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An Equivariant Pinching Theorem?)

HANS-CHRisTOPH IM HOF and ERNST A. RUH

1. Introduction

Local qualitative properties of a riemannian manifold imply global topological
or differentiable properties. For example, if M is a simply connected, complete
riemannian manifold whose curvature tensor is close to the curvature tensor of the
sphere S”, then M is diffeomorphic to S”, and the action of the isometry group on M
is differentiably equivalent to the standard linear action of a subgroup of O (n+1) on
S", compare [4, 5]. Isometric actions occur frequently. Of special interest is the action
of the fundamental group of a manifold on its universal covering space.

In [4, 5] the assumptions on the curvature tensor are rather strong. Here we
prove that the assumptions of [5, Theorem 4.0], at least for large dimension, are
already sufficient to prove the result on the isometry group. In fact, we give a new
proof of the difftomorphism theorem in which all the constructions are invariant
under isometries.

In the formulation of the theorem below we call a riemannian manifold §-pinched,
if the sectional curvature K satisfies 6 < K< 1.

1.1. THEOREM. There exists a decreasing sequence 0, with limit 6,—0.68 as n
tends to infinity such that the following assertion holds:

If M is a simply connected, complete, o,pinched riemannian manifold, and
u: Gx M — M is an isometric action of the Lie group G on M, then

(i) There exists a diffeomorphism F:M — S".

(ii) There exists a homomorphism ¢:G— O (n+1) such that

(iii) @(g)=Fou(g,") oF ! for all geG.

As in [4, 5] this theorem has the following fairly immediate consequences.

1.2. COROLLARY. If M is a complete, d,pinched, n-dimensional riemannian
manifold (6, as above), then
(i) M is diffeomorphic to a space of constant positive sectional curvature.

1) This work was done under the program of the Sonderforschungsbereich ‘“Theoretische
Mathematik” at the University of Bonn.
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(ii) The isometry group of M is isomorphic to a subgroup of the isometry group of
the corresponding constant curvature manifold.

1.3. COROLLARY. (Compare [8, p. 122]). There exists a decreasing sequence
0, with limit §,— 0.90 as n tends to infinity, such that any 6,-Kdhler pinched Kdihler
manifold M*" is holomorphically equivalent to CP".

The main idea in the proof is to define a procedure which leads from a connection
with small curvature on the stabilized tangent bundle to a flat connection on this
bundle. The curvature assumptions imply the existence of a connection with small
curvature. The resulting flat connection, via a generalized Gauss map, yields the result.

It is a curious fact that our result improves with increasing dimension. This is in
contrast to earlier results on this subject [2]. This effect appears in our proof because,
for large n, a small neighborhood of any great n— 1-sphere contains almost all of the
volume of the n-sphere.

In the following chapter we give the proof of the main theorem except the construc-
tion of a flat connection and the necessary estimates. These topics are discussed in
chapters three to five.

We wish to thank Wilfried Koéhler for improving inequality 3.6.

2. The Proof

In this chapter we define a G-invariant connection V° on the stabilized tangent
bundle and prove that the existence of a flat G-invariant connection V near V® implies
the assertions of the theorem. We postpone the proof of the existence of V to the
following chapter.

Let E=T(M)®1(M), where T(M ) and 1(M ) are tangent bundle and trivial line
bundle M x R respectively, denote the stabilized tangent bundle. The bundle E carries
a euclidean fiber metric. The isometric action of G on M, together with the trivial
action on R, extends to an action on E, i.e., E is a G-vector bundle and ge G maps the
fiber E, isometrically onto E,,,.

As in [9] we define the connection V° on E as follows:

ViY=DyY—c(X,Y)e

2.1
Vi%e=cX 21)

where X and Y are vector fields on M, e: M — E is the section p— (0, 1),€T,(M )®R,
c=./3%(1+9), { , ) and D respectively are riemannian metric and connection on M.
It is easy to check [4, 9] that V° is a metric connection, is invariant under G-action,
and has curvature tensor R°=R—c?R,, where R is the riemannian curvature tensor
on M and R, is the algebraic expression of the curvature tensor on S” in terms of the
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riemannian metric on M. The main point here is that R° is small in terms of a suitably
chosen norm.

