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Approximative Funktionalgleichungen und Mittelwertsâtze

fur Dirichletreihen, die Spitzenformen assoziiert sind

von A. Good

TEIL I

1. Einleitung

Bezeichnet x(n) die Ramanujansche Funktion, so stellen sich bei der Funktion
Lr(s) der komplexen Variablen s cr + it, die durch Lx(s) Y*=i t(«)«"s, a>6^9
definiert ist, âhnliche Problème wie bei der Riemannschen Zetafunktion Ç(.s). Lx(s)
ist bekanntlich eine ganze Funktion, die der Funktionalgleichung

(2K)-°r(s)Lr(s) (2ny-l2r(l2s)Lt (12-,) (1)

geniigt, und besitzt auch ein Eulersches Produkt. Ebenso kann man von einer
Riemannschen und Lindelôfschen Vermutung fur Lx (s) mit kritischer Linie a 6 sprechen.
Letztere besagt, dass fur /= 1, 2,... und jedes e>0

T
1

I \Lt(6 + it)\2ldt=O(Te), T-»oo.
0

Dièse Vermutungen sind noch nicht entschieden. Fur /= 1 jedoch werden wir in Teil II
sogar beweisen, dass ein C>0 derart existiert, dass

ClogT+O(l), (r 6,

(2)

n=l

wenn T-+ oo. Im Falle der Riemannschen Zetafunktion kennt man nach Hardy,
Littlewood und Ingham bei den entsprechenden Mittelwerten asymptotische Formeln
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fur /= 1, 2. Nach der Théorie von K. Chandrasekharan und R. Narasimhan [1] fur
Dirichletreihen, deren Summenfunktionen Funktionalgleichungen besitzen, ent-
spricht der Fall 1=2 bei Ç(s) dem Fall /= 1 bei Lt(s).

Nach Riemann folgt die Funktionalgleichung von Ç (s) aus dem Transformations-
verhalten einer Thetafunktion. Die entsprechende Rolle ùbernimmt bei Lx(s) die
Funktion

J(z)=f ï(n)e2ninz9 3mz>0,

die eine Spitzenform vom Gewicht 12 bezûglich der Modulgruppe ist. Sind nun k9 N
positiv ganz, und assoziiert man einer Spitzenform der Art — k, N) im Sinne von [8]
die Dirichletreihe, deren Koeffizienten die Fourierkoeffizienten der Spitzenform im
Punkt oo sind, so definiert dièse Dirichletreihe nach der Théorie von E. Hecke [7]
eine ganze Funktion und geniigt einer Funktionalgleichung der Art (1). Deshalb
werden wir jeweilen gerade die voile Klasse solcher Funktionen untersuchen. Es wird
sich zeigen, dass fur den quadratischen Mittelwert dieser Funktionen eine asymptoti-
sche Formel der Gestalt (2) ebenfalls gilt.

Als ein wesentliches Hilfsmittel beim Beweis von (2) benôtigen wir eine Darstel-
lung von Lx(s) im kritischen Streifen 5^<tr<6i durch eine sogenannte approximative
Funktionalgleichung. Bezeichnet £ die charakteristische Funktion des Intervalls [0, 1],
so ist dies nach den klassischen Beispielen Ç (s) und Ç2 (s) von Hardy und Littlewood
[5] eine Gleichung der Gestalt

j
(3)

wobei R(s) fur 5^^c<6^ und |f | —> oo als Restglied der rechten Seite von (3) be-

trachtet werden kann. Dass fur eine Dirichletreihe eine Funktionalgleichung der Art
[1] eine approximative Funktionalgleichung zur Folge hat, bewiesen Chandrasekharan
und Narasimhan fur eine grosse Klasse solcher Funktionen. Sie benutzten dièses

Résultat gleich zur Abschâtzung des quadratischen Mittelwertes der Dedekindschen

Zetafunktion eines algebraischen Zahlkôrpers im kritischen Streifen. Einerseits war
jedoch das Restglied in ihren approximativen Funktionalgleichungen bei Dirichletreihen,

deren Koeffizienten nicht aile nichtnegativ waren, wie z.B. beiLT(,y), grôsser
als erwartet. Andererseits galten ihre Abschâtzungen nicht gleichmâssig in weiteren

Parametern, z.B. bei Dirichlets L-Reihen L(s, x) gleichmâssig im Modul von %. In
umfangreichen Abschâtzungen gelang es A. F. Lavrik [11], [12], inspiriert durch
Yu. V. Linniks Darstellung [13], [14] von L(s, x) im kritischen Streifen fur \t\ < 1,
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dièse Nachteile zu beheben. Um mit Hilfe des grossen Siebes Mittelwertsâtze von
Linniks Art [13], [14] zu beweisen, hat M. N. Huxley [9], [10] bei den L-Reihen
algebraischer Korper eine Idée von H. L. Montgomery weiterentwickelt. Dièse fùhrt
ohne allzu grosse Abschâtzungen von den Funktionalgleichungen zu approximativen
Funktionalgleichungen dieser Funktionen, gleichmàssig in wichtigen Parametern.
Nach Montgomery ersetzt man im ersten resp. zweiten Hauptterm von (3) das klas-
sische Ç (g) durch spezielle Gewichtsfunktionen | (g) resp. £0 (g, s), wodurch das Rest-
lied verkleinert wird. Versucht man jedoch, daraus die klassische Gestalt der approximativen

