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Comment. Math. Helvetici 50 (1975) 403-419 Birkhâuser Verlag, Basel

The Kervaire Invariant of Hypersurfaces

in Complex Projective Spaces

Shigeyuki Morita1)

1. Introduction

In [4], E. H. Brown and F. Peterson defined the Kervaire invariant for (&k + 2)~

dimensional spin manifolds. The purpose of this paper is to calculate it for certain
manifolds. Precisely, let Vn(d) be a non-singular hypersurface of degree din complex
projective («4- l)-space CPn+1. Assume that «= 1 (mod4) (n^ 1) and d is odd. Then
Vn(d) is an ($k -h 2)-dimensional differentiable manifold with a spin structure. More-
over, since Vn(d) is simply connected, spin structure is unique up to homotopy.
Therefore we hâve a well defined Kervaire invariant K{Vn{d))eZj2. The resuit is

THEOREM (1.1).

if d= ±1 (mod8)
if d=+3(mod8).

A motivation for this calculation arose when the author was trying to understand
the topology of some well-known complex manifolds, such as the hypersurfaces in

complex projective spaces. For example, if n is odd, then it can be shown that (cf.
Remark (5.1)), there are closed simply connected almost smooth manifold (by an
almost smooth manifold, we mean a PL manifold M with a smooth structure on
M-pt.) M2n(d) and (n-l) connected almost smooth manifold N2n(d) such that

H*(M2n(d); Z)*H*(CPn; Z), H*(N2n(d); Z)*H*((bJ2) SnxSn; Z)

and

Vn{d) s M2n(d)#N2n(d) (1.2)
PL

where bn is the «th Betti number of Vn{d) and zépl dénotes a PL homeomorphism.
(The cohomology ring of M2n (d) is not isomorphic to that of CPtt ifd^l.M2" (d) is

only a rational homotopy CPn.)

x) This work was supportée in part by the National Science Foundation grant MPS72-05055 A02.
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It might be natural to ask whether (1.2) holds in the differentiable category or not.
The answer to this question is given by

THEOREM (1.3) (i) /jf«=l, 3 or 7, then there is a closedsimply connecteddifferentiable

manifold M2n{d) such that

Z) and Vn(d)^M2n(d)#(bJ2) SnxSn

(^ stands for a diffeomorphism).

(ii) Ifn is odd (#1,3,7) andd^ ± 3 (mod 8), then there is a closed simply connected

differentiable manifold M2n(d) such that

H*(M2n(d);Z)^H*(CPn;Z) and Vn(d)^M2n(d)#(bJ2) Snx S".

(iii) Ifn~\ (mod4) (n^l) and d= ±3 (mod8), then there is no such décomposition

ofVn(d).
Remark (1.4). For the remaining case « 3 (mod4) («#3, 7) and d= ±3 (mod8),

we can not say anything reflecting the mysterious part of the Kervaire invariant one
problem.

The author would like to express his hearty thanks to Professor W. Browder for
suggesting Theorem (1.1) and to Professor M. Kato for helpful and encouraging
discussions1.

2. Preliminaries on the Topology of Vn(d)

Let Vn (d) be a non-singular hypersurface of degree d in complex projective space
CPn+*. Since any two non-singular hypersurfaces of the same degree are diffeomorphic,
to study the topology of them, we may assume that V" (d) is defined by the équation

Zq+z{H \-z*+i=0, where [r0, zl9...9 zn+l~] is the homogeneous coordinate of
let Wn{d) be the non-singular affine hypersurface in Cw+1 defined by

Then we can consider Wn{d) as an open submanifold of Vn(d) by considering
Crt+1 as affine part of CPn+1 defined by zn+1 #0. Wn(d) is a spécial type of so-called

Brieskorn variety and by the works of Brieskorn [3] and Milnor [8] the topology of
it is quite well understood. For example, it has the same homotopy type as the bouquet
of (d- l)n+1 copies of the «-sphère Sn.

Now let /: Wn{d)-* Vn{d) be the inclusion. Then we hâve the following

x) The main resuit of this paper has aise been proved by W. Browder and J. Wood [10].
(Added in proof.)
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LEMMA (2.1). (i) Ifn is odd, then

is surjective.