This concludes the discussion of V°. In the second half of this chapter we use the
existence of a flat invariant connection V near V° to prove the theorem. Because M is
simply connected, the flat connection V is equivalent to a trivialization Ex M x R"*!,
i.e., we have a parallel field of frames u, where u,=(e,, ... €,4+,), is an orthonormal
frame in the fiber E, over pe M. With such a frame field # we define the diffeomorphism
F and the group homomorphism ¢ as follows:

F:M-S",  p—{eu,, (2.2)

where <e, u}, is the component vector of e=(0, 1)eT,(M)®R in terms of the ortho-
normal basis u,. To prove that F'is a diffeomorphism we need an estimate on dF. For
this estimate we introduce the following norm on the difference V —V°. We recall that
V —V°, with proper identifications, is a linear map of the tangent space of M into the
Lie algebra o (n+ 1) of the structure group O (n+1) of E. We define

IV —V°||=Max|(Vx—Vx) Ul, (2.3)

where | | is the euclidean norm in E and the maximum is taken over unit vectors X and
Uin T(M) and E respectively.

The definition 2.2, together with the fact that u is parallel under V, implies the
following expression for the differential dF:

dF X=(Vye, uy={Vye,up+{(Vx—Vy) e, u).

This expression for dF, together with Vye=cX, (compare 2.1) leads immediately to
the inequality

|dFX|>|X|(c—1V-V°l) (2.4)

This inequality will give the main numerical restriction for the pinching constant 4.
In fact, |V —V°|| <cis sufficient to prove that dF is non singular; therefore, since M is
simply connected, F is a diffeomorphism.

To define the homomorphism ¢:G— O(n+ 1) we again utilize the parallel frame
field u associated to the flat connection V and recall that the frame u, in the fiber E,
over pe M is equivalent to an isomorphism R"*! - E,. We define

@:G->0(n+1)
g—u! ogou:R”+l—>Ep—)Eg(p)—-)R”+1, (2.5)

where ¢ (g), as a composition of isometries, lies in O(n+1) and is independent of the
point pe M as we will see shortly. To prove that ¢ is a group homomorphism it is
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sufficient to prove that the definition of ¢ is in fact independent of the point pe M.
This is so because E is a G-vector bundle. The main ingredient in the proof of the
independence of ¢ on pe M is the G-invariance of V. This invariance is obvious from
the constructions of the next chapter. Let ¢’ be the map defined in 2.5 where p is
replaced by p’e M, let a be a path from p to p’, and let 7, denote parallel translation
with respect to V along this path. Then,

! -1 .1 -1 1 —
L (g)=ug(p')°g°up'_ug(p)°rg(a)°g°ra°up“ug(p)°g°up_‘P(g)-

The definitions of F and ¢, compare 2.2 and 2.5 respectively, imply immediately
the assertion (iii) of Theorem 1.1. The main point to observe here is that in both
definitions the fibers are identified with R"*! by means of the same frame u.

3. Construction of the Connection V

Here we construct the flat G-invariant connection V used in the previous chapter.
The first step is the construction of a sequence V' of invariant connections, whose limit
is a flat C°%connection V*. Then we obtain the C®-connection V by smoothing V*.

The sequence V' starts with the connection V° of 2.1. We define V:*! inductively as
a certain average of locally defined flat connections obtained from V‘. The main point
is that the curvature of an average of flat connections is small in terms of a suitable
norm. We observe that V°, the iteration from V'’ to V*!, as well as the smoothing
process is invariant under the isometric action of G.

We compute with connection form w* and curvature form Q' instead of connection
V! and curvature R'. These forms are naturally defined on the principal bundle.
However, since we perform local calculations, we deal with their pull backs by means
of a cross section (frame field). Since we are interested in norms of curvature forms
only it is not necessary to specify the frames as long as they are orthonormal.