Funktionalgleichung [5] zu erhalten, so ergibt sich ein Restglied von dersel-
ben Grôssenordnung wie die Hauptterme. Andererseits ist natiirlich im klassischen

Falle das Restglied mindestens von der Grôssenordnung der letzten Summanden in
den Haupttermen. Bei £(V) hat C. L. Siegel [17] in seiner Arbeit iiber Riemanns
Nachlass fur das klassische Restglied die asymptotische Entwicklung

(4)

gegeben, wobei / beliebig positiv ganz ist, und gj(t),j=l9 2,..., beschrânkte
Funktionen von / sind. Ein entsprechendes Résultat ist nur noch fur Dirichlets L-Reihen

L(s, x) bekannt [3], [18]. Siegels Résultat hat sich bei der numerischen Berechnung
der Nullstellen von Ç (s) als nûtzlich erwiesen.

Unser Ziel ist es hier, fiir approximative Funktionalgleichungen mit gewichteten

Haupttermen eine Entwicklung zu beweisen, die (4) in gewissen Punkten âhnlich ist.
Ersetzen wir nâmlich in (3) { durch Gewichtsfunktionen (p resp. cp0 (Définition siehe

§2), die durch (po(g)=l-<p(\lg) verknûpft sind, so gilt in (3) nach Satz (iii) und
Korollar 1

l-1/2)i |*|->oo, (5)

wobei / genûgend gross positiv ganz ist, hj beliebig oft differenzierbar und

Siegels Formel liegt dennoch tiefer als (5). Aus den explizit gegebenen Funktionen

gj ersieht man nàmlich sofort, dass die Potenzen von / in (4) nicht verbessert werden

kônnen. Da wir fur die Funktionen hj die genaue Grôssenordnung nicht kennen,

braucht dies in (5) nicht der Fall zu sein. Die Définition der hs lâsst aber dennoch

erwarten, dass sich (5) ebenfalls bei der Gewinnung numerischer Resultate verwenden

lâsst.

Weiter ist die Konstante, die durch den O-Term in Satz (ii) implizit gegeben ist,
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unabhângig von q>. Dies gibt uns eine grosse Freiheit in der Wahl von <p und q>0, und
erlaubt uns - auf Ç(s) und C2(s) ûbertragen - das klassische Restglied bis auf einen

Faktor \t\s,s>0, ebenfalls zu erhalten (Korollar 2). Schliesslich wird die approximative

Funktionalgleichung gebraucht, um die Grôssenordnung der Funktionen im
kritischen Streifen abzuschâtzen. Als Spezialfall von Korollar 3 erhalten wir

Lt(6 + /0 O(l'l1/2), l'I-oo.

Unsere Ausfiihrungen lassen sich unter sinngemâssen Voraussetzungen auch auf
Dirichletreihen ûbertragen, die eine Funktionalgleichung im Sinne von [1] erfûllen.

Dièse Arbeit ist ein etwas iiberarbeiteter Teil meiner Dissertation, die ich bei Prof.
K. Chandrasekharan geschrieben habe. Ich môchte ihm hier fur seine Ermutigungen
und seine Unterstiitzung danken.

2. Formulierung der Resultate

Seien k und N positive ganze Zahlen. In Lemma 1 fassen wir Eigenschaften von
Spitzenformen der Art (—k, N) im Sinne von Hecke [8] zusammen, die hier ohne

Beweis gebraucht werden.

LEMMA 1. (Hecke [7], [8]). SindHundH0 zwei Spitzenformen der Art (~k,N)
im Sinne von [8], welche die Fourierentwicklungen

n-1

besitzen und in der oberen Halbebene der Gleichung

genûgen, gilt

E |aJ=O(/+1)'2), I |i.l O

Durch partielle Summation folgt daraus sofort

r), gleichmâssig fur a < <r0 < {k+1 )/2,
<r=(k+l)l2,
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£ \an\n'°=0(xik+1V2'9)9 gleichmâssigfur a> ox>{k+1)/2, wenn x->oo,

und entsprechende Resultate geltenfùr £ \bn\ n~a.

(ii) Die H respektive Ho assoziierten Dirichletreihen

konvergieren fur a>(k+1)/2 absolut. Sie lassen sich zu ganzen Funktionen in s fort-
setzen und genùgen der Funktionalgleichung

)=f^T r{k-s)F0{k-s).