(ii) Ifn is even, then

Cok(i*:Hn(W"(d);A)-+Hn(V(d);A))*A

where A is either Z or Z/2.
Proof. Consider the following exact séquence

¦ Hn(V9W)-*09 (2.2)

where the coefficient A is either Z or Z/2 and V (resp. W) stands for Vn(d) (resp.

We hâve only to show that

if n is odd

if n is even.

Let r={[zo,..,zB+1]eP(^); zn + 1=0}. Then we hâve W=V-V. Note also

that

Let T be the tubular neighborhood of V in V. Then, by the excision Hn(V, W)
^Hn(T,ôT). By the Lefschetz duality Hn(T, ôT)^Hn(T). Since T is homotopy
équivalent to V\ we hâve Hn(T)^Hn(V). But, it is weli-known, by the Lefschetz

hyperplane section theorem (cf. [1]), that

t n is even.

Therefore we hâve

if n is odd

if n is even.

This proves Lemma (2.1).
Let Kn(A) Ker(i*:Hn(W; A)-+Hn(V; A)). Then we hâve

LEMMA (2.3). The naturalmap Kn(Z)-»Kn(ZI2)is surjective.
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Proof. This follows from the exact séquence (2.2) and the fact that H*(W; Z),
H*(V, Z), 77*(F, W; Z) hâve no torsion.

LEMMA (2.4).

n: odd

: even

(ii) rankJCB(Z)= ^{(rf-l)"+1 + (-l)"+1(d-l)}.

Proo/. (i) follows from the Lefschetz hyperplane section theorem ([1]) and the

formula for the Euler number of Vn{d). (ii) follows from (i) and the exact séquence
(2.2).

As we mentioned before, topology of Wn(d) is well-understood. We quote some
of the results from Hirzebruch and Mayer [6].

Let Z\d be the cyclic group of order d and let G=Z/rf©«-«ffiZ/rf ((n + l) copies).
Let WjeG (./=0,...,«) be the élément corresponding to the generator for thejth factor.
G acts on Wn(d) as follows. Let h#\.. wknneG and (z0,..., zn)eWn(d). Then

where Ç exp \lni\d~\.
There is a homology class heHn(Wn(d); Z) such that h can be represented by an

imbedded sphère SncWn(d) whose normal bundle is isomorphic to the tangent
bundle % (Sn). Moreover we hâve

THEOREM (2.5). ([6]).

Hn(Wn(d);Z)*Z(G)h.

Hère Z(G) is the group ring of G and

=0,..., n.I(G) is the idéal of Z(G) generated by
The intersection numbers can be given as follows. Let

e:Z((r)->Z
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be an additive homomorphism defined by

s(g) 0 for geG, g^l,wo...wn

and let -:Z(G)->Z(G) be the ring automorphism defined by g-^-g'1, geG. Let
rj (l-wo)...(l-wn)eZ(G). Then we hâve

THEOREM (2.6). ([6]). The intersection number of two éléments xh, yhe
Hn{Wn{d))isgivenby

Hère we identify the group Hn(Wn(d)) with Z(G) h by Theorem (2.5).

LEMMA (2.7).

Kn(Z)={xheHn(Wn(d)); wxh=xh(w w0... wn)}.

Proof. Let us define a Z/d action on Wn(d) by

C (z0,..., zn) (Cz0,..., Çzn), C=exp [2te//<1

Then obviously we hâve wxh=xA ?-> f# (xA)=xA where C* is the homomorphism on
the homology induced from the action of Ç. Now the action of Z\d on Wn(d) can be

extended to that on Vn{d) by

The quotient space of Vn(d) with respect to this action can be shown to be CP".
Therefore we hâve, by a well known theorem (see [2])

^ n i§ °dd
(2.8)if « is even. v '

Hère the left hand side is the group of invariant homology classes. If n is even

(*=2m), then Hn(Vn(d);Q)z/d is generated by \Vm(d)-]eHn(Vn{d)l Vm(d)=

Now let us assume that wxh=xh for an élément xheHn(W). Then we hâve

(i*(xh))=i*(xh) where i: W-* V is the inclusion. Therefore i*(xh) is an invariant
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homology class. By (2.8), we hâve

i*(xh) 0 if n is odd i*(xh) a\_Vm(d)~] for some aeQ if n is even.

