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The Universal Smooth Surgery Class

I. Madsen and R. J. Milgram

1. Introduction

Géométrie topology divides into 2 worlds : the world of the odd primes and the
world of the prime 21). The odd world has been beautifully explored by Sullivan, but
only partial results hâve hitherto been available at the prime 2. In this paper we set

up the machinery and prove the basic structure theorems necessary to demonstrate
results analogous to Sullivan's, but for the prime 2. In a sequel [26] we apply thèse
theorems to study the 2-local structure of the oriented topological and PL-bordism
rings, obtaining the algebraic structure of ail the groups as well as much information
on the explicit generating manifolds. In previous work (with G. Brumfiel) [9] we
initiated work in this area by calculating the mod. 2 cohomology structure of the classi-

fying spaces i?TOP and BPL. This gave us the unoriented PL-bordism ring and (except
in dimension 4) the unoriented topological bordism ring as well.

To proceed from mod. 2 to 2-local cohomology which then allows one to proceed
from unoriented to (2-local) oriented bordism requires much more technique than
was available in [9]. On the other hand, with thèse new techniques we obtain much
deeper insights into the précise différences between the théories of Differentiable,
PL, Topological manifolds and Poincaré duality spaces, not to mention the ^-théories
KO, KPL, XTOP and KG (where KG is the theory of fibre homotopy sphère bundles).

Ail of thèse results follow from a study of the natural map

B(n):BG-*B (G/TOP)

whose fibre is the space 2?TOP; the injection of the fibre j:ffTOP->BG induces the

forgetful functor for the associated cohomology théories ÀTOP to KG. In fact, we

completely détermine the 2-local homotopy type of £ (G/TOP) and the map B (n), and

obtain as an immédiate corollary a précise détermination of the 2-local obstruction
to lifting a fibre homotopy sphère bundle to an honest sphère bundle.

We begin by determining B(G/TOP).

x) A statement probably due to D. Sullivan.
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THEOREM A. At the prime 2 the space B2 (G/TOP) is a product of Eilenberg-
MacLane spaces,

B2 (G/TOP)(2) ~ fi K (z(2), An + 2)xK (Z/2, An).

This resuit is actually best possible since an analysis of the Dyer-Lashof opérations
in H* (G/TOP; Z/2) shows such a splitting to be impossible for B3 (G/TOP)(2), [24].

COROLLARY. The 2-local part of the obstruction to reducing a stable spherical
fibre space over afinite complex X to a topological sphère bundle is a graded cohomology
class in

The corollary was also obtained by Brumfiel and Morgan [10], Jones [15], and

Quinn [36], and was oiiginally proved under the assumption that X is 4-connected

by Levitt and Morgan [20]. The methods of thèse papers ail use certain refinements
of the "transversality obstruction" of Levitt to construct a fibration.

&STOP-4BSGl>Yl K(z(2), 4«+1) x K(Z/29 An-1),

wherej is the forgetful map, but Tis not, a priori, the natural map B(n). Moreover,
in thèse papers the authors are not able to do more than to study the Z/2 and Z/4
homotopy type of the map T, so précise information on Tis lacking in their approaches.

Now we turn to the précise détermination of the map B(n)*. In view of Theorem
A this involves defining suitable fundamental classes yt in H*(B(G/T01P)) and cal-

culating their images in H*(BSG). The map B(n):BSG^B(G/TOP) is an #-map
(in fact an infinité loop map2) [4], and, again from Theorem A, we can assume our
fundamental classes in H* (B(G/TOP)) are primitive. Hence B(n)* (yt) is primitive
with respect to the coproduct induced from Whitney sum.

On the other hand B(n) factors as the composite

BSG ™ B (G10) %> B (G/TOP)

where BA and Bt are again the natural maps - in fact infinité loop maps. Hère BÀ9 in
view of the close connection between SG and SO, is not too hard to analyse, so our
main efforts go into studying the map B(x), which is, of course, the map of classifying
spaces associated with the natural map

%:GjO-+ G/TOP.

2) It is this fact which ultùnately enables us to complète the calculation.
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By inspection one is able to check that t* détermines B(z)* in cohomology. Thus
our problem reduces to determining suitable primitive fundamental classes in G/TOP
and evaluating their images in H* (G/O).

Spécifie cohomology classes were constructed in //4î (G/TOP; Z(2)) and
H4l"2 (G/TOP; Z/2) in [32], [35], [38]. For our purpose the class K4ieH4i(G/TOP;
Z(2)) constructed in [32] is the more convenient one. It is not primitive, in fact

i-l

A primitive class, agreeing with K4i modulo decomposables, is obtained as

if we let st be the z'th Newton polynomial. The classes k4i_2 and k4i together define a

homotopy équivalence of //-spaces

K:G/TOP -> f] Jf (Z(2), 4i) x tf (Z/2, 4/-2)

where the i/-structure on the right is the usual one.

In [23] the higher torsion structure oîBSG and B(G/O) as well as their loop spaces
was examined. It was shown that PH4k+1 (B(G/O); Z(2)) Z(2)0T where ris a Z/2
vector space and a spécifie generator ê4n+1 for the free summand was constructed.
Let <t*:H*(B(GIO);Z(2))-+H*(G/O;Z(2)) dénote the cohomology suspension.

THEOREM B. The composite G/Ol» G/TOP ^ K(Z(2)9 4n) defines the cohomology

class 2a(r>)~1c7*(ê4fl+1) where oc(n) dénotes the number of non-zero terms in the

dyadic expansion ofn.
To obtain our main resuit from B we need, first of ail, information on the primitive

éléments in H*(BSG; Z(2)). From [23], §5, we hâve the exact séquences

0-+PH2n+i(B(GIO); Z(2))^PH2n(G/O; Z(2)) (c)
0 -> Z/2V(n)+x — PH2n+ * (BSG; Z(2)) -£ PH2n (SG; Z/2)

where v(n) is the 2-adic valuation on n. The natural map BÀ:BSG->B(G/O) maps
the élément ê4lt+1e/74n+1 (B(GIO); Z(2)) to an élément ê4n+i of order 2v(w)+3 and

4-ê4n+1 is the generator in the kernel of <r*:PH4n+1 (BSG; Zi2))-+PH4n(SG; Z(2)).
As the next step we "deloop" the primitive élément k4i in H4i(G/TOP; Z(2)).