Wir fùhren nun noch einige Definitionen und Bezeichnungen ein:
Eine Funktion <p:[0, oo)->R gehôrt zur Klasse R unserer Gewichtsfunktionen,

wenn q> unendlich oft differenzierbar ist und

l5 wenn O^Q^i, cp(q)=O9 wenn

Wir definieren eine Abbildung von Si auf R durch <pf-*<p0, wobei

ist. Fur q> aus 51 und w u+iv setzen wir

9W~X do, u>0.

cpU) bezeichne diey-te Ableitung von cp und \\q>U)\\i die LrNorm von q>u\ Ist x>0,
f t*0, <p aus 51 und .Fwie in Lemma 1, so definieren wir mit sgnt=t/\t\

(xN n \\w Jx f — exp - i - sgn t\ 1 rfw,
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wobei fur réelle u J((l) Intégration ùber den Weg w u + iv, v wachsend, bezeichnet.
Schliesslich setzen wir fur q>0, t^O undy 0, 1,...

2nir(s)J
(6)

wo g eine einfach geschlossene, positiv orientierte Kurve ist, die von den Polen des

Integranden genau die Punkte w 0, — 1,..., —j umschliesst.

Wir konnen nun folgenden Satz aussprechen:

SATZ. Sei x>0,(p aus R und F, F0 wie in Lemma 1. Dann gilt:
(i) Flâsst sich im kritischen Streifen (A:-l)/2^a^(A:+l)/2 darstellen aïs

F(k~s) G (k-s, -; q>o, Fo\

(ii) Wenn y xN\t\j2n ist, besitzt G fur l>(k+1)/2 die Entwicklungen

qfi»

gleichmâssig fur (k— 1 )/2 < cr < (â: -h l)/2 w/irf a/fe cp aw^ K.

(iii) yJ(s9\t\~1),j=O,\,2..., sind rationale Funktionen von t, deren Koeffizienten

von a abhângig sind. Es ist

undfùrj=l, 2,...

wenn \t\ genûgend gross. Dabei ist die ganze Zahl m^jjl und die Cjn als Funktionen

von a bleiben beschrânkt, wenn (k— 1)/2<(T< (A:4-1)/2.
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Bemerkungen: (1) Die Einschrânkung, dass die Entwicklungen in (ii) erst fur
genûgend grosse / gelten, ist nicht wesentlich. Durch eine etwas kompliziertere Définition

der Funktionen G und jj liessen sich analoge Entwicklungen fur aile /^ 1 be-

weisen. Da wir dies weiter nicht benôtigen, haben wir der Einfachheit halber darauf
verzichtet.

(2) Falls in (iii)y ungerade ist, gilt natûrlich m>jj2. Der Faliy=2 zeigt jedoch,
dass die Schranke m^j/2 i.a. nicht verbessert werden kann.

KOROLLAR 1. Unter den Voraussetzungen des Satzes ist fur (4n2/N2)yiy2 t2
und l>(k+l)/2

gleichmâssig fur (k- 1)/2<<t< (k+1)/2 und q> aus R.

KOROLLAR 2. Es seien die Voraussetzungen des Satzes erfùllt und yx =y2
N\t\l2n. Existiertfùr ein a mit 0<a<i eut f}>0 derart, dass

dann gilt

y2

(7)

gleichmâssig fur (k -1 )/2 < a < (k +1 )/2. Wâhlen wir insbesondere a ¦£ - s, s > 0 ge-

nùgend klein, so kônnen wir nach R. A. Rankin [16] j8 f, respektive nach der kùrzlich

von P.Deligne [2] bewiesenen Vermutung von Ramanujan-Petersson jff=4-e, e>0,
wâhlen. Dies ergibtfùr das Restglied in (7) die Abschâtzungen
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KOROLLAR 3. Ist F eine ganze Funktîon, die durch die Dirichletreihe definiert ist,
welche einer Spitzenform der Art { — k, N) assoziiert ist, so gilt fiir jedes e>0

0(|f|log|/|), <x (*-
O(\t\<k+1)/2-°), gleichmâssigfur (fc-
O(log\t\), ff=

wenn \t| -> oo strebt.

3. Hilfssâtze

Zum Beweis des Satzes benôtigen wir noch
LEMMA 2. Sei s <r + it9w=u+iv und bezeichne Dx einen vertikalen Streifen

endlicher Breite in der s-Ebene. Ist D2 der Halbstreifen a<i,— l<t<\, so existieren
Zahlen ct>0, c2>0, sodassfùr

r(s+w) n
exp —i-w sgn t

r(s) ^V 2

wenn s in Dt und s+w in D1 — D2. Gilt jedoch \w\^cz\t\112 fur ein c3>0, dann ist

r(s+w)
exp( — i - )vsgnM O(|^|ll)> wenn \t\ --> oo,

2 /
gleichmâssig fur s inT>±.

Beweis, Gleichmâssig in einem vertikalen Streifen endlicher Breite gilt die Stir-
lingsche Formel

|r(,)| (2;t)1'2 exp (-*- \t\j \t\-11* (l + O^, \t\ - oo,

Wir wâhlen ct so, dass fur \t\'^c1 und

und c2 so, dass

r(s+w) ^
r(s)
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Da

n
exp|--

n
exp ~-(\t + v\-\t\-vsgnt)

und

ist, haben wir den ersten Teil bewiesen. Fur den zweiten Teil verwenden wir die Stir-
lingsche Formel in folgender Forai

gleichmâssig fur |arg(s + w)\ <n — e, e>0.
Aus w 0(|f|1/2)folgt

w

s

und

Iog5'=log\s\ + i arctg - log |r| + 0 (\t\ 2)+ î - sgn r~arctg -
a \2 t

gleichmâssig fur s in D±. Also erhalten wir

-^vvsgn^

0 M*r exp -^ (t + i7) sgn r + ^ (|r| + » sgn*)JJ

=O(|rr), W-*oo,
wie behauptet.

