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Comment. Math. Helvetici 50 (1975) 311-320 Birkhâuser Verlag, Basel

Partitionstheoreme fur Graphen

Walter Deuber

§1. Einleitung

Tm Zusammenhang mit einem logischen Problem bewies Ramsey [10] den fol-

genden Satz: Sei n eine natûrliche Zahl. Wird die Menge aller w-elementigenw
Teilmengen von N der Menge aller natùrlichen Zahlen in zwei Klassen zerlegt, dann

gibt es eine unendliche Teilmenge X von M so, dass die Menge l aller w-elementigen

Teilmengen von X ganz in einer Klasse enthalten ist.

Mit dem Unendlichkeitslemma von Kônig erhâlt man leicht das folgende ebenfalls

von Ramsey stammende Résultat: Seien x, n natûrliche Zahlen. Dann gibt es eine

natûrliche Zahl r mitfolgender Eigenschaft: Wird die Menge aller w-elementigen
W

Teilmengen von {1,..., r) in zwei Klassen zerlegt, dann gibt es eine x-elementige

Teilmenge Zvon {1,..., r} so, dass J ganz in einer Klasse enthalten ist.

Frâgt man nach Verallgemeinerungsmoglichkeiten fur den Satz von Ramsey, so

bietet sich unter anderem ([1], [2], [3], [4], [7]) die Graphentheorie an. In der
Sprache der Graphentheorie lautet der Satz von Ramsey: Seien x,n natûrliche
Zahlen. Dann gibt es eine natûrliche Zahl r mit folgender Eigenschaft: Wird die

Menge r j aller «-punktigen vollstândigen Subgraphen eines r-punktigen voll-

stândigen Graphen Kr in zwei Klassen zerlegt, so gibt es einen x-punktigen vollstândigen

Subgraphen Kx von Kr so, dass l x ganz in einer Klasse enthalten ist.

Da fur vollstândige Graphen die Begriffe ,,Subgraph", ,,Teilgraph", ,,Untergraph",
zusammenfallen, erôffnen sich hier zwei Verallgemeinerungsmôglichkeiten.

Einerseits existieren nach dem Satz von Ramsey trivialerweise ,,verallgemeinerte

Ramseyzahlen" : Sei X ein ungerichteter Graph ohne Schlingen und Mehrfachkanten

und n eine natûrliche Zahl. Dann gibt es eine kleinste Zahl r mit folgender
Eigenschaft: Es gibt einen r-punktigen Graphen R so, dass zu jeder Zerlegung der Menge
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aller «-punktigen vollstândigen Teilgraphen von R in zwei Klassen ein zu X

isomorpher Teilgraph X* von R existiert, so, dass f 1 in einer Klasse enthalten ist.
\KnJ

Das schwierige Problem hierbei ist die Berechnung von r (siehe den Uebersichts-
artikel [5]). So faszinierend die bei diesen Berechnungen angewandten Ueberle-

gungen sind, so geben dièse Ramseyzahlen doch nur die Kardinalitât der Punkt-

mengen gewisser Graphen an.
Andrerseits erhebt sich folgendes Problem: Zu welchen GraphenX, TV gibt es einen

Graphen R mit folgender Eigenschaft : Zu jeder Zerlegung der Menge aller zu N

isomorphen Untergraphen von R in zwei Klassen gibt es einen zu X isomorphen

(X*\1 ganz in einer Klasse enthalten ist?

Fur N KX wurde dies von Folkman [11], fur N K2 von Deuber [2] und unter
verschârften Bedingungen von Nesetril, Rôdl [9] fur aile X positiv gelôst.

Es ist leicht einzusehen, dass die Frage fur die in Figur 1 definierten Graphen X, N
negativ zu beantworten ist. Hierzu sei R ein beliebiger Graph mit geordneter Punkt-

menge. Sei N* ein zu N isomorpher Untergraph von R. Sei N* in der ersten Klasse,
falls a* < b* und sonst in der zweiten Klasse. Offenbar enthâlt R keinen zu X isomor-

(X*\J ganz in einer Klasse enthalten ist.

N

6 a

Fig. 1.