This is not necessarily possible "on the nose" since not ail 2-local primitives in the

cohomology of a #(Z(2), n) are in the image of the suspension map, but we can show
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THEOREM D. Thereis aprimitivegradedclass £4*+1ePH4*+i (B(G/TOP); Z(2))
satisfying

(i) 0*0<<4n+i) — k4n has order 2

(ii) T*((7*(lc4w+1)-/:4n) 0 in H4n(G/0; Z(2)).
From thèse results it follows that (ifrr)* (£4n+1) 2a(rt)~1 ê4n+1 and we get ((b)

below is immédiate from [9]).

COROLLARY E. The 2-localpart ofthe obstruction to reducing a stable spherical
fibration Ç over X to a topological bundle is a graded cohomology class

o-4*-i (0+ *4* + i (Oetf4*"1 (*; Z/2)0#4*+1 (X; Z(2)).

Furthermore,
(a) ^4n+i(O has order at most 2v(n)~"(n)+4

(b) 0"4n_i (£) 0 unless n is a power ofl.
The class a4n+1 ({) is almost explicit. We know [23] that if wn is the n'th Stiefel-

Whitney class in H*(BSG; Z/2) then w22n is the restriction of a universally defined

Z/8 class, /?„. If it were known that the coproduct for/?w had the form

as a class of H*(BSGxBSG; Z/8) then the class é4ll+1 in H4n+1 (BSG; Z(2)) could
be written explicitly as a Bockstein ofthe "primitive" in the/?4l-. Unfortunately, we
hâve not been able to prove (*) so we leave it as a conjecture.

The class o-2'-i(£) is connected with the secondary cohomology opération \j/iti
based on the Adém relation

S^21-1^2'"^ X Sq2i-2JSq2J=0.
0<j<i-l

Indeed, if ail Stiefel-Whitney classes of £ vanish then o2i-\ (0 is defined by setting

where Uis the Thom class of i in the Thom complex (Mahowald, unpublished). Hère,

we note, that ^fji has zéro indeterminacy, so ^/Ui{U) is well defined.

Recently Ravenel [37] has introduced certain twisted secondary Stiefel-Whitney
classes ki{Ç) defined without any preconditions on the Stiefel-Whitney classes of £

and has proved that

at least modulo decomposables. It would be very useful if we knew the exact différence
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between thèse two classes. For example, they would hâve to be equal if À2t-i (£) were
universally primitive. What seems to be needed is a Cartan formula for the JLr

In the spécial case where Xis a Poincaré duality space of dimension n ail of whose
Stiefel-Whitney classes vanish and £ is its Spivak normal flbration we hâve the follow-
ing partial characterisation of the class 0"2*-i(£):

PROPOSITION F. IfxeHn-2î+1 (X; Z/2) and ^,, is defined on je, then

and \j/lti is defined with zéro indeterminacy.
Remark. It should be possible to give a similar Wu formula for the Ravenel

opérations.
In particular, if the \/flt, are defined on the entirety of Hn~2i + l(X; Z/2) then the

<?2*-i(0 are uniquely determined by Proposition F. This will be the case if and only
if ail the Sql vanish identically m Hn~2i+1 (X; Z/2).

We conclude by pointing out

PROPOSITION G. Let X be a simply connected Poincaré duality space of dimension

at least 5 and £ its Spivak normal fibration. Suppose

(i) (7^(0 0 for ail i
(ii) 2*ik)~iH*k+1 (X; Z(2)) is torsion free for ail k.

(iii) X is orientable with respect to KO{ )®Z[£].
Then there is a PL-manifold M and a mapf:M->X which is a homotopy équivalence.

We hâve organized the paper in five sections,

§1 Introduction
§2 The 2-local structure of £2 (G/TOP)
§3 Delooping the universal surgery class

§4 The universal smooth surgery class

§5 Topological réduction of spherical fibrations.
In §2 we prove Theorem A and in §3 Theorem D. The évaluation of the natural maps
Bt:B(GIO)->B(G/TOP) is done in §4. In §5 we prove the rather obvious géométrie
corollaries listed above.

2. The 2-local Structure of B(G/TOP)

In this section ail spaces and maps are to be taken in the 2-local category (see e,g.
D. Sullivan [41] for the définition and the simple properties of the 2-local category).

The spaces G/TOP and G/PL are the fibres of the natural maps BSTOP-UBSG

and BSPL-^BSG, respectively. In [4], Boardman and Vogt proved that BSTOP,
&SPL and BSG hâve natural structures as infinité loop spaces (the underlying /f-space
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structure in each case is the one associated to Whitney sum). They also proved that /
and V are infinité loop maps. This gives G/TOP and G/PL an infinité loop space structure.

We prove that B (G/TOP) is a product of Eilenberg-MacLane spaces and that
J5(G/PL) has a single non-zero J^-invariant in dimension 6. We also show that
B2 (G/TOP) is a product of Eilenberg-MacLane spaces whereas B2(G/PL) has one

non-zero ^-invariant in dimension 7.

The proofs are very formai, based on the known structure of //* (G/TOP; Z/2)
as a module over the Dyer-Lashof algebra of homology opérations and on standard
results about primitives in a differential Hopf algebra. There is one slightly unusual

argument though (Theorem 2.15) in which we find it necessary to bring in higher
Massey products and their connection with Eilenberg-Moore spectral séquences as

well as with Dyer-Lashof opérations. The techniques hère may hâve wider implications
for if-spaces, so they could well hâve a certain independent interest.

The main line of argument is to first restrict, for dimensional reasons the types of
intégral primitives in the cohomology of the r'th stage in a Postnikov resolution of
B (G/TOP). Next we show (using the Massey products) that E2 — E(X> in the Eilenberg-
Moore spectral séquence converging to H*(B(G/TOP); Z/2). Combining this fact
with our previous study of the possible primitives quickly gives the main results.

In our original exposition of thèse results [25], we outlined a somewhat différent

proof. Using the notion of a Mahowald orientation we gave géométrie reasons why
most of the differentials in the Eilenberg-Moore spectral séquence converging to
#* (B(G/TOP); Z/2) had to vanish. But we needed the algebraic techniques used hère

to handle some spécial cases. It then turned out that the algebraic techniques actually
applied to ail the differentials and there was no need anymore to use the géométrie

arguments. One might wonder, though, if our géométrie arguments could not them-
selves be strengthened to prove the entire theorem.

