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The Kervaire Invariant of Hypersurfaces

in Complex Projective Spaces

SHIGEYUKI MORITA )

1. Introduction

In [4], E. H. Brown and F. Peterson defined the Kervaire invariant for (8k +2)-
dimensional spin manifolds. The purpose of this paper is to calculate it for certain
manifolds. Precisely, let V" (d) be a non-singular hypersurface of degree d in complex
projective (n+1)-space CP"*1. Assume that n=1 (mod4) (n#1) and d is odd. Then
V"(d) is an (8k +2)-dimensional differentiable manifold with a spin structure. More-
over, since V"(d) is simply connected, spin structure is unique up to homotopy.
Therefore we have a well defined Kervaire invariant K(V"(d))eZ/2. The result is

THEOREM (L.1).

” 0 if d=x+1(mod8)
KV (d))={1 if d=+3(mod$8).

A motivation for this calculation arose when the author was trying to understand
the topology of some well-known complex manifolds, such as the hypersurfaces in
complex projective spaces. For example, if n is odd, then it can be shown that (cf.
Remark (5.1)), there are closed simply connected almost smooth manifold (by an
almost smooth manifold, we mean a PL manifold M with a smooth structure on
M-pt.) M**(d) and (n—1) connected almost smooth manifold N?"(d) such that

Hy(M™(d); Z)2H,(CP" Z),  Ho(N*"(d); Z)2 Hy((b,/2) S"x S"; Z)
and
V*(d) = M*"(d)#N*"(d) (1.2)
PL
where b, is the nth Betti number of ¥"(d) and = p; denotes a PL homeomorphism.

(The cohomology ring of M " (d) is not isomorphic to that of CP" if d# 1. M?"(d) is
only a rational homotopy CP".)

1) This work was supported in part by the National Science Foundation grant MPS72-05055 A02.
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It might be natural to ask whether (1.2) holds in the differentiable category or not.
The answer to this question is given by

THEOREM (1.3) (i) Ifn=1, 3 or 7, then there is a closed simply connected dif-
ferentiable manifold M*"(d) such that

Hy(M?*(d); ZY~H,(CP";Z) and V"(d)=M?>"(d)# (b,/2) S"x S"
(= stands for a diffeomorphism).

(i) Ifnisodd (#1, 3,7) and d# +3 (mod 8), then there is a closed simply connected
differentiable manifold M*"(d) such that

H (M*™(d); Z)~Hy(CP";Z) and V"(d)xM?>(d)# (b,/2) S"x S".

(iii) If n=1 (mod4) (n#1) and d= 13 (mod8), then there is no such decomposi-
tion of V*(d).

Remark (1.4). For the remaining case n=3 (mod4) (n#3, 7) and d= +3 (mod8),
we can not say anything reflecting the mysterious part of the Kervaire invariant one
problem.

The author would like to express his hearty thanks to Professor W. Browder for
suggesting Theorem (1.1) and to Professor M. Kato for helpful and encouraging dis-
cussionsl.

2. Preliminaries on the Topology of V" (d)

Let V"(d) be a non-singular hypersurface of degree d in complex projective space
CP"*1, Since any two non-singular hypersurfaces of the same degree are diffeomorphic,
to study the topology of them, we may assume that V"(d) is defined by the equa-
tion z§+z§ ++--+ 208, , =0, where [z, z,..., z,41] is the homogeneous coordinate of
CP"*!, Now let W"(d) be the non-singular affine hypersurface in C"** defined by
zg+zi+ 4 28=1.

Then we can consider W”(d) as an open submanifold of ¥"(d) by considering
C"*! as affine part of CP"*! defined by z,,,#0. W"(d) is a special type of so-called
Brieskorn variety and by the works of Brieskorn [3] and Milnor [8] the topology of
it is quite well understood. For example, it has the same homotopy type as the bouquet
of (d—1)"*! copies of the n-sphere S".