But if i*(xh) a\Vm(d)~\ for a^09 the it would follow that

This is a contradiction, since clearly we hâve

0 forany xheHn{W).

Therefore we hâve i*(xh) 0eHn(Vn(d); Q). But since Hn(Vn(d); Z) has no torsion,
it follows that is|e(jc/?) O. Thus we obtain {xheHn(W); wxh xh}czKn(Z).

Now since bothXAJ(Z) and {xheHn(W);wxh xh} are direct summandsof#„( W),
we hâve only to show that the ranks of them coincide. Now the action of Z/d on W
is free and the quotient manifold can naturally be identified with CPn—Vn~i(d).
Therefore we hâve

rank{xheHn(W); wxh xh} rank Hn(CPn-Vn-l(d)).

The homology exact séquence of the pair (CPn, CPn~ Vn~1(d)) yields,

if n is

— 1 if n is even.

But this is the same formula for rank Kn{Z) (cf. Lemma (2.4)).

3. The Kervaire-Milnor Map

Since Wn{d) is a parallelizable (w—1) connected 2«-manifold, if « is odd

3, 7), we hâve the Kervaire-Milnor homomorphism (see [7])

q>:HH(W)-*ZI2

which is defined as follows. Let xheHn(W) be an élément. Then xh can be represented

by an imbedded sphère Sncz W. The normal bundle v of this imbedding is either trivial
or the tangent bundle of the sphère, t(5"1). We put

0 if v is trivial
1 if v=t(S").
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It is known that the map cp is quadratic with respect to the intersection pairing;
(p(x+y) ç(x) + (p(y) + xoy(mod2).

Obviously, cp can be considered as a homomorphism from Hn(W; Z/2) to Z/2.
Now recall that we hâve a spécial élément heHn(W). By a property of /?, we hâve

cp(h)=L
According to Theorem (2.5), we hâve Hn{W)^Z(G) h.

Let geG be any élément. Since g acts on W as a diffeomorphism, we should hâve

cp(gh)=l for any geG.
Now it is clear that this property together with the quadraticity détermine cp

uniquely on Hn(W). Note that one can also define cp for the cases n— 1, 3 or 7 by the

above characterization. We hâve

LEMMA (3.1). If d is even, then there is an élément xh2eKn(Z/2) such that

cp(xh2)=l (h2 h(mod2)).
Proof Put« 2&—1 and

xh=Yl
1 0

We claim that xh2eKn{Zj2) and cp(xh2)= 1. To prove xh2eKn{Zj2), it suffices to
show that xheKn(Z). Now we calculate;

But

z

W

Hère dénotes the congruence modulo the idéal I(G) which is generated by

Thus we hâve wxh xh.

By Lemma (2.7), this proves xheKn(Z). Next we calculate ç{xh).
We hâve

m=0,...,fc-l
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Therefore the number of the monomials in the above expression ofxh is {^d(d— 1 )}k.
On the other hand

±1 if im-i'mJm-fm=0 or ±1 for ail m

and for at least one m, Jm#Ci or Jm^J'm•

0 otherv/ise.

Therefore the numbers of unordered pair (h>o°h#\.. h^"1/*, Wq°... wA"1/*) for which
the intersection number is equal to ± 1 is

Therefore we hâve

<P(xh)= {ïd(d~ 1)} + {*(</-1) (d~2)}k mod2=(i/- l)k{((rf/2)k + (f (rf-2))*}
mod2=l.

This proves Lemma (3.1).
To study W, it is convenient to study the "suspension" of W, denoted by W\

which is defined by zdQ + zdx + — +zdn+zï+1 1.

We hâve natural isomorphisms (cf. [6]).

Under this isomorphism, the class heHn(W;Z) (resp. h2eHn(W; Z/2))
corresponds to a class h'eHn+1(W; Z) (resp. /^ei^+^JF'; Z/2)).

