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Comment. Math. Helvetici 50 (1975) 311-320 Birkhiuser Verlag, Basel

Partitionstheoreme fiir Graphen

WALTER DEUBER

§1. Eiuleitung

Im Zusammenhang mit einem logischen Problem bewies Ramsey [10] den fol-
genden Satz: Sei n eine natiirliche Zahl. Wird die Menge (?) aller n-elementigen
Teilmengen von N der Menge aller natiirlichen Zahlen in zwei Klassen zerlegt, dann
gibt es eine unendliche Teilmenge X von N so, dass die Menge (f) aller n-elementigen

Teilmengen von X ganz in einer Klasse enthalten ist.
Mit dem Unendlichkeitslemma von Konig erhdlt man leicht das folgende ebenfalls
von Ramsey stammende Resultat: Seien x, n natiirliche Zahlen. Dann gibt es eine

natiirliche Zahl r mit folgender Eigenschaft: Wird die Menge (;) aller n-elementigen
Teilmengen von {1,..., r} in zwei Klassen zerlegt, dann gibt es eine x-elementige Teil-
menge X von {1,..., r} so, dass (1:) ganz in einer Klasse enthalten ist.

Friagt man nach Verallgemeinerungsmdoglichkeiten fiir den Satz von Ramsey, so
bietet sich unter anderem ([1], [2], [3], [4], [7]) die Graphentheorie an. In der
Sprache der Graphentheorie lautet der Satz von Ramsey: Seien x,n natiirliche
Zahlen. Dann gibt es eine natiirliche Zahl r mit folgender Eigenschaft: Wird die
Menge (ﬁ’) aller n-punktigen vollstindigen Subgraphen eines r-punktigen voll-
stindigen Graphen K, in zwei Klassen zerlegt, so gibt es einen x-punktigen vollstindi-
gen Subgraphen K, von K, so, dass <II§") ganz in einer Klasse enthalten ist.

Da fiir vollstindige Graphen die Begriffe ,,Subgraph®, ,, Teilgraph*, ,,Untergraph®,
zusammenfallen, eréffnen sich hier zwei Verallgemeinerungsmoglichkeiten.

Einerseits existieren nach dem Satz von Ramsey trivialerweise ,,verallgemeinerte
Ramseyzahlen*: Sei X ein ungerichteter Graph ohne Schlingen und Mehrfachkanten
und 7 eine natiirliche Zahl. Dann gibt es eine kleinste Zahl r mit folgender Eigen-
schaft: Es gibt einen r-punktigen Graphen R so, dass zu jeder Zerlegung der Menge
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(;;) aller n-punktigen vollstdndigen Teilgraphen von R in zwei Klassen ein zu X

K,
Das schwierige Problem hierbei ist die Berechnung von r (siehe den Uebersichts-
artikel [5]). So faszinierend die bei diesen Berechnungen angewandten Ueberle-
gungen sind, so geben diese Ramseyzahlen doch nur die Kardinalitit der Punkt-
mengen gewisser Graphen an.
Andrerseits erhebt sich folgendes Problem: Zu welchen Graphen X, N gibt es einen
]fr) aller zu N

isomorphen Untergraphen von R in zwei Klassen gibt es einen zu X isomorphen
*

N
Fiir N =K, wurde dies von Folkman [11], fiir N =K, von Deuber [2] und unter
verschirften Bedingungen von Nesetfil, Rodl [9] fiir alle X positiv geldst.
Es ist leicht einzusehen, dass die Frage fiir die in Figur 1 definierten Graphen X, N
negativ zu beantworten ist. Hierzu sei R ein beliebiger Graph mit geordneter Punkt-
menge. Sei N* ein zu N isomorpher Untergraph von R. Sei N* in der ersten Klasse,

falls a* < b* und sonst in der zweiten Klasse. Offenbar enthilt R keinen zu X isomor-
X*
phen Untergraphen X* so, dass ganz in einer Klasse enthalten ist.

\( >~

Fig. 1.

isomorpher Teilgraph X* von R existiert, so, dass < ) in einer Klasse enthalten ist.

Graphen R mit folgender Eigenschaft: Zu jeder Zerlegung der Menge (

Untergraphen X* von R so, dass ( ) ganz in einer Klasse enthalten ist?

Dieses Gegenbeispiel fithrt dazu, Graphen mit geordneten Punktmengen und
Untergraphen mit ordnungstreuen Einbettungen zu betrachten, und hierfiir obiges
Problem zu studieren.