Now let i: W"(d)— V"(d) be the inclusion. Then we have the following

1) The main result of this paper has alse been proved by W. Browder and J. Wood [10].
(Added in proof.)
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LEMMA (2.1). (i) If n is odd, then
ix: H,(W"(d); A)~ H,(V(d); 4)

is surjective.
(ii) If n is even, then

Cok (iy: H,(W"(d); A)—> H,(V"(d); A))= A

where A is either Z or Z,/2.
Proof. Consider the following exact sequence

0-H,. (V)->H, (V,W)>H,(W)->H,(V)>H,(V, W)-0, (2.2)

where the coefficient A is either Z or Z/2 and V (resp. W) stands for V"(d) (resp.
w"(d)).
We have only to show that

0 if nisodd
H,(V, W)_{A if n is even.

Let V'={[z¢,.--» 2,+1]€V"(d); z,.1=0}. Then we have W=V—-V"'. Note also
that

V' = V"—l(d)CCPn_—- {[Z(),..., Zn+1]ECPn+1; Zn+1=0}'

Let 7 be the tubular neighborhood of V' in V. Then, by the excision H,(V, W)
~H,(T, 0T). By the Lefschetz duality H,(T, 0T)~H"(T). Since T is homotopy
equivalent to V', we have H"(T)=~ H"(V"). But, it is well-known, by the Lefschetz
hyperplane section theorem (cf. [1]), that

nooy 0 if nis odd
B (v )_{A if n iseven.
Therefore we have

if »n is odd

0
H,(V, W)"'{A if n iseven.

This proves Lemma (2.1).
Let K,(4)=Ker (iy: H,(W; A)—> H,(V; A)). Then we have

LEMMA (2.3). The natural map K,(Z)— K,(Z]2) is surjective.
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Proof. This follows from the exact sequence (2.2) and the fact that H, (W; Z),
H,(V,Z), H,(V, W; Z) have no torsion.

LEMMA (2.4).

;i{(d—-l)"”—(d—l)} n: odd
(i) rank H,(V"(d))=

}d{(d—l)"+2+(d—l)}+1 n: even

(i) rank K, (Z)= c}i {(d=1)y" 4 (=1)H 1 (d-1)}.

Proof. (i) follows from the Lefschetz hyperplane section theorem ([1]) and the
formula for the Euler number of V*(d). (ii) follows from (i) and the exact sequence
(2.2).

As we mentioned before, topology of W"(d) is well-understood. We quote some
of the results from Hirzebruch and Mayer [6].

Let Z/d be the cyclic group of order d and let G=Z/d®---®Z/d ((n+1) copies).
Let w,eG (j=0, ..., n) be the element corresponding to the generator for the jth factor.
G acts on W"(d) as follows. Let wie... wi"e G and (z,, ..., z,)e W"(d). Then

WE ... WE (20s +vvs 2,)=({"20, ..., £¥"2,,)
where { =exp [2ri/d].
There is a homology class he H,(W"(d); Z) such that 4 can be represented by an

imbedded sphere S"< W"(d) whose normal bundle is isomorphic to the tangent
bundle 7(S"). Moreover we have

THEOREM (2.5). ([6])-
H,(W"(d); Z)=Z(G) h.

Here Z (G) is the group ring of G and
Z(G) h=Z(G)/1(G).

I(G) is the ideal of Z(G) generated by {l+w;+--+w} '} j=0,..., n.
The intersection numbers can be given as follows. Let

e:Z(G)~Z
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be an additive homomorphism defined by

e(l)=—¢(wg... wy)=(=1)(=1)"1)2
e(g)=0 for geG, g#1,w,...w,

and let —:Z(G)— Z(G) be the ring automorphism defined by g—g~!, geG. Let
n=(1-wp)...(1—w,)eZ(G). Then we have

THEOREM (2.6). ([6]). The intersection number of two elements xh, yhe
H,(W"(d)) is given by

xhoyh=¢(yxn).

Here we identify the group H,(W"(d)) with Z(G) h by Theorem (2.5).
LEMMA (2.7).

K, (Z)={xheH,(W"(d)); wxh=xh(w=wq... w,)}.

Proof. Let us define a Z/d action on W"(d) by

{(zos.ees Za)=((205 .-, {2,),  {=exp[2mi/d].

Then obviously we have wxh = xh > {, (xh)=xh where {, is the homomorphism on
the homology induced from the action of {. Now the action of Z/d on W"(d) can be
extended to that on V" (d) by

C[ZO’ saey Zn+l] = [CZO, seey sz Zn+1] *

The quotient space of ¥"(d) with respect to this action can be shown to be CP".
Therefore we have, by a well known theorem (see [2])

0 if misodd
Q if =n iseven.

