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Irregular Primes and Integrality Theorems for Manifolds

DAviD FrRANK 1)

1. Introduction

Number theory has long played an important part in topology. We examine here a
topological problem whose solution depends on the distinction between regular and
irregular primes. (Recall that a prime p is said to be irregular if p is odd and p divides
the ideal class number of the p-th cyclotomic field; the first irregular prime is 37.)

Let M be a closed oriented topological manifold of dimension 4k, smooth on the
complement of a point. A necessary condition for M itself to be smoothable is that the
Pontrjagin number p,[ M ] be an integer. If, moreover, M is a spin manifold (w,M=0),
the integrality theorem of Atiyah-Borel-Hirzebruch-Singer [2], [3], [4] says an
additional necessary condition is that (1/a,)4 [M ] be an integer, where 4 is the 4-
genus and g, =1 (k even) or 2 (k odd).

We wish to know to what extent these necessary conditions for the smoothability
of M are sufficient. If k> 1, M is triangulable [11]; then the obstruction to extending
the smoothing of (Af-point) to M is an element X, of the group of exotic spheres
r*-1 There is a splitting [6], [9] I'** " '=0bP (4k)®n4. -, Where bP(4k) is the
subgroup of exotic spheres bounding parallelizable manifolds and ny,_; is a certain
complementary summand. The integrality of p,[M] and A[M] can provide no
information on the component of X, in 7}, _;(Lemma 3.2 below). Hence we let X5,
denote the component of X, in bP (4k), and pose the

Question. Let M be a closed oriented spin manifold of dimension 4k, k> 1, smooth
on the complement of a point. Suppose M satisfies the integrality condition: p,[ M ]
and (1/a,) A[M] are integers. Is 3, =0 in bP (4k)?

THEOREM 1.1. Suppose dim M <200, dim M # 136. If M satisfies the integrality
condition, then Xh;=0.

THEOREM 1.2. There is a manifold N of dimension 136 satisfying the integrality
condition with Xy of order 37 in bP (136).
Since 37 is the first irregular prime, this suggests

1) Supported by NSF grant No. P029431000.
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THEOREM 1.3. Let p be a prime. The following are equivalent:

i) p is irregular

ii) for some k> 1, there is a manifold M of dimension 4k satisfying the integrality
condition with order X3, divisible by p.

In each dimension 4k, it is possible to determine which primes p (if any) can divide
the order of a X}, (for some M satisfying the integrality condition). Table 1.4 lists ail
such values of k and p which can occur in the range k£ <109. If a value of k does not
appear in the table, then for a manifold M of dimension 4k, the integrality condition
implies 23, =0.

Table 1.4
k=%dimM 34 51 52 62 63 70 76 80 84 88 95 106
p=order I} 37 59 37 67 103 37 131 59 101 37 67 37

A reference for the number theory we use is [5]. However, we follow the notation
of [10], which is standard in topology and differs from the notation of [5].

2. Proof of the Main Theorems

Let B; be the i-th Bernoulli number [10]. For convenience, define B, to be 1.
Kummer gave a numerical criterion for regularity.

ASSERTION 2.1. A4 prime p is irregular if and only if p divides the numerator of
B,, for some n<%(p—1).

We give a table of all irregular primes less than 233. For each p, we give those
n<%(p—1) such that p divides num B,. This information is in fact available for all
p<4001.

Table 2.2
p 37 59 67 101 103 131 149 157
n 16 22 29 34 12 11 65 31, 55

If k is an integer and p is a prime, let ¢ (=c(k, p)) denote the residue class of k
modulo 3(p—1). Thus 0<c<3(p—1). If p=2, set c(k, 2)=0.

THEOREM 2.3. Let k> 1 be an integer and p a prime. The following are equivalent

i) p<2k—1 and p divides num B,, where c is the residue class of k modulo (p—1),

ii) there is a manifold M of dimension 4k satisfying the integrality condition with
order 25 divisible by p.
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We show that Theorem 2.3, whose proof we defer to the next section, implies the
results of the introduction. Note first that (2.3) implies Theorem 1.3. For if p is
irregular, then p divides numB, for some c<4(p—1). Let k=a(}) (p—1)+c, for
any integer > 1. Then p<2k—1 and c is the residue class of Xk mod4(p—1), so by
(2.3) there is a manifold M with the desired properties. Conversely, if M exists, then
p divides num B,, so p is irregular.

We now prove Theorems 1.1 and 1.2. Let dim M =4k, k <50. Suppose M satisfies
the integrality condition and p divides the order of Z%. Then p<99 and p is irregular,
so p=137,59, or 67. Suppose p=159. Then k > 30. Let ¢ be the residue class of £k mod 29.
Then 59 divides num B,, and from Table 2.2 we find that ¢c=22. Thus k=22 mod 29
and 30<k<50. Since no such k exists, we conclude that p#59. Similarly, we may
exclude p=67.