In der vorliegenden Arbeit wird zundchst gezeigt, dass folgendes gilt:

SATZ. Sei X ein beliebiger geordneter Graph und N ein vollstindiger Graph. Dann

R
gibt es einen geordneten Graphen R mit folgender Eigenschaft: Wird die Menge ( N)

aller zu N isomorphen Untergraphen von R in zwei Klassen zerlegt, dann gibt es einen



Partitionstheoreme fiir Graphen 313

*

zu X ordnungstreu isomorphen Untergraphen X* von R so, dass ( N

) ganz in einer

Klasse enthalten ist.
Anschliessend wird ein analoges Resultat fiir eine allgemeinere Klasse von Graphen
N als nur die der vollstindigen Graphen bewiesen. Insbesondere gilt:

SATZ. Sei X ein beliebiger geordneter Graph und N ein geordneter Stern, dessen
Zentrum extremal in der Ordnung ist. Dann gibt es einen geordneten Graphen R mit
folgender Eigenschaft: Wird die Menge (ff

graphen von R in zwei Klassen zerlegt, so gibt es einen zu X ordnungstreu isomorphen
*\
N) ganz in einer Klasse enthalten ist.

) aller zu N ordnungstreu isomorphen Unter -

Untergraphen X* von R so, dass (
§2. Definitionen

Ein Graph X ist ein Paar X =(V (X), E (X)), wo V (X) eine endliche geordnete
Menge und E (X)) eine Menge von zweiclementigen Teilmengen von ¥ (X) ist. Die
Elemente von V (X)) sind die Punkte, diejenigen von E (X)) die Kanten des Graphen
X. Ein Graph X sei vollstindig, falls £ (X) die Menge aller zweielementigen Teil-
mengen von V (X) ist. Der vollstindige Graph mit Punktmenge {1,..., m} (m eine
natiirliche Zahl) werde mit ,,K,,* bezeichnet.

Im weitern seien X;=(V (X;), E (X;)) (i =1, 2) Graphen.

Eine injektive ordnungstreue Abbildung a: ¥V (X;)— V (X,) ist eine Einbettung —
in Zeichen: o: X; — X, —, falls fiir alle zweielementigen Teilmengen {v,, v,} von V' (X;)
gilt: {v,, v,}eF (X;) genau wenn {a(v,), «(v,)}€E (X,). Eine Einbettung a:X; — X,
ist ein Isomorphismus, falls « umkehrbar ist. X; und X, sind isomorph, falls ein Iso-
morphismus o:X; - X, existiert. Da V (X;) (i=1, 2) geordnete endliche Mengen
sind, gibt es hochstens einen Isomorphismus X; = X,.

X, ist Untergraph von X, — in Zeichen: X; € X, —, falls V' (X;)<V (X;) und die
Inklusionsabbildung eine Einbettung ist. Sei V*< V (X, ); dann gibt es genau einen
Untergraphen X* von X; mit ¥V (X*)=V*, den von V* erzeugten Untergraphen.
Sei a: X; = X, eine Einbettung; dann ist Ima der von {xe V' (X;):IyeV (Xy) a(y)=x}

: X5\ .. .
erzeugte Untergraph. Offenbar sind X; und Ima isomorph. ( X2> ist die Menge der
1

Einbettungen a:X; — X,. Somit ist {Ima:ae(iz)} die Menge der zu X, isomorphen
1

Untergraphen von X,. Letztere werden ,,X;-Untergraphen von X,* genannt und
meist durch ihre Einbettung vorgegeben.

X/ ist der Untergraph von X, erzeugt von V (X;)—{maxV (X;)}. X7 ist der Un-
tergraph von X, erzeugt von {xeV (X;):{x, maxV (X;)}eE (X;)}. X, ist durch
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X/, X1 bis auf Isomorphie eindeutig bestimmt. Diese Bemerkung wird in Beweisen
zum Tragen kommen, die Rekursion iiber den Aufbau von X beniitzen.

Das Komplement X; von X, ist folgender Graph: V (X7)=V(X;), E (X7)
={{vy, v} 04, V,€V (X]), v,#V,, {v1,0,}¢E (X;)}. Das Komplement eines voll-
stindigen Graphen ist ein leerer Graph. X, + X, ist die disjunkte Vereinigung von
X; und X,.