Dièses Gegenbeispiel fûhrt dazu, Graphen mit geordneten Punktmengen und

Untergraphen mit ordnungstreuen Einbettungen zu betrachten, und hierfùr obiges

Problem zu studieren.

In der vorliegenden Arbeit wird zunâchst gezeigt, dass folgendes gilt:

SATZ. Sei X ein beliebiger geordneter Graph und N ein vollstândiger Graph. Dann

gibt es einen geordneten Graphen R mit folgender Eigenschaft: Wird die Menge J

aller zu N isomorphen Untergraphen von R in zwei Klassen zerlegt, dann gibt es einen
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(X*\1 gain in einer

Klasse enthalten ist.
Anschliessend wird ein analoges Résultat fur eine allgemeinere Klasse von Graphen

N als nur die der vollstàndigen Graphen bewiesen. Insbesondere gilt:

SATZ. Sei X ein beliebiger geordneter Graph und N ein geordneter Stem, dessen

Zentrum extremal in der Ordnung ist. Dann gibt es einen geordneten Graphen R mit

folgender Eigenschaft: Wird die Menge II aller zu N ordnungstreu isomorphen Unter-

graphen von R in zwei Klassen zerlegt, so gibt es einen zu X ordnungstreu isomorphen

Untergraphen X* von R so, dass f 1 ganz in einer Klasse enthalten ist.

§2. Definitionen

Ein Graph X ist ein Paar X (V (X), E (X)), wo V (X) eine endliche geordnete
Menge und E (X) eine Menge von zweielementigen Teilmengen von V (X) ist. Die
Elemente von V (X) sind die Punkte, diejenigen von E (X) die Kanten des Graphen
X. Ein Graph X sei vollstândig, falls E (X) die Menge aller zweielementigen
Teilmengen von V(X) ist. Der vollstàndige Graph mit Punktmenge {l,...,m} (m eine

natûrliche Zahl) werde mit »Km" bezeichnet.

Im weitern seien Xi (V(Xi\ E (Xt)) (/ 1, 2) Graphen.
Eine injektive ordnungstreue Abbildung a: V(Xt)-* V (X2) ist eine Einbettung -

inZeichen: a : Xx -> X2 -, falls fur aile zweielementigen Teilmengen {vu v2} von V (Xx)
gilt: {vl9 v2}eE (Xt) genau wenn {a^), a(v2)}eE (X2). Eine Einbettung a:Xt -+X2
ist ein Isomorphismus, falls a umkehrbar ist. Xt und X2 sind isomorph, falls ein Iso-

morphismus a:X1-*X2 existiert. Da V(Xt) (i l,2) geordnete endliche Mengen
sind, gibt es hôchstens einen Isomorphismus Xx -> X2.

Xt ist Untergraph von X2 - in Zeichen: XX^X2 -, falls V(Xi)^V(X2) und die

Inklusionsabbildung eine Einbettung ist. Sei F*£ V (X^; dann gibt es genau einen

Untergraphen X* von Xt mit F(Ar*)=F*, den von F* erzeugten Untergraphen.
Sei a:Xx -> X2 eine Einbettung; dann ist Ima der von {xe V (X2): 3ye V (Xt) oc(y) x}

erzeugte Untergraph. Offenbar sind Xt und Ima isomorph. 2 ist die Menge der
r /X\) ^ v

Einbettungen a:Xx -+X2. Somit ist ^Ima:aef
2

J > die Menge der zu Xt isomorphen

Untergraphen von X2. Letztere werden 99X±-Untergraphen von X2" genannt und
meist durch ihre Einbettung vorgegeben.

X[ ist der Untergraph von Xt erzeugt von K (^-{max V{Xi)}. X'[ ist der

Untergraph von X[ erzeugt von {xeV{X[):{x, ma.xV(X^eE(Xj). Xt ist durch



314 WALTER DEUBER

X[9 X\ bis auf Isomorphie eindeutig bestimmt. Dièse Bemerkung wird in Beweisen

zum Tragen kommen, die Rekursion ùber den Aufbau von X benûtzen.
Das Komplement X{ von Xt ist folgender Graph: V{XC1)=V{X1)9 E{X{)

{{vl,v2}:vi,v2eV(Xic), vt^v2, {vl9 v2}^E(Xl)}. Das Komplement eines voll-
stândigen Graphen ist ein leerer Graph. Xî-\-X2 ist die disjunkte Vereinigung von
Xx und X2.