If p=137, then k=19 and, from Table 2.2, k=16 mod 18. Thus k=34 is the only
possibility, proving Theorems 1.1 and 1.2.

We leave the further verification of (1.4) to the reader.

3. Proof of Theorem 2.3
We will need

THEOREM (von Staudt). Let p be a prime. Then p divides denom By if and only
if p—1 divides 2k.

THEOREM (Kummer’s Congruence). Suppose p—1 does not divide 2k, p a prime.
Let r=2%(p—1). Then ByJk is a p-integer ( p does not divide its denominator), and in the
ring of p-integers

B./k=+B,,,/(k+r) modp.

LEMMA 3.1. The prime p divides num (B,/k) if and only if p divides num B, where
c is the residue class of k mod%(p—1).

Proof. Suppose p divides num (B,/k). Then by von Staudt’s Theorem, p—1 does
not divide 2k. (In particular, p is odd.) Write k=a(}) (p—1) + ¢, where 0<c <} (p—1).
Then Kummer’s Congruence shows p divides num (B,/c). Hence p divides num B..

Conversely, suppose p divides num B,, where 0<c<4(p—1). Since 2c<p—1, we
see that p divides num(B,/c) and p—1 does not divide 2¢. Hence by Kummer, p
divides num (B, /k).

LEMMA 3.2. Let M and N be manifolds of dimension 4k, k> 1. If 3t =3P, then
p[M]=p,[N]modl and A[M]=A[N] moda,.
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Proof. Let £=2Xy—X,. Then the bP (4k)-component of X is zero. It follows from
[6] or [9] that there is a spin manifold ¥ with X}, =X such that all Pontrjagin numbers
of V are zero. Let X be the connected sum of M, — N, and V. Then Yy=X,—2Zy+2)
=0, so X is smoothable. Thus p,[M |—p [N ]=p[M1-p[N]+p[V]=p][X] is
an integer.

A similar argument applies to the A-genus.

Proof of Theorem 2.3. Let W be the closed Milnor manifold of dimension 4k and
signature 8. Thus W-(point) is smooth and parallelizable. Then X, €bP (4k). In fact,
Ty generates bP (4k), which is a cyclic group of order N,=q,2**%(2%*~!—1) num
(BJK).

Now let g W be the connected sum of g copies of W. Then gW is smoathable on the
complement of a point and 2,y =gZy. Note that 2, =0 if and only if N, divides q.
Suppose M is a manifold of dimension 4k which satisfies the integrality condition but
2 #0. Then 25, =2 ow for some g. Therefore by Lemma 3.2, the manifold g W satisfies
the integrality condition. Using the Hirzebruch signature theorem for the L-genus and
the definition of the 4-genus [10], we have

22k (22k- 1_ 1) Bk
(2k) !

8 =signature W=L, [W]= p[W]

_..Bk

AV1=3 (2k) !

Pk[W] .

We easily compute

(2k)!
Px [qW]=q 22k—3(22k—1___1) B,
P —q
A[qW]=

22k—2 (22k-—1 _ 1) *

Now suppose the order of 2y is ps, where p is prime and s is an integer. Then we
can write

Ny .
q=——-, rprimetop.

ps
Thus

4a,r (2k—1) ! denom (B, /k)
pela W]= * !
ps
a — num (B, /k

A[qW]=( akr) ( k/ ).

pPs
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Then the integrality condition for gW says that p divides num (B,/k) and p<2k—1.
But if p divides num (By/k), then by Lemma 3.1, p divides num B,, which proves half
of Theorem 2.3.

Conversely, if p divides numB,, then p divides num(B,/k). Let g=N,/p. Thus
order Xy =p. If p<2k—1, then g W satisfies the integrality condition, concluding the
proof of Theorem 2.3.

Remarks. 1. The manifold N=gW (q=N,/p, p<2k—1) in fact satisfies the
stronger integrality theorem of [2], [3], [4]: (1/a)<A (N) ph(y), [N]) is an integer
for every real vector bundle y on N. Here ph is the Pontrjagin character. Nevertheless
gW is not oriented cobordant to a smooth manifold. This does not contradict
[12].

2. Note that (1/a) A[M] modl is the Eells-Kuiper invariant g of X, [7].
Similarly p,[ M ] mod 1 is the Milnor invariant (%) [13]. Thus our results say, for
example, that if X is an exotic sphere with i (£)=4(Z)=0, then X* has order a product
of irregular primes and dim X > 135, or else 2*=0.

3. There is a manifold N of dimension 436 satisfying the integrality condition with
order X% equal to the product of distinct primes (59) (157). This is the smallest
dimension of such an example.

4. Information on the component of X,, in my_, can be obtained using the in-
variant of [8].

5. For the 136-dimensional manifold of Theorem 1.2 we may take the connected
sum of 266257 —1) (1/37) num (B ,/34) copies of W. Knowing Bs, (Adams [1]) we
find (1/37) num (B;,/34)=

125, 235, 502, 160, 125, 163, 977, 598, 011, 460, 214, 000, 388, 469.
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