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Comment. Math. Helvetici 50 (1975) 363-382 Birkhiuser Verlag, Basel

Maps Without Certain Singularities

by ANDREW DU PLESSIS

§0. Introduction

In this paper we study the problem of finding, for any smooth map f: N — P between
manifolds, the maps g: N — P in the homotopy class of f which are as non-singular as
possible. We shall discuss this only with regard to the Whitney-Thom singularities;
although these singularities do not provide a complete description of the structure of
S (even locally), they do go a long way towards it, while their geometric interpretation
makes them natural objects to study.

The geometric situation is as follows:

Define Z'(f)= {xeN | kernel rank Tf, =i}. If, for a particular map f, Z'(f) is sub-
manifold of N, then f| Z(f): Zi(f) - P is a smooth map between manifolds, and we
define Z(f)=Z’(f| Z(f)). If this also is a manifold, we may define Z'/*(f), and
SO on.

From this point of view it is not clear for which (if any!) maps f the sets Z*(f),
ZUk(f), etc. are defined. However, a more subtle approach yields the following:

THEOREM 1 (Boardman [1]). For each r-sequence (sequence of r integers) I =
(i1s.-., i,) there is a submanifold X' of the infinite jet-space J(N, P) of codimension
v which is the inverse image by the natural projection J(N, P)—J'(N, P) of a sub-
manifold of J'(N, P).

As I runs over all r-sequences, these submanifolds form a partition of J(N, P) which
is effectively finite, for X' is empty unless

(@) iy =iy =--->i,20

(b) dimN >i,>dim N — dim P

(c) ifiy=dim N —dimP, theniy=i,=---=i,.

If f: N— P is a smooth map, we define Z!(f)=(Jf)~! Z'. These sets have the fol-
lowing properties:

(@) 2(f)={xeN | keTf,= 1}

(b) If Jfis transverse to Z7 (so that Z’(f) is a submanifold of N), then Z©-/(f)=
ZI(f| Z'(f)). (1, j is the (r +1)-sequence (i,..., i, J))-

THEOREM 2 (Boardman [1]; a variant of the Thom transversality theorem).
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The smooth maps N — P whose jet-sections are transverse to all the submanifolds X' of
J(N, P) (the generic maps) form a dense in €°(N, P).

Thus, for each r-sequence I and “‘most” maps f, Z/(f) is a submanifold of N which
may be constructed by the geometric method described above; and these submani-
folds X'(f), as I runs over all r-sequences, give a finite partition of N.

Our aim is to construct a map g homotopic to f for which this partition has as few
sets as possible, so that we regard the greatest r-sequence (w.r.z. lexicographic order)
Is.t. Z'(f)#0 as the singularity of f and seek to reduce this by homotopy.

(Of course this definition applies equally to non-generic maps; and any non-generic
map of singularity / may be fine-C ®-approximated by generic maps of singularity
<1, hence is homotopic to such a map.)

Let Q'=(J{Z* | r-sequences K<I}<J(N, P). We shall say that a map f:N—P
is Ql-regular if Jf(N)<=Q'; thus fis Q'-regular<>its singularity is </.

Q'-regularity is a condition on r-jets (since for any r-sequence K, X* is the inverse
image of a submanifold of J"(N, P) by the natural projection n":J(N, P)—J"(N, P))
and it is in fact, in the terminology of [6], a stable, natural regularity condition. (This
means that n"Q’ is an open sub-bundle of J"(N, P)— N invariant under the natural
action by local diffeomorphisms of N on J'(N, P); we will prove this later, in (1.4).)
Hence the theorem of Gromov [4] (Theorem A of [6]) applies to Q'-regularity, and
we have

THEOREM A. Let €o:(N, P) be the space of Q'-regular maps N— P, with the
C'-topology, and let I'(Q'(N)) be the space of smooth sections of the bundle n"Q'(N)—
N (with the compact-open topology ).

Then, if N is an open manifold,

j*:€qi(N, P) > T (2'(N))

is a weak homotopy equivalence.
In particular, we have the following

COROLLARY A. Suppose N is an open manifold. Then a (smooth) map f:N — P
is homotopic to a generic map with singularity <I<>there is a section of Q" covering f.

Hence calculation of the minimal singularity in the homotopy class of f'is reduced,
when N is open, to a question of algebraic topology — the existence or otherwise of
sections of the bundles Q' covering f.

However, the non-singular maps constructed need not be proper maps, and so
while non-singular according to the letter of our definition may have rather patho-
logical behaviour. Many non-singular maps may be constructed on an open manifold
by ‘‘pushing singularities to infinity’’ — there is a Morse function without critical points
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on any open manifold, for example — and we should properly regard the construc-
tions of Corollary A as an extension (albeit non-trivial) of this rather deceitful proce-
dure for “‘hiding” singularities rather than actually getting rid of them.

Our theory should therefore be couched in terms of proper maps, or, more natural-
ly, closed manifolds.

From [6], we have

THEOREM B. If Q' is extensible, then
J":€qi(N, P)>T'(Q(N))

is a weak homotopy equivalence, whether N is open or closed.
This result, together with the Approximation Theorem in the Appendix to [6]
implies the following

COROLLARY B. Let Q' be an extensible regularity condition. Then, whether N is
open or closed, a proper smooth map f: N — P is homotopic to a proper map of singularity
< I<>there is a section of Q' covering f.

The notion of extensibility is fully explained in [6]; for 2' to be extensible it is
sufficient to show that there exists a natural stable regularity condition Q'c
J" (N xR, P) s.t. the natural projection i*J"(N xR, P)—J"(N, P) (where i: N =N x
Oc N x R) carries i*Q’ onto Q.