From [40] we know that G/PL is almost a product of Eilenberg-MacLane spaces.

In fact,

>4«)x Y\K(ZI2,4n-2)
n>l n>l

where E3 is the 2-stage Postnikov System obtained as the fibre in the fibration

with jK-invariant pt (Sq2 *3).

From Kirby and Siebenmann [17] it follows that G/TOP has the homotopy type
of a product of Eilenberg-MacLane spaces, namely

G/TOP^ [1 K(z(2)> 4»)x II K(Z/2, 4/1-2).
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(In Section 3 we review the construction of a spécifie identification of G/TOP with the
given product of Eilenberg-MacLane spaces. This refined statement is not needed
however for the conclusions of this section).

The natural map G/PL -? G/TOP has fibre tf(Z/2, 3). From [32], [35] and [38]
we know that 77* (G/TOP ; Z/2) is a primitively generated Hopf algebra while in
H* (G/PL; Z/2)we hâve

W (k4) k4r®l+k2®k2+l®k4,

where k2 is the non-zero class in H2 (G/PL; Z/2) (compare [9], 9.16). Apart from the
unusual behaviour of &4, the fundamental classes k2ieH2i(G/PL; Z/2) are ail
primitive. The classes k4i are Z/2-reductions of intégral primitive fundamental classes

(cf. §3).
For a space X, let (Er(X)9 dr) dénote its mod.2 Bockstein spectral séquence in

cohomology [5],

H* (X;Z/2)

When X is an //-space then (Er (X)9 dr) is a spectral séquence of Hopf algebras. Let

jr:H*(X; Z/2r)-*Er(X) dénote the réduction homomorphism. It is a surjection with
kernel 2*H*(X; Z/2r~l)+qJ^H*^; Z/21"1), where 2* is induced from the
inclusion Z/2r"1<=Z/2r, /?,._! is the intégral Bockstein homomorphism associated with
the coefficient séquence 0-»Z(2)2-^1Z(2)-»Z/2r-1 ->0 and qr is the réduction to
Z/2r coefficients. If yr(*)#0 then x has order 2r in H*(X; Z/2r).

We recall that an élément xeH*(X; Z(2)) is called primitive if A (x) ^(x®l -h

+ 1®jc), where

A:H*(X; Z(2))->H*(XxX; Z(2))

is induced from the multiplication in X and

n:H*(X;Zw)®H*(X;Z{2))'+H*(XxX;Zi2))

is the exterior product. The subgroup of primitive éléments is denoted PH*(X; Z(2)).
We observe

LEMMA 2.1. Let xeH* (X; Z/2r), where Xis any H-space. Then 2r~1x isprimitive

if and only ifjr (x) is primitive.
We shall examine the structure ofPH*(X; Z(2)) in the case where the underlying

space has the homotopy type of a product of Eilenberg-MacLane spaces K(A, n)
with A Z{2) or Z/2. We begin by reviewing the Bockstein structure of a single
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K(A, n). Let B{x] be the following Z)G-Hopf algebra over Z(2),

B{x}=P{x}®E{y}, ôx=4y
degx=4n, degy=4n+l
\l/(x)=l<8>x+x®l9 il/(y)=l®y+y®l.

The associated Bockstein spectral séquence is

Er+2B{x}=P{x2r}®E{yx2r-1}

The structure of Er(K(A9 n)) is for r^2 expressable in terms of thèse model spectral

séquences (see e.g. Browder [5])

(i)Er{K(ZI2,n))=®ErB{Xi}
(ii) Er (K(Zi2), 2n))=P {i2n}® <g> ErB {xt}, (2.2)
(iii) J

where i2n and i2n-i are réductions of intégral primitive éléments. The number of
factors in each of the cases above as well as the naming of the éléments xt in
Ex (K(A, «)) #* (K(A9 n); Z/2) is available but irrelevant for our purpose. We shall
however use that each xteH4* (K(A, n); Z/2) is a square of a primitive (indécomposable)

élément.

Let P:#*(X;Z/2')-»#*(Ar;Z/2I+1) be the Pontrjagin squaring opération
(Thomas [42]) and let P(r~1):H*(X; Z/2)-*H*(X; Z/2r) be the (r-l)st iterate.
The Pontrjagin square is a refinement of the cup product square; in particular,
ïrPr"1(jc) JC2r"1. From the remarks following 2.2 we know fhaXjrPir"1)(xi) zfr
for a certain indécomposable and primitive élément zieE1 (K(A, n)).

LEMMA 2.3. The subgroup of primitive torsion éléments in H*(K(A,n);Z(2))
form a vector space over Z/2. Infact TotPH* (K(A, n) ; Z(2)) is spannedby the éléments

(i) 2r-1j8rP(|-1)(z), zeTorPH2i{K(A, n); Z/2)
(ii) (pt (z))2a zeTotPW (K(A, n); Z/2).

Proof. It is a conséquence of 2.1 that the éléments 2r~iprPir~i)(z) are primitive.
It suffices to prove that a primitive torsion élément p is a linear combination of the

éléments listed in (i) and (ii). Suppose inductively that

qr-p+1,2*

is divisible by 21"1 in H*(K(A, n); Z(2)). From 2.1 it follows that7r((l/21"-1) qr) is

primitive and from 2.2 that there is an élément zrePHev(K(A,n); Z/2) with
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fr((l/2r-x) qr)=jr(firP{r-» (zr)). But then ?r + 2r-1£rP(r~1) OO reduces to zéro in
H*(K(A, n); Z/2r) and is therefore divisible by 2r. This process stops since K(A, n)
is of finite type. We finally note that ifj\ (p) (fix (z)fa for a > 0 then p pt (z)2° since
the éléments prP(r~î} (z) for r>\ ail hâve dimension congruent to I(mod4). This
complètes the proof.

A product of Eilenberg-MacLane spaces can hâve several //-space structures.
Let E4tk be the fibre in the fibration

E4tk—>X(Z/2,H3)^X(Z/2,fc+7).