N ist die Menge der positiven ganzen Zahlen. Im weitern seien X, X' (i=1, 2)
geordnete endliche Mengen. X, + X, ist die disjunkte Vereinigung von X; und X,
dh X;+X,={1}xX,0{2}xX, und (i, v;)<(iy, v3) ((is, v1), (i, v2)EX; + X3)
genau wenn #; <i, oder aber i; =i, und vy <v, in X;,. Sind X; und X, disjunkt, so ist
die Abbildunga: X; + X,— X; u X, mita ((i, x))=x, ((i, x)e X; + X, ), eine vergessbare
Bijektion. Sind X; (i=1,..., n) geordnete Mengen, so ist } { X;=X; +---+X,. Sind
a;: X=X, (i=1, 2) ordnungstreue Abbildungen, so ist o; +a,: X T+ X3 - X;+X,
die folgende ordnungstreue Abbildung:

) (1,00 (x)) falls i=1
CRE(C x))":{(z, 1 (x)) falls i=2.

Es sei a:X; — X, eine beliebige Abbildung und X% <X,. Dann ist a | X} die Be-
schrinkung von o« auf X7. Sei veX,; fiir jede Menge X; sei v die konstante
Abbildung X; - X, mit v(x)=v.

Eine Firbung von X, ist eine Abbildung f :X, — {rot, blau}. f (x) ist die Farbe
netes von x, und x ist f (x)-geférbt.

§3. Verheftungen

Der hier definierte Begriff der Verheftung von Graphen wird sich spéter als geeig-
technisches Hilfsmittel herausstellen.

Seien R, S, T Graphen und (R)aé(?) (S>9é0. Sei ye(S) Sei (R>={51 vees 0}

> T \T T T 2T
Die Verheftung von R und S lidngs y ist der folgende Graph W =(R & S)/y:

Viw)={1,...,q}x(V(S)=V (Imy))u ¥V (R)U {0}.

Die Ordnung < auf V (W) ist wie folgt definiert: Sei u, ve V' (R), i, je{l,..., g}
und x, ye ¥ (S)—¥ (Imy). Dann ist u< %0, (i, x)<®0g. Es ist u<*v genau wenn
u<®v. Es ist u<*(i, x) falls u<®*min¥ (Imd;) oder Iz y(z)<xAru<®3,(2),
andernfalls (i, x)<®u. Bs ist (i, x)<* (j, y) falls Jv(i, x)<* v, v<* (j, »), sonst
falls lexikographisch (i, x)<(J, y).

E(W)=A4A,0A,0A30A,, Wo

A, ={{0g, x}:xeV (R)},
A,=E(R),
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q
A3 =U {{(i. %), (i )}, yeV ()= V (Imy), {x, 9} E(S)},

A= {{x, (i )} yeV (8)=V (Imy), 3V (T) x=5,(5)n (), S} €E(S)}

Anschaulich ist (R & S)/y somit der Graph, den man erhélt, indem man an jeden
T-Untergraphen von R eine Kopie von S ldngs Imy anheftet, die so entstandene
Punktmenge geeignet ordnet, einen letzten Punkt Oy hinzufiigt und diesen mit jedem
Punkt von R durch eine Kante verbindet.

LEMMA 1. Seien R, S, T Graphen, ye( ;), (1;,) ={0,,..., 0,y und W=(R&S)/y.
Dann ist fiir jedes ie{l,..., q} die Abbildung o;:V (S)— V (W) mit

i} (x)_{ai(x) falls x=v(%)
Y7V G, x)  falls xeV (S)—V (Imy).

eine Einbettung von S in W.
Beweis 1. Definition von W.

(R&::)/v>

(i=1,...,q) sind die kanonischen Einbettungen und die Untergraphen Ima; die
kanonischen Untergraphen von (R&S)/y.

DEFINITION. Die in Lemma 1 definierten Einbettungen cx,-e(

DEFINITION. Seien R, S, T, U Graphen und ee(g), sowie a; (i=1,..., q) die

kanonischen Einbettungen von (R&S)/y. Dann ist ¢* die Einbettung des von | J{
V (Ima'oe) erzeugten Untergraphen von (R&S)/y.

S S, .
LEMMA 2. Seien Sy, Ry, Ry, To, Ty Graphen, yoe( T"), yle( T°). Sei S, =(R,
0 1

&So)/70, Sa=(R, &S,)/y%. Sei ferner S, kanonischer Untergraph von S, und S,
kanonischer Untergraph von S,. Dann gilt: Fiir alle xe V (S,) ist {Og,, x} € E (S) genau
wenn xeV (Im7%,), wo 9, die y, entsprechende Einbettung T, — S, ist.