The work of the paper will be concerned with discovering conditions under which
Q1 is extensible. It will turn out that Corollary B then gives considerable information
on reducing singularity by homotopy, for the condition that Q' be extensible is not
too restrictive: we will show that Q' (I=(iy, ..., i,)) is extensible if

i,>dimN—dimP —d’.
Here d'=3"_] «,, where

. 1 if is—is+1>1.
ST )0 otherwise

To obtain this result we shall require many results (and some slight extensions of
results) from Boardman’s paper [1]; these we introduce in §1. In §2 we prove the
extensibility condition given above. §3 contains algebraic results required in this
proof.

Notes

1. The result of Corollary B may hold even when Theorem B fails; for example,
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Eliashberg [2] has shown that Corollary B holds for Q'-° even though Theorem B
fails (so of course Q' is not extensible).
In a later paper we will describe how Corollary B may be proved for certain other
non-extensible Q' by application of transversality techniques.
Note however that the result of Corollary B is not always true; Q°<J(S!, R!)
provides a counter-example.

2. From the point of view of the manifold N, at least, an equally natural measure of
the singularity of a smooth map f might be

s(f)=max{s" | Z7(f)#0}.

This does not give the same ordering of ‘‘singularity’’ as we have previously adopted
(for example, when dim N =dimP, v*'°=9 and v*'?=10).

However, the partition {Z} of J(N, P) by r-sequences I is not a stratification (for
example, when dimN =dimP, 2*:%:%:%° contains points of X':1-1:1-! although
v2:0:0.0,0 -4 apd y*:1:1:1:1=5) Thus there is no easy geometric interpretation of
non-singularity according to this scheme. We shall nevertheless consider this kind of
non-singularity in the Appendix.

3. The result of Theorem B for Q° was obtained by Hirsch [5] for dim N <dimP;
and the result was obtained for Q" by Feit [3] for i; >dim N —dimP.

§1

In this chapter we introduce some results due to Boardman [1]; and we make
some extensions to these results.

(1.1) The Total Tangent Bundle

Let N, P be smooth manifolds.

We recall that the topology of the infinite-jet space J(N, P) has as base the sets
(n")~1U, where r < oo and U is open in J'(N, P) (n":J(N, P)— J'(N, P) is the natural
projection). J(N, P) also has a “‘limit differential structure”, defined as follows: if U
is an open set in J(N, P), we say a function @: U — R is smooth if it is locally of the
form - 7", where ¥ is a smooth function on some open subset of J'(N, P).

It follows that J(&, P) has a tangent bundle.

Now let f: N— P be a germ of smooth map at xe N. Then the germ of infinite-jet
section Jf: N— J(N, P) is also smooth, and so there is a tangent map T(Jf), : TN, —
TJ(N, P) (which is clearly an injection). It is easy to check (in local co-ordinates)
that if two germs f, g have the same infinite jet at xe N, then T'(Jf ),= T(Jg),. Thus
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the images of such tangent maps define a sub-bundle of TJ(N, P), the total tangent
bundle D.

Let y:J(N, P)— N be the natural projection; it follows at once that Tny | D: D —
TN is an isomorphism of fibres covering ny.

We shall need the following result in §2:

LEMMA (1.1.1). Let F:J(N,P)—J(N', P') be a smooth map of jet spaces cover-
ing a smooth map f: N — N'. Suppose also that F is induced by a continuous transforma-
tion of smooth germs.

Then there is a commutative diagram

(xeJ (N, P))

Tf "
TN — TNTCN'F (%)

NNX

(where D' is the total tangent bundle of J(N', P")).

Proof. Since F is induced by a continuous transformation of germs, say F’, we
have F(Jg)=J(F'(g)). So TF-T(Jg)=T(J(F'(g))), and thus TF(D)<D"'.

Now ny.*F=f-my, s0 Ty TF = ITf Try.

Restricted to D,, this gives the required result.

(1.2) Intrinsic Derivatives
The concept of intrinsic derivative is due to Porteous [7]; our treatment, however,
is a reworking and extension of the more general results of Boardman [1].

Let EZ N be a smooth vector bundle. Then the projection p induces a short exact
sequence

0—E,— TE,—25TN, -0 (n=p(e)).

If e is in the image of the zero section z, then the tangent map 7z,: TN, — TE, induces
a canonical splitting 7E,= TN,®E,.
Now suppose that y: N— E is any section vanishing at n. Then we define a map

projection

i,:TN,— E, as the composite TN, -5 TE,= TN,®E, S E,

LEMMA (1.2.1). Let y: N— E be a section.
(i) If a:E— F is a smooth vector bundle homomorphism over N and y(n)=0, then
Igy=4ai,.
(i) If f: M - N is a smooth map and y( f (m))=0, then i. =i, TF.
Proof. If ®:¢— ¢’ is a smooth vector bundle homomorphism covering a map
¢:B— B’, then it is easy to see that, for any point e in the zero section of ¢, (7®),=
T¢ ,(eyDPpey W-I.t. the canonical splitting (7€), = TB,)D<p(e)-
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We now apply this fact to the situations of (i) and (ii). For (i), it gives us (7a), )=
(T1y),@a,, and thus qT(ay),=q(Ta,y Txn)=a,"qTx, ie. i,,=ai,. For (i), if
1;:f*E— E is the canonical identification covering f, the fact gives us (71 ), (rm)) =
Tf®1g,. Now xf=1,(f*x),50 qTx-Tf =qT(1;). T(f*1)=qT(f*x) i.e. i,Tf =ifu,.

Now let a: E—~ F be a smooth vector bundle homomorphism over N. Then the
intrinsic derivative of a at n, d(a),: TN, —~Hom(Kera,, Cokera,), is defined as follows:
d(a),(v) (x(n))="[i,(v)] (veTN,), where x: N — E is any smooth section s.t ay(n)=0.