Then QE4k E4k_1. In particular, E4t0 has the homotopy type of K(Z/2,3)x
x AT (Z/2, 6). The //-space structure on E4t0 however is distinct from the ordinary
structure on the product, since in H*(E40; Z/2),

(Compare [1]).
More generally, if X is an //-space which is homotopy équivalent to a product of

tf(Z/2, i)'s and K(Zi2)9j)9s and if

A:(Z/2, 4«+l)i£iKX(Z/2, 4« + 2)

is a fibration séquence with 7r*(i4n+2) Sq2"+1 (x) for some primitive élément

xeH2n+1(X; Z/2), then in H*(QE; Z/2) there is a class i4ïIwithy*(i4lI)thegenerator
of H4n(K(Z/29 4/i); Z/2) and such that

where îp is the reduced diagonal. This follows easily using the methods of [18] or [33].
By an abelian Hopf algebra we shall mean a commutative and cocommutative

Hopf algebra. Let A be an algebra over Z/2 equipped with two coalgebra structures

^i and \j/2 and such that (A, $t) are abelian Hopf algebras. Further, suppose that
(A, \l/2) is primitively generated. (A, ^) is a tensor product of monogenic Hopf
algebras by a theorem of Milnor and Moore [34]. Moreover, the primitive éléments

of (A, ^j) are contained among the indécomposables and éléments of the form x1%

with x primitive. We conclude that the primitive éléments of (A, i/^) occur in a subset

of the same dimensions as the primitive éléments of (A, i//2). As a corollary of the

proof of 2.3 we then get

LEMMA 2.4. Let X be a homotopy commutative Espace and suppose the under-

lying space has the homotopy type of a product of Eilenberg-MacLane spaces,

Xc-Y[K(Z(2)J). Then a primitive torsion élément of H*(X;Z(2)) either occurs in

dimension At+\ or it has a non-zero Z/2 réduction.
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We shall now consider the Eilenberg-Moore spectral séquences of a fibration of
infinité loop spaces

X-+EX-+BX (EX~*)

converging either to H*(BX; Z/2) or H*(BX; Z/2). The latter is a first quadrant
spectral séquence of cohomology type with

The spectral séquence is associated to the usual géométrie filtration B1XczB2Xcz ••• <z

czBnXcz-- of BXby the "number of joins" [29]. In particular, the spectral séquence
admits an action of the Steenrod algebra. A resuit ofA. Clark [12] asserts that {Er9 dr)
is a spectral séquence of differential abelian Hopf algebras.

There is a natural identification TAr=51Arand the resulting inclusion a:EX-*BX
may be identified with the usual suspension map ZQBX-+BX ([29], [39]). Thus

E£;*c:EI'*=PH* (X; Z/2) détermines exactly the image of the cohomology suspension

<x*.

Dually we hâve a first quadrant homology type spectral séquence with

£2 TorHsK(X>z/2)(Z/2,Z/2)
E™=E°H*(BX;Z/2).

Again, {Er, dr} is a spectral séquence of differential abelian Hopf algebras, and the
éléments of E^ give the image of ex* : QH* (X; Z/2) -» PH* (BX; Z/2).

The following two lemmas are often useful when dealing with the Eilenberg-Moore
spectral séquences. We recall that a Hopf algebra A is called primitive if the natural

map P(A)J+Q(A) is surjective and is called biprimitive ifj is an isomorphism.

LEMMA 2.7. Suppose A is a primitive abelian differential Hopf algebra. Then

H {A, d) is again primitive.
Proof. The Hopf algebra A is primitive if and only ifP(A*) -+Q(A*) is injective.

The lemma now follows from the exact séquence

0^P(H(A*)l>P(H(A*))-+Q(H(A*))9
since £=0 on P(A*) implies that £=0 on P(H{A*)).

LEMMA 2.8. Let A~{Ar's} be a primitive abelian differential bigaded Hopf
algebra with differential ofbidegree (n,~n+l). Suppose A has theproperty that every

primitive élément peAr*s with r^3 occurs in odd total degree or in total degree con-

gruent to 0(mod4). Then H (A) has the same property.
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Proof First, if A îs bipnmitive, then

A (g)E{xl}®E{yl}® (g) E{Zj}
i j

with differential dxt=yl9 dZj 0, and the lemma follows easily by direct computation,

When A îs not bipnmitive, we use the spectral séquence of Browder ([6], 3 3 and 3 4).
It is a spectral séquence of bipnmitive Hopf algebras with El {A) the bipnmitive form
of A and Em (A) the bipnmitive form of H(A) Since a primitive Hopf algebra and îts

bipnmitive form hâve the same primitive éléments, the lemma follows.
As a final préparation for our main theorems we review the connection between

matnc Massey products and the Eilenberg-Moore spectral séquence as well as the

connection ofmatnc Massey products with the Dyer-Lashofopérations. The références

for this are [14], [21] and [30]
Let (A, d) be a DG-algebra Massey products are higher order opérations in

H(A, d) which anse whenever H (A, d) has more multiplicative relations than A
The simplest case is the triple product <a, fi, c} defined for éléments a, fi and â of
H (A, d) with afi 0 and fic 0 Choose a, b and c m A representing the respective
classes Then ab du and bc=dv for some u and v in A and uc+av is a cycle (we are

working over Z/2) The set of ail the associated homology classes {uc + av} is denoted

{a, b, c} It is easy to see that this set détermines a unique élément in the quotient
group H(A)/âH(A) + H(A) c

DEFINITION 2 9. Let A be as above and suppose M and N are matrices with
entnes in A of type n x m and m x k, respectively We say that M and TV are multiphable
if deg(mlJ) + deg(nJk) dépends only on / and k

When M and N are multiphable matrices, then M Nis again a matnx with entnes

in A.

DEFINITION 2 10 Let Ml9 Mn be a system of matrices in H (A, d) such that

Mt is a row and Mn a column and such that M{ and Ml+Î are multiphable for ail i
The n-fold matnc Massey product <Ml9 Mn} is said to be defined if there exist

matrices NtJ (1 <ï<j<«+ 1 and 1 ^j-i^n-1) with entnes in A satisfying

and with the class of Nlfl+i in H(A, d) equal to Mt The value of <Mt, Mn} is

the set of ail classes in H(A, d) represented by cycles of the form ZNitkNk>n+1.

It should be noted that any two values of (Ml9 Mn> differ by éléments in cer-
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tain (n— l)-fold matric Massey products (the reader might consult [30] pp. 41 and 42

for examples of thèse products).
The next theorem which is due to J. P. May [27] connects matric Massey products

with the Eilenberg-Moore spectral séquence of a fibration X-*EX-+BX (see 2.6).