H, (v*(d): Q= H, (P )=} (28)

Here the left hand side is the group of invariant homology classes. If # is even
(n=2m), then H,(V"(d); Q)*/* is generated by [V"(d)]eH,(V"(d)), V™(d)=
={[2g5..» Zn+1]€V"(d), z;=0 for i>m}.

Now let us assume that wxh=xh for an element xhe H,(W). Then we have
4 (iy (xh)) =i, (xh) where i: W— V is the inclusion. Therefore i, (xh) is an invariant
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homology class. By (2.8), we have
iy (xh)=0 if nisoddi,(xh)=a[V™(d)] forsome acQ if n iseven.
But if i, (xh)=a[V™(d)] for a0, the it would follow that
ix (xch)e [V (d)] =a [ V™ (d)]o [ V™ (d)] = ad 0.
This is a contradiction, since clearly we have
iy (xh)o[V™(d)]=0 forany xheH,(W).

Therefore we have iy (xh)=0e H,(V"(d); Q). But since H,(V"(d); Z) has no torsion,
it follows that i, (x#)=0. Thus we obtain {xhe H,(W); wxh=xh}<K,(Z).

Now since both K,,(Z) and {xhe H,(W); wxh=xh} are direct summands of H, (W),
we have only to show that the ranks of them coincide. Now the action of Z/d on W
is free and the quotient manifold can naturally be identified with CP"—V""1(d).
Therefore we have

rank {xhe H,(W); wxh=xh}=rank H,(CP"—V""1(d)).
The homology exact sequence of the pair (CP", CP"— V""1(d)) yields,

rank H* ' (V"1 (d)) if 7 isodd

n__pn—1 —_
rank H,(CP"-V"" " (d)) {rankH”'l(V"_l(d))—l if n iseven.

But this is the same formula for rank K,(Z) (cf. Lemma (2.4)).
3. The Kervaire-Milnor Map

Since W"(d) is a parallelizable (n— 1) connected 2n-manifold, if »n is odd (n#1,
3, 7), we have the Kervaire-Milnor homomorphism (see [7])

o H,(W)-Z)2

which is defined as follows. Let xhe H, (W) be an element. Then xA can be represented
by an imbedded sphere " = W. The normal bundle v of this imbedding is either trivial
or the tangent bundle of the sphere, 7(S"). We put

0 if v istrivial

¢(x)={1 if v=1(S").



The Kervaire Invariant of Hypersurfaces in Complex Projective Spaces 409
It is known that the map ¢ is quadratic with respect to the intersection pairing;
¢ (x+y)=@(x)+¢(y)+xoy(mod2).

Obviously, ¢ can be considered as a homomorphism from H,(W; Z/2) to Z/2.
Now recall that we have a special element 7€ H,(W). By a property of 4, we have
@ (h)=1.

According to Theorem (2.5), we have H,(W)=Z(G) h.

Let ge G be any element. Since g acts on W as a diffeomorphism, we should have
¢ (gh)=1 for any geG.

Now it is clear that this property together with the quadraticity determine ¢
uniquely on H,(W). Note that one can also define ¢ for the cases n=1, 3 or 7 by the
above characterization. We have

LEMMA (3.1). If d is even, then there is an element xh,€K,(Z[2) such that
@ (xhy)=1 (hy=h (mod2)).
Proof. Put n=2k—1 and

k—1

xh=[] ( > Wi21W51+1) h.
I=0 \d-22izj20
We claim that xh,e K, (Z/2) and ¢ (xh,)=1. To prove xh,€K,(Z/2), it suffices to
show that xhe K, (Z). Now we calculate;

k-1
_ i+1, j+1
wxh=[] ( ) Wal W21+1) h.
1=0 \d-22i2/20
But

Z i+1 j+1

Woy W1 =

i d—1_j
WaWo4 1+ Z Wai W2y
i-2zizj21 =1

whiwhie g+ (1w + - +w5r %) (1+W21+1+"'+ng_+21)
_(1+W2!+"'+W§l_2) (sz+1+“'+ng_+21)=

d-2zizjz21

il
Z WaW2i+1 -

d-22i2j20
Here =

denotes the congruence modulo the ideal 7(G) which is generated by
{1+w;+--+wj '} j=0,..,n
Thus we have wxh=xh.