(1.2.1.) (i) shows this to be well-defined, since if y(n)=0, [i,,(v)]={[ai, (v)]=0.

These intrinsic derivatives have the following naturality properties:

LEMMA (1.2.2.). (i) If E% F-% G are smooth vector bundle homomorphisms over
N, then d(ba),(v) | Kera,=b, d(a),(v) (where b,:Cokera, — Coker ba, is the obvious
map induced by b,), and d(b),(v) a,= j, d(ba),(v) (where j,:Cokerba,— Cokerb,
is the obvious map induced by the inclusion j,:Imba,< Imb,) for each ne N and veTN,,.

(ii) If f: M — N is a smooth map, then d(a) ;(mIf,=d( f *a), for each me M.

Proofs. These follow directly from (1.2.1) (i) and (ii).

In particular, we note that if Kera,=Kerba,, then d(ba),=Hom(l,b,) - d(a),;
and if q, | Kerba,:Kerba,— Kerb, is an isomorphism, then d(b),=Hom(a, ', j,)
d(ba),.

(1.3) Inductive Definition of the Boardman Variety X'

The definition we give here is due to Boardman ([ 1], §7); proofs that the induction
we describe actually works may be found there. We record it here because the nota-
tion developed will be used extensively in §2.

Let I=(iy,..., i,) be an r-sequence. We will proceed by defining successively the
varieties X', "2, For convenience, we shall write X, for X% (s<r) and T, for
TZX,, the tangent bundle of X,.

First, let E=np TP/J (where np:J (N, P)— P is the natural projection).

Now define

1) Zo=J(N, P)

2) K,=D (the total tangent bundle)

3) E,=FE, and co=15:E—E,

4) T_ =Ty, and d\=Trnp:T_ > E
and suppose inductively that we have defined

1) a submanifold X>;_; of J(N, P)

2) sub-bundles K,_;=---cKy=Dover Z,_, s.t. K,_, < T_,

3) a bundle surjection ¢,_,:Hom(K,_ oK, E) 8 E,_, defined over Z,_,
(no confusion attaches to this symmetric tensor product; see [1], (4.3)).

4) a bundle map d;:T,_, — E,_, defined over X _;.
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Then define

1) 2,={xeX,_, | d,| K,_, has kernel rank i  at x}; this is a submanifold of Z,_,.

2) K,=K,_, is the kernel bundle of d, | K,_; over X,; K,c T,_, over X,.

3) Let e:E,_; — Q, be the cokernel bundle (and projection) for d, | K,_, over
X, Define u;:Hom(Ko---oK;, E)—>Hom(K,, Q,) over X, to be the composite
Hom(Ko:--oK;, E) = Hom(K,®(K,_;0---°K;), E)~ Hom(K,, Hom(K,_°---o K],
E))MHom (K, Es_l)Hom (—lifigHom(Ks, Q,). This has constant rank, so we
may define its coimage bundle map c¢,: Hom(K,o---o K], E)f'—";Es:Im ug over X

4) The intrinsic derivative bundle map d(d, | K,-,):T,_, » Hom(K,, Q,) over X
factors through E,, and thus we obtain d,,,:7,_; = E,, and the induction step is
complete.

(1.4) Q' as a Natural Stable Regularity Condition

Let f: V— V' be a diffeomorphism of open sets in N. Then we have a diffeomor-
phism f:J(V, P)—J(V’, P) by f(Jg)=J (gf ). ' is invariant under the action of such
diffeomorphisms (this is true for Xy, and if it is true for ¥, _, it is true for X by (1.2.2)
(ii)). Hence Q' is an invariant sub-bundle of J(N, P).

The closure of X in X,_, is {xeX,_, | d, | K,_, has kr>i}. Hence J{Z* | K>1}
is closed in J(N, P) and so Q', the complement of this set, is open.

So Q! is an open invariant sub-bundle of J(N, P)5 N; as we have previously
observed, it is the inverse image of a sub-bundle of J"(N, P) which is therefore also
open and invariant; i.e. Q' defines a stable, natural regularity condition on smooth
maps N— P.

§2

In this chapter we shall find conditions under which Q'=J(N, P) defines an ex-
tensible regularity condition on maps N — P. From the definition of extensibility (in
[6], §0), it is enough to show that /(Q’)= Q' for some open, invariant subbundle Q' =
J(N xR, P) which is the inverse image of a subbundle in J"(N xR, P). ({:J(N x
R, P)— J(N, P) is defined by i(Jf)=J( fi,), where nyJf =(x, r) and i{,: N— N xR
is the identification N=N x r).

We shall in fact show that, under the conditions stated in §0, /(Q")=Q. To doso,
we shall study the relation of the Boardman varieties in J(N, P) with those in other
jet-spaces; during this investigation we shall take the notation of (1.3) as standard in
J(N, P), and distinguish similar structures in other jet-spaces by ’.

(2.1) We begin by showing that /(") = Q' for any I. This is an immediate consequence
of the following
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LEMMA
xeX!cJ(N xR, P)=i(x)eQ'cJ(N, P).

Proof. There is a commutative diagram

D’ d'l I D’

Ti l
T*(d | D)

I*D —— i*E

El
over J(N xR, P).

(Recall from (1.3) that d; = Tnp.)

Suppose xeZ'cJ(N xR, P). Then xeX™ and krd, | D' =i.

Hence {(x)eX" <>Kerd; | D' nKerTI| D={0}, and otherwise (since T7| D’ is
the obvious surjection induced by TN®RX’TN, by (1.1.1)) i(x)eZ"* "1 QL

Thus if {(x)eX™, T! provides the natural identification of K{=Kerd| | D’ with
{*K, =1*(Kerd, | D) near x in X".