The computations of this chapter are based on Jacobi field estimates on M. The
following chapter contains the comparison theorems which justify the use of estimates
valid on the standard sphere. For the estimates on curvature forms we must specify a
norm in the appropriate space. In principle, any norm will do but the numerical result
depends on the choice of the norm.

3.1. The iteration V' — V'*!. For any ge M we define a connection V7 with connec-
tion form w* ? in a neighborhood of g as follows: Let #%(¢) be an orthonormal frame
in the fiber E, and u%(p) be the frame in E, obtained by parallel translation of «%(q)
along the unique shortest geodesic from ¢ to p. This way we obtain a field of frames in
a neighborhood of ¢q. The corresponding flat connection and connection form are
denoted by V"7 and w"? respectively. Next, we define the connection form w'*!
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corresponding to V*! as an average over the connection forms w" 9. The weight
function 7 in the following definition will be constructed in chapter 5.

a)i+1=fwi’q’1(’: q) dg (3.2)
M
The form w'*! is well defined because 7 (-, ¢): M — R has its support in the domain of
definition of w” 4. Since [n (-, ¢) dg=1, »'*! is again a connection form.
To obtain an estimate for the curvature form Q'*! we express Q'*! in terms of
®'*! by means of the Cartan identity. The following equations hold:

Qi+l=Qi+l_J- Qi,qndq

=f (" Adyn) dg+ ( f " "ndq) A (f " ”ndq> - f (" A 0" ) ndq

=f (0”2 And,n) dq——f (0" 1= ')A (0" 1~ 't ) ndq,
(3.3)

where dn is the differential of # in the first variable.

For the following estimates we need norms on the spaces of «(n+1)-valued
differential forms. The choices are dictated by the definition 2.3. First we define a
norm on the Lie algebra «(n+1) as follows:

|4|=Max|4U],

where A€ o(n+1), UeR™*! has length one, and | | is the standard norm on R"*!,
For o(n+1)-valued 1-forms w we define

lo]| =Max e (X)), (3-4)

where the maximum is taken over unit vectors in 7(M ), and | | is the above norm on
o(n+1).
In the same way we define for < (n+ 1)-valued 2-forms Q

where X and Y are unit vectors in 7 (M ). With these definitions one has the inequality:
ooy A, || 2@y 2]

Now equation 3.3 yields:
f (0" Adyn) dCIH + 'U (0" 1= ") A (0" -0 ) ndg -

12 <1
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We define =" ?—@'*! and chose unit vectors X, YeT (M), U, VeR"*! such that

[ @ erp ndq“= <( [ @8 naq) (x. 1) ) V>

< [ 1K8++() 82() (U), Vi nda-+ [ 1GB* (V) 52 (X) (), Vi ndg.
The Cauchy-Schwarz inequality yields:

[ k8+20 82 (¥) (), Vy1nda= [ KB4 () (V) B2 (X (V)31 ndg
<([ 4y @y nda) ([ 182007 () na)

Due to the construction of w™? it is more convenient to estimate o’ I=w"?—w*
instead of B 4. Since f*9=a"9— [ a’ indq we have

1/2

f 1B%9(Y) (U)I? ndg < f 1a+4(Y) (V)P ndg.

Let the symbol |o’| denote the maximum of |ja" 9| =|la* |, over ge M, where || |,
indicates that in the definition (3.4) only vectors XeT (M) | suppn (-, ¢) have to be
considered. Thus

[ 1oy @) ndg <ty
With the observation [(w’ A d,n) dg=0 we finally obtain

121 < ] f il dg+2]e]. (3.6)

3.7. The computationof ||a||. We recall that a*9=w" ?—w'=V"1—V', where w"? is
the connection form of the flat connection defined by the frame field obtained by
parallel translation (with respect to V) of a frame in E, along geodesics starting at
qeM.

