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Approximative Funktionalgleichungen und Mittelwertsiitze
fiir Dirichletreihen, die Spitzenformen assoziiert sind

von A. GooD

TEIL 1
1. Einleitung

Bezeichnet 7(n) die Ramanujansche Funktion, so stellen sich bei der Funktion
L.(s) der komplexen Variablen s=o+it, die durch L (s)=),%; t(n)n"5, a>6%,

definiert ist, &hnliche Probleme wie bei der Riemannschen Zetafunktion {(s). L,(s)
ist bekanntlich eine ganze Funktion, die der Funktionalgleichung

(2r)~*Ir (s) L, (s)=Q2n)* "2 (12—s) L, (12—5) (1)
geniigt, und besitzt auch ein Eulersches Produkt. Ebenso kann man von einer Rie-

mannschen und Lindel6fschen Vermutung fiir L, (s) mit kritischer Linie ¢ = 6 sprechen.
Letztere besagt, dass fiir /=1, 2,... und jedes ¢>0

T

1

if|L,(6+ir)|2’ dt=0(T*), T .
0

Diese Vermutungen sind noch nicht entschieden. Fiir /=1 jedoch werden wir in Teil II
sogar beweisen, dass ein C>0 derart existiert, dass

ClogT+0(1), o=6,
T [¢ o}
1 z “294,0(T?7%), 6<a<6},
;JlLf(crHt)lzdt: ,,gf (n) ™" +0( ) 0 <6} @)
° Y 2?2 (n)n" " +0(T ' log®T), o=64,
n=1

wenn T— oo. Im Falle der Riemannschen Zetafunktion kennt man nach Hardy,
Littlewood und Ingham bei den entsprechenden Mittelwerten asymptotische Formeln
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fiir /=1, 2. Nach der Theorie von K. Chandrasekharan und R. Narasimhan [1] fiir
Dirichletreihen, deren Summenfunktionen Funktionalgleichungen besitzen, ent-
spricht der Fall /=2 bei {(s) dem Fall /=1 bei L(s).

Nach Riemann folgt die Funktionalgleichung von { (s) aus dem Transformations-
verhalten einer Thetafunktion. Die entsprechende Rolle iibernimmt bei L, (s) die
Funktion

4(2)=Y t(n)e*™, JImz>0,
n=1

die eine Spitzenform vom Gewicht 12 beziiglich der Modulgruppe ist. Sind nun k, N
positiv ganz, und assoziiert man einer Spitzenform der Art (—k, N) im Sinne von [8]
die Dirichletreihe, deren Koeffizienten die Fourierkoeffizienten der Spitzenform im
Punkt co sind, so definiert diese Dirichletreihe nach der Theorie von E. Hecke [7]
eine ganze Funktion und geniigt einer Funktionalgleichung der Art (1). Deshalb
werden wir jeweilen gerade die volle Klasse solcher Funktionen untersuchen. Es wird
sich zeigen, dass fiir den quadratischen Mittelwert dieser Funktionen eine asymptoti-
sche Formel der Gestalt (2) ebenfalls gilt.

Als ein wesentliches Hilfsmittel beim Beweis von (2) benotigen wir eine Darstel-
lung von L, (s) im kritischen Streifen 54 <o <63 durch eine sogenannte approximative
Funktionalgleichung. Bezeichnet ¢ die charakteristische Funktion des Intervalls [0, 1],
so ist dies nach den klassischen Beispielen { (s) und {?(s) von Hardy und Littlewood
[5] eine Gleichung der Gestalt

L,(s)= z v (n) n™% (_.A)Jr(z -

- r(12-s) & <2nn

Z T(n)ns-—126 l I

F(S) Py )+R(s)

3)

wobei R(s) fiir 54<0<6% und |¢t| - oo als Restglied der rechten Seite von (3) be-
trachtet werden kann. Dass fiir eine Dirichletreihe eine Funktionalgleichung der Art
[1] eine approximative Funktionalgleichung zur Folge hat, bewiesen Chandrasekharan
und Narasimhan fiir eine grosse Klasse solcher Funktionen. Sie benutzten dieses
Resultat gleich zur Abschitzung des quadratischen Mittelwertes der Dedekindschen
Zetafunktion eines algebraischen Zahlkorpers im kritischen Streifen. Einerseits war
jedoch das Restglied in ihren approximativen Funktionalgleichungen bei Dirichlet-
reihen, deren Koeffizienten nicht alle nichtnegativ waren, wie z.B. bei L, (s), grosser
als erwartet. Andererseits galten ihre Abschitzungen nicht gleichmadssig in weiteren
Parametern, z.B. bei Dirichlets L-Reihen L(s, x) gleichméssig im Modul von yx. In
umfangreichen Abschitzungen gelang es A. F. Lavrik [11], [12], inspiriert durch
Yu. V. Linniks Darstellung [13], [14] von L(s, x) im kritischen Streifen fiir [¢|<]1,
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diese Nachteile zu beheben. Um mit Hilfe des grossen Siebes Mittelwertsitze von
Linniks Art [13], [14] zu beweisen, hat M. N. Huxley [9], [10] bei den L-Reihen
algebraischer Korper eine Idee von H. L. Montgomery weiterentwickelt. Diese fiihrt
ohne allzu grosse Abschitzungen von den Funktionalgleichungen zu approximativen
Funktionalgleichungen dieser Funktionen, gleichmdssig in wichtigen Parametern.
Nach Montgomery ersetzt man im ersten resp. zweiten Hauptterm von (3) das klas-
sische ¢ (¢) durch spezielle Gewichtsfunktionen & (o) resp. &, (o, s), wodurch das Rest-
lied verkleinert wird. Versucht man jedoch, daraus die klassische Gestalt der approxi-
mativen Funktionalgleichung [5] zu erhalten, so ergibt sich ein Restglied von dersel-
ben Grossenordnung wie die Hauptterme. Andererseits ist natiirlich im klassischen
Falle das Restglied mindestens von der Gréssenordnung der letzten Summanden in
den Haupttermen. Bei {(s) hat C. L. Siegel [17] in seiner Arbeit iiber Riemanns
Nachlass fiir das klassische Restglied die asymptotische Entwicklung

R(3+it)=t""% (g () + 1712 gy (1) +- 417D g () + 0 (11]7)), Jt] > oo,

4)

gegeben, wobei / beliebig positiv ganz ist, und g;(¢),j=1, 2,..., beschrinkte Funk-
tionen von ¢ sind. Ein entsprechendes Resultat ist nur noch fiir Dirichlets L-Reihen
L (s, x) bekannt [3], [18]. Siegels Resultat hat sich bei der numerischen Berechnung
der Nullstellen von {(s) als niitzlich erwiesen.

Unser Ziel ist es hier, fiir approximative Funktionalgleichungen mit gewichteten
Haupttermen eine Entwicklung zu beweisen, die (4) in gewissen Punkten &hnlich ist.
Ersetzen wir ndmlich in (3) ¢ durch Gewichtsfunktionen ¢ resp. ¢, (Definition siche
§2), die durch ¢,(0)=1—¢(1/0) verkniipft sind, so gilt in (3) nach Satz (iii) und
Korollar 1

R(6+it)=t " hy (1) +t 2 hy () +-+t " (e)+0(1t]71712), Jt|l> 0, (5)
wobei / geniigend gross positiv ganz ist, /; beliebig oft differenzierbar und
h;(£)=0(t'?), |t|->o0, j=1,2,...

Siegels Formel liegt dennoch tiefer als (5). Aus den explizit gegebenen Funktionen
g, ersieht man nimlich sofort, dass die Potenzen von ¢ in (4) nicht verbessert werden
konnen. Da wir fiir die Funktionen #; die genaue Grdssenordnung nicht kennen,
braucht dies in (5) nicht der Fall zu sein. Die Definition der 4; ldsst aber dennoch
erwarten, dass sich (5) ebenfalls bei der Gewinnung numerischer Resultate verwenden
ldsst.