Now take intrinsic derivatives of the diagram above; by their naturality properties
(see (1.2.2)), we have

Hom((T7| K{)™*,j)d(d; | D')=d(d, | D) Ti.

Restricted to K, T is the identity, so we have a commutative diagram

K] 2| Ky E,

[ 1y, nearxin X"

T OPAILINE L o)
where y, =Hom((77| K{)™*, j) and the identification on the left is that induced by T,

(Recall E, is a sub-bundle of Hom(Kerd, | D, cokerd, | D),and thatd, isd(d, | D),
which factors through E,.)

Now suppose inductively that #(x)e Q" **~1, and that if {(x)eZ" ~**-*, then there
is a commutative diagram
K;_l dllIK’s-l E;__l . .

I - 1 ¥s—; near xin X!
thd SRR ILCON LJ N

where the identification on the left is provided by T'i.
Thus krd, | K,_,<krd, | K;_,. If krd, | K,_, <krd] | K,_,, then i(x)eQ" "~
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X' % Otherwise, taking intrinsic derivatives in the diagram above, and using the
naturality properties (1.2.2) we have

Hom(l, y,—;) d(d, | K,-,) Ti=d(d, | K,_,) restricted to T,_,.

Restricted to K,, T7 is the identity K;=i*K, (where K,=Kerd,|K,_,, K,=
Kerd, | K,_,), so that we have a commutative diagram

d's+1]K's
—_—

K, E;

” Tys=H0m(]a ys-l)'

T i ds | Ks I3
) GEUACILIN L)}
This completes the induction step and hence the proof.
(2.2) Next, we recollect a ‘‘suspension” for Boardman varieties.

LEMMA
F(EHez forall I

(Define F:J(N,P)->J(N xR, P xR) by £(Jf )=J(fx 1g)).
Proof. We have a commutative diagram

DOR (di | D)x 1R E®R
| I over J (N, P)
J*Dl S*(d’y | D) j*E!

where the isomorphism on the left is induced by 7'.#. (This is easily checked in local
co-ordinates. )

Thus Kerd; | D'=Kerd, | D, so that #(Z")cZ". Taking intrinsic derivatives,
we have

d(d] | D') T#=d((d, | D) 1a)=d(d, | D).

Restricting to K; =Kerd, | D, we have the commutative diagram

d2| K

K, 2| Ky E,
I ewixn )

J*K, ——2 5 F¥E,

where the isomorphism on the left is induced by 7.7
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Now suppose inductively that £ (2" """")CZi1 ~%-1 and that we have the com-
mutative diagram

ds‘Ks—l
Ks-—l Es—l
over X __
J*Ii’ FHWs | Kism1) 1*1”5’ s=1
s—1 3 s—1

where the isomorphism on the left is induced by 7.2.
Clearly K,=Kerd, | K,_;=Ker.g(d, | K,_,)=F*K,, so F(Z" )Tk,
Taking intrinsic derivatives, we have

d(ds I Ks—l)zd(ds’ | Ks,—l) TS | Ts—-l'

Restricted to K,=#*K, we have the commutative diagram

ds+1 | K
K, —2ul% g
I e K |
* s+1 s t 3
g L KD, gxpy

where the isomorphism on the left is induced by 7'.2.
This completes the induction step and hence the proof.

(2.3) Let f:(R", 0)— (R?, 0) be a smooth map.
Weidentify R?=R?x R?™% Define a map F:R"x RP"?—>RP by F(x, y)=f(x)+y.
If k:R?—->RY, [:R? - RP?7 7 are the natural projections, we may write

F(x, y)=(kf (x), If (x)+ y).

Let 4 be the diffeomorphism of R”x R?™ 7 defined by h(x, y)=(x, y—If (x)). Then
Fh=kf x 1. Since (0, 0)=(0, 0), it follows from the lemma above that J o, o, FeZ' <>
k(Jo f)=Jo(kf)eZ!. (For any smooth map k:P—Q, we define k:J(N, P)—
J(N, Q) by K(Jf)=J (kf ).

Now suppose that xeQ!<J(N, P); in local co-ordinates it may be represented as
a smooth map as above. Hence if there is a submersion &k of a neighbourhood of npx
s.t. kxe Q! also, we may construct a jet x'e Q' = J (N x R, P)s.t. ix’=x. Thus, to show
1(i*Q")=Q! it is enough to show that for each xe Q' <J(N, P) there is a local sub-
mersion k: U— R? (where g<dimP) of a neighbourhood U of npx in P s.t. kxeQ'.

We investigate this in the following lemmas.

(2.4) LEMMA. Let xeX'<J(N, P), and let k:U— Q be a submersion of a neigh-
bourhood U of mpx in P onto a neighbourhood Q of 0 in R%; let G=np KerTkcE.
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Then

(a) if u, Hom (K o oK;, G)Nd,1(K;)={0} at xVs<r, then k(x)eX'<J(U, Q).

(b) if s is the smallest integer s.t. u; Hom (K o---oK;, G)nd,,,(K;)#{0} at x,
then k(x)eZ™ ™=+t where j,, =i, +dim(u; Hom (K o---oK,, G)nd,,(K,)).

Proof. (a) We have a commutative diagram

di| D

D E
-Ji s |5 *l zo overJ(N,P)|NxU
k*D' ——5 kE*F’

where z,, is the obvious map induced by Tk:TU — TQ. Clearly Kerz,=G.
Now suppose inductively that
(1) ié(x)ezs—l
(ii) K,=k*K; Yt<s—1 near x.
(iii) There is a commutative diagram

ds|Ks-1

Ks-l Es—l
I fo ) Koy lzg_y mearxin X, _,
L 37 s s=1) %
E Ks—i —k Es—l

s.t. Kerz,_;=u,_, Hom(K,_;¢---o K}, G).
Since Kerz,_, ndy(K,-,)={0}, Kerk*(d, | K,-,)=Kerd, | K,_,. Hence k(x)e Z,.
Now take intrinsic derivatives in the diagram above:

d(d; | K,-,) Tk=Hom(l, z,_,) d(d,-, | K,—;) restricted to T_,.