H ist die Menge der positiven ganzen Zahlen. Im weitern seien Xt, Xf (/ 1, 2)
geordnete endliche Mengen. Xt+X2 ist die disjunkte Vereinigung von Xt und Xl9
d.h. I1+I2 {l}xJ1u{2}xI2 und (iuv1)<(i2,v2) ((h, vx), (i2, v2)eX1+X2)
genau wenn *i <i2 oder aber il /2 und v^<v2 in Xir Sind Xt und X2 disjunkt, so ist
die Abbildung a : Xx + X2 -? Xt u X2 mit a ((/, x)) x, ((/, x) e^ + Z2 eine vergessbare

Bijektion. Sind Xt (i l,...,n) geordnete Mengen, so ist £î A^-^H t-Xn. Sind

af:Zf ->Xt (/ 1, 2) ordnungstreue Abbildungen, so ist ol1+<x2:X* + X*-*X1+ X2
die folgende ordnungstreue Abbildung:

a2(x)) falls i=2.
Es sei (x:X1-+X2 eine beliebige Abbildung und X\^Xt. Dann ist a\X* die Be-

schrânkung von a auf X*. Sei uel2; fur jede Menge Xx sei v die konstante

Abbildung Xt -> Jif2 m& v (*) v-

Eine Fârbung von Xi ist eine Abbildung / :XX -» {rot, blau}. / (x) ist die Farbe

netes von x, und x ist / (x)-gefârbt.

§3. Verheftungen

Der hier definierte Begriff der Verheftung von Graphen wird sich spâter als geeig-
technisches Hilfsmittel herausstellen.

/R\ /S\ /S\Seien R, S, T Graphen und ^0, _ ^0. Sei yel Sei

Die Verheftung von R und S lângs y ist der folgende Graph Vf (R&S)ly:
V(W) {l9...9q}x(V(S)-V(lmy))uV(R)u{OR}.
Die Ordnung <& auf V{W) ist wie folgt definiert: Sei w, veV(R), i, je{!,..., q)

und x,yeV(S)— V(lmy). Dann ist w^&0u, (i9x)^*QR. Es ist w^&t; genau wenn
u^Rv. Es ist m<*(i, x) falls u<&minV(Imôi) oder 3z y(z)<sxAw^& ôt(z)9
andernfalls (i, x)^& u. Es ist (i,x)K*(j,y) falls 3t?(i,x)<*i?, t7<*(y,^), sonst
falls lexikographisch (i, x)< j, y),

E (W)=A1kjA2kjA3}JA±9 wo

A1 {{0R9x}:xeV(R)},
A2=E(R),
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A3 \J {{(U *), (i, y)}:x, yeV(S)-V (Imy), {x, y}eE(S)},
1

^4 Û {{*, (*", y)}:yeV(S)-V(Imy), 3xeV(T) x 5,(jc)a {y(x), y}eE(S)}
1

Anschaulich ist (R&S)ly somit der Graph, den man erhâlt, indem man an jeden
T-Untergraphen von R eine Kopie von S lângs Imy anheftet, die so entstandene

Punktmenge geeignet ordnet, einen letzten Punkt 0R hinzufûgt und diesen mit jedem
Punkt von R durch eine Kante verbindet.

LEMMA 1. Seien R, S, TGraphen, yel V f "j {^,..., ôq} und W=(R&S)ly.

Dann ist fur jedes i e {1,..., q} die Abbildung af : V (S -> F W) mit

/a/fa

Einbettung von S in W.

Beweis 1. Définition von W.

DEFINITION. Die in Lemma 1 definierten Einbettungen afe|
\ /

(z l,...,g) sind die kanonischen Einbettungen und die Untergraphen Imo^ die

kanonischen Untergraphen von (R&S)/y.

DEFINITION. Seien R, S, T, U Graphen und ee( rA sowie af (/ 1,..., q) die

kanonischen Einbettungen von (R&S)/y. Dann ist e& die Einbettung des von \Jf
F(Imafoe) erzeugten Untergraphen von (R&S)/y.