LEMMA 3. Ist cp aus il, so lâsst sich K^w) analytisch in die ganze w-Ebene fort-
setzen undKqf{Qi)=l. K9genùgt der Funktionalgleichung
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und besitztfùr /=0, 1, 2,... die absolut konvergenten Integraldarstellungen

/ y+i

(ein leeres Produkt ist durch 1 zu ersetzen).
Beweis. Fur «>0 ergibt sich mit partieller Intégration

(8)
j a\/ \ w i I ni/ \ w 7

— I (pKJ(Q)Q dQ=— I (pKJ{Q)QdQ,
1/2

Das letzte Intégral ist fur jedes komplexe w absolut konvergent und gibt die analy-
tische Fortsetzung von K9 (w) in die ganze w-Ebene. Es ist

1/2

und

/1/2 1/2
2

1/2

Weitere partielle Integrationen der rechten Seite von (8) ergeben die gewùnschten

Integraldarstellungen von K9, da fur j= 1,2,..., (p(j)(g)=O, wenn 0<^<^ oder

LEMMA 4. (i) Fur die durch (6) definierten Funktionen yj9j=0, 1,..., gj'// die Ab-
schâtzung

gleichmâssig fiir a in einem endlichen Intervall.
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(ii) Fur (p aus R und/z>0, v>0, /=0, 1,... ist

337

/e Kurve $ dieselben Eigenschaften hat wie der Integrationsweg in (6).
Beweis. (i) In der Définition (6) von yj dùrfen wir, wenn \t\>ma.x(l,j2), fiir

den Kreis |w| |f|1/2 nehmen. Dann ist nach Lemma 2, zweiter Teil,

TWap\i~2wmt

0 wenn M-> oo

(ii) Mit partiellen Integrationen erhalten wir

oo

f

Da fi>0 ist, definiert J^° (p{q) q™'1 dq eine ganze Funktion von w. Also ist
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1 1 r
;=o 2niF(s)J

5

{ - ' sgn f

was zu beweisen war.

4. Beweis des Satzes

Sei (A:~l)/2<cr<(A:+l)/2 und x>0, J>0. Bezeichne G^^ das Rechteck in der
w-Ebene mit den Ecken (kty+l-a-iT, (kj2)+\-G+iT, (Â:/2)-l-cr + /T,
(k/2)— 1 — a — iT in dieser Reihenfolge. Ist q> aus il und F nach Lemma 1 einer Spit-
zenform der Art — k,N) assoziiert, so gilt, da K(p(0)=l ist,

1 Ç

2ni J

-(s+w) «.(«¦)

x/xexpf-i^sgnm dw. (9)

Denn mit F(s) ist wegen der Funktionalgleichung auch F (s) F(s) eine ganze Funktion
von s. Weil fur festes s

r(,s+w)jF(,s+w)exp( -i - wsgnn

fO(|i>r+l-1/a), M-oo,

gleichmâssig fur (À:/2)-l-cr<w<(fc/2)+l-<7, ist nach dem Phragmén-Lindelôf
Prinzip

F(s+w)F(s+w)exp(-i^wsgnt\=O(\v\ik+l)/2), |i;|^oo,

gleichmâssig fur (t/2)-l-cr<w<(it/2)+l-(7. Nach Lemma 3 ist fur /=1, 2,...

w

gleichmâssig fur |w| <f. Aus (9) erhalten wir also, wenn T-+ oo strebt
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-n \Y l f
— i - sgn t \] dw

((fc/2)"l

-n \Yx x exp — i - sgn t \] dw

——^ fxexp( -î^sgnm dw.

Àuf den zweiten Summanden wenden wir jetzt die Funktionalgleichung von Fan und
ersetzen w durch — w. So ergibt sich

V)) à j (^)x(xexp("lVgn'

xr(k-s-w)F0(k-s-w) y fxexpf -î-sgnr

j

U('J W

xl—explî-sgnHj rfw (^j ^(5) G(j, x; 9, F)

2[*])

r(s)G(s,x;q>,F)

2n\s~1c / 1 \
—J r(k-s)Glk-s,-;(po,Fo\.
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Dies beweist (i). yj(s9 I*!"1), ausgedrûckt als Summe der Residuen der Pôle im Innern
von 5> ist

wobei Dnj komplexe Zahlen sind. Also ist y7(s, |*| *) eine rationale Funktion von t,
deren Koeffizienten fur beschrânkte a offensichtlich beschrânkt bleiben. Mit Lemma
4(i) beweist dies (iii).