Since Tk induces the identification D=k*D’ (by (1.1.1)), and K,< D, we have a com-
mutative diagram
Ks ds+ 1 l Ks Es

I i , |z, mear xin X2
pri; Bt 1R, pap

where z,=Hom(l,z,_,) | E,.

Then

Kerz,=Imu,n {aeHom(K,, Q) | z,_; - «=0}
=Imu,nHom(K,, Kerz,_,)
=Imu,nHom(K,, eu,_; Hom(K,_;¢---2K;, G))
—u, Hom(K,o -+ oK, G).
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Thus we have completed the induction step, and hence the proof.

(b) If s is the smallest integer s.t. u, Hom(K,c---oK;, G)nd,.(K,)# {0}, then
by (a) k(x)eZ,, and we may construct z,:E,—k*E; as above s.t. zd,,, | K,=
k*(d,, | K,) and Kerz,=u, Hom(Ko--oK,, G). Then j,, =krd/,, |K=
kr(zd, 4y | Kg)=kr(d,4; | K,)+dim(Kerz,nd,,(K,)). So k(x)eZ =+t where
Js+1=ls41+dim(u; Hom(K o 0 Ky, G)ndy i 1(K)).

Any subspace G c E, is of the form np Ker Tk for some submersion k; so the prob-
lem of finding submersions k for xe X' s.t. k(x)e X' is equivalent to the algebraic prob-
lem of finding subspaces G < E, with the properties (2.4) (a). In attacking this problem,
we shall use the following additional property of the intrinsic derivatives d_, ,:

LEMMA (2.5). (i) There is a bundle map b,_:T,_, —»Hom(Ko---oK,, E) over
X, s.t. the following diagram commutes over X :

/

bls-1 /
/

/
/ n
Hom (KooK, E) > E,

T;-,

ds+1

(The notation is, again, that of (1.3).)

(ii) b, is symmetric.

(By this we mean that b;_; may be regarded as an element of
Hom (7. °Ko---oK,, E)yc Hom(T,_; ® (K,o:--°K;), E) via the natural iso-
morphism Hom(7,_,®(K,o---°K;), E)Hom(T,_,, Hom(K,c--- K, E))).

Proof. See Boardman [1], (7.11) and (7.7)
We have the following result:

LEMMA (2.6). Let xeX*, I=(iy,..., i,). Define d'=Y"_1 a,, where a ;=1 if i;—
i;+1>1 and O otherwise. Then
(@) If p—n+i,+d"'> g, then there is a subspace G < E, of dimension g s.t.

u,Hom (Kso---0K;, G)nd,,(K,)={0} at xVs<r.

(b) If p—n+i,_+d""'=g,_ >0 and p—n+i,+d" <0, then there is a sub-
space G E, of dimension 1 s.t.

u, Hom (K,o---o K, G)nd,.,(K,)={0} at xVs<r-—1
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and

dim (u,_, Hom (Kr__1 o-0 K1, G) O d’(Kr_l))g{l.r—l_l.r_gr-l 8-1>1
=11, & -1=1

Proof. (a) Let G, be a complement to Imd, | D in E,, so that dimG,=g,=p—
n+i;. Clearly u,Gnd(D)={0}. We shall construct inductively G,=G, s.t.
u, Hom(Ko -0 Ky, G)nd, (K,)={0} Vs<t, where dim G,> g,=p—n+i,+d" "

Suppose, then, that we have constructed G, as above. By the definition of
u,, u;,|Hom(Ko---oK,, G,) is injective<>u, ;| Hom(K,_,o---oK;, G,) is and
u,_y Hom(K,_;o--oK,;, G,)nd(K,_,)={0}. Hence since u, | G,=1g,, we see by in-
duction that u, | Hom(K,< -0 K;, G,) is injective.

Now let L=d,;}(u, Hom(K,o---0K;, G,))nK,. Then b;_,(L)cHom(K,o---oK;,
G,), so that we have a map b: L —»Hom(K,----< K, G,) with the following property;
for any subspace G' = G,,

b(L)nHom(K,o---o Ky, G')2d,,,(K,)nu, Hom(K,o---- K, G').

(i) Suppose L3 K,; then b has rank<rk(d,., | K,)—1=i,—i,,;—1. Now apply
(3.1) (a); and we find that there is a subspace G+, =G, of dimension > p—n+i,+
dll o lt—(it_it+1"" 1)>p—n+i,+1 +d“ o lt+1=gt+1 S.t.

ImbnHom(K,o---oK,, G,,{)={0}.

(ii) Suppose L=K,; then b:K,—»Hom(K,®(K,_;°---°K), G,) is a symmetric
map of rank=rk(d,, | K;)=i,—i,+;. Thus, by (3.2) (a), there is a subspace G,., =G,
of dimension>p—n+i,+d" % —(i;—iy;)+ U =p—n+ip +d" " =g, s.t.

Imb ﬂHom(K,O oo °K1, Gt+1) = {0}.

Thus, in either case, we have constructed G, s.t.

di+1(K) nu, Hom(K,o -0 Ky, Gy q)={0}.

Thus the induction step is complete. The proof is finished by defining G=G,.
b) By (a), there is a subspace G, of dimension > g,_; s.t.

u, Hom(K o0 K;, G,_)Nds,,(K;)={0} Vs<r-—L.