THEOREM 2.11. (May). Let X be a connectée strictly associative H-space with
a strict unit. Then the suspension map

ar : Hj (X; Z/2) -> E[t i (BX; Z/2)

has kernel the set of ail k-fold matric Massey products with l^k^r.
Suppose now that X is an infinité loop space. Passing to the Moore loop space we

can assume that X is strictly associative with a strict unit. Then the singular chain
complex C* (X; Z/2) is a DG-algebra and matric Massey products make sensé. The
infinité loop space structure gives among other things a map (Dyer-Lashof [13])

0 : ^®z/2 [x2] Q (X; Z/2)®C* (X; Z/2) - C* (X; Z/2),

where W is the standard Z/2 [I2]-free resolution of Z/2 with a single generator e{

in each dimension i. Let xuiy=0(ei®x®y) and define chain level opérations

There are induced opérations in homology

Qt:Hn(X;ZI2)-+H2n+i(X;Z/2).

(The Dyer-Lashof opérations Ql are defined as Qi(x) Qi-n(x) for xeHn(X; Z/2)).
Matric Massey products on differential graded algebras with additional structure

were considered in [30]. It is not hard to see that the singular chains of an infinité
loop space hâve the required extra structure to assure that Theorem 0 of [30] is valid
(compare [21]). Thus we hâve

PROPOSITION 2.12. Let Xbe an infinité loop space and let xeH* (X; Z/2) be an

élément of the matric Massey product <Ml5..., Mny. Then Q2(x) is contained in the

n-fold Massey product

/QoM2 0 0 \ /Q0Mn\\
QOMX), QXM2 Q0M2 0 QxMn

\Q2M2 Q1M2 Q0Mj \Q2Mn/l

In [24] the action of homology opérations in H* (G/TOP; Z/2) was determined.
Let k2neH2tt(G/TOP; Z/2) be any fundamental class, that is, a class which projects
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non-trivialy to the quotient group Z®AQH*(G/TOP; Z/2) of indécomposable
éléments over the Steenrod algebra. From [24] we hâve

PROPOSITION 2.13. For every class x in H*(G/TOP; Z/2), Q0(x) 0 and
Q1(x) 0. However, if<x9k4l + 2}=£0 then <Q2(x),k8i+6}^0 as well.

Let (E\ dr) dénote the Eilenberg-Moore spectral séquence of the fibration
G/TOP-*E(G/TOP)-+B(G/TOP) (compare 2.6). In view of 2.11, 2.12 and 2.13 we
get

PROPOSITION 2.14. Let xeHj(G/TOP; Z/2) and suppose that the suspension

ar(x)eErlfj is a boundary, <rr{x)=dr{y) for some yeE^+itj_r_i. Then ar(Q2(x)) 0

In the beginning of this section we remarked that H* (G/TOP; Z/2) was a primitive
Hopf algebra. Therefore H*(G/TOP; Z/2) is an exterior algebra and the ^-term of
the Eilenberg-Moore spectral séquence converging to H*(B(G/TOP); Z/2) has the
form

E2=P{{P] \pePH*(G/TOP; Z/2)}.

Moreover, since ail the generators hâve filtration degree 1, they are primitive and E2
is consequently a primitive abelian Hopf algebra.

THEOREM 2.15. The Eilenberg-Moore spectral séquence converging to
H*(B(G/TOP); Z/2) collapses, Le. E2 EX. Inparticular cj :£//*(£ (G/TOP); Z/2)-*
-+PH* (G/TOP; Z/2) is an isomorphism.

Proof. Since the spectral séquence is a module over the mod. 2 Steenrod algebra A
(and in particular dr is an ^-homomorphism) and since G/TOP is a product of
Eilenberg-MacLane spaces, it suffices to prove that [fc4/,+2] and [k4n~] inE2 are infinité
cycles. First consider the [&4J. They are primitive and therefore if dr([k4nJ)^0, it
must be a primitive élément of total degree 4n + 2 and with filtration degree r+1 >3.
But in E2 the primitives of filtration degree at least 3 ail hâve total degrees congruent
to 0(mod4). According to 2.7 and 2.8, each stage Er in the spectral séquence has no
primitive éléments in filtration degree ^3 and total degree congruent to 2 (mod4).
Thus [&4n] is an infinité cycle.

We next consider the éléments [k4n+2]. To prove that thèse éléments are infinité
cycles we first note that the Eilenberg-Moore spectral séquences, Er and Er converging
to H*(B(G/TOP); Z/2) and H*(B(G/TOP); Z/2), respectively, are dual to each

other. Suppose that dr([k4n+2~])^0, then there exist yeEr and xeH*(G/TOP; Z/2)
such that dr(y) ar(x) and <[A:4n+2], <Tr(x)} l. But then 2.13 implies that
<[>8«+6]> *r(Ô2(*))> and ™ particular <rr(Q2(*))#0. This contradicts 2.14 and
finishes the proof.
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Let

X(Z/2, 3)

[[
X (Z/2, 12) X (Z(2), 10) X (Z/2, 8) X (Z(2), 6)

be a Postnikov décomposition of i? (G/TOP). It is completely déterminée by specifying
the X-invariants Xr 7r*(i) in H*(BEr; 7r*(G/TOP)). Since G/TOP is an infinité loop
space, the same is true of each stage BEr. In particular Kr must be in the image of the

suspension map and hence primitive. This fact sharply limits the possibilities for the
X-invariants.