By Lemma (2.7), this proves xhe K, (Z). Next we calculate ¢(xh).
We have

B~ 14,,JK =1
e Wi iwikth,
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Therefore the number of the monomials in the above expression of x is {3d(d—1)}*.
On the other hand

wiewio ... wilwlk-1p o whowl'o k- 1ylie-ap
=g(wg Fowje I . wf,""""‘“‘(l—-wo)... (1-w,))
+1 if i,—i,, j,—Jjm=0 or +1 forall m
_ . of . ot
=t and for at least one m, i,#i,, Or j,#Jjn-
0 otherwise.

Therefore the numbers of unordered pair (Wwie... wi=1h, wie... wi*=1h) for which
the intersection number is equal to +1 is

{3(d-1) (d-2)}"
Therefore we have

¢ (xh)= (3d(d— 1)} + {3 (d—1) (d—2)}* mod2= (d— 1)* {((d[2)"+ (3 (d— 2))")
mod2=1.
This proves Lemma (3.1).
To study W, it is convenient to study the ‘‘suspension” of W, denoted by W',
which is defined by zg 42§ 4+ - +284+ 22, =1.
We have natural isomorphisms (cf. [6]).

H,(W;Z)~H,,.(W';Z) H,(W;Z]2)~H,.,(W';Z]2).

Under this isomorphism, the class ke H,(W; Z) (resp. h,e H,(W; Z/2)) corre-
sponds to a class h'eH, . (W'; Z) (resp. hyeH, ., (W'; Z[2)).

LEMMA (3.2) ([6]). Theisomorphism H,(W; Z/2)~H, . (W'; Z/[2) respectsthe
bilinear pairing defined by the intersection number mod?2 and therefore induces a qua-
dratic function ¢':H,.,(W';Z[2)~>Z[2. Moreover ¢’ is defined by ¢'(xh3)=
=4xh’oxh’ (mod2) where xhy =xh' (mod?2).

Proof. Calculation shows

xhoyh=xh'oyh' (mod2)

for any xh, yhe H,(W; Z). This proves the former part of the lemma. The latter part
follows from this and the fact that xh’oxh’= +2 for any x=w(°... wl.
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LEMMA (3.3). If d is odd, then ¢ (xh,)=0 for any xh,eK,(Z/2).

Proof. Since the natural map K,(Z)— K, (Z/2) is surjective (Lemma (2.3)), we
have only to show that ¢ =0 on K, (Z). Thus let x4 be an element of K, (Z). We have
wxh=xh. By induction, we obtain w/xh=xh for any j. Therefore

(1+w+---+w?"1) xh=dxh.

Since d is odd by the assumption
o(xh)=@(dxh)=@((1+w+ - +w'"1) xh).

Now we claim that ¢ ((1+w+---+w'™!) xh)=0 for any xhe H,(W). To prove
this, by Lemma (3.2), it suffices to show that

(Q4+w+-+w Y xh o (1+w+--+w™1) xh'=0 (mod4)
for any xh'eH, ., (W'; Z). Now let us write

Xh’=z aKth,’ K=(k0’---, k,,) Oékjéd—‘z, WK=WI(()0... Wﬁ".
K

Then we have

(T4+w+-+w ) xh’ o (1+w+--+w"1) xh’
=e((L+w+-+w 12 x2(1—wp)... (1=wyyy))
=g(d(1+w+-+w'™ ) xx(1=wp)...(1=w,4y)),

and
xx=Y agagw %
K, K’

Therefore we have only to prove the following.

() e((Q+w+-+w1) (1=wp) ... (1= Wp4q))= +4

(i) e((Q+w+--+w"1) (g+g7 ) (1—=wp)...(1—w,4,))=0 (mod4)
for any geG.

But these two can be checked by a direct calculation. This proves Lemma (3.3).

