ l)ème puissance du crochet de Poisson, en sorte

que la loi :

vérifie l'identité de Jacobi à l'ordre k. Il nous faut un opérateur Afc+1eCj2(yx, <fx)
solution de l'équation:

<tt*+i«C*+i (l)

où Cjk+i est un certain 3-cocycle construits à partir de ku..., Ak. Vu les circonstances

topologiques, H](£fXi $X)=Q et l'équation (1) possède des solutions. Mais nous
voulons contrôler leur symbole principal. Soit donc Àk+ie C2 (^x> &x) une 2-cochaîne

ayant pour symbole la puissance (2fc+3) du crochet, et par ailleurs quelconque:
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d'après les définitions du §3, n° 4, Àk+l et son bord appartiennent à

D'autre part, £k+1 et dÀk+1 ont le même symbole principal, parce que le calcul au
niveau des symboles revient à vérifier l'identité de Jacobi pour la déformation Lt
construite sur les fonctions formelles au §l,n°2 (formule (5)). Par conséquent, la
différence Çk+i — dÀ'k+l a la filtration 'F2k+i (l'ordre sur chaque argument n'a pas
augmenté) et la filtration "F4k + l (l'ordre total a diminué d'au moins 1). D'après la
proposition 2 du §3, n° 4, H3(fF2k+1ffFAk+lC*(S^x, <fx)) 0, et nous aurons une
2-cochaîne A£+1, de filtrations 'F2k+1"F4k + l, vérifiant:

La 2-cochaîne hk+l=kk+1+À.'k+i résoud alors notre problème.

4.3. Deuxième étape: J'aurai besoin du lemme suivant. Convenons d'appeler
déformation tronquée de longueur k sur la variétéZune suite d'opérateurs A^..., Xke

Ca (^x* &x) ayant les symboles principaux requis, et tels que la loi :

[«."lw- Z ^()
vérifie l'identité de Jacobi à l'ordre k.

LEMME 1 (la greffe). Soit X une variété symplectique, A unepièce non vide dans X.
Supposons H1(Xi A,R)=H3(X9 A,R) 0. Soit Àu...,Xk une déformation tronquée

définie au voisinage de A. Il existe une déformation tronquée Xu...9Xk définie sur X
entière, et qui coïncide avec la précédente sur A.

Preuve. Supposons déjà construits Xl9..., Xt (/^ 1). L'hypothétique opérateur Xt+1

est soumis aux deux contraintes suivantes :

où C/+i est un 3-cocycle construit à partir de Xi9...9 Xt. Ces deux contraintes ne sont

pas grossièrement incompatibles, en ce sens que sur A, li+i=dÀi+l (une même

formule universelle construit £/+1 et Çi+l à partir de Al9..., kt et Xl9...9 Xt).

Soit maintenant A'i+1 une 2-cochaîne sur X, coïncidant avec Xi+1 sut A; on a donc,

sur la pièce A9 <tti+1 Ç,+1 £i+i, et le 3-cocycle li+l-dXi+l est nul sur A. Faisons

jouer la proposition Ibis du §3, n°4: puisque H°(X, A9 R) Hl(X9 A9 R)
H3(X9 A9 R)=0, on trouve H3(6^x, êx\ A)=0, et nous obtenons une 2-cochaîne

/IJ'+1, nulle sur A9 vérifiant:
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après quoi on prend Ai+1=Al'+1 + ^/+1. Le contrôle des symboles principaux se fait
sans difficulté avec la proposition 2 bis, §3, n° 4.

Revenons à notre problème d'obstruction, et soit X une variété symplectique, sur
laquelle nous faisons la seule hypothèse topologique que p1(X)eH4(X, R) est nulle.
Alors apparaît dans H](S^X, $x) la classe rj provenant de:

3 (sp, R)^ H3 (*,R)=JE°

Je noterai encore rj un 3-cocycle de cette classe. Il s'agit de montrer que la classe rj ne

peut pas faire obstacle au passage d'une déformation tronquée de longueur k à une
déformation tronquée de longueur k+1.