To estimate the value of a*? applied to a unit vector XeT,M, we choose a path
y=7(s) in M with initial tangent vector $(0)=X, and define a corresponding path
a=a(s) on the orthogonal group O(n+1) by setting a(s) equal to the orthogonal
transformation defined by parallel translation, with respect to V¢, along the triangle
(9, P»7(5)). The definition of V2 implies V37— V% =d (0). To estimate d(0) we intro-
duce the norm |a|=max |aU~ U] on O(n+1), where U is a unit vector in R**1, This
choice is dictated by the previous choice of a norm in the Lie algebra of O(n+1). We
observe that, as in [9, p. 131], |a(s)| is majorized by the product of the area of the
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triangle (g, p, y(s)) with a suitable norm of Q. We obtain |a(s)| < Area (g, p, y(s)) X
|12%). Since |d(0)|=lim|a(s)|/s we are interested in an explicit expression for this
s=0

limit. We obtain it in terms of the Jacobi field Y along the geodesic ¢ (c¢(0)=g,
c(t)= p) with boundary values Y(0)=0 and Y(¢)=X. The result is

pmo
1 OI=1a O)1< e 121,

and Corollary 4.2 yields

1—cosr

lo'll < 12, (3.8)

where r>d (p, g) =t is the radius of the ball in which V7 is defined. We will choose r
to minimize the final estimate.

3.9. The connection V*. The inequalities (3.6), (3.8) and the estimate (5.5) for
fld,n| dq yield immediately :

— 1—cosr . 1—cosr -
[2"1] <const n sin™* /r — ng'||+2( = ||Q‘H) (3.10)

We utilize the above recursion formula to prove that, for a suitable choice of é=4,,
the connection forms ' converge in the C°-topology to a connection form w®.
Actually we need to prove a more precise result. Equation 2.4 shows that we must
prove ||w®—w®| <e¢, where c is the constant of definition 2.1. Since [@'*!—w'| <
lloc’ll, we must prove Y ;24 lo’l| <c, or, in view of (3.8),

1—cosr

_ZO 12’ <2, where d= (3.11)

sinr

For the estimate of the first term in this series we observe that, with proper identifica-
tions, the form Q° coincides with the curvature tensor R’ of [10, p. 127]. We obtain
12°1 <3(1-9).

Now, for a rough estimate of (3.11) we observe that (3.10) is of the form

1271 < al| ]+ 5] Q)1 = (a+ b1 7)) 12°].

The series (3.11) converges as soon as a+b|| Q°|| < 1. We can satisfy this condition for
n >3 because for a suitable choice of r and d close to 1 the constant a is arbitrarily small,



396 HANS-CHRISTOPH IM HOF AND ERNST A.RUH

and b/ Q°|| is arbitrarily small as well for & close enough to 1. Therefore, the series
(3.11) is majorized by a geometric series with small first term, and the condition (3.11)
is satisfied.

For manifolds of large dimension # it is easy to give a much better estimate as
follows:

We observe that the term n sin""l\/ Sr converges to zero as n— oo if \/ S5r n/2. Since

the estimate 5.5 holds for \/ or>mn/2 only, we choose r such that \/ or is greater than
but arbitrarily close to /2. Then, we compute the sum of the first few terms in (3.11)
and estimate the rest with the rough method above. A computation shows that, for
n=dim M large enough, the condition 4 >0.68 implies that the inequality (3.11) holds.

For low dimensions precise estimates are more cumbersome to obtain because the
optimal choice of r in 3.10 is not obvious. To compare the present result with that
of [5] we determine the dimensions for which the pinching constant §=0.98 is
sufficient to prove the theorem with the present method. A computation shows that
0=0.98 is sufficient for n> 5.

In any case, (3.11) holds under suitable assumptions on J,. Therefore, the sequence
o' of connection forms converges in the C°-topology to a connection form w®. Let
V* denote the corresponding connection. Since V* is continuous only, the curvature
form Q% is not defined, but parallel translation with respect to V® is independent of
the path because V* is the limit of connections with curvatures converging to zero. In
this sense V* is flat.