Weiter ist die Konstante, die durch den O-Term in Satz (ii) implizit gegeben ist,
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unabhingig von ¢. Dies gibt uns eine grosse Freiheit in der Wahl von ¢ und ¢, und
erlaubt uns — auf {(s) und ¢2(s) iibertragen — das klassische Restglied bis auf einen
Faktor |¢]%, ¢>0, ebenfalls zu erhalten (Korollar 2). Schliesslich wird die approxima-
tive Funktionalgleichung gebraucht, um die Grossenordnung der Funktionen im
kritischen Streifen abzuschdtzen. Als Spezialfall von Korollar 3 erhalten wir

L.(6+it)=0 (|t]'?), |t|- .

Unsere Ausfiithrungen lassen sich unter sinngeméssen Voraussetzungen auch auf
Dirichletreihen iibertragen, die eine Funktionalgleichung im Sinne von [1] erfiillen.

Diese Arbeit ist ein etwas iiberarbeiteter Teil meiner Dissertation, die ich bei Prof.
K. Chandrasekharan geschrieben habe. Ich mochte ihm hier fiir seine Ermutigungen
und seine Unterstiitzung danken.

2. Formulierung der Resultate
Seien k und N positive ganze Zahlen. In Lemma 1 fassen wir Eigenschaften von
Spitzenformen der Art (—k, N) im Sinne von Hecke [8] zusammen, die hier ohne

Beweis gebraucht werden.

LEMMA 1. (Hecke [7], [8]). Sind H und H, zwei Spitzenformen der Art (—k, N)
im Sinne von [8], welche die Fourierentwicklungen

(v 0] o
H(Z)= Zl a, eZninz/N’ HO (Z)= Zl bn e2m’nz/N, 3mz>0’
n= n=

besitzen und in der oberen Halbebene der Gleichung

H, (z)=(-—iz)"‘H<—1)

4

geniigen, gilt

Z |anl=0(x(k+1)/2), Z ]b,,|=0(x(k+1)/2), X b 00
<

n<x n<x

Durch partielle Summation folgt daraus sofort

S layl n~= O (x (**V12~%), gleichmdssig fiir 6 <o <(k+1)/2,
n<x " O(lOgX), G'=(k+1)/2,
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Y, la,) n~ =0 (x**127%), gleichmdssig fiir 6 >0, > (k+1)/2, wenn x — 0,

nzx

und entsprechende Resultate gelten fiir Z |b,| n™°.
(i) Die H respektive H, assoziierten Dirichletreihen

FO=3 an Fol= X, b

konvergieren fiir 6> (k+1)/2 absolut. Sie lassen sich zu ganzen Funktionen in s fort-
setzen und geniigen der Funktionalgleichung

(%)-sr(s) F(s)=(_]2§\)s_k I (kms) Fy (k—s).

Wir fithren nun noch einige Definitionen und Bezeichnungen ein:
Eine Funktion ¢:[0, c0)— R gehort zur Klasse & unserer Gewichtsfunktionen,
wenn ¢ unendlich oft differenzierbar ist und

¢(0)=1, wenn 0<¢<%, ¢(0)=0, wenn ¢>2.

Wir definieren eine Abbildung von & auf & durch ¢+ ¢@,, wobei

®o(0)=1—9(l/0)

ist. Fiir ¢ aus & und w=u+iv setzen wir

[e o]

K,(w)=w f ¢ (@) e” 'do, u>0.
0

¢ bezeichne die j-te Ableitung von ¢ und |||, die L,;-Norm von ¢, Ist x>0,
t#0, ¢ aus & und F wie in Lemma 1, so definieren wir mit sgn¢=1¢/|¢|

1 K, (w
I'(s+w) F(s+w) Ko (v)
2mil () w
(k/2)+1-0)

XN 7 nt )wdw
x{—exp| —i=s ,
2r P 2 B

G(s,x; 0, F)=
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wobei fiir reelle u j(,,) Integration iiber den Weg w=u+iv, v wachsend, bezeichnet.
Schliesslich setzen wir fiir ¢>0, ##0 und j=0, 1,...

2nil (s) w(w+1)--(w+j) 6)

(5 0= fr(s+w)<gexp<—igsgnt))wdw,
&

wo § eine einfach geschlossene, positiv orientierte Kurve ist, die von den Polen des
Integranden genau die Punkte w=0, —1,..., — j umschliesst.
Wir konnen nun folgenden Satz aussprechen:

SATZ. Sei x>0, ¢ aus ] und F, F, wie in Lemma 1. Dann gilt:
(i) F ldsst sich im kritischen Streifen (k—1)/2<0<(k+1)/2 darstellen als

2r\* 7k 1
+{— F(k—S)G k—"S, 4 (po,Fo .
N X

(ii) Wenn y=xN|t||2n ist, besitzt G fiir I> (k+1)/2 die Entwicklungen

© L (n n\
G(s,x; 9, F)= Y ann“{Z ¢"’(~)(—~) vj(s,ltl”‘)}
n=1 ji=0 y y
+0 (o PN yEFD27o T2, ] > o0,
gleichmdssig fiir (k—1)/2<o<(k+1)/2 und alle ¢ aus K.

(iii) y;(s, 1£]71), j=0, 1, 2..., sind rationale Funktionen von t, deren Koeffizienten
von o abhdngig sind. Es ist

Yo (5, 0)=1

und fiir j=1, 2, ...

nG =] $ cu@ e},

wenn |t| geniigend gross. Dabei ist die ganze Zahl m>j[2 und die C;, als Funktionen
von & bleiben beschrinkt, wenn (k—1))2<o<(k+1)/2.
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Bemerkungen: (1) Die Einschrinkung, dass die Entwicklungen in (ii) erst fiir
geniigend grosse / gelten, ist nicht wesentlich. Durch eine etwas kompliziertere Defini-
tion der Funktionen G und y; liessen sich analoge Entwicklungen fiir alle />1 be-
weisen. Da wir dies weiter nicht bendtigen, haben wir der Einfachheit halber darauf
verzichtet.

(2) Falls in (iii) j ungerade ist, gilt natiirlich m>j/2. Der Fall j=2 zeigt jedoch,
dass die Schranke m>j/2 i.a. nicht verbessert werden kann.

KOROLLAR 1. Unter den Voraussetzungen des Satzes ist fiir (4n*|N?) y,y,=t>
und > (k+1)/2

F6)=3 ano (") @) krik(s)s),.zlb ()
+Z y; (s, 11171) Z an”" (’)<n)("£>j

Y1 1

+(§v“) T S s 5 sate (B) (-2

+0 (l“ Pl ¥ P27 1172)+0 (log " VNl 172779310 7H%), 1t - oo,

gleichmiissig fiir (k—1)/2<0<(k+1)/2 und ¢ aus K.

KOROLLAR 2. Es seien die Voraussetzungen des Satzes erfillt und y,=y,=
=N|t|/2n. Existiert fiir ein o mit 0<a <} ein f>0 derart, dass

Y |la,|>=0 (x*7*), y 1b,)>=0 (x*"*), x- o0,

xSns<x(1+x~%) x<ns<x(1+x~%)

dann gilt

2n\* 7 I (k—s) _ Y
— -s b"ns k+0 t(k+1)/2 c—(a+p)/2 , t 00,
F(s)= ) a,n +(N_) IG) n:/:,n (I ), 11l
™)

gleichmdssig fiir (k—1)/2<o<(k+1)/2. Wihlen wir insbesondere a=%—¢, £>0 ge-
niigend klein, so konnen wir nach R. A. Rankin [16] p=4%, respektive nach der kiirzlich
von P. Deligne [2] bewiesenen Vermutung von Ramanujan-Petersson f=%1—c¢, >0,
wéhlen. Dies ergibt fiir das Restglied in (7) die Abschitzungen

O (|t|®/D+1/20%e=0) ' resp. O (Jt|*/D*77), |t|—> o0, £>0.
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KOROLLAR 3. Ist F eine ganze Funktion, die durch die Dirichletreihe definiert ist,
welche einer Spitzenform der Art (—k, N) assoziiert ist, so gilt fiir jedes ¢ >0