As in the proof of (a), 4,_, | Hom(K,_,¢---<K,, G,_,) is therefore injective. Define
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L=d, '(u,_, Hom(K,_;o---°K;, G,_;1))nK,_,. Then b,_,(L)cHom(K,_ o+ o K|,
G,_), so we have a map b:L > Hom(K,_,°---°K,, G,_,) s.t., for any subspace G' =
G,_, b(L)YnHom(K,_yo-- oK, G')=d,(K,-,)nu,_; Hom(K,_ o0 K, G).

(i) Suppose L3 K,_,; then b has rank <rk(d, | K,_)—1=i,_{—i,—1. Thus, by
(3.1)(b), there is a 1-dimensional subspace G=G,_; s.t.

dim(ImbnHom(K,_ o oK, G))<i,—1—i,— &, _1.

(ii) Suppose L=K,_;; then b:K,_, > Hom(K,_ ;®(K,_,0:-oK,),G,_,) is a
symmetric map of rank=rk(d, | K,_,)=i,_y—i,. Thus, by (3.2)(b), there is a I-
dimensional subspace G= G, _, s.t.

dim (Im b » Hom (K, _ o OKI’G))<{r 1= =8 -1 &-1>1
lr—1 l g,_1=1.

Thus, in either case,

r—=1" tr r—1=

which is the required result.
We may now prove our main theorem.

THEOREM (2.7). Let I be the r-sequence (iy,..., i ) iy=ezi Ifi,>n— = -d’,
then Q' < J(N, P) is extensible. ( As previously, d'= Zs 1o, wherea,=1ifi,—i  ,>1

and 0 otherwise.)
Proof. We note that i,—i_,,>a,=d" s+ —d" s and hence that

ii—(n—p—d'tzi —(n—p—ditr)  (Vs<r).

Thus g, >--->g,>->g,>0, where g,=i,— (n—p—d' ).

By (2.1), (2.2) and (2.3) it is enough to show that for xeZX < J(N, P) with K<1,
there is a submersion k s.t. k(x)eZX’, where K'<1.

If xe X', this submersion exists by (2.4) (a) and (2.6) (a).

If xeXX, with K<, let s be the first integer s.t. k,=i, Vt <s and k <i,.

If k,;>n—p—d™ -1 there is, by (2.4) (a) and (2.6) (a), a submersion k s.t.
k(x)eZiris-tkc QF,

If k,<n—p—d" - then by (2.4) (b) and (2.6) (b) there is a submersion k
s.t. k(x)eZ! ~f-1Js where

k+(ls- k gs 1) gs—1>1
Je Sk (i — ) go1=1
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Thus

. .

is_js> 8s—1—ls—1t1s gs—-li1
bs—1ls—1 gs—l-—l

If i;>j,, k(x)eQ.

Suppose i, <j;:

(i) if g—y>1, then i —j, > g, —i,_ +i,;=g,—a,>0 (since g,>1, «,<1). So if
I,<Jjs is=jsand g;=1, a,=1. But g,=1 implies g,=g,,,=--+=g,=1, and thus

it__(n_p___di1 ...lt)=it+1_(n_p_di1 ...l'g+1) Vl >s

U=l =0 h =1y Vi =s.

Hence 2 < Q, so k(x)e Q.

(i) If g,-y=1,theng,_,=--=g,=1and i;_; =---=i,. Thus i;=j, and k(x)eQ’
since X Qf,

This completes the proof.

§3

In this chapter we prove the algebraic results used in §2.
We begin with

LEMMA (3.1). Let U, V, G be vector spaces, and let b: U— Hom(V, G) be a linear
map of rank r.

(@) If r <dim@G, then there is a subspace A< G of dimension a=dimG—r s.t.

ImbnHom(V, 4)={0}.

(b) Ifr 2dimG, then there is a 1-dimensional subspace A<G s.t.

dim(ImbnHom(V, A))<r—dimG+1.

Proof. (a) Suppose the contrary, so that for each g-dimensional subspace 4= G,
JueU, veV s.t. Imb(u)= A and b(u) (v)=ae A~ {0}.

Let A, be any a-dimensional subspace. Choose u, €U, v,€V s.t. Im b(u,;)= A4, and
b(uy) (v))=a,e A, — {0}. Let A, be an a-dimensional subspace of G s.t. a; ¢ 4,. Choose
uelU, vyeV s.t. Imb(u,)< A, and b(u,) (v,)=a,e4,— {0}. Let 4; be an a-dimen-
sional subspace of G s.t. {a,, a,> N A3=1{0}. Choose u;eU, vzeV s.t. Imb(u;)c=A,
and b(u;) (v3)=ased;—{0}.

Continue in this way, defining 4; s.t. 4;n<{ay, ..., a;_> = {0}, so that eventually we
have defined u,, ..., u,,,€U s.t. b(w,),..., b(u,+) are linearly independent.

This contradicts rkb=r, so our supposition was false, and the result is
proved.

(b) For some subspace U’'cU of dimension dimG—1,rkbd | U’'=dimG-1.
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Hence, by (a), Ja 1-dimensional subspace 4G s.t. 5(U’)nHom(V, A)={0}. Thus
dim(Imb nHom(V, 4))<r—(dimG—-1)=r—-dimG+1.

These results may be improved somewhat if b is a symmetric map, when we have
the following:

LEMMA (3.2). Let b:K—Hom (K®L, G) be a linear map of rank r which is
symmetric in K.
(@) If r <dim G, there is a subspace A< G of dimension

dimG—-r+1 r>1
dimG-—r r<l

Ss.t.