/c\ /c\
LEMMA 2. Seien So, Ro, Ru T09 Tt Graphen, yoe[ _° yM _° Sei ^ (^0

&S0)/y09 S2 (Rl&Sl)ly*. Sei ferner St kanonischer Untergraph von S2 und So0)ly0 2 (i1)ly
kanonischer Untergraph von St. Dann gilt: Fur aile xe V (So) ist {0Rl, x}eE (S2) genau

wenn xeV (Im^), wo yt die yx entsprechende Einbettung Tx -+ §0 ist.

Beweis. Sei xeV(S2)-{0Rl}. {0Rl, x}eE(S2) genau wenn xeV(Rt). Nach

Définition von §t gilt fur aile xeF^):^, x}eE(S2) genau wenn xeF(Imyf).
Nach Définition von y\ ist xeV(Jmy\) genau, wenn eine kanonische Einbettung

a: SQ -? §x existiert mit xe V (Imao yt). Nach Définition von §t ist V (Imao^) n V (§0)
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§4. Ramseygraphen

Seien X, Y, Z Graphen. RZ(X, Y) ist die Klasse aller Graphen U fur die gilt:

Fur jede Fârbung / von gilt mindestens eine der folgenden Aussagen:

(X*\J=rot.

(II) Es gibt einen zu Y isomorphen Untergraphen F* von C/mit / N J =blau.

Bemerkungen. Ramsey [10] bewies, dass fur aile p, g, reN gilt: RKr(Kp,
Fur aile Graphen X, Y gilt RKl(X, 7)#0 und RK2(X, Y) ^0, ersteres nach Folkman
[11], letzteres nach Deuber [2], Nesetfil, Rôdl [9]. Im nâchsten Paragraphen werden
wir zeigen: Fur aile reN und aile Graphen X, Y ist RKr(X, Y)^0. Die Beweise der

angegebenen Sâtze gelangen letzlich, weil der Binomialkoeffizient | I sich fur

gewisse Graphen U, V durch eine geniigend einfache Pascalformel aus den Binomial-

(U*\^J (t/*^C/, F*cF) berechnen lâsst. Eine befriedigende Théorie

der Pascalformeln fur Graphen ist trotz Ansâtzen (Deuber, Leeb: nicht verôffent-
licht) bisher nicht gelungen.

SATZ 1. Fur aile natùrlichen Zahlen m und aile Graphen X, Y gilt RKm(X, 7)^0.

DEFINITION. Rm(X, Y) RKm(X, Y).
Beweisskizze: Mit Induktion wird gezeigt, dass fur aile natùrlichen Zahlen m

gilt: Fur aile Graphen X, Fis Rm(X, 7)^0. Wie schon erwâhnt, gilt dies fur m 1.

Sei also m^l und nehmen wir an:

Al Fur ail Graphen U9 Kist Rm(U,

Um die Aussage fiir m+1 zu beweisen, wird Doppelinduktion ùber den Aufbau von

X, Y angewandt. Falls * 0 oder J J 0, so ist X+ YeRm+1(X, 7).

Nehmen wir also an:

A2 Rm+i(X'9Y)*0 und Rm+l(X9 Y')

Somit bleibt zu zeigen, dass Rm+i (X,
Das folgende Lemma môge das Verstândnis der Konstruktion eines Graphen aus

Rm+l (X9 Y) erleichtern.
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LEMMA 3. VORAUSSETZUNGEN: Seien S9 T9 Graphen, ye(£), ReRm (T, T\

W \BEHAUPTUNG: Zu jeder Fârbung von\ 1 gibt es eine kanonische Einbet-

tung oc so, dass fur den von F(Ima) + {Oi?} aufgespannten Untergraphen von W gilt:
Aile Km+i-Untergraphen welche 0R enthalten sind gleich gefârbt.