Beweis. Sei xeV (S,)—{O0g,}. {Og,x}€E(S;) genau wenn xeV (R;). Nach
Definition von S, gilt fiir alle xe ¥ (S,):{0x,, x}€E (S,) genau wenn xeV (Imy).
Nach Definition von y¥ ist xe ¥V (Imy%) genau, wenn eine kanonische Einbettung
a: Sy — S, existiert mit xe ¥ (Imaoy, ). Nach Definition von S ist ¥ (Imaoy, ) n ¥ (8p)
=V (Imf,).
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§4. Ramseygraphen

Seien X, Y, Z Graphen. R, (X, Y) ist die Klasse aller Graphen U fiir die gilt:
Fiir jede Farbung f von <g) gilt mindestens eine der folgenden Aussagen:

E3
(I) Es gibt einen zu X isomorphen Untergraphen X* von U mit f [(1‘; >=r0t.

%k
(II) Es gibt einen zu Y isomorphen Untergraphen Y* von U mit f f(); ) =blau.

Bemerkungen. Ramsey [10] bewies, dass fiir alle p, g, reN gilt: Ry (K,, K,)#0.
Fiir alle Graphen X, Y gilt Ry (X, Y)#0 und Ry, (X, Y)#0, ersteres nach Folkman
[11], letzteres nach Deuber [2], Nesetfil, R6dl [9]. Im nédchsten Paragraphen werden
wir zeigen: Fir alle reN und alle Graphen X, Y ist Ry (X, Y)#0. Die Beweise der

angegebenen Sdtze gelangen letzlich, weil der Binomialkoeffizient (g) sich fiir
gewisse Graphen U, V durch eine geniigend einfache Pascalformel aus den Binomial-
koeffizienten (g:) (U*< U, V*< V) berechnen ldsst. Eine befriedigende Theorie
der Pascalformeln fiir Graphen ist trotz Ansitzen (Deuber, Leeb: nicht verdffent-
licht) bisher nicht gelungen.

SATZ 1. Fiir alle natiirlichen Zahlen m und alle Graphen X, Y gilt Ry (X, Y)#9.

DEFINITION. R, (X, ¥)=Rg_(X, Y).

Beweisskizze: Mit Induktion wird gezeigt, dass fiir alle natiirlichen Zahlen m
gilt: Fiir alle Graphen X, Y is R, (X, Y)#0. Wie schon erwdhnt, gilt dies fiir m=1.
Sei also m>1 und nehmen wir an:

Al Fir all Graphen U, Vist R,,(U, V)#0.

Um die Aussage fiir m+1 zu beweisen, wird Doppelinduktion iiber den Aufbau von
X, Y angewandt. Falls ( X )=0 oder ( Y )=(Z), so ist X+YeR, ., (X, Y).
Km+1 Km+1

Nehmen wir also an:

A2 R,.;(X',Y)#0 und R,.,(X, Y')#0.

Somit bleibt zu zeigen, dass R,, .+, (X, ¥)#0.
Das folgende Lemma moge das Verstdndnis der Konstruktion eines Graphen aus
R, .1 (X, Y) erleichtern.



Partitionstheoreme fiir Graphen 317

LEMMA 3. VORAUSSETZUNGEN: Seien S, T, Graphen, ye( }q,), ReR, (T, T),

(1;,> ={d,..., 0.} und W =(R&S)/y.

BEHAUPTUNG: Zu jeder Firbung von ( KW ) gibt es eine kanonische Einbet-
m+1

tung o so, dass fiir den von V (Imo)+{0g} aufgespannten Untergraphen von W gilt:
Alle K,, . -Untergraphen welche Oy enthalten sind gleich gefirbt.

: : . w .
Beweis 3. Sei f eine Farbung von ( ) Sei R der von ¥V (R) aufgespannte
m+1

K
Untergraph von W. Wir definieren eine Farbung f’ von ( If ): Sei é’e( If ) Nach

Definition von W ist der von ¥V (Im¢&’)+ {0} erzeugte Untergraph von W isomorph
zu K, .. Sei ¢ dessen Einbettung und f'(¢')=f(¢). Da ReR,(T,T), gibt es

ie{l,..., q} so, dass f’ f(II;5‘> =const (conste{rot, blau}). Sei a=a«;. Fiir den von

V (Ima)+{0g} aufgespannten Untergraphen S* von W gilt nach Definition von W':
S*

Fiir alle & e(

Km+1
Definition von f ' ist somit f (£)=const.
Der Beweis von Satz 1 wird durch folgendes Lemma vervollstdndigt.