O(Jt|logltl), o=(k—1)/2,
F(o+it)=10(t|**V/27°), gleichmissig fiir (k—1)2+e<o<(k+1)/2—e,
O (loglt]), o=(k+1)/2,

wenn |t| — oo strebt.
3. Hilfssiitze

Zum Beweis des Satzes bendtigen wir noch

LEMMA 2. Sei s=o0+it, w=u+iv und bezeichne D, einen vertikalen Streifen
endlicher Breite in der s-Ebene. Ist D, der Halbstreifen 0 <%,—1<t<1, so existieren
Zahlen ¢, >0, ¢, >0, sodass fiir |t| =c,

r(s+w) ( T )
exp| —i - wsgnt

. <ec t1/2-o 1+t+v a+u—1/2,
o 5 2111727 (1+]1-+0])

wenn s in Dy und s+w in D, —D,. Gilt jedoch |w|<c;|t|'/* fiir ein c3>0, dann ist

I (s+w)
r(s)

gleichmassig fiir s in D,.
Beweis. Gleichmadssig in einem vertikalen Streifen endlicher Breite gilt die Stir-
lingsche Formel

IT (s)|=(2m)"* exp (-—g ltl) |gjo~ 1/ (1 +0 (Tlti)) |t - o,

Wir wihlen ¢, so, dass fiir |[£|>¢, und |[t+v[>¢

T
exp(—i 5 w sgn t>=0(|t|“), wenn |t| — o0,

Y/
exp (-—i |t+vl) [t o) tu—1/2

n -
exp (-—5 Itl) [

'(s+w)
r(s)

~ ]

und c, so, dass

I(s+w)
r(s)

Y - -
<c, exp (—-i(lt+vl--ltl))ltl”2 “(1+]t+0])"* V2, wenn |t|>c,.
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Da

| T . n
lexp (——5 (|t+v]—|t| +iw sgn t)) =exp (-§ (|t+v]|—|t|—v sgn t))

und
|t+v|—|t|—vsgnt=(t+v) (sgn(t+v)—sgnt)=>0

ist, haben wir den ersten Teil bewiesen. Fiir den zweiten Teil verwenden wir die Stir-
lingsche Formel in folgender Form

I'(s+w)=02n)!"? exp ((s+w—1%) log (s+w)—(s+w)) (1 +O0(|s+w|™)),
[s+w|— o0,

gleichmdssig fiir |arg(s+w)|<n—¢, £¢>0.
Aus w=0 (|t|'/?) folgt

w
log (s+w)=logs+—+0(|t|"), |tf|]> o,
S
und

: t oy [T o
logs=log|s|+i arctg —=log|t|+ O (|t]*)+i ) sgn t —arctg "
o
-n ._1
=log|t|+i 5 sgnt+O(|t|”"), |t|— o0,

gleichmadssig fiir s in D,. Also erhalten wir

I'(s+w)
I (s)

exp(—igwsgn t)=0(lexp((S+w—%)logS)l exp(g (Itl +vsgn t)) ltl“z"’>

n n
=0 (ltl“ exp <_5 (t+v) sgnt+i (It +v sgnt)))

=0 (]t]*), |t|—= o0,
wie behauptet.

LEMMA 3. Ist ¢ aus 8, so lisst sich K, (w) analytisch in die ganze w-Ebene fort-
setzen und K, (0)=1. K, geniigt der Funktionalgleichung

K'P (_w)=K¢o (W)
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und besitzt fiir [=0, 1, 2,... die absolut konvergenten Integraldarstellungen

o]

(_1)l+1
(w+1) (w+2)...(w+1)

K(P(W): (p(l+1)(g) Qw+l dQ.

(ein leeres Produkt ist durch 1 zu ersetzen).
Beweis. Fiir u>0 ergibt sich mit partieller Integration

K(p(W)=Wf¢(Q) e” tdo=¢(0) 0"|5 - fqo‘”(a) 0" de
0 0
00 2 (8)
= fco‘“(e)ewdg=— fco‘”(a)e‘”de-
(0] 1/2

Das letzte Integral ist fiir jedes komplexe w absolut konvergent und gibt die analy-
tische Fortsetzung von K, (w) in die ganze w-Ebene. Es ist

2

K@= [ ¢V do=~(0@-0@)=0 =1

1/2
und
2 2
K,(—w)=— f o (0) @™ do=— f oM (1/0) 0¥~ ? do
1/2 1/2
2

=— | ¢{”(e) 0" de=K,,(w).
:/2

Weitere partielle Integrationen der rechten Seite von (8) ergeben die gewiinschten
Integraldarstellungen von K, da fiir j=1, 2,..., ¢ (0)=0, wenn 0< 0<% oder ¢>2.

LEMMA 4. (i) Fiir die durch (6) definierten Funktionen v;, j=0, 1,..., gilt die Ab-
schitzung

v (s, [t17T)=0(¢1797%), |s|—> o0,

gleichmdssig fiir o in einem endlichen Intervall.
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(ii) Fiir ¢ aus & und p>0,v>0,1=0, 1,... ist

[c ]

2m‘11“ (S)JF (s+w) W(Wi_li).l}; ) 0"V (e)e" " do (v exp( ——igsgn t))w dw
]

"

=fio 0P (1) (= 1) v; (s, wv),

wenn die Kurve §§ dieselben Eigenschaften hat wie der Integrationsweg in (6).
Beweis. (i) In der Definition (6) von y; diirfen wir, wenn |¢|>max (1, j2), fiir §
den Kreis |w|=|t|'/?> nehmen. Dann ist nach Lemma 2, zweiter Teil,
T (s+w) m e ™"
(s, 117D exp| —i- wsgnt
¥

|dw|

r(s) 2

=0 (J‘ltl”(j“)/2 Idw|>=0(|t|‘j/2), wenn |s| = 0.
¥

(ii) Mit partiellen Integrationen erhalten wir

0

f(ﬂ““’(a) ¥ do=—0"(n) u‘”+’—(W+l)f¢”’(e) "1 do
n

n

!
=Y (=" oWyt (w+) (wHI=1)...(w+1—j+1)
/=0

(=1 (wet]) (w+l—1).‘.(w+1)wfgo(g)gw“ldg.

u

Da p>0 ist, definiert |, ¢ (0) 0¥ ™! dp eine ganze Funktion von w. Also ist

[e2]

(_1)l+1
w(w+1)...(w+1)

"tV (9) "' do (vexp(—— igsgn t)) dw

T w
(v exp (—i — sgn t))
1-j 2 dw

ww+1)...(w+1-j))

1
2xil (s)

JF(S+W) leo () pt(-1)
&
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T w
(uv exp (—i 5 sgn t))

w(w+1)...(w+j)

! . N |
— (€)) —n¥ w w

was zu beweisen war.
4. Beweis des Satzes

Sei (k—1)/2<0<(k+1)/2 und x>0, T>0. Bezeichne ¢, ; das Rechteck in der
w-Ebene mit den Ecken (k/2)+1—0—iT, (k/2)+1—0+iT, (k/2)—1—0+iT,

(k/2)—1—0—iT in dieser Reihenfolge. Ist ¢ aus & und F nach Lemma 1 einer Spit-
zenform der Art (—k, N) assoziiert, so gilt, da K,(0)=1 ist,

(fv‘n)_s”s“’(s)zi‘: f (fv”‘n)—(HW)F(s+w)F<s+w) o (%)

o, T

X (x exp ( —i g sgn t))w dw. 9)

Denn mit F(s) ist wegen der Funktionalgleichung auch I' (s) F(s) eine ganze Funktion
von s. Weil fiir festes s

n
I'(s+w)F(s+w)exp <——i 5 W sgn t)

_fo(wI°™71),  |v] > oo, wenn o4u>(k+1)/2,
1o (ol 2), ju] - o, wenn o +u<(k—1)/2,

gleichmissig fiirr (k/2)—1—o<u<(k/2)+1—0, ist nach dem Phragmén-Lindelof
Prinzip

I'(s+w) F(s+w)exp (—i g w sgn t)=0(lvl("“)’2), |v] > 0,
gleichmdssig fiir (k/2)—1—o<u<(k/2)+1-—0. Nach Lemma 3 ist fiir /=1, 2,...
K,(w)

=0(jol™), o] oo,

gleichmassig fiir |u| <$. Aus (9) erhalten wir also, wenn T'— co strebt
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(%75) F(S)F(S)_% ((k/z)[l—.,) (fVir)— - Tlstw)Fistw) = ¢( 2

y o t wd 1 2\~ W)
xexp| —i -sgn W—— —
P71, %8 i N

(k/2)~1~0)
¢( ) LT v
X (s+w)F(s+w) — X exp —lisgnt dw.