THEOREM 2.16. There is a (2-local) homotopy équivalence

B (G/TOP) ^ f] K (z/2> 4« ~ 1 x X (Z(2), An +1

Proof. The proof is by induction over the Postnikov décomposition ofB (G/TOP).
Suppose that the r'th stage BEr has the homotopy type of a product of Eilenberg-
MacLane spaces. We must show that the X-invariant in the next stage is zéro. Con-
sider the projection n:B{GjTO?)-^BEr. The X-invariant is determined by the first
dimension in which n is not a homotopy équivalence and is non-zero only if

7i*:Hs+Î (BEr; ns(B(G/TOP))) -* Hs+i (B(G/TOP); ns(B(G/TOP)))

is not injective. In our case the kernel must be cyclic with a primitive generator.
If .s=4/+1, we require a primitive élément Xr of HAi+2(BEr; Z(2)) and from 2.4

either Xr=0 or q± (Xr)^0 in H4i+2(BEr; Z/2). In the latter case, consider a* (gt (Xr)).
It is surely zéro since G/TOP is a product of Eilenberg-MacLane spaces. Hence

gl(Kr)=y2 for some primitive élément y. This follows from the exact séquence

(Milnor-Moore [34])

0-*PH*(BEr; Z/2) 1+PH*(BEr; Z/2) -? QH*(BEr; Z/2)

together with 2.15. Since y is odd dimensional, it is indécomposable and thus a* (y) ^ 0

in H* (G/TOP; Z/2). In this case we would hâve in H*(G/TOP; Z/2)

(compare the paragraphs preceding 2.4). This contradicts the fact that H* (G/TOP;
Z/2) is a primitive Hopf algebra.

If s=4i-1, then the possible X-invariant Kr belongs to H4i(BEr; Z/2). That this
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must be zéro follows by a counting argument and uses the fact that the additive structure

ofH*(B(G/TOP); Z/2) is the same as the additive structure of H* (H K(Z(2),
An +1) x K(Z(2), 4/1-1); Z/2)). This complètes the proof.
It is now easy to prove the main resuit of this section

THEOREM 2.17. There is a (2-local) homotopy équivalence

B2 (G/TOP) « fl K (Z(2), An + 2) x K (Z/2, An).

Proof. First, it is a simple dimensional argument to see that the Eilenberg-Moore
spectral séquence converging to 7/*(l?2 (G/TOP; Z/2) collapses. Therefore

a : QH* {B2 (G/TOP) ; Z/2) -*PH*(B (G/TOP) ; Z/2)

is an isomorphism. For B2 (G/TOP) the ^-invariants occur in dimensions 4y+3 and
As +1. Let B2 (Er) dénote the r 'th stage in the Postnikov décomposition for B2 (G/TOP)
and assume it is a product of Eilenberg-MacLane spaces. Then the r'th ^-invariant
is a primitive élément in either H4s+3(B2Er; Z(2)) or in H4s+1(B2Er; Z/2). In the
first case Kr is non-zero only if ot (Kr)^0. But gt (Kr) is an odd-dimensional primitive
and hence indécomposable. Since d* (Qt (Kr)) 0we conclude that qx (Kr) is itself zéro.
In the second case a similar remark applies. This proves the theorem.

We shall finally détermine the spaces B (G/PL) and B2(G/PL). Let E3 and E3tl
be the fibres in the fibrations

E3 -> K (Z/2, 3)

£3,i-^(Z/2,4

THEOREM 2.18. There are (2-local) homotopy équivalences

B2 (G/PL) ~ £3, x fl K (Z(2), 4« + 2) x X (Z/2, An).
n 2

Proo/. Consider the fibration

K (Z/2, 4) - 5 (G/PL) - B (G/TOP).

It is of course a fibering in the category of infinité loop spaces and thus classified by a

stable mapping

B (G/TOP) -+>K (Z/2, 5).
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In particular 5 (G/PL) is the fibre of X. But

PH5 (B(G/TOP); Z/2) Z/20Z/2

with generators Sq2(z3) and £i(î5), respectively. Moreover, in view of the known
structure of G/PL the only possibility for À*(i) is A*(ï) Sq2(i3) + ^1(i5), and the
resuit on B (G/PL) easily follows. The resuit for B2 (G/PL) is shown in a similar fashion.

3. Delooping the Universal Surgery Class

The space G/TOP is the classifying space for "normal maps". A homotopy class

M-4 G/TOP (M a manifold, dim M > 4) is équivalent to a normal cobordism class

M'-* M. The simply connected surgery obstructions thus give invariants of the set of
homotopy classes [M, G/TOP] - in fact of the smooth bordism of G/TOP. If dimM^ 4

one first cross with CP2 and then take the simply connected surgery invariants. Thèse

invariants are expressable in terms of characteristic classes of the map/:M-> G/TOP.
Indeed, there is a class ([38])

such that the Kervaire invariant sK(M2n,f) of the normal cobordism class associated

with/ is given by the formula

SK{Mïn,f)={f*(kA^2yV{Mf, [M]>, (3.1)

where V{M) is the total Wu class of M.
Next, let MAn be a smooth Z/2r-manifold, that is, a smooth "manifold" with

Z/2r cône singularises along a codimension one submanifold ôM (see [32] or [35]
for a précise définition). Let v:M-*BSO dénote the Z/2r-normal bundle. As in the

non-singular case a homotopy class of maps /:M -* G/TOP gives rise to a normal
cobordism class af Z/2r-manifolds M'-+M and hence an index obstruction

sI(M,f)eZI2r. The invariant Si(M,f) only dépends on the bordism class of (M,/)
as an élément of O* (G/TOP; Z/2r) and is consequently expressable in terms of characteristic

classes. Précise formulas were given in [32] and [35]. Let &eH*(BSO; Z(2))
be the modified (inverse) Hirzebruch class [35]; it is the unique class whose rational
réduction is the inverse Hirzebruch polynomial and whose Z/2-reduction is the square
of the total Wu-class. Let v:M-*BSO dénote the Z/2r normal bundle. There is a

graded class

4* (G/TOP; Z(2))
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such that the index invariant sl{M,f)eZj2r is given as

(3.2)

Hère v2i dénotes the 2fth Wu class, &4#_2 the class in 3.1 and 2k~l the injection
Z/2cZ/2*.

The classes k and K are uniquely characterised by 3.1 and 3.2 since the bordism

groups 91* (G/TOP) and £* (G/TOP; Z/2r) map onto //* (G/TOP; Z/2) and

#* (G/TOP; Z/2r), respectively.
Remark. The class ^T4l- above is the class constructed in [32]. In [35] a différent

class L4l. was constructed using the genus VSq1 V rather than Iv2i Sq1 t;2/. The différence

between K4i and L4f is easily seen to be a class of order 2 in the subgroup of
H*(G/TOP) generated by the action of the Steenrod algebra on the classes k4i-2-
The précise formula is (compare [8])

where Sq(2*)= 1 +££L0 Sq2'. The classes A:4n_2 are primitive, whereas the coproduct
on K4n is

4n + 8 (|f X4j® X4 (,_0) + K4n® 1

so that 8K^ is a multiplicative class.