LEMMA (3.2) ([6]). TheisomorphismHn(W;ZI2)^Hn+i(Wf;ZI2)respectsthe
bilinear pairing defined by the intersection number mod2 and therefore induces a qua-
dratic function ç':Hn+1(W; Z/2) -» Z/2. Moreover ç ' is defined by ç ' (xhf2

=ixh'oXhf (mod2) where xh'2 xh' (mod2).
Proof. Calculation shows

xhoyh xhfoyh' (mod2)

for any xh, yheHn(W; Z). This proves the former part of the lemma. The latter part
follows from this and the fact that xh'oxh'= ±2 for any jc=h^°... w>ow.
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LEMMA (3.3). Ifdis odd, then (p(xh2) 0for any xh2eKn(Z/2).
Proof. Since the natural map Kn (Z) -» Kn (Z/2) is surjective (Lemma (2.3)), we

hâve only to show that <p 0 on Kn(Z). Thus let xh be an élément of Kn(Z). We hâve
wxh=xh. By induction, we obtain wJxh xh for any/ Therefore

Since d is odd by the assumption

Now we claim that (p((l + w+-~ + wd~x)xh) 0 for any xheHn(W). To prove
this, by Lemma (3.2), it suffices to show that

for any xh'eHn+l (W; Z). Now let us write

h'=YaKwKh', K (kO9...,kH) 0£kj£d-2,
K

Then we hâve

and

xx Y
K,K'

Therefore we hâve only to prove the following.

for any geG.

But thèse two can be checked by a direct calculation. This proves Lemma (3.3).
In view of this lemma, ifdis odd, then ç:Hn(W; Z/2) -? Z/2 induces a well-defined

quadratic function cp:Hn(V; Z/2)-»Z/2. On the other hand, if n l (mod4), then E.
H. Brown and F. Peterson [4] defined a quadratic function il/:Hn(V;Z/2)-^ZI2
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(with respect to the bilinear pairing defined by the cup product evaluated on the

fundamental cycle). We hâve

PROPOSITION (3.3). cp and ij/ above are dual to each other under the Poincaré
duality.

Proof. It will be indicated in §5 that there is an almost smooth (n— l)-connected
2/i-manifold N2n(d) and a map/ : Vn(d)->N2n(d) such that

f*:H»(N2n(d); Z/2)^Hn(Vn(d); Z/2).

Then the proposition follows from the naturality of Brown-Peterson's \\i and the

fact that for almost smooth («—1) connected 2«-manifolds, the Kervaire-Milnor map
cp and Brown-Peterson's xj/ are dual to each other.

4. Proof of Theorem (1.1)

In this section, we prove Theorem (4.1), which is the main resuit of this paper. By
virtue of Proposition (3.3), Theorem (1.1) is an immédiate conséquence of it.

THEOREM (4.1). Assume that both n and d are odd. Then the Art-Kervaire in-
variant of the well-defined quadratic function (p:Hn(Vn(d); Z/2) -> Z/2 is given by

0 if d=+l(n

To prove this theorem, we hâve to investigate the manifold W more carefully.
Let Z/rf be the cyclic group of order d. Then Z/rf acts on W by

C(zo,...,z/,+1) (Czo,...,C^,^+i)5 Ç exp[27ti/rf].

Let Z [1/d] be the subring of Q consisting of ail the rational numbers of the form
ejd\ e, keZ. Then Hn+l(W';Z [1/rf]) is a free Z [1/rf] module of rank (d-l)n + 1. Let

and let v:Hm+1(W;Zllld])-+Hm+1(W; Z[1/<J) be defined by

tK*)=*+c**+-+dr1*.

It is easy to see that v2 dv and Ç*v~v. Let

Then we hâve
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LEMMA (4.2).

(i) Hn+l(W
(ii) IJxeHn+l(W';Z[lldWd, yeKerv,

then x°y 0.

Proof. (i) Let xeHn+i(W; Z[l/rf]) be any élément. Then we hâve

But

x and v(

Thus we hâve

(lld)vxeHn+i(W';Z[lld])z/d and x-(\ld) vxeKcrv.

Now assume xeHn+1(W; Z[lld])z/dnKevv. Then Ç*x x and vx 0.

But since Hn+1(W Z[l/d]) has no ^/-torsion, it follows that x 0.

(ii) If xeHn+i (W; Z[1/rf]) and j^eKeri;, then

dx°y—vxoy x°vy=0.