Procédons par l'absurde et supposons construits sur X une déformation tronquée
de longueur k, Xl9...9 Xk9 telle que lorsqu'on forme le 3-cocycle Çfc+1 dont l'hypothétique

Xk+1 devrait être une primitive, on découvre qu'il n'est pas cohomologue à zéro

et qu'il s'écrit

(2)

avec K une constante non nulle, fieZ];{5fX9 éx) le 2-cocycle de base (P=Xl9 si l'on
veut), g et a des formes différentielles fermées sur X, de degrés 1 et 3, et teCj (£fx> $x)-
(Noter aussi que la proposition 2, §3, n° 4 montre que la difficulté subsiste même si

l'on abandonne toute prétention sur le symbole principal de Xk+1). Soit A une pièce

contractile, incluse dans une carte symplectique V. Si l'on restreint l'équation (2) à

l'intérieur À de A, les 3-cocycles jS a g, g deviennent cohomologues à zéro, mais non
pas le cocycle rj (qui provient toujours du générateur de H3 (s, R) E%*3 dans la suite

spectrale de la variété Â). Donc la restriction Çfc+iU n'est pas cohomologue à zéro, et
la déformation tronquée AX|A,..., Afc|A restreinte à Â est non moins obstruée que sur X.

Maintenant, plongeons la carte symplectique V dans une variété symplectique Y
telle que H1 (Y, R)=//3(F, R)=0 etp1 (Y)^0. Puisque A est contractile, le lemme 1

s'applique: soit Xu...9Xk une déformation tronquée à l'ordre k sur Y, coïncidant avec

Àl9..., Xk sur A. La première étape fournit un opérateur Xk+l sur F qui prolonge d'un
cran la déformation tronquée Xl9..., Xk9 et du même coup, par restriction, la déformation

Ajja, Ajt|A sur Â. C'est donc que le 3-cocycle Cfc+i|A ^ta^ cohomologue à zéro:
contradiction.

4.4. Troisième étape: Le passage d'une déformation tronquée de longueur k à une
déformation de longueur k+1 ne peut pas être obstrué par une classe de filtration 1

dans Hl{Sex, êx) (c'est-à-dire provenant de E£'2 HX(X9 R)®#2(s, R).
On raisonne encore par l'absurde: soit kl9...9 Xk une déformation de longueur k

sur une variété symplectique X9 telle que le 3-cocycle Çk+l soit non cohomologue à

zéro. D'après la deuxième étape, sa classe dans le H%{Sfx, £x) est de filtration ^ 1,
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et on a une écriture :

Çk+1 pAQ + a + dT (3)

avec g et a des formes différentielles fermées sur X9 de degrés 1 et 3, xeCJ(^^, $x)9
et nous supposons la classe de q dans H1 {X, R) non nulle. Soit c une sous-variété
de X, difféomorphe au cercle S1, telle que:

et soient A et V deux voisinages tubulaires de c, A étant une pièce. Si l'on restreint
l'équation (3) à F, g devient cohomologue à zéro, mais non pas /? a q. Par conséquent,
la déformation restreinte à F, (ou aussi bien à l'intérieur de A), A1)F,..., Afc|F, subit
une obstruction du même type. Nous pouvons désormais oublier la variété X.

Nous pouvons aussi supposer le fîbré normal Nk c trivial; car sinon, il le devient

sur un revêtement à deux feuillets c de c; et en remontant sur le revêtement V
correspondant les opérateurs multidifférentiels Al5..., Afc, nous y retrouverons une situation
obstruée du même type. Finalement, nous sommes ramenés aux variétés suivantes:

c est le cercle

dans R2v, A et F en sont deux voisinages tubulaires, AcV,et F est muni de la structure

symplectique héritée de X.
On obtient un voisinage B du disque :

en ajoutant à A une poignée d'indice 2<2v. Observons qu'il n'y a pas d'obstruction
homotopique à prolonger la 2-forme fondamentale g de A (ou V) à B: car la classe

de g dans H2 (A, R) est nulle (et pour cause), et le fibre tangent TA est trivial, même

vis-à-vis du groupe structural U (v) {n^U (v)=0). Donc, d'après la théorie de Gro-
mow ([11], p. 133), g se prolonge en une structure symplectique au voisinage de B.

Comme HX{B9 A, R) H3(B, A, R) 0, le lemme 1 s'applique et fournit une
déformation de longueur k9 Xl9..., Xk sur B, qui coïncide sur A avec la déformation obstruée

Ai,..., Ak. Mais B est contractile: la deuxième étape montre qu'on peut allonger d'un
cran Xk+1 la déformation Xl9...,Xk,et du même coup par restriction la déformation

prétendument obstruée Aj,..., kk sur A: contradiction.