We recall that when X^ is a multiplicative class then the Newton polynomial
sn(X49..., X4n) is an additive (i.e. primitive) class. It is given by the formula

where the summation is over ail «-tuples with ^nr « and where the coefficient

a(il9...9in) is

From the well known formula for the 2-adic valuation on kl, v{k\)=k-a(k) it
follows easily that &tta(il9...9 in) is divisible by 8« and in fact divisible by 32« when

(*!,..., /n)^(0,..., 0, 1). Let sn be the polynomial

sn(X49..., X4n) —-sn($X4,..., SX4n).
on

It has coefficients in Z(2) and
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The élément k4n=sn(K4,..., K4n) is a primitive class in H*(G/TOP; Z(2)). It
differs from K4n only by decomposable terms, in fact, by 4-(decomposable terms).
The classes k4n-2 and ktn together define a spécifie 2-local homotopy équivalence of
//-spaces

K:(G/TOP)(2)-+ ft X(Z(2),4W)xX(Z/2,4«-2). (3.3)
n=l

Next, we recollect some results on the homological structure of G/O. First of ail ([22])

#* (G/O; Z/2)=P{ua,b | b*:a<2b}®P{uI \ le/},
where / is the set of séquences /=(j0, *i,..., in) of positive integers which satisfy

The degree of ua>h is a + è and the degree of uT is /0

Let Ç:H2n(GJO; Z/2)-+ Hn(GjO\ Z/2) dénote the halving map. It is the Z/2-dual
of the cup-squaring map in cohomology, Ç* (x) x2. The value of Ç on the basis above
is

In particular is surjective. Hence Ç* is injective and H*(G/O; Z/2) is a polynomial
algebra. The space G/O is an infinité loop space ([4]) and as such it admits homology
opérations

Q°:Hn(G/O;ZI2)-+Hn+a(GIO;ZI2)

as well as Pontrjagin squaring opérations ([23])

P:Hn(G/O; Z/2') -> i/2w(G/O; Z/2*+1).

Let j?r be the r'th order intégral (or rather 2-local) Bockstein operator and gr the

réduction homomorphism to Z/2r coefficients. Then

where /-A0 (i0 — l9 /l5..., iB). We note that the séquence I-Ao is not necessarily
in /, indeed I—Aq^/ if and only if /0~*i i«== 1- In t^is case uI — A0 is to be

interpreted as uj, J=(il9..., in).
The higher torsion structure ofG/O is a conséquence of the following "universal"

formulas
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where ueH2n(G/O; Z/2) andP{r)(u)eH*(G/O; Z/2r+1) is ther'th iterated Pontrjagin
square.

In [23] we found that G/O is Henselian. Roughly, this means that the higher
torsion of H*(G/O\ Z(2)) is generated from Hev(G/O; Z/2) under iterated use of the
Pontrjagin square followed by a Bockstein. We list as an immédiate conséquence

LEMMA 3.4. A primitive class in H*(G/O; Z(2)) is determined by its Z/2 and Q
réductions together with its value on the classes P{r)(u), ueHev(G/O; Z/2) and r^\.

Let t: G/O -> G/TOP be the natural (infinité loop) map and consider the composite

T?:TorP#*(G/TOP; Z(2))11>PH*(G/TOP; Z/2)^PH*(G/O; Z/2).

As a final préparation for the proof of Theorem D we shall need

LEMMA 3.5.

Proof. One inclusion is obvious since Sq1 is the réduction to Z/2 coefficients of the

intégral Bockstein. The space G/TOP is a product of Eilenberg-MacLane spaces as far
as Z(2) homology goes. From 2.3 we see that it suffices to prove that any élément
T*(Sq1(/))2r with lePH* (G/TOP; Z/2) in fact belongs to x*(Sq1 PH*(G/TOP)).
To this end we shall use the main resuit of [9] : t* maps the éléments UjeH* (G/O ; Z/2)
to zéro and defines a monomorphism from the vector space generated by the uUtb to
the indécomposable éléments of H* (G/TOP; Z/2).

Now, if Sq*(/)2r évaluâtes non-zero on T*(wfli&) then a is even and a>b. If
lt ePH* (G/TOP; Z/2) is an élément such that t* (/* j is dual toua^ub then Sq1 (/)2"+
+ T*(Sq1/1) annihilâtes ua>b and évaluâtes as Sq1(/)2r on the rest of the uitJ. This

proves the lemma.

In §2 we saw that the double delooping B2 (G/TOP) is 2-locally a product of
Eilenberg-MacLane spaces. In 3.3 we reviewed a spécifie identification K (as //-spaces)
of (G/TOP)(2) with a product of Eilenberg-MacLane spaces. The natural question
arises if KeH* (G/TOP) is in the image of the double suspension

a2 : H* (B2 (G/TOP)) -» H* (G/TOP).

The An —2 dimensional components of K are primitive classes with Z/2 coefficients
and they deloop. The 4«-dimensional components of K, however, are classes k4n with
Z(2) coefficients and they are not, a priori, in the image of a2. We hâve not been able

to décide if K itself is in the image of a2, so we leave this as a conjecture.
A cohomology class HeH2n(B2(G/TOP); A) (4 Z/2 or Z(2)) is called zfunda-

mental class provided its value on the spherical 2«-dimensional homology class is a
unit in A.
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THEOREM 3.6. There are graded classes

(B2(G/TOP); Z/2)

which satisfy
(a) tc2n is a fundamental class

(b) <x2 (£*„) â:4b_2

(c) o2(kAn+2)-k4n has order 2 and is annihilated by t*:#*(G/TOP; Z(2))

Proof. The double cohomology suspension

a2 : QH* (B2 (G/TOP)) -> PH* (G/TOP)

is an isomorphism with both Z/2 and Q coefficients. From the previous lemma it
follows that there is a fundamental class fc4n+2eH*n+2(B2(G/TOP); Z(2)) such that
°"2(^4«+2)~^4« is a primitive torsion class whose réduction to Z/2 coefficients maps
to zéro in H*(G/O; Z/2). Moreover (2.3)

^2(^n+2)-k4n (pty)2a

for someyePH* (G/TOP; Z/2). We must argue that t* (fi± (y))2°=0 in H* (G/O ; Z(2)).
The Z/2-reduction of r*(pt (y))2" is zéro (by construction) and since H*(G/O; Z/2)
is a polynomial algebra QiT*p1(y)=0.