) mit Ore ¥ (Im¢) ist (Im¢&)” ein K,,-Untergraph von Imé,. Nach

LEMMA 4: VORAUSSETZUNGEN: Sei m>1.
Al  Fir alle Graphen U, V ist R,,(U, V)#0.
A2 Seien X;, X, Graphen mit R, (X{, X;)#0 und R, ., (X, X3)#0.

BEHAUPTUNG: R,.,(X;, X,)#0.

Beweis 4: Es wird rekursiv ein Graph definiert. Anschliessend wird gezeigt, dass
R, +1(X;, X)) diesen Graphen enthilt.

Sei A;€R,4 (X1, X;), A2€R,,11(Xy, X3). Fiir i=1, 2 seien &' die Einbettungen

von X! in X! und g'=p'c¢, (Bie(;i>).
KONSTRUKTION:
SCHRITT0: Sei S°=A,+A4,.
S° A A
. 0 0 — . 1 1 3 2 /2 — 1+ 2 .
Sei {715 -+ Vp} {VE(XHX'Z’)'BB E(X’l) B E(Xz)v B B}

Sei k< p.
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SCHRITT k+1: Es seien S* und 7§ (j=1,..., p) definiert. Es sei R**'e
R, (Im Yi+ 1, Im Vit 1)-

Sk+1=(R i &Sk)/)’ll:+1 ’ )’§+1=()’§)& (j=1,"-’ P)'

Erliuterung: In A, (i=1, 2) treten X-Untergraphen auf, wobei jeder einen X'}-
Untergraphen enthilt. Die g’ sind die dabei interessierenden Einbettungen von X7
in A,. S° ist die disjunkte Vereinigung von 4, und 4,. {y‘}, j=1,..., p} ist die Menge
aller aus Paaren (B', B?) bestehenden Einbettungen von X;+ X in S°. Die Kon-
struktion beriicksichtigt nun genau diese p vielen Einbettungen, und zwar im k + 1-ten
Schritt yr,;, d.h. den Graphen, der in k Schritten aus y_, , erzeugt wurde. Die S*
sind so definiert, dass die Lemmata {iber Verheftungen anwendbar sind. Es ist nun zu
zeigen, dass gilt:

BEHAUPTUNG 5. SPeR, . (X3, X5).
Beweis 5. Eine sorgfiltige Analyse obiger Konstruktion ergibt einen indirekten
Beweis fiir Behauptung 5. Nehmen wir an, es sei S?¢ R, ., (X7, X;). Dann gibt es eine

SP
Firbung f von (

% ) derart, dass S”? weder einen zu X, isomorphen Untergraphen
m+1

*

X%t mit f [( KX1 )=rot, noch einen zu X, isomorphen Untergraphen X3 mit
m+1

*
f f( KX2 )=blau enthilt. f heisse dann ,,schlecht®.
m+1

Nach Definition von S? als Verheftung von R? und S?~! lings y5~! gibt es nun
nach Lemma 3 einen kanonischen Untergraphen Ima?~! von S? so, dass in dem von
V(Imcx"'l)+ {0,} erzeugten Untergraphen gilt: Alle K, .-Untergraphen welche 0,
enthalten sind gleich gefdrbt. Sei f?~'e{rot, blau} die gemeinsame Farbe dieser
K, .-Untergraphen.

Iterierte Anwendung dieser Ueberlegung definiert nun Folgen a’,0;,,, f/ (j=

) j+1
p—1,...,0). Dabei ist o’ e( eine kanonische Einbettung, 0;, der im j+ 1-ten

SJ
Schritt adjungierte Punkt, f / die gemeinsame Farbe aller den Punkt 0, , enthaltenden
K, +1-Untergraphen des von V (Ima’)+{0;,} erzeugten Untergraphen von S’*1,

Sei nun §=Ima? %o,...,ca® und § der von ¥ (§)+{0,,...,0,} erzeugte Unter-
graph von S?. Nach Lemma 2 gilt fiir alle xe ¥ (§') und alle je{0,..., p—1}:{0;4+,, x}
€E () genau wenn xe ¥ (ImyY,,). Da S isomorph zu S°, mithin also § =4, + 4,,
gilt nach Definition von S° mindestens eine der folgenden Aussagen:

*
(i) S enthilt einen zu X, isomorphen Untergraphen X7 mit f f( KXl ) = rot

+1

. . . X3
oder einen zu X, isomorphen Untergraphen X3 mit f [( K 2 )=blau.
m+1
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1
(ii) A, enthilt einen zu X, isomorphen Untergraphen Im ' mit f [G?B )—_—_rot
’ m+1

2
und A, enthilt einen zu X, isomorphen Untergraphen Im 32 mit f rC?‘lﬂ )
m+1
=blau.
Da nach Annahme f schlecht ist, entféllt (i). Sei y die durch (8}, 82) definierte

Einbettung von X3+ X7 in §. Ist nun f’°=rot, so ist der von ¥ (ImB!)+{0,,} er-
%

zeugte Untergraph X7 von § isomorph zu X; und f r(KXl ):rot. Widerspruch.
m+1

Ist aber f /°=blau, so ist der von ¥ (Im 8?)+{0,,} erzeugte Untergraph X% isomorph
K

X . . : .
zu X, und f [( K 2 )=blau. Widerspruch. Damit ist gezeigt, dass die Annahme der
m+1

Existenz einer schlechten Farbung widerspruchsvoll ist, und Satz 1 bewiesen.
§5. Verallgemeinerungen

Im Beweis von Satz 1 wurde folgende Tatsache wesentlich ausgenutzt: Fiir alle
meN ist K;=K,. Satz 1 kann etwas verallgemeinert werden. Anschliessend daran
formulieren wir ein sich natiirlich ergebendes Problem, welches wir nicht 16sen
konnten.

DEFINITION. Sei X ein Graph. Dann ist X*=(X&X)/1 (1 e(i))

Es gilt nun:

SATZ 2. Seien X, Y, Z Graphen und UeR,(X, Y). Dann ist U°e Rz (X, Y°).

€ : . . . U
Beweis. Sei f € eine Farbung von (gc) Wir definieren eine Farbung f von < Z)'

Sei ée(lzf) Dann ist fe(?c). Sei f (&)= f<(&). Nach Definition von U gibt es
: : oo fX .
einen zu X isomorphen Untergraphen X von U mit f | 7 =rot, oder einen zu Y

isomorphen Untergraphen ¥ von U mit f [(Z)=blau. Jenachdem ist somit f°

4

f(i:) =rot, oder f° [(;c) =blau.

SATZ 3. Sei Z ein Graph so, dass fiir alle Graphen X, Y gilt: R;(X, Y)#0. Dann

gilt fiir alle Graphen X, Y: R (X, Y)#0.
Beweis. Analog zum Beweis von Satz 1 wird Doppelinduktion iiber den Aufbau

von X, Y angewandt. Ist < ZX*);éO oder (Zy;)#O, so ist die Behauptung trivialer-



320 WALTER DEUBER
weise erfiillt. Sei 4,€Rz.(X", Y), A,eR;.(X, Y'), ¢ die Einbettung von X” in X"’
und &2 die Einbettung von Y” in Y. Ferner sei fi=p' o ¢, <Ble(;1), B2 e(ﬁ%))

KONSTRUKTION:

SCHRITT 0: Sei S°=A,+4,.

Sei: {40 oy _ S° apte (A1) 372 (42) - gt 4 g2
€1. {'}’1,..-, yp}"' ?E X”-I-Y” . B € X/ B € Yr ?—B +ﬂ .
Sei k< p.

SCHRITT k+1: Es seien S* und 9} (j=1,..., p) definiert. Es sei R**'e
Rz(ImYll:+1,Im7:+1)s

SH=(RFT&S)key, ¥'=0H*  (i=1,..., p).

Es ist nun zu zeigen, dass SPe R,.(X, Y), wofiir der Beweis von Behauptung 5
iibernommen werden kann.

Aus der Definition von X* und den Sdtzen 2,3 ergibt sich nun folgendes Problem.
Es sei ¥~ der rekursive Abschluss der vollstindigen Graphen beziiglich Komplement-
bildung und Verheftung. Gilt fiir all Ze?” und beliebige Graphen X, Y:R;(X, Y)
#0? Ist insbesondere fiir X, ¥, Ze?  auch R (X, Y)n ¥ #0?
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