In view of this lemma, if dis odd, then ¢: H,(W; Z/2)— Z/2 induces a well-defined
quadratic function ¢: H,(V; Z/2) - Z/2. On the other hand, if n=1 (mod4), then E.
H. Brown and F. Peterson [4] defined a quadratic function y:H"(V; Z[2)— Z/2
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(with respect to the bilinear pairing defined by the cup product evaluated on the
fundamental cycle). We have

PROPOSITION (3.3). ¢ and y above are dual to each other under the Poincaré
duality.

Proof. It will be indicated in §5 that there is an almost smooth (n— 1)-connected
2n-manifold N?"(d) and a map f : V" (d)— N?"(d) such that

f*H"(N*(d); Z]2)= H"(V"(d); Z2).

Then the proposition follows from the naturality of Brown-Peterson’s ¥ and the
fact that for almost smooth (n— 1) connected 2z-manifolds, the Kervaire-Milnor map
¢ and Brown-Peterson’s y are dual to each other.

4. Proof of Theorem (1.1)

In this section, we prove Theorem (4.1), which is the main result of this paper. By
virtue of Proposition (3.3), Theorem (1.1) is an immediate consequence of it.

THEOREM (4.1). Assume that both n and d are odd. Then the Art-Kervaire in-
variant of the well-defined quadratic function ¢:H,(V"(d); Z/2) - Z|2 is given by

] 0 if d=+1(mod8)
KV (d))={1 if dEi3(m§d8).

To prove this theorem, we have to investigate the manifold W' more carefully.
Let Z/d be the cyclic group of order d. Then Z/d acts on W' by

C(ZO, sesy zn+1)=(cz09 very sz Zn+1)9 C'_-exp [27”/d] "

Let Z[1/d] be the subring of Q consisting of all the rational numbers of the form
e/d*, e, keZ. Then H, ., (W'; Z[1/d])is a free Z[1/d] module of rank (d—1)"*1. Let

H, . (W'; Z[1/d])% 4= {x; {ex=x}.

and let v:H, (W'; Z[1/d])> H, . (W'; Z[1/d]) be defined by
v(x)=x+{ex 4 +{5 .

It is easy to see that v>?=dv and {,v=0. Let
Kerv={xeH, (W'; Z[1/d]); vx=0}.

Then we have
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LEMMA (4.2).
(i) Hypy (W' Z[1)d)) = H, . (W'; Z[1/d])*“@Kerv.
(i) Iy xeH, (W', Z[1/d])*?, yeKerv,

then xoy=0.
Proof. (i) Let xeH, . (W’'; Z[1/d]) be any element. Then we have

x=(1/d) vx+(x—(1/d) vx).
But

(x(1/d) vx=(1/d) {yvx=(1/d) vx and v(x—(l/d)vx)=vx—(1/d)v*x=0.

Thus we have
(1/d)vxeH,  (W'; Z[1/d])** and x—(1/d)vxeKerv.

Now assume xeH, . (W’; Z[1/d])?’* n Kerv. Then {,x=x and vx=0.
Therefore dx=(1+ {4+ - +C‘f[1) x=vx=0.
But since H,,, (W' Z[1/d]) has no d-torsion, it follows that x=0.
(ii) If xeH, . (W'; Z[1/d]) and yeKerv, then

dxoy=vxoy=xovy=0.

Hence xoy=0. This proves Lemma (4.2).
Now let {ej,..., e;} be a basis for free Z[1/d]-module Kerv. Let 4=(a;;) be the
matrix defined by a;;=e;oe;. Then we claim

LEMMA (4.3).

n |0 if detA=+1(mod8)
K (d))”‘{1 if detA=+3(mod8).

Proof. First note that the bilinear form on Kerv defined by the intersection number
is even. Namely xox is divisible by 2 in Z[1/d] for any xeKerv. Therefore we can
construct a quadratic function g on

Kerv®Z/2= (H, sy (W) Hyy (W) RZ)2
~(H,(W)/H,(W)*)@Z2=(H,(W)|K,(Z))®Z/2
~H,(V)QZ2=H,(V; Z]2).

by g(x)=%xox mod2 for xeKerv.
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By Lemma (3.2), this is the same as the quadratic function ¢:H,(V; Z/2)— Z/2
defined in §3. Then the lemma follows from [6] §9.