Auf den zweiten Summanden wenden wir jetzt die Funktionalgleichung von F an und
ersetzen w durch —w. So ergibt sich

2 - 1 2 — (s+w)
<1_V§) r(s)F (S)=2_7ti J‘ (Njf) I'(s+w)F(s+w) (W)
((k/2)+1-0)
K t w J 1 2 stw=—k
X|xexp| —i-= W— — o
¥ERPA Ty o8 i N

((k/2)—1~—0a)

X T (k=s—w) Fo (k—s—w) 2" >(xexp(_,_sgm)) dw
)

-_-GV_”)_ I (s) 27”.;@) ((mil_a) I (s+w) F(s+w) =2 (

N w 7 s—k
x(%exp(—i%sgnt)) dw—-(%) I'(k—s)

1 K,(—w)

S— I (k—s+w) Fo (k—s+w) —~—

“2mil (k—s) (k=s+w) Fo( ) (—w)
(o+1-(k/2))

N v 2r\"°
x(zn—xexp(i;—tsgnt)> dw=(l—vz—t> r(s)G(s, x; o, F)

o Mr(k ) : I'(k—s+w)
\~v %) 2mil (k—s)
((kj2)+1-[k—0])

x Fo (k—s+w) K”‘;v(w) (27 SR (“ 2 (—t)))w

=(%")_s I (s) G(s, x; ¢, F)

2m\* 7k 1
+(1—V—) F(k—'S)G(k—S, ;; Po, FO)'
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Dies beweist (i). 7;(s, |¢]™!), ausgedriickt als Summe der Residuen der Pole im Innern
von g, ist

(i),
wobei D,; komplexe Zahlen sind. Also ist y;(s, |¢| ™!) eine rationale Funktion von ¢,
deren Koeffizienten fiir beschrdnkte o offensichtlich beschrinkt bleiben. Mit Lemma
4 (i) beweist dies (iii).

Wir brauchen also noch die Entwicklungen (ii) zu beweisen: Sei y>0 und
I>(k+1)/2. Mit Lemma 3 ldsst sich G in zwei absolut konvergente Doppelintegrale
aufspalten:

1 (_1)l+1
G(s,x; 0, F)= I'(s+ (1+1) wl
(5% 0 F) =0 r ) J ) i D mr ) @ @e
((k/2)+1-0) 0
F(s+w)d XN ;" sgnt wd !
x F(s+w — exp| —i - sgn w=
W\o2n P 2% 2mil (s)
(*k/2)+1-0)
XF(S—}—W) (‘1)l+1 (P(l+1)(Q) Qw+l 2 a”n—-(s+w))d0
w(w+1)...(w+1) A )
0
xN T . “’d N 1 I (s+w)
—exp| —i=sgn w s+w
“\2r P\ 712 % 2mil (5)

((k/2)+1-0)
©

(___l)l+1
(p(l+1)(g) Qw+l( Z ann-(s-%-w)) dQ

X
W(W+1)...(W+l) n>py
0

xN T ¥
x{—exp| —i=sgnt]) dw=I,+1,,
2n 2

sagen wir. Mit dem Satz von Cauchy ersetzen wir den Integrationsweg u=(k/2)+1—o¢
in I; durch den Weg €, =9, + D, + D, in I, durch €, =€, + €, + €;. Dabei sind fiir
k>2D;, §;, j=1, 2, 3, unter der Voraussetzung |¢t|>1>> ((k+1)/2)* wie folgt defi-
niert:

D,: Halbgerade ((k/2)—1—oc—ioo0, (k/2)—1—a—i/|t]),

D,: Halbkreis mit Zentrum w=(k/2)—1—0¢ und Radius \/ it] in u< (k/2)—1—0,
D,: Halbgerade ((k/2)—1—a+i/|t], (k/2)—1—0+i0),
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&,: Halbgerade ((k/2)+1—0c—ioo, (kj2)+1—c—i/|¢]),
®,: Halbkreis mit Zentrum w=(k/2)+1—o und Radius /|| in u>(k/2)+1—o0,
€,: Halbgerade ((k/2)+1—0+i/|t], (k/2)+1—0+iw).

Die Wege sind so zu durchlaufen, dass v nichtabnehmend ist. Fiir k=1, 2 gelten diesel-
ben Definitionen, nur dass jetzt in €, das Wegstiick w=(k/2)—1—a+iv, |t +v|<]1,
durch den Weg D, ersetzt wird, der aus den iibrigen 3 Seiten des Rechteckes
w=(k/2)—-1—0—i(t+1), w=—0—i(t+1), w=}—0—i(t—1), w=(k/2)-1—0—
—i(t—1) in dieser Reihenfolge besteht. Das Integral des Integranden von [;, j=1, 2,
iiber &; bezeichnen wir mit I;.

Fiir festes s und |v| - oo strebt der Integrand von I; gleichmdssig fiir (k/2)—1—o¢
<u<(k/2)+1—0 gegen Null, wenn /> (k+1)/2. Also ist

11=I;+RCS ((gl, (52),
IZ=IZ’ ’

wo Res(C€,, €,) die Summe der Residuen des Integranden von I, zwischen €, und €,
bezeichnet. Da |t|>1? ist, erhalten wir fiir diese Summe

0

(_1)l+1
w(w+1)...(w+1)

xN n ¥
X an ™™ do| —exp| —i-sgnt]] dw,
(an M e|5exp| —ise

wo & eine Kurve ist, wie sie in der Definition (6) von y; auftritt. Mit partieller Summa-
tion ergibt sich, da ¢ (¢)=0 ist fiir g>2,

1
Res ((Sl, @2)=mjr(s+w) (P(Hl)(g) QWH
&

Z ann—(s+w) f ¢(1+1)(Q) Qw+l dQ= f(p(l+1)(g) Qw+l( Z ann—(s+w)) dQ,
n/y<2 LA A niy<e

und mit Lemma 4 (ii) ist

("'I)H’1 ¢(1+1) (Q) Qw+l dQ
ww+1)...(w+1)

nly

<2y

xN ex ins nt wdw
x SR — - p——)
2 P\ T %8

Lot
Res (GI’ 0:2)—_:"2 a,n mjr (S+W)
&
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Wir erhalten somit

© ! - (n n\’ xN
G(s,x;0, F)=3 an*{y o () (——) -(s, --)}+I’+I',
( ) ,,; {,Z:o y y Y 2ny 1r72

und zeigen nun, dass die I}, j=1, 2, von der gewiinschten Grossenordnung sind, wenn
2ny/Nx=|t| ist:
Wegen Lemma 1 (i) ist

©
f(p(l+1)(g) Qw+l( Z ann—(s+w)) dQ
A n> oy

2

=O (f I(p(l+1)(g)l Qu+l(Qy) (k+1)/2—0—~u dQ)

1/2

2
=0 <y(k+1)/2—a—u J\ |¢(l+1)(9)| dQ)

1/2
=0 (Y20l Y ), >0,

(10)

gleichmassig fiir w auf €,, (k—1)/2<0o<(k+1)/2 und ¢ aus K. Ebenso ist

[e 2]

j(p(l+1)(g) Qw+l ( Z ann—(s-}'w)) dQ
n<ey
0
2 (1)
=o( [ 16"V @) ¢ @)™ 2 do)