Hence xoy 0. This proves Lemma (4.2).
Now let {eu..., es} be a basis for free Z[l/J]-module Kery. Let v4 (aï7) be the

matrix defined by aij eioej. Then we claim

LEMMA (4.3).

if detX=±l(mod8)
if

Proof. First note that the bilinear form on Keru defined by the intersection number
is even. Namely xox is divisible by 2 in Z[l/J] for any xeKery. Therefore we can

construct a quadratic function # on

mod2 for
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By Lemma (3.2), this is the same as the quadratic function (p:Hn(V; Z/2)->Z/2
defined in §3. Then the lemma follows from [6] §9.

Now let us extend the basis el9...9 es by adding éléments/i,...,/f {fteHn+1{Wf\
Z[l/</])z/d) to obtain a basis for Hn+i(W; Z[l/d]). This is possible by Lemma
(4.2) (i). We know also by Lemma (4.2) that e^fj-Q for any i and/ Let B= (6l7) be

the matrix defined by

bij-ft°fj-

Then the intersection matrix of W with respect to the basis el9..., es,fl9...9ft is

given by

(A 0
VO B

Let det W be the déterminant of the bilinear form on Hn+l(W; Z) defined by
the intersection numbers. Then since ex,..., es,/i,... 9ft is a basis for Hn+x W '

; Z [ 1 jd~]

we hâve

|det W'\ |det^[| • |det^| -d2a (4.5)

for some aeZ. Now let us calculate \detW'\ and |det£|. First |det^'|;

LEMMA (4.6).

Proof. First we recall the following fact.
Let M*k be a 4&-dimensional oriented compact manifold with boundary. Let

detM be defined by the déterminant of bilinear forms on H2k(M; Z)/Tor defined by
the intersection numbers. Then

|detM| #[Cok:H2k(M; Z)/Tor-*#2*(M, dM; Z)/Tor]. (4.7)

Hère # dénotes the order of a group if it is finite and zéro if it is infinité.
In our case, we know by [8], that |detJF'| #Htt(K; Z) where K={zeCn+2;

zj+...+zî+zfl2+1=0}n52B+3. By [6], we hâve

#Hn(K;Z)= II (1 + C*°... Ckn)> C=exp[27ii/d], j=0,..., n.
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Now we show

(i + Cfc0...Ckn)=2rankX"(Z), j 09...,n. (4.8)

To prove this, we use the induction on n. For simplicity, we write prtf d for the left hand
side of (4.8). If «=0, we hâve ^O,d

But we hâve

Substituting x— — 1, we obtain

Since d is odd, we obtain pOtd 1. This checks the case «=0, for K0(Z)= {0}. Now
assume that (4.8) holds for n<k9 k^. 1. Let us write Pk-itd formally as

where

aj= # {(Â:o,..., K); YkJ^J

Then by the définition of pkt d, we hâve

But clearly

01 + + tfd:=(</-l)w+1 and

Therefore

By the induction hypothesis and Lemma (2.4) (ii), we obtain the required resuit. This

proves (4.8) and hence Lemma (4.6). Next we calculate deti?.

LEMMA (4.9).

for sortie beZ.
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Proof. The action of Z/rf on W has two fixed points (0, 0,..., 0, ±1). Let Wo be

the compact manifold obtained from W by subtracting an equivariant open tubular
neighborhood of (0,0,..., 0, ± 1) and oo (hère oo is the "point at infinity"; if W u {oo}
is the one point compactitication of W'9 the action of Z/d extends to Wru {oo}).
Then Zjd acts on Wo freely and dW0 KKjS2n + 1uS2n+1. The boundary of the

quotient manifold ffîQ W0/Zjd is

where Lx and L2 are lens spaces of type (d; 1,..., 1). By a standard argument of
homology for covering spaces, we hâve an isomorphism

Now since degree of the map Wo-+ ffî0 is d and rank Hn+1(W0; Z)z/d is even,

we hâve

^25 forsome beZ.

Now the Cartan-Leray spectral séquence yields

(i) Hn+i(dW0; Z) is a torsion group
(ii) Hn+l {WQ; Z) is a free abelian group.
(iii) Hn+X (ffî0, ôW0\Z) is isomorphic to the direct sum of a free abelian group of

the same rank as Hn+1 {Wo\ Z) and Z\d.