W \Beweis 3. Sei / eine Fârbung von j. Sei R der von V (R) aufgespannte
\Am + l/ / R\ R \Untergraph von W. Wir definieren eine Fârbung / ' von : Sei £'e( Nach

\Km/ \Km/
Définition von P^ist der von ^(Im^^ + lO^} erzeugte Untergraph von JFisomorph
zu Km+l. Sei Ç dessen Einbettung und /'(£')=/(£). Da ReRm(T,T), gibt es

i'e{l,..., q) so, dass f'\\K ')=const (conste{rot, blau}). Sei a af. Fur den von

F(Ima) + {0K} aufgespannten Untergraphen 5* von Wgût nach Définition von W:

(S* \ mit 0ReF(Imç) ist (Imc)' ein A^-Untergraph von Im<5r Nach

Définition von / ' ist somit / (^) const.

Der Beweis von Satz 1 wird durch folgendes Lemma vervollstândigt.

LEMMA 4: VORAUSSETZUNGEN: Seim>\.
Al Fur aile Graphen U, V ist RjU, V)J=Q.

A2 Seien Xl9 X2 Graphen mit Rm+l (X[, X2)ï<b und Rm+l (Xl9 Xi

BEHAUPTUNG: Rm+1(Xu Z2)#0.
Beweis 4: Es wird rekursiv ein Graph definiert. Anschliessend wird gezeigt, dass

Rm+1 (Xu X2 diesen Graphen enthâlt.
Sei A^Rn+^Xl, X2), A2eRm+l(Xu Xi). Fur i l,2 seien s' die Einbettungen

von X'( in X[ und ^=^ofi\

KONSTRUKTION:

SCHRITTO: Sei^^^i

Sei k<p.
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SCHRITT k+\: Es seien Sk und y) (y 1,...,/>) definiert. Es sei Rk+1e

Rm(Imykk+l9lmykk+1).

Erlâuterung: In A% (/ 1, 2) treten Z^Untergraphen auf, wobei jeder einen X'\-
Untergraphen enthâlt. Die /?' sind die dabei interessierenden Einbettungen von X'[
in^f. S0 ist die disjunkte Vereinigung von Ax und A2. {y°,y 1,...,/?} ist die Menge
aller aus Paaren (fi1,/!2) bestehenden Einbettungen von X'[ + Xf2 in S0. Die Kon-
struktion berûcksichtigt nun genau dièse p vielen Einbettungen, und zwar im k+ 1-ten

Schritt 7fe+i, d.h. den Graphen, der in k Schritten aus y%+l erzeugt wurde. Die Sk

sind so definiert, dass die Lemmata uber Verheftungen anwendbar sind. Es ist nun zu
zeigen, dass gilt:

BEHAUPTUNG 5. SpeRm+1 (Xl9 X2).
Beweis 5. Eine sorgfâltige Analyse obiger Konstruktion ergibt einen indirekten

Beweis fur Behauptung 5. Nehmen wir an, es sei Sp$Rm+1 (Xl9 X2). Dann gibt es eine

(Sp \ derart, dass Sp weder einen zu Xx isomorphen Untergraphen

x* \X\ mit / î( x )=rot, noch einen zu X2 isomorphen Untergraphen X* mit

(X* \2 )=blau enthâlt. / heisse dann ,,schlecht".

Nach Définition von Sp als Verheftung von Rp und Sp~1 lângs yjj"1 gibt es nun
nach Lemma 3 einen kanonischen Untergraphen Ima17"1 von Sp so, dass in dem von
^(Ima^^+ lOp} erzeugten Untergraphen gilt: Aile Km+1 -Untergraphen welche 0p

enthalten sind gleich gefârbt. Sei /p~1e{rot, blau} die gemeinsame Farbe dieser

Km+i-Untergraphen.
Iterierte Anwendung dieser Ueberlegung definiert nun Folgen aJ, 0y+1, fj' (j

/SJ+1\
/?-l,...,0). Dabei ist aJ'ef j j eine kanonische Einbettung, 0J+1 der imj + 1-ten

Schritt adjungierte Punkt, / J die gemeinsame Farbe aller den Punkt 0J+i enthaltenden

i£w+1-Untergraphen des von F(lmaJ')+{0J+1} erzeugten Untergraphen von SJ+1.