ImbnHom(K®L, 4)={0}.
(b) If r >dimG, there is a 1-dimensional subspace A=G s.t.

r—dimG dimG>1

dim (Imb n Hom (K®L, A))g{r—-dimG+l dimG=1"

Proof. (a) By (3.1) (a), 3 a subspace 4’ =G of dimension dimG— r s.t.
ImbnHom(K®L, 4')={0}.

This gives the result if r <1. Now suppose r > 1. We shall show that there is a¢ 4’ s.t.
ImbnHom(K®L, {a, A'))={0}.

This is equivalent to showing that there is ae G/4’ — {0} s.t. Imb' "Hom (K® L, {a))=
{0}, where b'=Hom(l, q) b:K—»Hom(K®L, G/A') and q:G— G/A' is the projec-
tion. Note rkbd’'=rkb=r.

Suppose no such aeG/A’'— {0} exists, so that for each geG'=G/A4’, IkeK s.t.
Imb'(k)=<g)>. Let {g,,....8,} be a basis for G’, and let {k,,...,k,}<=K be s.t.
Imbd’(k;)=<g:)-

Then {b'(k,),..., b'(k,)} is a linearly independent set.

For each pair (k, k')eK x K, we may regard b’(k) (k') as a linear map L—G'.
Clearly Imb’(k;) (k;)=(g;> for each j. But b’(k;) (k;)=b’(k;) (k;), since b is sym-
metric, and so

Imb'(k;) (k;)={g:)n<g;»=0 if i#j.

Thus b’(k;) (k;)=0 unless i = j.
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Suppose b'(k;)(k;)=0; then Ik’eK s.t. Imb’'(k;) (k')={g;>—{0}. Then k'¢
Kkys..os kyy (For if k'=Y; Ak, b'(k;) (kK')=A:b'(k;) (k;)=0, a contradiction), and
b'(k"), b'(ky),..., b'(k,) are linearly independent (for b(k,),..., b(k,) are, and
b(k') (k;)#0, b(k;) (k;)=0 for all j=1,...,r). This contradicts rank b’=r. Hence
b'(k;) (k;)#0 for each i=1,..., r.

By our initial assumption, JkeK s.t. Imb'(k)=<g,+g&,). Suppose k=) ; 1;k;;
then b'(k) (k;)=4:b(k;) (ko).

But Imb’(k;) (k;)=<{g;», so 4;=0 for each i. Thus £=0. Thus, by contradiction,
k¢<lk,,..., k.». Similarly, b'(k) is linearly independent of b(k,),..., b(k,). This con-
tradicts kb’ =r.

Thus our assumption was false; so the result is proved.

(b) The result follows by (3.1)(b) if dimG=1. Now suppose dimG > 1. If there is
a 1-dimensional subspace 4 =G s.t. Inb nHom(K®L, 4)= {0}, we have the result.
So suppose otherwise ; then for each ge G, ke K s.t. Imb(k)={g). Let {g;} be a basis
for G, and let {k;} be s.t. Imb(k;)={g;). Clearly {b(k;)} are linearly independent. b
is symmetric, so b(k;) (k;)=0if i #j. (Regarding b(k) (k') as a linear map L — G for
each pair (k, k')eKx K.)

Suppose two of b(k;) (k;) are non-zero, w.l.o.g. i =1, 2. Then (by the same argu-
ment as we used in (a)),

b(<k1’ seey kg>)nHom(K®L, <g1 + g2>)= {0} (g=dlm G)

Hence ImbnHom(K®L, (g, + g,>) has dimension at most »r —dimG.
Alternatively, suppose one of b(k;) (k;)=0, w.lo.g. i=1. Let keK be s.t.

b(k,) (k)#0, so that Imb(k,) (k)=Imb(k) (k;)=<g,>. Then k¢<ky,..., k,) (by the

argument used in (a)), and b(k) is linearly independent of b(k,),..., b(k,). Then

b(<k, ky, k3, ..., kgy) "Hom(K®L, {g,>)={0}.

(For suppose &=pub(k)+Y ;. a;b(k;) and Im&={g,>. Then &(k)=pub(k) (k,), and
Imb(k) (k,)e{g;y—{0}. Thus u=0. Then &(k')=) ., a;b(k;) (k') so Im&(k')c
(81> 83 ---» &gy since Imb(k;) (k')={(g;> for all k'eK. But Im¢(k')=(g,), so
é(k")=0 for all k'e K. Hence £=0.)

Thus Imb nHom(K®L, {g,)) has dimension at most r —dimG.

APPENDIX. We consider very briefly some of the regularity conditions Q=
J(N, P)—Z'. These are open invariant sub-bundles of J(N, P); we wish to investi-
gate their extensibility. To do so, we require a description of 3,

First, we have Z'=U{Z’ | j>i}, so Q'=2'"1.

The situation is rather more complicated for %/
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Let xe 2*** for some k>0. Let K =Kerd, | D,, I=Imd, | D,. We have the second
intrinsic derivative map at x d, | K: K— Hom(K, E,/I).

LEMMA. xeX'/ < there is a codim. -k subspace L<K, and a subspace J< E, of
which I is a codim.-k subspace s.t. Hom(i, j) d, | L: L —Hom(L, E,/J ) has kernel rank
>j (where Hom(i, j):Hom(K, E,/I)—Hom(L, E,/|J) is the natural map induced by
the inclusions i:Lc K, j:IcJ).

Proof. Let a: E— F be a vector-bundle homomorphism over a smooth manifold
X. W.r.t. local co-ordinates in a neighbourhood U of x in X, this may be
represented as a smooth map &G:U—Hom(E,, F,). This map has derivative
da :RY¥™¥ > Hom (E,, F,) and it is easily seen that this, composed with the natural
map Hom(E,, F,)—» Hom(Ker,a, Coker,a) is the intrinsic derivative d(a), of a
at x.