4,5. Au terme de cette preuve, il apparaît que l'obstruction à allonger d'un cran

une déformation tronquée de longueur k sur la variété symplectique X, se trouve, si
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elle existe, dans la filtration 3 du Hj (6^x, $x\ c'est-à-dire dans H3 (X, R). On peut
s'assurer que cette classe a une intégrale nulle sur toute sous-variété de X difféomorphe
à la sphère S3; la preuve est analogue au n° 4 ci-dessus si la dimension de A"est au
moins 6; elle est un peu plus délicate en dimension 4 (la poignée a le mauvais indice).

Oublions encore un moment qu'il nous reste à récupérer le cas de la dimension 2

(qui a été exclu par le recours au théorème 1), et faisons une remarque générale. Dans
le cas des fonctions formelles, la déformation du crochet de Poisson Lt était déduite
d'une déformation M/ du produit associatif des fonctions (§1, n° 2) elle-même pilotée

par le crochet de Poisson. La question se pose donc assez naturellement: sur une
variété X, construire une suite d'opérateurs bidifférentiels jx^^x^^x^^x^ biliné-
aires sur R, en sorte que la série:

(uv)t uv + tii1(ui v) + t2n2(u, v)+--- (u, ve£x)

soit une déformation associative du produit de fonctions. Une telle construction est

régie par une «cohomologie de Hochschild diagonale» facile à décrire. L'espace Ap

des /?-cochaînes est constitué par les opérateurs multidifférentiels :

R-linéaires sur leurs/? arguments (pas de condition de symétrie); et la différentielle ô,
de degré 4-1, est donnée par la formule:

ôf(ul9..., up+1)-

Soit H*(é'x, é'x) la cohomologie de ce complexe. A cause de la commutativité de

l'algèbre associative é'x, la différentielle Ô est linéaire sur êx ' ce fait permet de localiser

ou globaliser sans encombre, et, compte-tenu de la proposition 3 du §1, n° 3, on n'est

pas trop surpris de trouver un isomorphisme:

avec les sections globales du fibre APTX; l'isomorphisme identifie une section

U1A...AUp(Ui champs de vecteurs sur X) avec l'opérateur multidifférentiel:

ul9..., wph-»déterminant \\0Ut(Uj)\\ (uu upe£x)

ou plutôt avec sa classe de cohomologie.
Dans ce contexte associatif, la construction d'une déformation formelle se fait

suivant les mêmes lignes que pour les déformations d'algèbre de Lie précédemment
considérées. Si l'on dispose d'une déformation associative tronquée de longueur k,
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c'est-à-dire d'une loi :

(uv)^ uv + tfil(u,v)+'-- + tVfe(w, v),

avec /*!,..., nkeA2, vérifiant l'associativité à l'ordre k, on aura besoin pour l'allonger
d'un cran d'une cochaîne nk+leA2 solution de l'équation:

où ak+l est une 3-cochaîne construite à partir de nl9..., /nk qui est automatiquement
un cocycle; et l'équation possède des solutions selon que afc+1 est ou non cohomologue
à zéro dans le complexe A*. La grande différence avec les constructions précédentes,
c'est que H\{êx, £x) est l'énorme espace rx(A3TX).

C'est maintenant que le cas de la dimension 2 se distingue par sa simplicité.
Supposons la variété X symplectique, et prenons pour /^ le crochet de Poisson. Puisque

#i(^x> ^x) — ^ on ne rencontre pas d'obstruction à former une série illimitée:

(uv)t uv + t[u, v] + £ tknk(u,v)

qui soit associative; puis en posant:

[«,»],= [M,-MJ/2*
on obtient une déformation du crochet de Poisson lui-même.

Je dirai encore quelques mots du cas générai. L'identification de H2A (éX9 $x) à

FX(A2TX) engage à essayer pour jUj n'importe quel opérateur bidifférentiel du type:

en coordonnées locales. Pour construire \i2, on se heurte à une première obstruction,
la classe de a2, qui est donnée dans FXA3TXpar la formule de G au § 1, fin n° 3. Si fit
est une structure symplectique, ou si plus généralement il est parallélisé par une
connexion sans torsion D, cette obstruction s'annule. Dans le cas où ptx est symplectique,

j'ai pu m'assurer de l'existence de formules universelles donnant, à partir d'une
connexion adaptée D, une déformation associative tronquée de longueur 4, dont les

symboles principaux sont ceux de M] (§1, n° 2).
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