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An Equivariant Pinching Theorem1)

Hans-Christoph Im Hof and Ernst A. Ruh

1. Introduction

Local qualitative properties of a riemannian manifold imply global topoiogical
or differentiable properties. For example, if M is a simply connected, complète
riemannian manifold whose curvature tensor is close to the curvature tensor of the

sphère Sn, then M is diffeomorphic to Sn, and the action of the isometry group on M
is differentiably équivalent to the standard linear action of a subgroup of O(n+1) on
Sn, compare [4, 5]. Isometric actions occur frequently. Of spécial interest is the action
of the fundamental group of a manifold on its universal covering space.

In [4, 5] the assumptions on the curvature tensor are rather strong. Hère we

prove that the assumptions of [5, Theorem 4.0], at least for large dimension, are

already sufficient to prove the resuit on the isometry group. In fact, we give a new
proof of the diffeomorphism theorem in which ail the constructions are invariant
under isometries.

In the formulation of the theorem below we call a riemannian manifold <5-pinched,

if the sectional curvature K satisfies

1.1. THEOREM. There exists a decreasing séquence ôn with limit <5n->0.68 as n
tends to infinity such that thefollowing assertion holds:

If M is a simply connected, complète, ôn-pinched riemannian manifold, and

jli: Gx M-+M is an isometric action of the Lie group G on M, then

(i) There exists a diffeomorphism F:M-+Sn.
(ii) There exists a homomorphism (p:G-+O(n + l) such that

(ni) <p(g)=Fon(g,-) oF-tforallgeG.
As in [4, 5] this theorem has the following fairly immédiate conséquences.

1.2. COROLLARY. If M is a complète, ôn-pinched, n-dimensional riemannian

manifold (ôn as above), then

(i) M is diffeomorphic to a space of constant positive sectional curvature.

2) This work was done under the program of the Sonderforschungsbereich "Theoretische
Mathematik" at the University of Bonn.
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(ii) The isometry group of M is isomorphic to a subgroup of the isometry group of
the corresponding constant curvature manifold.

1.3. COROLLARY. (Compare [8, p. 122]). There exists a decreasing séquence
ôn with limit <5n-»O.9O as n tends to infinity, such that any ôn-Kâhler pinched Kàhler

manifold M2n is holomorphically équivalent to CPn.
The main idea in the proof is to define a procédure which leads from a connection

with small curvature on the stabilized tangent bundle to a flat connection on this
bundle. The curvature assumptions imply the existence of a connection with small

curvature. The resulting flat connection, via a gêneraiizedGauss map, yields the resuit.

It is a curious fact that our resuit improves with increasing dimension. This is in
contrast to earlier results on this subject [2]. This effect appears in our proof because,

for large n, a small neighborhood of any great « — 1 -sphère contains almost ail of the

volume of the «-sphère.
In the following chapter we give the proof of the main theorem except the construction

of a flat connection and the necessary estimâtes. Thèse topics are discussed in
chapters three to five.

We wish to thank Wilfried Kôhler for improving inequality 3.6.

2. The Proof

In this chapter we define a (r-invariant connection V° on the stabilized tangent
bundle and prove that the existence of a flat G-invariant connection V near V° implies
the assertions of the theorem. We postpone the proof of the existence of V to the

following chapter.
Let E=T(M)®1 (M), where T(M) and 1 (M) are tangent bundle and trivial line

bundle M x R respectively, dénote the stabilized tangent bundle. The bundle E carries

a euclidean fiber metric. The isometric action of G on M, together with the trivial
action on R, extends to an action on E, i.e., JE1 is a G-vector bundle and ge G maps the

fiber Ep isometrically onto Eg(p).