Now let us extend the basis e, ..., e, by adding elements f, ..., f; (fi€Hyy1 (W';
Z[1/d])*?) to obtain a basis for H,,,(W’; Z[1)d]). This is possible by Lemma
(4.2) (i). We know also by Lemma (4.2) that e;of;=0 for any i and j. Let B=(b;;) be
the matrix defined by

bij=fiof;.

Then the intersection matrix of W' with respect to the basis ey, ..., e, f1,..., f; is
given by

(o )

Let det W' be the determinant of the bilinear form on H,,,(W’; Z) defined by
the intersection numbers. Then since ey, ..., e, 3, ..., fy isabasis for H, . ((W'; Z[1/d]),
we have

|det W’|=|det 4| |det B| - d2° (4.5)

for some aeZ. Now let us calculate |det W’'| and |det B|. First |det W'|;

LEMMA (4.6).
|det er =2rank Kn(Z) .

Proof. First we recall the following fact.

Let M** be a 4k-dimensional oriented compact manifold with boundary. Let
det M be defined by the determinant of bilinear forms on H,, (M; Z)/Tor defined by
the intersection numbers. Then

|det M| = # [Cok: Hy (M; Z)/Tor— H,, (M, OM; Z)|Tor]. 4.7)

Here # denotes the order of a group if it is finite and zero if it is infinite.
In our case, we know by [8], that |det W'|=# H,(K; Z) where K= {zeC"*?;
zo+ - +28422,,=0}nS?"*3, By [6], we have

#H,(K;Z)= J] (@+¢...*), (=exp[2ni/d], j=0,...,n.

15kysd—-1
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Now we show

I‘I (1+Ck°---Ckn)=2mnkKn(Z)s j=0,...,n. (48)

15k;5d—1

To prove this, we use the induction on n. For simplicity, we write f8, , for the left hand
side of (4.8). If =0, we have B, ;=(1+{)...(1+{*71).
But we have

x0T xd T 2k L= (x= ). (x =047,
Substituting x= —1, we obtain
(=D 1A40)... (1+¢ D =(=1)"" 4 +1.

Since d is odd, we obtain S, ,=1. This checks the case n=0, for K,(Z)={0}. Now
assume that (4.8) holds for n<k, k= 1. Let us write ,_, , formally as

Bi-1,a=(1+™ ... (1+L7)™
where

a;=#{(kos...» kn); Y k;=j (modd)}.
Then by the definition of B, ,; we have

'Bk,d'ﬁk—l,d= {(1 +C) (1 +Cd)}a1+'"+ad-

But clearly
aj+--+a;=(d—1y*' and (1+0)...(1+L%)=2.
Therefore

ﬂk,dﬁk—l,d=2(d_1)n“'

By the induction hypothesis and Lemma (2.4) (ii), we obtain the required result. This
proves (4.8) and hence Lemma (4.6). Next we calculate det B.

LEMMA (4.9).
det B = 2rank Kn (Z)d2b+ 1 .

for some bel.
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Proof. The action of Z/d on W’ has two fixed points (0, 0,...,0, +1). Let W, be
the compact manifold obtained from W' by subtracting an equivariant open tubular
neighborhood of (0,0, ...,0, +1) and oo (here oo is the “‘point at infinity”; if W' U {00}
is the one point compactitication of W', the action of Z/d extends to W'u {o0}).
Then Z/d acts on W, freely and oW =KuS*"*1uS§?"*1 The boundary of the
quotient manifold Wy=W,/Z/d is

d(Wo)=K/ZJdUL, UL,

where L, and L, are lens spaces of type (d; 1,..., 1). By a standard argument of
homology for covering spaces, we have an isomorphism

H, o (Wo; Z[1/d])"*=H,.,(Wy; Z[1/d]).

Now since degree of the map W, — W, is d and rank H, ., (W,; Z)** is even,
we have

|det B| =|det W,| d?® forsome beZ.

Now the Cartan-Leray spectral sequence yields

(i) H,+1(0W,; Z) is a torsion group
(ii) H,+1(Wy; Z) is a free abelian group.
(iii) H,+1(Wo, 0W,; Z) is isomorphic to the direct sum of a free abelian group of

the same rank as H,,,(W,; Z) and Z/d.