1/2
=0 ("R V), y>0,

gleichmissig fiir w auf €, (k—1)/2<06<(k+1)/2 und ¢ aus K.
Aus (10) und Lemma 2, erster Teil, folgt, da 2ay/Nx=|¢t|,

©

1
2nil ()

(___1)l+1
w(w+1)...(w+1) )

qD(H-l)(g) Qw+l( Z ann—-(s+w)) dQ

nzey

X xNe ‘ns nt wdw
2n p 2 g

JF(s+w)
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-V
1+lt+l’| otu—1/2 . x N \*
=0 ( — 1/2) i y(k+1)/2 ° u“(p(l+1)“1 ) do
|t] |v] 2n
=VIt|
o (2N 2 -
=0 (y(k+1)/2 ( x) |t|1/2 J‘ |U‘ i 1(1 +|t+U|)(k+1)/2 dU ”(p(1+1)”1)
=Vt
=0 ( (l+1)” (k+1)/2- a'ltl (k+1)/2 J |v|-l—l (1+|t+v|)(k+1)/2 dU)

k+1)/2~a |-
=0 (" V), y**V277117Y2), wenn |t| - w0,

da
Vit =2 |t
o] ™7 (1[4 o) D2 dv=0( f |p| D2 dv)
v o} - Q0
U]
+0 (|t|"°“>/2 J lo| 1 dv)
-2t

=0(lti(k+1)/2_l)+o(Itl(k+1)/2—l/2)=0(ltl(k+1_l)/2)9 lt‘ - 0.

Der Beitrag zu I, von der Integration lings €; ldsst sich gleich behandeln. Ebenso
lassen sich die Beitrdage zu ; von der Integration lings D,, D, behandeln, wenn man
(11) anstelle von (10) verwendet. Fiir k=1, 2 ist noch zu beachten, dass fiir w auf
D, oder D, aber nicht auf D,

-Vl =irl
flvl"_1(1+|t+vl)"+“'”2dv=f o] ™' (L + 1t +0))* D2 do

- ® - o

=2 =t/2

=0( f Ivl—l—1+(k—3)/2 dU)+O (ltl—l—l f (1+|t+v|)("_3)/2 d17>

— o0 -2 |t}
-Vl

+O(|t|(""3)/2 f |u|"‘1du)=o(|t;<"‘3”2“)+0(|t|"‘“3>/2"log|t|)
- 1tl/2
+0(|t|* 327" =0 (|f)*~37P/2), wenn |t| > o0,
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und
f|u|"“(1+|t+v|)"+“"1/2|dw|=o(ltr"‘f|dw|>=0(|t|""1)
Do Do

=0(|1|*7*7%), |t|-»o0.

Mit Lemma 2, zweiter Teil, und (10) resp. (11) kann man auch die restlichen Integrale
iiber D, und €, abschitzen, z.B.

1 (_1)l+1 -
27l (s) I(s+w) w(w+1)...(w+1)

xN T t wd
x[—exp| —i=
5, CXp| i sgn w

1 . o
o | — ekt D2=0-uy 0+ 1) (_ p
( wo.(wt D)~ lo® Pl (% ) lawl

D2

o [t] xN'\"
=oowmﬂmymﬂﬂ nt“””f(——- dwi
2ny

D,
1+1 k+1)/2—- -1/2
=0 ([o®* V), y*+V270172), 1] > o0,

(P(l+1)(Q) Qw+l( Z ann—s—w> dQ
y

gleichmissig fiir (k—1)/2<o<(k+1)/2 und ¢ aus K.
Damit ist der Satz bewiesen.

5. Beweis der Korollare
Nach Satz(ii) ist fiir 2zxy,/N=|¢|

© l J
G(k—S, l/x’ Do FO)= Z bnns—k { z gog)j) (l) <—£) yi(k—sa ltl—l)}
n=1 i=0 Y2 Y2

(a+1)

—-(k—1)/2 -
+0(llo8* PNy y5~E D272, 1] > oo,

gleichmissig fiir (k—1)/2<o<(k+1)/2 und ¢ aus K. Da

Ol

folgt nun Korollar 1 unmittelbar.

271' 26—k B _
N(ﬁ) 1t*7 2= (p,3,)%®77, |t| > o0,
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Sei >0 und [¢|>1. Mit ¢ ist auch ¢ in ], wenn

I, O<e<I-%t]77,

Yo 1t1)=y0(1+(e—1)[2]%), 1-3%t]7*<o<<1+]t]7°,
0, o=1+4]t7¢,

denn (d/dg) ¥ (g, 1t]*)=0 fiir g=1—4(¢|"* und g=1+¢t| ™% Also ist fiir j=1, 2,...

W (o, 1t1)=(d’/de”) ¥ (e, 111)=11]"* ¢ (1+(e—1) ]1*), 0<o<o0, (12)
und
o 14t~
[ uprde=o (1 [ de)=00a>%), 1. (13)
0 1-4 |¢]-=
Da
Vo (e, 1t1)=1=y (1/e, I1]%),
ist

w6 (o, 181 =y (1/g, [t|*) 072, fiir 0<g<oo0,
also ist auch
v (0, 1t19)=0(|2)"*), |t|> o, gleichmissig fiir 0<p< 0. (14)

und
f W9 (e, 1119)] de=0 (1119~ 1%), || > co. (15)
0

Schliesslich soll ¢ wieder die charakteristische Funktion des Intervalls [0, 1] bezeich-
nen. Um Korollar 2 zu beweisen, wenden wir Korollar 1 mit  anstelle von ¢ an.
Wihlen wir dabei a=14—¢, >0, und /> 1/2¢, erhalten wir

F(s)= T a,,n—s+(‘?f)zs_kr k=) 5 b 4R (s),

n<y; N F(S) n<y:

wobei nach (13), (15) und Satz (ii)

o ()< e £ o) )
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2n\**r(k—s) 2
b,n
+<N) re) &0

{t//o( 2,Itl“) (y2)+,21 t/f‘”< =" |t|“>(—;";>jv,(k —s, |t~ ‘)}

+0(y(k+1)/2 dlt’ 1/2)+0(y(k/2) 4 1/21” 1/2) Itl__)w’

gleichmdssig fiir (k—1)/2<e<(k+1)/2. Fiir j>1 haben wir
v (e, 111)=¥ (0, 1119)=¥ (0, 11"~ ¢ () =¥ (e, I119)— £ (2)=0,

wenn o< (1+7]7%) " oder = 1+1¢|7% da (1—3%|¢]7%) (1+¢] %)= 1. Mit (12), (14)
und (iii) des Satzes erhalten wir somit

R()=0(X P a, n= )+ 0 ((3,32) 277 P b, n° )+ 0 (V27711 7172)
+O(y(k/2) o 1/2‘t|-1/2) ltl'—")OO,

worin Y ¢ Summation iiber y;(1+¢|~%) " <n<y;(1+]¢t|7%), j=1, 2, bedeutet. Ist
nun y, =y, =|t| N/2x, so ergibt sich aus den Voraussetzungen dieses Korollars

Z(l)lanl n—as(z(l)lanﬁ Z(l)n—-2a)1/2____0((ltlk~ﬁ|t|—20+1—-a)1/2)
=0(It{(k+1)/2—a-(a+ﬁ)/2)’ It‘-—)OO,
und

2(2) 'bnl na—k<(z(2)lb”|2 2(2) n20"‘2k)1/2=0(|t|(k—ﬂ)/2 ltlo—k+(1—a)/2), ltl -0,
Also ist wie gewiinscht
R(S)zo(ltl(k+1)/2—a'—(a+ﬂ)/2)’ ltl —00.

Korollar 3 ergibt sich sofort aus Korollar 2 und Lemma 1 (i).