Wir brauchen also noch die Entwicklungen (ii) zu beweisen: Sei y>0 und
l>(k+1)/2. Mit Lemma 3 lâsst sich G in zwei absolut konvergente Doppelintegrale
aufspalten:

oo

i r (-i)'+1 f

J
)l

xr(s+w) f
j

fxN n

\2n V 2-i-sgn2

sagen wir. Mit dem Satz von Cauchy ersetzen wir den Integrationsweg u (k/2) +1 - o

in Ix durch den Weg $t Dx + X>2 + D3 in /2 durch G2 ^ + Œ2 + (g3. Dabei sind fur
A:>2 ©^ (gy, j=l, 2, 3, unter der Voraussetzung |r|>/2>((A:+l)/2)2 wie folgt defi-

niert:

D2 : Halbkreis mit Zentrum w=(k/2) -1 - a und Radius ^/l r | in u < (/:/2) -1 - a,

D3: Halbgerade ((A;/2)-1 -a+iy/\t\9
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<&!-. Halbgerade ((*/2)+l-<7-/oo, /
(&2> Halbkreis mit Zentrum w=(/:/2)+l — a und Radius x/j7| in u^(A:/2) +1 — a,
Œ3: Halbgerade

Die Wege sind so zu durchlaufen, dass v nichtabnehmend ist. Fur k= 1, 2 gelten diesel-
ben Definitionen, nur dass jetzt in (l1 das Wegstiick w (k/2) — 1 — a + iv, \t+v\^l,
durch den Weg X)o ersetzt wird, der aus den ùbrigen 3 Seiten des Rechteckes

—/(/— 1) in dieser Reihenfolge besteht. Das Intégral des Integranden von IjJ=l, 2,

iiber £,- bezeichnen wir mit Ij.
Fur festes «s und 11?| —? oo strebt der Integrand von Ix gleichmâssig fiir (fe/2)~ 1 — a

< w < (ifc/2) +1 - g gegen Null, wenn /> (A: +1 )/2. Also ist

wo Res(Ê1} (£2) die Summe der Residuen des Integranden von It zwischen ^ und (£2

bezeichnet. Da \t\>l2 ist, erhalten wir fur dièse Summe

V+i

wo 5 eine Kurve ist, wie sie in der Définition (6) von jj auftritt. Mit partieller Summa-

tion ergibt sich, da <p(g) O ist fur q ^2,

und mit Lemma 4 (ii) ist

«/y

fxN ,n
x I exp -1 - sgn t

\2nn V 2
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Wir erhalten somit

und zeigen nun, dass die //, j= 1, 2, von der gewûnschten Grôssenordnung sind, wenn
2ny/Nx=\t\ ist:

Wegen Lemma 1 (i) ist

\n>oy

2

=o J
1/2

1/2

gleichmâssig fur h> auf (£2» (^— 1)/2^(7<(A:+1)/2 und <p aus 5Î. Ebenso ist

l's ¦• (u)

1/2

gleichmâssig fur w auf (£ls (fc—l)/2<a< (A:+1)/2 und (p aus il.
Aus (10) und Lemma 2, erster Teil, folgt, da 2ny/Nx=\t\,

(-l1sgnf)J
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J N"l~1

\t\-112), wenn|*|-oo,

da

f H-'-1
-2|r|

[

-2\tJ

(fc+1)/2î/2(fc+1I)/2)5 \t\-+ao.

Der Beitrag zu I'2 von der Intégration lângs (£3 lâsst sich gleich behandeln. Ebenso
lassen sich die Beitrâge zu I[ von der Intégration lângs î)ls X)3 behandeln, wenn man
(11) anstelle von (10) verwendet. Fur fc=l, 2 ist noch zu beachten, dass fur w auf
X)j oder D3, aber nicht auf Do

f |f,|-f-i(i+ir+»D<r+-i-i/2rfi;= f M-'-^i+ir+riy*"3^2^
— oo ~oo

-2 1*1 -|r|/2

==0( J W1'1*^™2*')*0^'1'1 J (i + l'+»l)(*"3)/2

-oo -2|r|
-VÏÏI

(fc"3)/2 J It;!"1"1 dv\ O(\t\(k-3)/2-l) + O(\t\(k-^2-1 log\t\)
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und

J m-1-1 (î+it+oir*"-1'2 \dw\=o (itr1-1 J

0(|r|<*-3-°'2), |r|-oo.

Mit Lemma 2, zweiter Teil, und (10) resp. (11) kann man auch die restlichen Intégrale
ûber T)2 und S2 abschâtzen, z.B.

2ttïT0
î>2 0

dw

a\t\u|w...(w+/)|

M,,-(«+l>/2 |7
J V

gleichmâssig fur (A:- 1)/2<<t^(â:H- l)/2 und (p aus St.

Damit ist der Satz bewiesen.

5. Beweis der Korollare

Nach Satz(ii) ist fur 2nxy2IN= \t\

l/=o \
+o(\\cPnif2-«-i)/2\t\-i/2)i

gleichmâssig fur (&- l)/2<a<(A:+1)/2 und q> aus 51. Da

folgt nun Korollar 1 unmittelbar.
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Sei a^O und \t|^ 1. Mit q> ist auch \j/ in il, wenn

345

denn

und

J

0,

g, |/|«) 0 fur e 1 —i|r|~a und q=

i + l'|-"
O (\t\* J

a. Also ist fur7= 1, 2,...