Suppose a has kernel rank i +k at x, and that x is the limit of a sequence {x,} s.t.
a has kernel rank i at x, for all . Then L=Ilim Ker, acKer,q,and J=limIm, a>
Im,a, (these limits exist; think of Kera as a section of the Grassman bundle
Gy o(E) | {x | kra,=i}, Ima as a section of Gy, ,(F) | {x | kra,=i}), and limd(a),,
is d(a), composed with the natural map Hom(Ker,a, Coker,a)— Hom(L, F,/J).
(This follows because the derivative of @ is continuous). Moreover, if d(@),, has kernel
rank jVn, this map has kernel rank > j.

Now apply these results to d, | D, J(N, P) to prove =; < is easy.

The complication of this result does not encourage an investigation of Z*/*....

We may show, by similar methods to those of §2, that the extensibility of Q°/
reduces to the existence of solutions to an algebraic problem analagous to (3.2)(a),
which we formulate as follows:

let ¢: K— Hom(K, Q) be a (symmetric) linear map with the following property
E(k, r) - for any codimension-k subspace L c K, and for any k-dimensional subspace
RcQ, the map ¢. x=Hom(i, pg) ¢ | L:L—>Hom(L, Q/R) has rank >r (here
Pr:Q— Q/R is the natural projection).

The problem we must solve is; does there exist a 1-dimensional subspace 4 = Q s.t.
é,=Hom(l, p,) ¢:K—Hom(K, Q/A) has the property E(k, r)?

We have the following result:

LEMMA. If dimK<dim Q, such a 1-dimensional subspace A< Q exists for any ¢
with the property E(k, r).

Proof. Suppose the contrary, so that for each ge Q, there is a codimension-k sub-
space L= K and a dimension-k subspace R< Q, and a vector /e Ls.t. $(/) L=q mod R.
Thus Im¢(/)=Z=<q, R, ¢(I) M), where M®L=K. (We have equality of Z with
Im ¢(]) since if {g, R)=<{q’, R’), then ¢(/) L=q' modR’ for otherwise ¢(I) L=
0 mod R’, in contradiction to property E(k, r) of ¢.)
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Since dimK <dim Q, dimZ <dim Q.

Choose g, € 0 — {0}, and obtain as above /;, L,, R, and hence Z,.
Choose g,€Q—Z,, and hence obtain Z,.
Choose g;€Q—(Z, U Z,), and hence obtain Z,.

Continue in this way, choosing ¢,€eQ—(Z;u...uZ,_,), obtaining eventually a
basis {g;} of Q for which the corresponding maps ¢(/;) are linearly independent. Hence
{1;} are linearly independent.

Thus dim K>dim Q, in contradiction to the hypothesis of the lemma. Thus the
lemma is proved.

It follows that Q' is extensible if n< p-

In some cases, this result may be improved (for example, 23 3%!, so Q>1=Q2°,
which is extensible if n=p) but in general this result is best possible, because the
algebraic result above is. (For a counter-example when dimK=dimQ, take K=Q
of dimension 3, with basis {k,, k,, k;} and define ¢ by

bk k) =k, k)=0 if i#j
¢(ks, ki)=k;.

It is not immediately obvious that this a counter-example, but the arguments of the next
lemma may be used to show that.)

A more geometric reason why Q' is not always extensible if n> p is the following:

3¢I>2forn=pbut 23 cI*2forn=p+1,so that Q%2 cannot be extensible for
n=p. The first assertion 2* ¢ X?:2 is clear from the respective codimensions of 2> and
X%2 whenn=p (see §0, Note 2); or the example above gives the second intrinsic deriv-
ative of a jet in 2>—X22, To see that 2*< X% 2 for n=p+ 1, we study the second in-
trinsic derivative of xeZX3, which may be expressed as a map ¢:K— Hom(K, Q)
symmetric in K, where dimK =3, dim Q=2. Our result will follow by showing that no
such map has property E(1, 1), which we do in the following lemma:

LEMMA. Let dimK =3, dimQ=2. Then no homomorphism ¢:K— Hom(K, Q)
symmetric in K has property E(1, 1).

Proof. Let {q,, q,} be any basis for Q. Then ¢ defines two quadratic forms ¢,, ¢,
given by its ¢g,- and ¢,-co-ordinates, and hence a pencil &={¢,, ¢,> of quadratic
forms.

Property E(1, 1) would claim that the restriction of @ to any 2-plane L< K is non-
trivial (i.e. ¢, | LoL and ¢, | LoL are linearly independent in Hom(Le L, R)).

Let A,, A, be matrices for ¢,, ¢, w.r.t. some basis in K. Either A4, is singular, or
det(4;+44,) is a cubic in 4, and so has a root u, corresponding to a singular matrix
A, +uA,. So the pencil ¢ contains a degenerate quadratic form. W.r.t. some basis
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€y €,, €, in K this has one of the forms 0, x%, x?—y?, x*+y%. In the first three cases
counter-examples to property E(1, 1) are provided respectively by any plane, {x=0},
and {x= y}. In the fourth case, any quadratic form of the pencil may be first put in the
form ax®+2xy+ y*+vz? by choice of e,, and then diagonalised w.r.t. x*+ y?; so that
the pencil has the form

(x4 y2, AxE+ uy? + vz>2).

If v=0, the pencil is trivial restricted to {x=0}. If 1=y, the pencil is trivial restricted
to {z=0}.

Otherwise, the pencil contains the degenerate quadratic forms (u—A4) y*+ vz?,
(A—u) x*+ vz2. One of these is indefinite; i.e. has the form x'? —y’? w.r.t. some basis,
so is zero on the plane {x'=y’}. Hence the pencil is trivial on that plane.

We have, therefore, shown that no ¢ has property E(1, 1).
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