TEIL II
1. Einleitung
In Teil 1 bewiesen wir approximative Funktionalgleichungen fiir Dirichletreihen,

die Spitzenformen assoziiert sind. Dieses Resultat wird hier zur Herleitung des fol-
genden Satzes verwendet:
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SATZ. Seien k und N positive ganze Zahlen. Sei H eine Spitzenformder Art(—k, N)
im Sinne von Hecke [8] mit der Fourierentwicklung

[s o}
H(z)=) a,e®™/N  JImz>0.
n=1

Dann gilt fir die ganze Funktion F(s),s=o+it, welche fiir > (k+1)/2 durch
F(s)=) -1 a,n”* definiert wird,

2AkT logT+0(T), o=k/2,
T

f|F(a+it)|2 dt=

0

T Y la,>n™2+0(T*" 172, kj2<o<(k+1)/2,
n=1

TY la)>n >+0(log’T), o=(k+1)/2,
n=1

wenn T — oo strebt. Dabei ist

o 12(4n)!
~j(N) NI (k+1)

JIH (u+iv)? v* "% du dv,
D

wobei D ein Fundamentalgebiet der inhomogenen Hauptkongruenzgruppe zur Stufe N
und j(N) der Index dieser Gruppe in der inhomogenen Modulgruppe ist.

In [4] bewiesen wir einen solchen Mittelwertsatz fiir F mit dem Restglied
o(TlogT) fiir 0=k/2 und o(T) fir k[2<o<(k+1)/2, wenn k>1 ist. Das Haupt-
problem ist hier also, eine bessere Abschidtzung des Restgliedes zu erhalten. Neben
einer approximativen Funktionalgleichung fiir F aus Teil I verwenden wir dabei
wesentlich eine Ungleichung von Hilbert fiir eine Bilinearform (Lemma 6) und Ab-
schitzungen gewisser trigonometrischer Integrale (Lemma 7). Der Gedanke, dass
hier eine solche Ungleichung von Hilbert angewandt werden kénnte, entstand beim
Lesen eines Preprints von K. Ramachandra, das dem Autor von Prof. K. Chandrasek-
haran freundlicherweise zur Verfiigung gestellt wurde. Ramachandra zitiert darin
einen Satz aus einer damals noch unveroffentlichten Arbeit von H. L. Montgomery
und R. C. Vaughan mit dem Titel 'Hilbert’s Inequality’ [15]. Der von Ramachandra
zitierte Satz ist hier nicht anwendbar.

2. Hilfssitze

LEMMA 5. Sei n>0. Fiir die Fourierkoeffizienten der Spitzenform H des Satzes
gilt, wenn x — c©
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Y la,?n"?+0(x*"%), e>k/2,
n=1

2 _~2¢0
L lal"nm= Ak logx+0 (1), o=k/[2,
0(x*72°), o<k/2,

wobei A denselben Wert wie im Satz hat, und

Y la,? n™%|log (x/n)|=0(x*"%%), o<k/2.

n<nx

(ii) Besitzt die Spitzenform H,(z)=H(—1/z) (—iz)~* die Fourierentwicklung

e 0]
Hy(2)=Y b,e*™™ N  JImz>0,
n=1
dann ist

Y |B? n*=Ak logx+0(1),

n<nx

mit demselben A wie im Satz.
Beweis. (i) und (ii) folgen durch partielle Summation sofort aus R. A. Rankins
Resultat [16]

Y la > =Ax"+0 (x*7?%), Y |b)*=A4x"+0(x*"?%), x- 0.

ns<x n<x

LEMMA 6. Seien (a,),~ und (b,),-, wie in Lemma 5. Sei ¢>0,n>0. Wir defi-
nieren

R()=y ¥ @l 5 oy y b

n<x m<n (nm)ﬂ’ nsSnx msn (nm)ﬂ

llog (x/n)|

undfﬁr FOIgen (an ::0=1’ (ﬁn r(:o=1 mit Ianlgclanl und ‘ﬂn'sclbnla n=13 2; )

%, B
O

)= T e

n<x m<n (nm)a- n (log (n/m))Z '

Dann gilt

O(x**172%9), kl2<a<(k+1)/2

R,(x)={0(log2x), o=(k+1)2, > S, (x)=0(x*"1"%), kl2<0 < (k+1)/2,
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und

_fo(x**17%), k2<o<(k+1))2, _fo(x**' ) k2<0< (k+1))2,
T"(x)—-{o(logzx), o=(k+1)/2, U”(x)~{0(log2x), o=(k+1)/2.

Beweis. Wegen Lemma 1 (i) und

R,(x)< ) la) n™% 3 byl m™°,

S.(x)< ), la,l n”7|log(x/n)] ), |balm™°
n<nx m<nx

folgen die Behauptungen fiir R,(x) und S,(x) nach partieller Summation von
Y w<nx @l 177 |log(x/n)| sofort. Fiir m+#n ist

m—n m—n n—m
log (n/m)=log (1 - )g - = )
m m m
(16)
n—m\_n—m
log (n/m)= —log (1 - )> ,
n n
also
1 (max (n, m))? 2mn

(og(a/m))E S (n=m)> " (n—m)*
und

|2l -
TG(X)SRG(X)-I-z <E< (nm)a—llz (n__m)2=Rd(x)+2 1<z<x r ?

s (n(L“:ﬁ:)—)zl—mst(x)_*_z1§<x r-?
|| * 1B.—rl> \2_[O(*T172), k2<o<(k+1)/2,
x( L i X (n—r)z"_l) {0(10g2x), o=(k+1)/2.

1<n<x N r<n<x

X

Aus (16) folgt weiter

(m/n)'? =1 _(mn)™'"* 1 (n/m)!* -1
(n—m) log(njm) (n—m)  (n—m)

Wegen

(m/n)'? -1 (n/m)'* -1
mm) S (rmm)
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ist somit
(max (n, m) ”2_ ) 3 |n—m]
(mn)’”z_ 1 < min (n, m)) min (n, m) 3 1
log(n/m) (n—m)| |n—m| = |n—ml| "~ 2min(n, m)’

Damit erhalten wir fiir ein positives n<1

m<nn m>n/n

Uo (JC) = Z (nm)a—(xlngm(n _ m) +<

n,msx
n¥m

x{log(ln/m)‘gﬁ/)z}*"( Z (nm)"”'inﬁmm!n (n, m))

nmEm<n/n
%P [
= +0 +
nm<x (nm)° "% (n—m) ((n mzsx " mzsx) (nm)° (17)
n¥Em m<wyn m>n/n
1 (mn)”z lanbm|
X + +0 Y= i/2
{ulogm max (n, m) (1—1) ) . (my
nm<m<n/n

-y f +o( » "l—f’ﬂ')

n,m<x (nm)a—l/Z (n— m) m,n<x (nm)a
n¥Em

Sind nun (x,)2% 1, (¥,)o 1 zwei Folgen reeller Zahlen mit ¥ 7> ; x2 < oo und Y 12 ; ¥i <0,

n=1s

dann gilt nach [6], p. 212, Theorem 294, fiir die Hilbertsche Form ), ,._ 1 X, Yn/(n—m)

n¥Em

i XnVm .sn(i x2 i y2)1/2.
n,r;=1 (n—m)| n=1 "n=1 "
ntm

Wenn o, =91, + Y20 Bn="V3n+Van> Vja reell fiir j=1,2,3,4,n=1,2,..., ist fir j=1, 2
[7;nl <clan| und [y;,l <clb,| fiir j=3, 4, also

canm Y1nY3m + Y2nY4am + iy2ny3m - i?ln?4ml <

nmsx (Am)" 712 (n—m)|  |n, m<x (nm)" ™" (n—m) |~
n¥m n#¥m

b2 nl_z,,)m: {o (x**1727), (k=1)2<0 < (k+1))2,

41tc2( Y lant7 Y

n<x n<x

0(logx), o=(k+1)/2.

Daraus folgt nun mit (17) und der Abschitzung fiir R, (x) die Behauptung fiir U, (x).
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LEMMA 7. Sei 0=¢, <6<y, 0<e,<6, und 6, <6,, 6,0,<1. Seien Y, und ,
zweimal stetig differenzierbare Funktionen mit folgenden Eigenschaften

)1, fiire;<e<9, _ -
‘.01(9)—{0, fiir 8, <0, und Y, (0)=0 fiir g<e, resp. ¢>9,.