As in [9] we define the connection V° on E as follows :

V°xY=DxY-c(X9Y>e

where Zand Tare vector fields on M, e:M-+Eis the section/?i->(0, l)peTp(M)©R,
c=y/i(l +<5), < > and D respectively are riemannian metric and connection on M.
It is easy to check [4, 9] that V° is a metric connection, is invariant under G-action,
and has curvature tensor R°=R—c2Rs9 where R is the riemannian curvature tensor

on M and Rs is the algebraic expression of the curvature tensor on Sn in terms of the
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riemannian metric on M. The main point hère is that R° is small in terms of a suitably
chosen norm.

This concludes the discussion of V°. In the second half of this chapter we use the
existence of a flat invariant connection V near V° to prove the theorem. Because M is

simply connected, the flat connection V is équivalent to a trivialization £èMxR"+1,
Le., we hâve a parallel field of frames w, where up {eu... en+l)p is an orthonormal
frame in the fiber Ep over^eM. With such a frame field u we define the diffeomorphism
F and the group homomorphism q> as follows :

F:M-+S\ p^<e,u}p9 (2.2)

where <e, u}p is the component vector of e=(0, l)eTp(M)©R in terms of the
orthonormal basis up. To prove that F is a diffeomorphism we need an estimate on dF. For
this estimate we introduce the following norm on the différence V — V°. We recall that
V — V°, with proper identifications, is a linear map of the tangent space of M into the
Lie algebra & (n +1 of the structure group O (n +1 of E. We define

||V-V°||=Max|(Vx-V°) U\, (2.3)

where | | is the euclidean norm in E and the maximum is taken over unit vectors Zand
U in T(M) and E respectively.

The définition 2.2, together with the fact that u is parallel under V, implies the

following expression for the differential dF:

-V°) e, u>.

This expression for dF, together with V£e=cZ, (compare 2.1) leads immediately to
the inequality

\dFX\>\X\(c-\\V-V°\\) (2.4)

This inequality will give the main numerical restriction for the pinching constant <5.

In fact, ||V—V°|| <c is sufficient to prove that dFh non singular; therefore, since Mis
simply connected, F is a diffeomorphism.

To define the homomorphism (p:G-+O(n+l)we again utilize the parallel frame

field u associated to the flat connection V and recall that the frame up in the fiber Ep

over peM is équivalent to an isomorphism RM+1 ->Er We define

ç:G->O(n
ogouiR^^E^E^^R»*1, (2.5)

where ç(g), as a composition of isometries, lies in O(n +1) and is independent of the

point peM as we will see shortly. To prove that q> is a group homomorphism it is
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sufficient to prove that the définition of cp is in fact independent of the point peM.
This is so because E is a G-vector bundle. The main ingrédient in the proof of the

independence of cp onpeM is the G-invariance of V. This invariance is obvious from
the constructions of the next chapter. Let q>f be the map defined in 2.5 where p is

replaced by p'eM, let a be a path from ptop\ and let ra dénote parallel translation
with respect to V along this path. Then,

<?' (g)=ug(pi ° s ° *v=«."à) ° *f-(i) ° g ° t« ° "p="sà) °g°up

The définitions of F and (p, compare 2.2 and 2.5 respectively, imply immediately
the assertion (iii) of Theorem 1.1. The main point to observe hère is that in both
définitions the fibers are identified with Rn+1 by means of the same frame u.

3. Construction of the Connection V

Hère we construct the flat (/-invariant connection V used in the previous chapter.
The first step is the construction of a séquence V1 of invariant connections, whose limit
is a flat C°-connection V00. Then we obtain the C°°-connection V by smoothing V00.

The séquence V1 starts with the connection V° of 2.1. We define Vl+1 inductively as

a certain average of locally defined flat connections obtained from V. The main point
is that the curvature of an average of flat connections is small in terms of a suitable

norm. We observe that V°, the itération from V1 to VI+1, as well as the smoothing
process is invariant under the isometric action of G.

We compute with connection form œ( and curvature form Ql instead of connection
V1 and curvature R\ Thèse forms are naturally defined on the principal bundle.
However, since we perform local calculations, we deal with their pull backs by means
of a cross section (frame field). Since we are interested in norms of curvature forms
only it is not necessary to specify the frames as long as they are orthonormal.