(12)

(13)00

1—* 1*1--

Da

ist

also ist auch

und

gleichmâssigfurO<^<oo.

00.

(14)

(15)

Schliesslich soll ^ wieder die charakteristische Funktion des Intervalls [0, 1] bezeich-

nen. Um Korollar 2 zu beweisen, wenden wir Korollar 1 mit \j/ anstelle von q> an.
Wâhlen wir dabei a ^—e, e>0, und /^ l/2e, erhalten wir

N J

r(k-s)
n^y2

wobei nach (13), (15) und Satz(ii)



346 A.GOOD

«

x Wo -
gleichmâssig fiir (fc— 1)/2<<t<(A:4-1)/2. Furj>l haben wir

und (iii) des Satzes erhalten wir somit

worin ^0) Summation uber yJ{\ + \î\~*)~1<in^yJ{\ + \t\~"),j=\,2, bedeutet. Ist
nun yr =y2 \t\ Njln, so ergibt sich aus den Voraussetzungen dièses Korollars

I(1)Ki»"'<(I(1)iflj2I(l)»"201/a-o((i^ur2'^

und

£(2)fo|if-*<(£(2W UHoo.

Also ist wie gewûnscht

Korollar 3 ergibt sich sofort aus Korollar 2 und Lemma 1 (i).

TEIL II

1. Einleitung

In Teil I bewiesen wir approximative Funktionalgleichungen fur Dirichletreihen,
die Spitzenformen assoziiert sind. Dièses Résultat wird hier zur Herleitung des fol-
genden Satzes verwendet:
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SATZ. Seien k und Npositive ganze Zahlen. SeiHeine Spitzenform derArt(—k, N)
im Sinne von Hecke [8] mit der Fourierentwicklung

)=t anelninzl\

Dann gilt fur die ganze Funktion F(s)9s (T + it, welche fur o>(k+\)j2 durch

F(s) Y,?=i ann~s definiert wird,

[

2AkTlogT + 0(T), o=kj2,

n=l

wenn T-+ oo strebt. Dabei ist

A^* V / II/' "5 ir — 0
A=-——-—t—; \H(u + iv)\ v dudv,j(N)Nkr(k+i))y K n

wobei X) ein Fundamentalgebiet der inhomogenen Hauptkongruenzgruppe zur Stufe N
undj(N) der Index dieser Gruppe in der inhomogenen Modulgruppe ist.

In [4] bewiesen wir einen solchen Mittelwertsatz fur F mit dem Restglied
o(TlogT) fur a=kj2 und o(T) fur k/2<(r^(k+l)/2, wenn k>\ ist. Das Haupt-
problem ist hier also, eine bessere Abschâtzung des Restgliedes zu erhalten. Neben
einer approximativen Funktionalgleichung fur F aus Teil I verwenden wir dabei
wesentlich eine Ungleichung von Hilbert fur eine Bilinearform (Lemma 6) und Ab-
schâtzungen gewisser trigonometrischer Intégrale (Lemma 7). Der Gedanke, dass

hier eine solche Ungleichung von Hilbert angewandt werden kônnte, entstand beim
Lesen eines Preprints von K. Ramachandra, das dem Autor von Prof. K. Chandrasek-
haran freundlicherweise zur Verfugung gestellt wurde. Ramachandra zitiert darin
einen Satz aus einer damais noch unverôffentlichten Arbeit von H. L. Montgomery
und R. C. Vaughan mit dem Titel 'Hilbert's Inequality' [15]. Der von Ramachandra
zitierte Satz ist hier nicht anwendbar.

2. Hilfssâtze

LEMMA 5. Sei rj>0. Fur die Fourierkoeffizienten der Spitzenform H des Satzes

gilt, wenn x -* oo
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c* 2<T), a>k/2,

Ak\ogx + O(l), (T k/29

0(xk~2a), o<k\2,

wobei A denselben Wert wie im Satz hat, und

(ii) Besitzt die Spitzenform H0(z) H(—l/z) { — iz)~k die Fouherentwicklung

=£ bne2«inz/N, 3mz>0,

dann ist

mit demselben A wie im Satz.
Beweis. (i) und (ii) folgen durch partielle Summation sofort aus R. A. Rankins

Résultat [16]

x->ao.