(iv) Hn(dW0;Z)^Hn(K;Z)®Z]d®Zld®Z/d.
(v) Hn(W0;Z)*Z/d.
(vi) The natural map Hn(dffîQ\ Z)-+Hn(W0; Z) is surjective.

From the above data and (4.7), we obtain \detïP0\=2r!inkKniZ)d. This proves
Lemma (4.9).

Proof of Theorem (1.1).
By Lemma (4.9), we hâve

(4.10)

By (4.5) and Lemma (4.6), we hâve

\detA\ |detB| d2fl=2rank^(Z). (4.11)



The Kervaire Invariant of Hypersurfaces in Complex Projective Spaces 417

Combining (4.10) and (4.11), we obtain

But since d2 l (mod8) (recall that dis odd), we hâve \dct A\=d(mod8). Theorem
(4.1) now follows from this by Lemma (4.3).

5. Proof of Theorem (1.3)

Let el9...9 er,/i,...,/r be a symplectic basis for Hn(Vn(d); Z). Thus

By Lemma (2.11 the map /*:Hn(W)-+Hn(V) is surjective. Therefore, we can choose
éléments e'l9...,e/r,fl,...,fr' such that i*(e'i) ei and /*(//)=/*. Now the Kervaire-
Milnor map (p restricted to the submodule of Hn(W) generated by {£/,/*'}»=î r
gives rise to a well defined Art-Kervaire invariant K defined by

By Haefliger's imbedding theorem [5] and Whitney's technique [9], we can imbed a

plumbed manifold £/into Wto reaiize the homology classes e'i9ft'. The boundary of
U is the standard sphère or the Kervaire sphère according as (i) w=l, 3, 7 or n is

odd (# 1, 3, 7) and À>0 or (ii) n is odd (=£ 1, 3, 7) and K= 1 respectively. Now
assume the former. Then dU is diffeomorphic to the standard sphère. Moreover U is

diffeomorphic to rSn x Sn — Û2n. Look at the complément F— Ù. Since the boundary
of this manifold is diffeomorphic to the standard sphère, we can attach a dise D2n

along the boundary to obtain a closed differentiable manifold M2n(d). By the

construction, clearly M is simply connected and H*(M2n(d); Z)^H*(CPn; Z).
The above argument proves (i) of Theorem (1.3). (The case n= 1 is more or less

trivial.) We now prove (ii). First assume that d is even. Then according to Lemma
(3.1), there is an élément xheKn(Z) such that (p(xh)=l. We change the éléments

éuf( as follows:

if ç>(eJ) O, then< e;, if <p(e\) l then

é( e[ + xh, the same for //.
Then clearly we hâve i*(eÇ) ei9 i*(f/')=fi and the Kervaire invariant corresponding
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to e'l9fi" is zéro. Now if rf= ± 1 (mod8), then the Kervaire invariant is zéro by The-
orem (4.1). Then the same argument as before proves (ii).

Next we prove (iii). Assume the contrary. Then as éléments of &8*+2> w

Therefore

But since Hn(M; Z/2) 0, we hâve K(M)=0 and hence K(V) 0. This contradicts
Theorem (4.1).

Remark (5.1). The above argument and the generalized Poincaré conjecture show
that there are almost smooth manifold M2n(d) and («—1) connected almost smooth
manifold N2n(d) such that

H* (M2n(d); Z)*H* (CPn; Z), H+ (N2n(d); Z)*H* (^ Sn x S"; Z

and

Vn(d)*M2n(d)#N2n(d).
PL

Remark (5.2). Let I2*"3 be the Kervaire sphère of dimension 2*-3. Then the
above argument shows that there is a compact differentiable manifold M2*'2 such

that

(i) I
(ii) H*(M; Z)*H0(CP2h'1-1-D; Z), in particular H2k-^t(M; Z/2)=0.
(iii) ail the Stiefel Whitney classes of M vanish.
This follows from considering the variety V2kl~l(d) with d== ±3 (mod8) and

the fact that ail the Stiefel Whitney classes of V2k~i~i(d) vanish.
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