The computations of this chapter are based on Jacobi field estimâtes on M. The

following chapter contains the comparison theorems which justify the use of estimâtes

valid on the standard sphère. For the estimâtes on curvature forms we must specify a

norm in the appropriate space. In principle, any norm will do but the numerical resuit

dépends on the choice of the norm.

3.1. The itération V* ~+ Vf+1. For any qeM we define a connection Vif q with connection

form (ol*q in a neighborhood of q as follows : Let uq(q) be an orthonormal frame
in the fiber Eq and uq(p) be the frame in Ep obtained by parallel translation of uq(q)

along the unique shortest géodésie from q top. This way we obtain a field of frames in
a neighborhood of q. The corresponding flat connection and connection form are
denoted by Vï>€ and coi>q respectively. Next, we define the connection form col+1
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corresponding to Vl+1 as an average over the connection forms œitq. The weight
fonction rj in the following définition will be constructed in chapter 5.

«i+1= *, q) dq (3.2)

The form co*+1 is well defined because rj (•, q): M-+ R has its support in the domain of
définition of col'q. Since Jrç(#, q) dq=l, coI + 1 is again a connection form.

To obtain an estimate for the curvature form Qi+1 we express Qi+1 in terms of
col+1 by means of the Cartan identity. The following équations hold:

J

f (co1'q a d/i) dq +(j coh qrjdq\ a(( co1' V$) - f (co1'q a co'' q) rjdq

[(coUqAdpt\)dq- f (œi-q-œi+1)A(œi'q-œi+1)ridq9

(3.3)
where dprj is the differential of rj in the first variable.

For the following estimâtes we need norms on the spaces of ^(«+l)-valued
differential forms. The choices are dictated by the définition 2.3. First we define a

norm on the Lie algebra #(n+1) as follows:

\A\ Max\AU\,

where Ae #(n+l), UeRn+i has length one, and | | is the standard norm on Rn+1.

For #(n+ l)-valued 1-forms co we define

||a)||=Max|a>(Z)|, (3.4)

where the maximum is taken over unit vectors in T(M)9 and | | is the above norm on

In the same way we define for ^(«+ l)-valued 2-forms Q

||û||=Max|fl(Jr, Y)\, (3.5)

where Xand 7are unit vectors in T(M). With thèse définitions one has the inequality :

Hco!aco2||<2||co1|| \\co2h

Now équation 3.3 yields:

[{a}'* f (co''«-coi
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Wedefine j?'-«=<»''«-(»i+1 and chose unit vectors X, YeT(M), U, FeRB+1 suchthat

(/?'' " A fh «) r,dq (p<> « A /}>> •) ndq^j (X, Y) (U), v\

?'¦ «(F) (U), V}\ t,dq +j |<j8'-«(y)/?¦¦«(*) (U), V}\ r,dq.

The Cauchy-Schwarz inequality yields:

J KPi-"(x)^(Y) (u), vy\ ndq=j kp<'<(y) (v),f-*(x)t (v)y\ ndq

a\1/2 / r \1/2

Due to the construction of œl*q it is more convenient to estimate aitq=(oî'q—œi
instead of p*>*. Since p'9*=**>*-$ u}*qt\dq we hâve

J \PUq(Y) (U)\2 ridq^j \^q(Y) (U)\2 rjdq.

Let the symbol ||af|| dénote the maximum of JJoc***|| ||oc*w *il^ over qeM, where || \\q

indicates that in the définition (3.4) only vectors XeT(M) | supp^(*, q) hâve to be

considered. Thus

With the observation J(ct)f a dpr\) dg=0we finally obtain

llû'+'Klla'll J 1^1 *+2||«I||2. (3.6)

3.7. The computationof ||a'||. We recall that ai^=û)I'€-û)i=Vl'g-V1', where coi>q is

the connection form of the flat connection defined by the frame field obtained by
parallel translation (with respect to V') of a frame in Eq along geodesics starting at
qeM.