Sei nun »?=Imap~1o,..., oa° und S der von V(S)+{0u...90p} erzeugte Unter-
graph von Sp. Nach Lemma 2 gilt fur aile xe V (S) und aile j e {0,..., p -1} : {Oj+1, x}
eE(S) genau wenn JceF(Imy?+1). Da S isomorph zu S0, mithin also S=Â1 + Â2,

gilt nach Définition von S0 mindestens eine der folgenden Aussagen:

/ X* \(i) S enthâlt einen zu Xt isomorphen Untergraphen X* mit / n
x

1 rot
/ X* \ \ m+1S

oder einen zu X2 isomorphen Untergraphen X* mit / \ 2 =blau.



Partitionstheoreme fur Graphen 319

(ii) Âx enthâlt einen zu X[ isomorphen Untergraphen Im/?1 mit / \
™

] =rot

und Â2 enthâlt einen zu X'2 isomorphen Untergraphen Im/52 mit / \
™

=blau.
Da nach Annahme / schlecht ist, entfâllt (i). Sei y°0 die durch (fi[, /?2) defînierte

Einbettung von X% + X'l in S. Ist nun /io rot, so ist der von V(lmpl) + {0Jo} er-

zeugte Untergraph X\ von S isomorph zu Xt und / n
1 )=rot. Widerspruch.

Ist aber / •/0 blau, so ist der von V (Im/?2) + {0yo} erzeugte Untergraph Z* isomorph

(X* \2 )=blau. Widerspruch. Damit ist gezeigt, dass die Annahme der

Existenz einer schlechten Fârbung widerspruchsvoll ist, und Satz 1 bewiesen.

§5. Verallgemeinerungen

Im Beweis von Satz 1 wurde folgende Tatsache wesentlich ausgenutzt: Fur aile
meN ist K^ K^. Satz 1 kann etwas verallgemeinert werden. Anschliessend daran
formulieren wir ein sich natiirlich ergebendes Problem, welches wir nicht lôsen

konnten.

DEFINITION. Sei ^einGraph. Dann ist Ar*

Es gilt nun:

SATZ 2. Seien X, Y, Z Graphen und UeRz(X, Y). Dann ist UceRzc(Xc9 Yc).

Beweis. Sei / c eine Fârbung von Wir definieren eine Fârbung / von Y

/TT\ /TJC\ \Z / \Z/
Sei £e( _). Dann ist £e( ,LC). Sei /(^)=/c({). Nach Définition von U gibt es

\ZJ \Z (X\
einen zu X isomorphen Untergraphen 2 von U mit / f( )=rot, oder einen zu Y

ff\ ^ '
isomorphen Untergraphen von U mit f \l j=blau. Jenachdem ist somit fc

/?c\ /fc\ \Z/

SATZ 3. Sei Z ein Graph so, dass fur aile Graphen X, Y gilt: RZ(X9 F)#0. Dann

gilt fur aile Graphen X, Y: RZ*(X, 7)#0.
Beweis. Analog zum Beweis von Satz 1 wird Doppelinduktion iiber den Aufbau

von X, Fangewandt. Ist (z*)^° oder (z*)^0' so ist die Behauptung trivialer-
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weise erfullt Sei AxeRz*(Xf9 Y), A2eRz*(X, 7'), e1 die Einbettung von X" in X

und s2 die Einbettung von Y" m Y' Ferner sei fil pl ° s\ (V

KONSTRUKTION

SCHRITTO Sei 5° ^+ .4 2

Sei k<p

SCHRITT k+\ Es seien Sk und yj 0 1, p) defimert Es sei Rk+1e

Rz(lmykk+Ulmykk+1),

s*+1=(ï^&s)/7*+1, tf+1=(tf)* (7=1, ,/>)

Es ist nun zu zeigen, dass SpeRz*(X, Y), wofur der Beweis von Behauptung 5

ubernommen werden kann
Aus der Définition von X* und den Satzen 2,3 ergibt sich nun folgendes Problem

Es sei rT der rekursive Abschluss der vollstandigen Graphen bezuglich Komplement-
bildung und Verheftung Gilt fur ail Zef und behebige Graphen X, Y RZ(X, Y)

Ist msbesondere fur X, Y, Ze-T auch RZ(X9 7)
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