(iv) H,(0W,; Z)=H,(K; Z)®Z/dDZ[dDZ/d.
(v) H,(Wy; Z)=Z]d.
(vi) The natural map H,(0Wy; Z)— H,(W,; Z) is surjective.

From the above data and (4.7), we obtain [det Wy|=2""*¥®g  This proves
Lemma (4.9).

Proof of Theorem (1.1).

By Lemma (4.9), we have

|det B| =2rnk Kn (Z)j2b+1 (4.10)

By (4.5) and Lemma (4.6), we have

|det 4| |det B| d2* =22k Kn(Z) (4.11)
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Combining (4.10) and (4.11), we obtain
|detA|=d 21,

But since d?=1 (mod8) (recall that d is odd), we have |det A|=d (mod8). Theorem
(4.1) now follows from this by Lemma (4.3).

5. Proof of Theorem (1.3)
Letey,..., e, fi,...,f, be a symplectic basis for H,(V"(d); Z). Thus

eioej=ﬁof}=0
eiof}=5ij.

By Lemma (2.11), the map i,: H,(W)—- H, (V) is surjective. Therefore, we can choose
elements e,..., e, f1,..., f; such that i, (¢j)=e; and i, (f;)=f;. Now the Kervaire-
Milnor map ¢ restricted to the submodule of H, (W) generated by {e}, fi'}i=;.. .,
gives rise to a well defined Art-Kervaire invariant K defined by

K=Y ¢(e) (/) mod2.

By Haefliger’s imbedding theorem [5] and Whitney’s technique [9], we can imbed a
plumbed manifold U into W to realize the homology classes e, f;. The boundary of
U is the standard sphere or the Kervaire sphere according as (i) n=1, 3, 7 or a is
odd (#1, 3, 7) and K=0 or (ii) n is odd (#1, 3, 7) and K=1 respectively. Now as-
sume the former. Then dU is diffeomorphic to the standard sphere. Moreover U is
diffeomorphic to #S” x §"— D?". Look at the complement ¥'— U. Since the boundary
of this manifold is diffeomorphic to the standard sphere, we can attach a disc D?"
along the boundary to obtain a closed differentiable manifold M ?"(d). By the con-
struction, clearly M is simply connected and H,(M?*"(d); Z)~H,(CP"; Z).

The above argument proves (i) of Theorem (1.3). (The case n=1 is more or less
trivial.) We now prove (ii). First assume that 4 is even. Then according to Lemma
(3.1), there is an element xkheK,(Z) such that ¢ (xk)=1. We change the elements
e;, f; as follows:

if ¢(e;)=0, thene;/=¢;, if ¢(e;)=1 then
e/=e;+xh, thesame for f;.

Then clearly we have i, (¢} )=e;, iy (f;")=/f; and the Kervaire invariant corresponding
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to ¢}, f;" is zero. Now if d= +1 (mod8), then the Kervaire invariant is zero by The-
orem (4.1). Then the same argument as before proves (ii).
Next we prove (iii). Assume the contrary. Then as elements of Q",, we have

b,
[VI=[M]+'[S"x S"].
Therefore

K(V)=K(M)+%'K(S”xS”)=K(M).

But since H"(M; Z/2)=0, we have K(M)=0 and hence K(¥)=0. This contradicts
Theorem (4.1).

Remark (5.1). The above argument and the generalized Poincaré conjecture show
that there are almost smooth manifold M?"(d) and (n— 1) connected almost smooth
manifold N2*(d) such that

b
H,(M*(d); Z)~H,(CP";Z), H,(N*"(d);Z)=H, (5 S"x S"; z)

and

V()2 M*(d)#N(d).

Remark (5.2). Let £**~3 be the Kervaire sphere of dimension 2¥—3. Then the
above argument shows that there is a compact differentiable manifold M2*~2 such
that

(i) Z=0M
(i) Hye(M; Z)~H,(CP? "' ~'—D; Z), in particular Hy-:_; (M; Z/2)=0.
(iii) all the Stiefel Whitney classes of M vanish.
This follows from considering the variety ¥2*"'~!(d) with d= +3 (mod8) and
the fact that all the Stiefel Whitney classes of ¥2*"*~!(d) vanish.
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