To estimate the value of 0LUq applied to a unit vector XeTpM, we choose a path
y y(s) in M with initial tangent vector 7(0)=^, and define a corresponding path
a=a(s) on the orthogonal group O(n+1) by setting a (s) equal to the orthogonal
transformation defined by parallel translation, with respect to V1, along the triangle
(q9p,y(s)). The définition of V1'q implies V^-V^=â(0). To estimate d(0) we intro-
duce the norm \a\=max\aU— U\ on O(n+1), where U is a unit vector in Rw+1. This
choice is dictated by the previous choice of a norm in the Lie algebra of O(n +1). We
observe that, as in [9, p. 131], \a(s)\ is majorized by the product of the area of the
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triangle (q, p, y(s)) with a suitable norm of Q\ We obtain |#(V)KArea (#,/?, y(s))x
\\Ql\\. Since \à(0)\=\im\a(s)\/s we are interested in an explicit expression for this

s-*0
limit. We obtain it in terms of the Jacobi field Y along the géodésie c (c(0) q,

c(t) p) with boundary values 7(0) 0 and Y(t) X. The resuit is

î m

and Corollary 4.2 yields

(3.8)

where r^d (p,q) tis the radius of the bail in which V1* is defined. We will choose r
to minimize the final estimate.

3.9. The connection V00. The inequalities (3.6), (3.8) and the estimate (5.5) for
l\djfl\ dq yield immediately :

Hfl"1!! <constft sin""1 Jôr 1"~C0Sr
||fl*|| +2(]~^^ \\Ql\\] (3.10)

sinr \ smr J

We utilize the above recursion formula to prove that, for a suitable choice of ô*=ôn9

the connection forms col converge in the C°-topology to a connection form eu00.

Actually we need to prove a more précise resuit. Equation 2.4 shows that we must

prove ||co°-co*3\\ <c, where c is the constant of définition 2.1. Since ||c0i+1--co*|| <
||a'||, we must prove ££L0HaI'll <c> or» in yiew °f (3.8),

f llfl-IK^, where d=î-^. (3.11)
,=o à sin r

For the estimate of the first term in this séries we observe that, with proper identifications,

the form Q° coincides with the curvature tensor R' of [10, p. 127]. We obtain

Hû°K*(i-a).
Now, for a rough estimate of (3.11) we observe that (3.10) is of the form

The séries (3.11) converges as soon as 0+ô||fi°|| < 1. We can satisfy this condition for
n > 3 because for a suitable choice of r and ô close to 1 the constant a is arbitrarily small,
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and 6 H (2° H is arbitrarily small as well for <5 close enough to 1. Therefore, the séries

(3.11) is majorized by a géométrie séries with small first term, and the condition (3.11)
is satisfied.

For manifolds of large dimension n it is easy to give a much better estimate as

follows:

We observe that the term n sin""1^^ converges to zéro as n -> oo if ^Jôr^njl. Since

the estimate 5.5 holds for sJ~br>n\2 only, we choose r such that yjôr is greater than
but arbitrarily close to n/2. Then, we compute the sum of the first few terms in (3.11)
and estimate the rest with the rough method above. A compilation shows that, for
n dimM large enough, the condition <5 > 0.68 implies that the inequality (3.11) holds.

For low dimensions précise estimâtes are more cumbersome to obtain because the

optimal choice of r in 3.10 is not obvious. To compare the présent resuit with that
of [5] we détermine the dimensions for which the pinching constant (5=0.98 is

sufficient to prove the theorem with the présent method. A computation shows that
5 0.98 is sufficient for n>5.

In any case, (3.11) holds under suitable assumptions on ôn. Therefore, the séquence
œl of connection forms converges in the C°-topology to a connection form co™. Let
V00 dénote the corresponding connection. Since V00 is continuous only, the curvature
form (200 is not defined, but parallel translation with respect to V00 is independent of
the path because V00 is the limit of connections with curvatures converging to zéro. In
this sensé V00 is flat.