3.12. The connection V. Now we smooth V* to the C*-connection V. Since V¥ is
equivalent to a Cl-section u® in the principal bundle P of orthonormal frames
associated to E, we smooth the section #® to a C®-section u: M — P and define V to be
the corresponding connection. To obtain u we average ¥® by means of the center of
mass construction [3, proposition 3.1] as follows. Let P, denote the fiber of P over
peM and B, a ball with center p and sufficiently small radius. Let v,: B,— P, be the
map u® followed by parallel translation, with respect to V°, along the unique shortest
geodesic to p. We define u: M — P by the assignment pr>center of v, with respect to
the measure on B, obtained by multiplying the riemannian measure with the smooth-
ing kernel n of chapter 5.

The section u: M — P is of class C® and depends on the parameter r in the defini-
tion of n. If r converges to zero, i.e., n converges to the Dirac measure, then u con-
verges in the C!-topology to u®, compare [7]. Therefore V can be chosen arbitrarily
close to V*.

4. Inequalities for Jacobi Fields and Volume Functions

In this chapter we prove inequalities for Jacobi fields. For greater convenience we
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state the results for a riemannian manifold M with curvature restrictions 0<a?<
K <b*. However, with slight modifications, similar results are true for zero or nega-
tive curvature bounds.

4.1. PROPOSITION. Let c be a geodesic on M with ||¢|=1 and Y a Jacobi field
along ¢ with Y (0)=0 and (Y, ¢)=0. For real munbers s, t with 0<s<t <n/b we have

sinas _|Y (s)| _sinbs
—— < <.
sinat |Y (t)] sin bt

4.2. COROLLARY. Under the same assumptions we have

t
1 —cosat (I,'Y(S)l ds 1 —cos bt

< a
asinat ~  |Y(f)]  bsinbt

Proof. The proposition is an easy consequence of the following inequality (compare
[1, p. 253]).

cosat_|Y (t)|"_ , cosbt
— = Z2b ——.
sinat = |Y ()] sin bt

(4.3)

To prove (4.3) we assume for simplicity |Y (¢)|=1. Then we have
t
Y (1) =Y, ¥ (t)=1‘(Y)-—-f Y'P-K (Y, é) Y.
0

Since Jacobi fields minimize the index form it follows that I'(Y)<I'( fE) for any
C*-function f with f(0)=0 and f(¢)=1, where E is the parallel field along ¢ with
E(t)=Y (¢). By introducing the lower curvature bound we obtain I'(fE)<
[6(f")* —a’f 2. This integral is known to be minimal for the function sinas/sinat,
the corresponding value of the integral being a (cosat/sinat).

For the second part of the inequality we again start with | Y (¢)|"=1'(Y). Introduc-
ing the upper curvature bound we get

t t
It(Y)ZJ‘IY’lz—b2|Yl2>f(|Y|,)2_b2|Yl2-
0 0

The last integral has b(cosbt/sinbt) as minimal value, which completes the proof
of (4.3).
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The proposition then follows by integration and exponentiation. Now we turn to
the estimation of volumes of balls. We still assume that the curvature of M satisfies
0<a®*<K<b? and consider balls of radius less than n/b. Let V (p,t) denote the
volume of the ball {geM | d (p, g)<t}. In order to compute ¥ (p, t) we introduce
geodesic polar coordinates around p and get

v (p, t)=f jJ(s, u)dsdu,

where S is the unit sphere in T,(M) and J (s, u) is the jacobian of exp:T,(M)— M,
multiplied by s" . For a fixed u€eS the function J (s)=J (s, #) can be expressed as
follows. Consider the geodesic ¢ with ¢(0)=p, ¢(0)=u and choose Jacobi fields
Yy,..., ¥,_y along ¢ with Y;(0)=0, Y'(0)Lu and {Y’'(0)|1<i<n—1} linearly
independent. Then we have

__|Y1 (S)AAY,_y (5)l

J(S)—_lYI’ (0)/\ cee A Yn,-l (O)I ‘

4.4. PROPOSITION (compare [6]). Let ueScT,M and J(s)=J (s, u) be as
above. For s, t with 0<s<t<mn/b we have

sinas\"~! _J(s) [sinbs\"""
S—=<| = .
sin at J (t) \sin bt

Proof. Choose the Jacobi fields Y;,..., Y, _; to be orthonormal at #, then

I(s) "y 1)l
HON=0A00

Now proposition 4.1 yields J (s)/J (¢)<(sinbs/sinbt)"~*. The proof for the lower
bound is similar.