LEMMA 6. Seien (tfn)w°°=1 und (bn)?=1 wie in Lemma 5. Sei c>O,rj>O. Wir défi-
nieren

undfur Folgen (aB)n°°=1( (/Sn)nœ=i m» Kl <cfc| ««/ IW <c|i.|, n= 1, 2,....

t (x)= y lin (nm)" n (log («/

R°{x>- O(log2x), <r=(k+l)l2,
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und

rYï_J°(*)> kl2*Za<(k+l)l2, ,JO(x),kl2W |O(log2x), ff (Jt + l)/2, U'{X)~\O(log2x), er=

Beweis. Wegen Lemma 1 (i) und

folgen die Behauptungen fur Ro(x) und Sa(x) nach partieller Summation von
Li<nx M n'°\log(xln)\ sofort. Fur m^n ist

/i/m) log 1U
/ n — m\ n — m

log(«/m)=-log 1 b*
V n n

also

1 (max (n, m))2 2mn

m J m m
(16)

(log(«/m))2" {n-mf (n-m)29

und

L :j^i L ,„ ^2a-n -|o(iog2x),

Aus (16) folgt weiter

1<(»/m)1/2-l
(n — m) ^log (n/m) (n — m)^ (n — m)

Wegen

« — m) (n — m)
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ist somit

(mn)'1'2
log (n/m)

1

(n-m)

A.GOOD

^max(#, m)y/2
\min(«, m) J min («, m) 1

|« —m| 2min(n, m)

Damit erhalten wir fiir ein positives rj < 1

(«m)'"1'2 («-
m<t\n m> n

og(«/m) (»-

(n-m)
m<rjn m > n/

max(«, («m)""1'2 n

I ,.ti, (nm)'

(17)

Sind nun (xB)"= x, (jB)"= x zwei Folgen reeller Zahlen mit J^°= x x\ < oo und Yj°=, v2 < oo,

dann gilt nach [6], p. 212, Theorem 294, fiir die Hilbertsche Form Y^m=t xnyj(n-m)

i,m=i (n — m) n=l

l/2

Wenn an=ylB+i72n, jSB=y3B+i>4b, yJn reell fur j= 1, 2, 3,4, n 1, 2,..., ist fur ;=1, 2

|>g<c|aB| und |y>|<c|6Jfiiry 3,4, also

+ yi
n,m^x (nmr-1/2(»-m)

Daraus folgt nun mit (17) und der Abschâtzung fur Rff(x) die Behauptung fiir t/ff (x).
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LEMMA 7. Sei 0=e1<^<<51, 0<e2<^2 und àx<ô2, à1ô2<\* Seien \l/t und
zweimal stetig differenzierbare Funktionen mit folgenden Eigenschaften

' und

Bezeichnen m, n positive ganze Zahlen, dann ist fur feste jS^O, c>0 gleichmâssig in

m,n, T

und jolis j^2 oder

0, n>Tôjlc oder

(1-P) undj=l~l,
m=n<Tô/c9

"<"'-'>¦ - ;;,oder

-ir
i log (n/m)

0, n^Tôj/c oder m>Tbx\c,

o(log( Tr
V \max («, m)

0((max(/i, m))fc"2<r),

m. Da il/j(cnlt)=0 fur cn/t^Sp also fiir t^cnjèp ist J=J'=0, wenn

ôpm/ôt), d.h. wenn n^Tèjjc oder m^Tbx\c. Weiter ist fur t>cn\zs
\l/j(cnlt)=0. (Fur j= 1 ist dièse Aussage leer.) Somit kann im Intégral / c max(n/ôj9

m/ôi) als untere und min(r, cn/e,-, cm/ez) als obère Integrationsgrenze angenommen
werden. Wenn/=/= 1 und m=n<Tôjc, haben wir, da n O(T)
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'=1
cnfôi cn/ôi cnfô

U-/0
log(Tôlcn),

Wennj=/= 1 und m=n^TÔ/c gilt

en/*

j/=<?( j
und fallsyVl oder /#1, haben wir fur m n, weil e7>0 oder ez>0

cn/e2

=o( f
cn/Ô2

Falls /w^« integrieren wir zweimal partiell und erhalten

J=i
i log («/m) ï log («/m) J \m/

x—<«M —

l'"j

Bezeichnen wir die Ableitungen von ^,7= 1, 2 mit Strichen, dann ist

(18)
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Damit ist fur c max (n/SJ9 m/ô^ ^ t < T

und

d2

—2

+o(r2-l>)=o(r2-»),
also mit (18)

J=\
{\og{nlm)f

c max (n/ôj, mjôi)

i log (n/m)

+ O((log(«/m))-2 (max(/i, m))"1"^),

womit aile Behauptungen fur / bewiesen sind.

Ist a reell, so gilt die Stirlingsche Formel

x(l + O(\tf1)), U|-*oo,

gleichmàssig fur s in einem vertikalen Streifen endlicher Breite. Deshalb ist

und folglich
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v(—W—K -

xexp(-2i/(logf-log(c(m«)1/2)-l))rff
T

+ 0 (I cn\ cm k-2a-l dt).

Nun ist fur t>c(mn)l/2 c'

d fexp(-2ff(logf-logc'-l
dt \ 2i(logc'-logr)

exp(-2ir(logf-logc/-l))
2it(logc'-logt)2

Da fur y #2 oder 1^2 ôfi^l ist, haben wir

.1/2 m

und fur t^cmax(nlôp

(20)

(21)

Wenn wir (21) in (20) zur partiellen Intégration benutzen, erhalten wir

t
_2ffexp(-2**f(logf-loge'-l))

+ e

2ï7(logc'~logf)2

..2<rexp(-2iT(logr-logcf-l))
2i(logc'-logT)

dt

i f fcn\ (çm\^çm

+o f
c max (n/ôj, m/Ôi)
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Da fur c max (njôp

ist schliesslich

355

c max (n/ôj,

o log
max (n, m))

O ((max (h, m))fc " 2<T), ifc/2 < cr < (k+1 )/2.