3.12. The connection V. Now we smooth V00 to the C°°-connection V. Since V°° is

équivalent to a C1-section w00 in the principal bundle P of orthonormal frames

associated to E, we smooth the section w00 to a C°°-section u\M-*P and define V to be

the corresponding connection. To obtain u we average w00 by means of the center of
mass construction [3, proposition 3.1] as follows. Let Pp dénote the fiber of P over

peM and Bp a bail with center/? and sufficiently small radius. Let vp\Bp-+Pp be the

map w00 followed by parallel translation, with respect to V°, along the unique shortest

géodésie top. We define u:M->P by the assignment pv-*center of vp with respect to
the measure on Bp obtained by multiplying the riemannian measure with the smooth-

ing kernel tj of chapter 5.

The section u:M-*P is of class C00 and dépends on the parameter r in the définition

of rj. If r converges to zéro, i.e., rj converges to the Dirac measure, then u

converges in the C1-topology to w00, compare [7]. Therefore V can be chosen arbitrarily
close to Ve0.

4. Inequalities for Jacobi Fields and Volume Functions

In this chapter we prove inequalities for Jacobi fields. For greater convenience we
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state the results for a riemannian manifold M with curvature restrictions <
K^b2. However, with slight modifications, similar results are true for zéro or négative

curvature bounds.

4.1. PROPOSITION. Let c be a géodésie on M with \\c\\ \ and Ya Jacobifield
along c with Y (0) 0 and < Y, c> 0. For real munbers s, t with O^s^t <n/b we hâve

un as \Y (s)\ smbs

^\ ()^i*
4.2. COROLLARY. Under the same assumptions we hâve

l-cosat \lY(s)]ds 1-cosbt
asinat \Y(t)\ b sinbt

Proof. The proposition is an easy conséquence of the following inequality (compare
[1, P- 253]).

cosat \Y(t)\' cosbt

ltoï~t~\Y(i)\ stobï' { j

To prove (4.3) we assume for simplicity | Y (t )| 1. Then we hâve

t

I'(Y) j \Y'\2-K(Y,ê)\Y\2.
0

Since Jacobi fields minimize the index form it follows that It(Y)^It(fE) for any
C°°-function/with/(0) 0 and/(0=1, where E is the parallel field along c with

E(t)=Y (t). By introducing the lower curvature bound we obtain /f(/£)^
Jo(/02-^2/2- This intégral is known to be minimal for the function sinas/sinat,
the corresponding value of the intégral being a (cosat/sinat).

For the second part of the inequality we again start with | Y (t )|' /'(F). Introducing

the upper curvature bound we get

\Y'\2-b2\Y\2> J (\Y\'f-b2\Y\2.

The last intégral has b(cosbt/sinbt) as minimal value, which complètes the proof
of (4.3).
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The proposition then follows by intégration and exponentiation. Now we turn to
the estimation of volumes of balls. We still assume that the curvature of M satisfies

0<a2^K^b2 and consider balls of radius less than n/b. Let V(p,t) dénote the

volume of the bail {qeM | d (p, q)^t}. In order to compute V(p, t) we introduce
géodésie polar coordinates around p and get

j j J (s, u) ds du,
S 0

where S is the unit sphère in Tp(M) and J(s, u) is the jacobian of exp:Tp(M)-+ M,
multiplied by sn~1. For a fixed ueS the function J(s) J (s, u) can be expressed as

follows. Consider the géodésie c with c(0)=p, c(O) w and choose Jacobi fields

Yl,...9Yn_ï along c with 7£(0) 0, Yf(0)l.u and {F^O) | l</<«-l} linearly
independent. Then we hâve

nj
4.4. PROPOSITION (compare [6]). Let ueSaTpM and J(s)=J(s9u) be as

above. For s, t with O^s^tKnjb we hâve

fsinasY'1 <J(s)/s'mbsY'1
\sinat) ^J(t)\$inbt)

Proof. Choose the Jacobi fields Yl9...9 Yn^.1 to be orthonormal at t, then

Now proposition 4.1 yields J (s)jJ (t)^(sinbslsinbt)n~1. The proof for the lower
bound is similar.