4.5. COROLLARY. Under the same assumption for s and t we get

Su(fit) Si.gJ(s, u) ds du s, (bt)

a sin"" ! at [J(t,u)du ~bsin" ‘b’
s

where s, denotes the function s,(t)=[¢ sin" s ds.
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Proof. The corollary follows easily from the proposition, since only the middle
term of the inequality depends on u. Let V'(p, t) denote the derivative of V (p, t)
with respect to . Obviously V'(p, t)=|s J (¢, u) du with S=T,(M), and the corollary
may be rewritten in the form

a sin"~* at_ V' (p, t)>b sin” ! bt
si(a) T V(p,1)” s, (b1)

(4.6)

5. The Weight Function

In this chapter we return to our d-pinched manifold M, i.e., we assume § <K <1,
and define the weight function # used in chapter 3. For fixed real numbers r and ¢

with 75/2\/ s<r<r+g<n we choose a monotone C®-function # with h(t)=1 for
0<t<r, h(t)=0 for ¢ >r+p, and |A'(t)|<const/g. For p, ge M we set h(p, q)=

h(d (p, 9))-
In order to get a normalized weight function, we form

n(p, q)= ISIP( ‘;)

where

r+e

H(p)=f h(p,q) dq=f f h(t)J(t,u)dtdu.

We want to estimate the integral [y |d,n1(p, q)| dq. Differentiation of # yields

d,h dH

d__'——“y
o'l H H'I

therefore we get

fldpn(p, )| dg <+ Hp )fld h(p, q)l dq+ H((I;)l (5.1)

Obviously

r+e

fldph(p, )| dq=f J |# (8)] J (t, u) dt du.
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By proposition 4.4 and our choice of r the function J (¢, #) is monotone decreasing
between r and r+ ¢, hence

r+e

f |h' ()] J (t, u) dt<constJ (r, u),

and we have

—Ht—g) 3[ |d k(p, q)| dq S::El;; S J (r, u) du=const VH(fI;)r)<const II//((: rr))

(5.2)
From the definition of H (p) we obtain through integration by parts
rt+e rto
H(p)=f f h(t)J(t,u)dtdu= f h(t) V'(p,t)dt
§0 rt+e 0 r+e
—h(8)V (p, 1) [0~ f (D) V (p, 1) di=— f W (1) V (p, 1) dt.
0 r

Therefore the differential is

r+e

aH(p)== [ K@) 4,V (2.0

and
r+o

|dH (p)] < f I (1| d,V (p, 1) dt.

A geometric argument shows |d,V(p, t)|<3V'(p, t), which can be estimated as
before by 4V '(p, r) for r<t<r+o. We now get

r+o

\dH (D) <3V (p, 7) f K (1) dt=3V" (p, 7).

Again using H (p)>V (p, r) we finally get

[dH (p)] _, V' (P, 1)

H(p) “V(pr) 3)
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Combining the above estimates (5.1) to (5.3) and applying (4.6) we find

f |dn (p, )| dg <const v (( =< cons \/5 Sl:n(:/;{fr (54)

Since \/Sr>n/2 we have sn(\/gr)>s,,(n/2)= 1s,(n), where

& (n)=j sin"" 1 ¢ dt=/al" <g) / r (”;’1>

An elementary argument shows s,,(n)/2>\/ ;r/n, hence

f |d,n (p, q)! dg<const n sin"~* \/ér. (5.5)

Remark. We need to know the numerical value of the constant in (5.5) only for
the explicit estimates in low dimensions. An easy argument shows that the constant in
(5.4) can be chosen arbitrarily close to 4. Therefore we get as final constant in (5.5) a

number close to %\/:S/n, e.g. 0.85.
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