Bezeichnen m, n positive ganze Zahlen, dann ist fiir feste =0, ¢>0 gleichmdssig in
m,n, T

(0, n=Td;/c oder m=Té)/c,

1-8
+0(n'"?), 0<B<1,
(1-8) und j=1=1,
O (llog(T/n))+0(1), B=1,m=n<Ts/c,
T o(n'™%, B>1,

3 it
‘ ! " > 1j#1 oder 1#1, m=n,
en\ i fem\ _p T7°
"”'(T)” ‘”’(T>"’ ilog (n/m)

40 ((max (n, m))~'~*# (log (n/m)™?),
fiir m#n,

und falls j#2 oder 1#2

T ——————e
I=|v, (C—t'f) v, (c—'i’> LH=) 2y ay
d0

t | T'(s)

0, n=Té;/c oder m=To)c,

o(on{aaf) o

|0 ((max (n, m))"%), k[2<o<(k+1)/2.

Beweis. Da y;(cnft)=0 fir cn/t>d;, also fir t<cn/d;, ist J=J'=0, wenn
T<cmax(n/é;, m/é;), d.h. wenn n>T4;/c oder m>Té,/c. Weiter ist fiir 1>cn/e;
W, (cnft)=0. (Fiir j=1 ist diese Aussage leer.) Somit kann im Integral J ¢ max(n/J,,
m/8,) als untere und min (7, cn/e;, cm/e;) als obere Integrationsgrenze angenommen
werden. Wenn j=I=1 und m=n<TJ/c, haben wir, da n=0(T)



A.GOOD

352
T 5 cn/é ) T
J= J- '¢1 (.C-;-) t7f dt= J }% <?) t~# dt+J t™8 dt
cn/dy I cnfdy cn/d
C i-p
+0(n'™%), o0<p<1,
1-py, | (1=5)
=0(n""F)+
log(Té/cn), B=1,
0(n'™?), p>1.

Wenn j=I/=1 und m=n>T4/c gilt

“()

und falls j#1 oder /51, haben wir fiir m=n, weil ¢;>0 oder >0

cn/d

o]

cnjdy

2
t™f dt)=0(n1‘”),

J=0 (c"jf’ t~f dt)=0 (n'7%).

cn/da

Falls m#n integrieren wir zweimal partiell und erhalten

L _ (n/m)iT 1 y n it
J=y;(cn/T) Y, (em/T) T™" ilog(n/m) ilog (n/m) J‘("’”ﬂ)

d cn cm\ _ T —— _, (am)T
<adns () (Z): =g,y mem) 70 Sy

T

(n/m)iT d _ 1 _’E it ii
g Gy gy | () e b3

0

Bezeichnen wir die Ableitungen von y;, j=1, 2 mit Strichen, dann ist

d cn , fcn ne\ _ _(n
3;%(—,—)%(-—;)(—;2—)—0 (t)

d? cn L fcn\ fen\*  [cn\ [2cn _ P _s
d?‘”f(‘?)= ,.(7)(;2_) +"’f(7)(73‘)—0(”‘ J+H0(n ).
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Damit ist fiir ¢ max(n/d;, m/6,)<t<T
d -2-p -1~ -
7 {-}=r=0((n+m) T"*")+0(T ' H)=0(T"'7¥)

und

i {.}=0((*+m*)t7* ) +0((n+m) 1> ) +0(t727%)+ 0 (mnt~**)

+O((n4m) 17277 )=0 ((n+m)? 4P) 10 (n+m) 27"
+0(t“2"ﬂ)=0 (t“z’”),

also mit (18)

J=@ v ("?) e T(gﬁ(n—)/‘“)*o (ﬁﬁz‘»")

T

¢ max (n/é ;, m/d1)

0 (a0 (“legtim) () (F) T g
+0((log (n/m))™? (max (n, m))**),

womit alle Behauptungen fiir J bewiesen sind.
Ist o reell, so gilt die Stirlingsche Formel

T
I(s+a)=2r)"?|t]°** 12 exp <—-§ [t +i (:—Z (o+a—1%)sgnt—t+t logltl))

x(1+0(117Y), It > w,

gleichmdssig fiir s in einem vertikalen Streifen endlicher Breite. Deshalb ist

=|t]*"2° exp (—-Zit(log t|—1)—i T (k—1) sgn t)(l +0(ItI™)), || = oo,
? (19)

und folglich
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T———-—-———-
o _ ch cm _
J’=e i(n/2)(k—1) ‘//j e l//l i tk 20
t t
0

x exp (—2it (log t—log (c (mn)'/*)—1)) dt (20)

cn CM\| k—20-1
+0( j(—t—) «p,(T) t dt).
0

Nun ist fiir 1> ¢ (mn)'/?=¢’

d {exp(—Zit(logt-—Iogc’—-l))
dt

= —2it(logt—logc' —1
2i(logc —logt) }exp( it(logt—logc ))

exp (—2it (logt—logc'—1)) (21)
2it (log ¢’ —log t)*
Da fiir j#2 oder I#2 6;6,<1 ist, haben wir
mn\!/? n m
¢'=c(mn)'*<c (——-—) < ¢ max (—~, -—),
und fiir 1> ¢ max(n/d;, m/é,)
mn\'/?
llog ¢’ —logt|=|log (c (mn)'/*)—log (c (-67)_) ) = —4log(6,6,)>0.
JYl
Wenn wir (21) in (20) zur partiellen Integration benutzen, erhalten wir
J'm et G- |y k=20 exp (—2it(logt—1logc’ —1)) "
d 2it (log ¢’ —log t)?
0
i (R12) (e 1’!// !/’ — exp (—2iT (log T —logc’ —1))
g : 2i(logc' ~log T)
T R
i G- ) exp (—2it (logt—logc' —1)) d v, |/1, j-2a| 4,
2i(logc’—logt) dt
0
T
+0 2ol dt).

¢ max (n/éj, m/31)
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Da fiir ¢ max(n/d;, m/0,)<t<T
d k—20-2 k—20-1 k-20-1
E{...}=O((n+m)t )+0(t )=0(t ),

ist schliesslich

Jl=0 tk—Za—l dt)_l_o(Tk"Za’)

cmax (n/é j, m/d1)

_ o(lg(m_._g.’_n_;))) o=ki2,
0 ((max (n, m))*™%%), k[2<o<(k+1)/2.

3. Beweis des Mittelwertsatzes

Wir benotigen die Darstellung von F(s) im kritischen Streifen durch die approxi-
mative Funktionalgleichung, wie sie in Korollar 1, Teil I, bewiesen wurde. Wir ver-
wenden dieselbe Notation.

Fiir ein festes ¢ aus & wihlen wir zwei Paare von Funktionen y/; und ;, j=1, 2,
welche den Bedingungen von Lemma 7 mit 0<d<d; <% und ¢, =4, §,=2 geniigen,
sodass

¢ (@)=Y () +¥:(0), =0,

und
@0 (0)=¥o1(0)+Vo2(e), 0=0.