4.5. COROLLARY. Under the same assumption for s and t we get

asin11"1^^ \J(t,u)du ^bsmn~lbt'
s

where sn dénotes the function sn(t)=^0 sinn~1s ds.
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Proof. The corollary follows easily from the proposition, since only the middle
term of the inequality dépends on w. Let Vr{p,t) dénote the derivative of V{p,t)
with respect to t. Obviously V'(p, f )=Js J {*> u) ^u witn ScTp(M)9 and the corollary
may be rewritten in the form

a sin""* at V (p, t) h sin"~ * ht
> f (4>6)

sn(at)
> n$jf sn{bt)

'

5. The Weight Function

In this chapter we return to our (5-pinched manifold M, i.e., we assume
and define the weight function rj used in chapter 3. For fixed real numbers r and q

with nj2yJ^<r<r-\-q<n we choose a monotone C00-function h with /?(/)= 1 for
0<f^r, /j(*) 0 for t^r+ g, and |À/(/)|<const/^. For p,qeM we set h{p,q)
h(d(p,q)).

In order to get a normalized weight function, we form

h(p,q)

where

r + e

j J h(t)J(t,u)dtdu.
M S 0

We want to estimate the intégral JmK>?(a <l)\ àq. Differentiation of r\ yields

J dph
pi R

therefore we

r
1 \dptf\Pi

M

Obviously

\dph(p

dH

get

i
Hp)

U

1 \A h (n n'W rin 1

1 \apn \Pi HJ\ a(l • jj / \
M

\h'(t)\J(t9u)dtdu.

(5.1)

M S r
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By proposition 4.4 and our choice of r the fonction / (/, u) is monotone decreasing
between r and r + g, hence

r + Q

I \h'(t)\ J(t, u)dt^comtJ(r, m),

and we hâve

'(p,r) J'{p,r)<const
1 Ç const f
—-r I \dph(p, q)\ dq^—— I J (r, u) du co]
(P)J H(P)J

(5.2)
From the définition of H (p) we obtain through intégration by parts

r+Q r+Q

J J h(t)J(t,u)dtdu= J h(t)V'(p,t)dt
S 0 0

r+Q r+Q

=h(t)v(P, t) \'0+°- J h'(0 v(P, t)dt=-j h'(t) v(P, t)dt.
0 r

Therefore the differential is

r + Q

dH(p)=- f h' (t) dpV (p, t) dt

r
and

r + Q

\dH(p)\^ J W(t)\\dpV(p,t)\dt.
r

A géométrie argument shows \dpV(p, t)\^iV'(p9 r), which can be estimated as

before by \V\p, r) for r<f<r+g. We now get

r + Q

f(p9r) J \h'(t)\dt lV'(p,r).

Again using H (p)>V (p9 r) we finally get

WHipy^V'&r)
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Combining the above estimâtes (5.1) to (5.3) and applying (4.6) we find

I \dtf(p, q)\ dq<const -——^consty/ô ——^~ (5.4)
JM v\P>r) sn{jôr)

Since ^J~br>n\2 we hâve sn{J^r)>sn(nj2) \sn(n), where

An elementary argument shows sn(n)/2>y/n/n, hence

p, q)\ dq<constnsmn~l^/~ôr. (5.5)

Remark. We need to know the numerical value of the constant in (5.5) only for
the explicit estimâtes in low dimensions. An easy argument shows that the constant in
(5.4) can be chosen arbitrarily close to f. Therefore we get as final constant in (5.5) a

number close to i^fô/n, e.g. 0.85.
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