3. Beweis des Mittelwertsatzes

Wir benôtigen die Darstellung von F(s) im kritischen Streifen durch die approximative

Funktionalgleichung, wie sie in Korollar 1, Teil I, bewiesen wurde. Wir ver-
wenden dieselbe Notation.

Fur ein festes cp aus il wâhlen wir zwei Paare von Funktionen \j/j und ^Oy,y= 1, 2,

welche den Bedingungen von Lemma 7 mit 0<^<(51<^ und e2 S, S2 2 genûgen,
sodass

und

Setzen wir K=l/À=(2nlN) und yx=y2 A\t\9 so gilt also

sagen wir, wobei

(22)
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gleichmâssig fur (k-1 )/2 < a< (k +1 )/2. Denn fur /> (A; +1 )/2 ist

=l

+ 0 r(k-s)
r(s)

0(\t\ 00,

gleichmâssig fiir s im kritischen Streifen. Mit (19) und den Abschàtzungen fur

jjj^ 1, in Teil I folgt (22) sofort aus Lemma 1 (i). Definieren wir

dann ist

r
\\F{G+it)\2dt= X Ay,.

Es wird sich zeigen, dass fiir a>kj2 An den Hauptbeitrag zu dieser Summe liefert.
Fur a kj2 steuern An und A33 je die Hâlfte zum Hauptterm bei. Wir werden deshalb

zuerst die Intégrale Avv behandeln:
Nach Lemma 5 (i), 6 und 7 ist

m
0 0

|2n-2<r(T+O(«))+ X \afn-2°
n<XTô

+

|an|2n-2<r(T+O(«))+ X \afn-2°0(n)
XTÔ^^XTÔ

m.n^xTôi {nmf i log (n/m)

+o( y y lanaJ

\n^xTôi mtn {jnnf ri (log (n/m))2

Z Ki2«-2<r+o(iog2r), ff=
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und

-J

^at5
"

^ i log (n/m)

< AT<52 m<n « (log (/f/

(0(iog2r), (j=

Mit Stirlings Formel (19) erhalten wir fur

Kfl
dt

¦1))f-ï A.

Mit den Lemma 5(ii), 6 und 7 ist also fur a=kj2

niT^01 (icm/T) miT+

und fur kj2<c<:(k+1)/2 wieder mit den Lemma 5(i), 6 und 7
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A =z(XT)2(k~2<T) Y33 l ' tt
m

\l/01 (kîijT) «l7>oi (Km/T) m1'

+ I
1), a=kl2+i,

2(k-2a) y (-ïlog(w/m))

|*.|2iT*+1/2(|log (77/i

(0(Tk+i~2<r),

Analog erhalten wir fur

T-fc)
lcm

f-°(ilog(nlm))
K '(nmf-°(-ilog(nlm))

JO(T*+1-2<T),
o(log2T), ff=
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Mit (22) ergibt sich fur

fO(logT), <x=fc/2,
55 |O(1), Jfc/2«r<(Jfc+l)/2.

Fur die gemischten Terme Avfl9 v#/x genùgt in manchen Fâllen die Schwarzsche

Ungleichung |>lvJ<(ylvv/lMM)1/2. Insbesondere erhalten wir so

0(T), a=k/2, /i#l,3 und

0(rk+1"2<r), kl2<a<(k + l)/2, ii>\ undv>l,
O(log2T), cr (ifc + l)/2, ix>\ undv>l.

Schwâchere 0-Terme als im Satz verlangt ergeben sich auf dièse Weise fur Alfl,
&/2<(7<(à:+1)/2, /x 2,..., 5, und A3fl, a^k/2, /i= 1,2,4, 5. Man sieht, dass fur
a~kj2 jeweilen yt12 und A34.9 Al4 und id32, respektive Ai5 und yl35 dieselbe Grôssen-

ordnung haben. Es genùgt also, noch Alfl9 fi 29..., 5 fiir A:/2<a<(Â:+1)/2 zu unter-
suchen: Âhnlich wie bei yl22 erhalten wir fiir

if,m=l («Wj J \ t J \ t
0

m~iT

mY » (log («/m)

Benutzen wir die Abschâtzungen fiir /' in Lemma 7, so ergeben sich fur

_

0

joAJf|iog(r/«)|,
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(«m)* jl,
2°), k

}O(log2T), o

und fur

2,-k v â»b» Ç, (KH\ fKm

0( Y
]a"bJ f

|o(iog2r), <7=(

Da aus Lemma 1 (i) fur 7= 1, 3 folgt, dass

ergibt sich schliesslich mit (22) fur

T

r
(ïtk-2adt\,

-\0(log2T), <7=

Damit ist der Satz bewiesen
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