Setzen wir k=1/A=(2n/N) und y, =y, =A4|¢|, so gilt also

. - _[(k=s) = .
F(s)=”§1 a,n”"*y, <;?1')+n§1 a,n” Y, (%)Mcz’ . ———————-;, (S)s) "};1 b Yo (‘)%)
sy L (k—58) &

Y b o (}’32-)+R(s)=§:1 £,6),

xR
F(S) n=1

sagen wir, wobei

R(s)=0(|t|*7V7277), |t|> oo, (22)
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gleichmdssig fiir (k—1)/2<o<(k+1)/2. Denn fiir /> (k+1)/2 ist

R(s)=0 (}: 17l s 17Tl /77)

n<2y;
I (k—
+O( (k=s)

1™y (k=s, 11171 3 164l nj”"‘)

<2y

l 1
r (S) j2=:1

+O(|tl(k+l)/2—a'—‘l/2)’ Itl—> 0,

gleichmissig fiir s im kritischen Streifen. Mit (19) und den Abschitzungen fiir
v;, 721, in Teil I folgt (22) sofort aus Lemma 1 (i). Definieren wir

T
Auv=Jﬂ(o+it)ﬂ(a+it) dt, pw,v=1,...,5,
0

dann ist

T

JIF(a+it)|2 dt=

0

v 1

5
2 Ay
s H=
Es wird sich zeigen, dass fiir 6>k/2 A, den Hauptbeitrag zu dieser Summe liefert.
Fiir 0 =k/2 steuern A, und A;; je die Halfte zum Hauptterm bei. Wir werden deshalb
zuerst die Integrale A,, behandeln:
Nach Lemma 5(i), 6 und 7 ist

T T
i s kn\[> 2 day Kn km\ [ n\"
Eern () o= & [ () (7))

A11'=J "
0

= T 1@l TH0m)+ Y lal*n0(n)

n<ATS ATSSH<ATS,
+ Y nllm Yy (kn/T) n™ Ty (km|T) m™*T
m,n<ats, (nm)” ilog(n/m) ' '
m#£n

lanam|
(0 Z o alonoin)
AkT logT+0(T), o=k/2,

T Y la)>n 2 +0(T**'72°), kj2<o<(k+1)/2,
n=1

T Y la)>n"?+0(log’T), o=(k+1)/2,
n=1
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und

o5 ae £ 5[l

= a, 2 n_za O(n + anam
n<iTs, 12 (n) n,m<aTs, (nm)° i log (n/m)
n#¥m
x W, (kn|TYn™ Ty, (km/T)m™ " +0 [ Y Y x| )
? : n<7Ts; men (nm)° n(log (n/m))?

_fo(T**1'7%7), kl2<o<(k+1)/2,
T 10(log?T), o=(k+1)/2.

Mit Stirlings Formel (19) erhalten wir fiir

e Lot () ¢

T

A33=JK
0
— 2 (20-K) m e {2 (k= 20)
8 n, e 1(nm)" "_[%1( >¢01< )

x (140 (1™1)) (%)-“ dt.

2

Mit den Lemma 5(ii), 6 und 7 ist also fiir 6=k/2

A=Y B2 n7 ¥ (T+0(m)+0(log(T/m)))+ 3 | n"

n<AiTé ATé<Sn<ATé,

b
x (0 (n)+0 (|log (T/n)!))+" mgm (nm)? (._n?';og (n/m))

n¥m

| 6Bl
)k/2

X Yoy (kn/T) n'’ Vo1 (Km/T) m'T +
m<n<ATS (nm

x (0 (n~* (log (n/m)) ™)+ 0 (|log (T/n)|))=AkT log T+0 (T).

und fiir k/2<0<(k+1)/2 wieder mit den Lemma 5(i), 6 und 7
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b,b
2 (k—20) —
A33 (AT) n, mSZAT&l (nm)k_d (—l log (n/m))

n¥m

Yo1 (xn/T) n'T o (xkm|T) m'T

+o( y Al (n“""z""‘(log(n/m))"2+n“"'2“’)>

m<n<ATd; (nm)k ?

+ Z |bn|2 n—2(k—d)

n<ATdy
O(TZ(k—20)+1+n2(k—2a)+1+n2 (k—Zv))’ kl2<ao<k[2+1,
x10(llog(T/m)|+1+n7"), o=k/2+%,
}O(nz("'z")“—i-nz("‘z")), ki2+}<o<(k+1)/2,
byby oy (kn|T) ' Yoy (km/T) m'™
n, m< AT, (nm)k‘a ("i log (n/m))
n¥m
b,b,, _ _
vo 5 (1 tog (rim) )
m<n<ATd, (nm)
(0(T?® 22y §  1b,|>n* 79, k2<o<k[2+%,

n<AiToy

+ﬁ 0( Z Ibnl2 n-—k+1/2(|log(T/n)|+1)), o'=k/2+}g,

n< AT

= (AT)z (k—20)

0( Y |b,,|2n1‘2“), kl2+3<o<(k+1)/2,

n<ATdy
_[o(T*T), k2<o<(k+1)/2,
“10(0g?T), o=(k+1)/2.

Analog erhalten wir fiir

0 IC Km
A 2 20—k 42 (k=20)
44 . mZ . (nm)" p l/’oz —t Vo2 —_t

x(1+0(t—1)) (_'h_) dt— |b |2 p2lo- k)o(nZ(k 20)+1)+

<AT

bubm oz (kn|T) ”'T Yoz (Km/ T) m'"
n, r::i:}‘Téz (nm)k—a' (_ i IOg (n/m))
vo(_ xRl o Gog i) +1)
m<n<ats, (nm)*~°

{O(T"“ %), kj2<o<(k+1)12,

(AT)Z (k—20)

0 (log*T), o=(k+1)/2.
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Mit (22) ergibt sich fiir

Ao O(logT), o=k/2,
#70(1), kl2<e<(k+1))2.

Fiir die gemischten Terme A,,, v#u geniigt in manchen Fillen die Schwarzsche
Ungleichung |4,,|<(4,,4,,)"/?. Insbesondere erhalten wir so

o(T), oc=k[2, u#1,3 und v#1, 3,
Ay, =10(T**172%), kl2<o<(k+1)/2, p>1 und v>1,
0(log’T), o=(k+1)/2, p>1 und v>1.

Schwéichere O-Terme als im Satz verlangt ergeben sich auf diese Weise fiir 4,,,
k2<o<(k+1)/2, p=2,...,5, und A;,, 6=k/2, p=1,2,4,5. Man sieht, dass fiir
o=k]/2 jeweilen A,, und A4, A, und A;,, respektive 4,5 und A5 dieselbe Grossen-
ordnung haben. Es geniigt also, noch A4,,, u=2,..., 5 fir k/2<0<(k+1)/2 zu unter-
suchen: Ahnlich wie bei A,, erhalten wir fiir

e & o () ()2 -0l 3, )

d,am¥y (xkn|T) n~ Ty, (km|T) m~T

+

n, m<ATé; (nm)’ i log (n/m)
0 |a,a,| 3 o(T**17%%), kj2<o<(k+1)/2,
* ( (m)" n (log (n/m))Z)‘{o (log’T), o=(k+1)12.

Beniitzen wir die Abschitzungen fiir J' in Lemma 7, so ergeben sich fiir

o[ ) D ()

n=1
" (k=s)
20—k o a-nbm ﬁ @ F -3 2 itdt
x zmjw( t)wm(,)m—-—r(s) (? mn)
(4]

|a,b,|l (llog(T/n)|, o=k/2,
=0 Z g k—o k—20
m<n<ATS; N M n=%, kl2<e<(k+1)2
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=0( 5 ianbml{llog(T/n)l, a=k/2,})

m<n<ars, (nm)° (1, kj2<o<(k+1)/2

_fo(T*17%7), k[2<o<(k+1)/2,
~10(log?T), o=(k+1)/2,

und fur

e 5 e o o ()0

la,bnl (llog(T/n)|, o=k/2,
=0 z g k—o k—20
m<n<iTs; B M n , kl2<o<(k+1)/2

_fo(T*"'7?%), k2<o<(k+1)/2,
T 10(log®T), o=(k+1)/2.

Da aus Lemma 1 (i) fiir j=1, 3 folgt, dass

mn)” dt

k+1)/2-0 <
0 (It| ), k/2\a<(k+1)/2,}, ] - oo,

fj(a+it)={0(log|t|), o=(k+1)/2

ergibt sich schliesslich mit (22) fiir

T
r

Ms

A51=

n=1

_ KN\ ————
a,n "y, (—t—)R(a+it) dt

0( t"‘“dt), kl2<o<(k+1)/2,

0 ( 1°—t~gt dt) o=(k+1)/2

_fo(T**17%), ki2<o<(k+1)/2,
T 10(log? T), o=(k+1)/2.

Damit ist der Satz bewiesen.
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