To see that t*&(>>) is itself zéro it suffices to check that <T*j81O>), P(r)(w)> 0

for ail ueHev(G/O; Z/2) and ail r ^ 1, (3.4). But

where ueHlk{G\O\ Z/2). Furthermore,

</?at* W,P(r) («)> <t* (7), ^i?r+1P(r) (W)>€Z/2c=Z/r+1.

Since t*(^) is primitive fi^iy) annihilâtes P{r)(u) for r ^2. For r= 1 we use ([22],

=0 and the resuit follows. Finally the existence of the classes fc4n is immédiate.
We note that Theorem D of the introduction is an obvious conséquence of 3.6

since the image under the suspension map of a fundamental class in H* (B2 (G/TOP))
is a primitive fundamental class of H* (B(G/TOP)).
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4. The Smooth Surgery Class

In this section we détermine the composite

G/O -^ G/TOP -^ f] K (z(2)> 4/i) x K (Z/2, An - 2)
n=l

where t is the natural infinité loop map and K is the //-map équivalence of 3.3. At
the same time we evaluate the 2-local part of the infinité loop maps

Bn:BSG-*B (G/TOP)
Bt : B (G/O)-+B (G/TOP).

The results of the section are ail 2-local and we consequently assume ail spaces and

maps to be taken in the 2-local category.
We start out by reviewing the basic primitive class ê4M+1 inP//4rt+1 (B(G/O); Z(2)).

A more thorough treatment can be found in [23].
We fix a solution of the Adams conjecture ol:BSO-+G/0, that is, a mapping such

that the diagram

G/O

BSO -^-i BSO

is homotopy commutative. Hère / is the natural infinité loop map and \j/3 — 1 the map
which represents \j/3 — l in 2-local real iC-theory. There are at least two natural
solutions a available - the one constructed by Sullivan [41] and the one constructed in
[8] as an application of the Becker-Gottlieb proof of the Adams conjecture. For our
purpose, however, it does not matter which map we pick. The only relevant point is

that a is well defined in the rational category. This follows since the fibre of / is the

space SG whose rational type is that of a point by a famous theorem of Serre. The

map ij/3 — 1 is an //-map and a rational équivalence oc is consequently an //-équivalence
in the rational category.

It is well known that H*(BSO; Z(2)) only has torsion of order 2 and that

#* (BSO; Z(2))/Tor=P {al9 a2,...},

where an is dual to the «'th power of the first Pontrjagin class. By a slight abuse of
notation we also dénote by an a lifting to H*(BSO; Z(2)) of the generators above.

The Adams conjecture along with a simple spectral séquence argument leads to

where E{ } is the exterior algebra.
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In the previous section we listed the homology with Z/2 coefficients of G/O. It is a

polynomial algebra with generators uatb(b^a^2b) and Uj(Ief). The Eilenberg-
Moore spectral séquence

TorH, (G/0,z/2) (Z/2, Z/2) => H* (B(G/O); Z/2)

then collapses for trivial reasons. In particular, the indécomposable éléments of
H*(B(G/O); Z/2) are contained among the classes o*(uah) and <7*(wj).

In [23] we found that the space B(G/O) is Henselian. A primitive (An -h1 )-dimen-
sional cohomology class (with Z(2) coefficients) is consequently determined by its Q
and Z/2 réductions.

The "basic" primitive class ê4n+lePH4n+l (B(GIO); Z(2)) is uniquely charac-
terized by

0) Qo(hn+i) is dual to ^M*,)
(ii) qx(ê4w+1) annihilâtes the éléments a^(uj) and (4.1)

a*{ua,b) (a^b) and évaluâtes non-zero on <t*(w2,,,2h)-

The existence of such a class ê4n+1 is not completely obvious. It requires checking
that the defining conditions (i) and (ii) in 4.1 are compatible. The argument can be

found in [23] and we shall not repeat it hère.

The homology suspension from QH2n(GjO) to QH2n+l(B(GIO)) is an isomor-

phism with both Q and Z/2 coefficients. It follows from this (since B(GjO) is Henselian)

that

a*:PH2n+1 (B(GIO); Zm)^PH2n(Gj0\ Z(2))

is injective. In view of 3.6 it is therefore équivalent to evaluate x\G\O-*G/TOP and

B%\B(G\O)-*B(G\TQi?) in the 2-local category.
Let a(«) be the number of non-zero terms in the dyadic expansion of/î,^^, ...,/>„)

eH*n(BSO; Z(2)) the Newton polynomial in the Pontrjagin classes and k4ne

H4n(G/TOF; Z(2)) the fundamental class constructed in §3 (3.3).

LEMMA 4.2. In cohomology with rational coefficients

where un is a unit ofZi2y
Proof. We consider the exact homotopy séquence of the fibration PL/O-> GjO-1*

-^G/PL,

•••->nAtt(GIO)-h. nAn(G/PLj-^n*..! (PL/0) —••.
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For n>\9 7r4n_1 (PL/O) is the group r4n_t of homotopy An — 1 sphères. The image of
the boundary homomorphism is the subgroup bP4n of homotopy sphères which bound
parallelizable manifolds, [16]. The structure of bP4n was determined in [16]; it is

cyclic of order 0n with

0n num(BJ4n)22n-2 an(22n-1-\),

where an= 1 for n even, an 2 for n odd and mxm{Bnj4n) is the numerator in the n'th
Bernoulli number Bn divided by An - which is an odd number.

It is a well known conséquence of the Pontrjagin character that

wherepneH*n(BSO; Z) is the Pontrjagin class, i4nen4n(BSO) the generator and h

the Hurewicz homomorphism. Since the Newton polynomial sn(pl,...,pn) is con-
gruent to npn modulo decomposable terms

Suppose now first that n> 1. The fundamental class &4ne/f4n (G/TOP; Z(2)) maps
onto a fundamental class of H4"(G/PL; Z(2)) (cf. §2). On the other hand, xa:BSO ->

->¦ G/PL is multiplication with Gn on homotopy in dimension An so that

Since (2n)\ 22n~a(n)'un, where un is an odd number, we get

For « lwe must proceed a little differently. One checks that H*(BSO; Z/2)~
^H^(G/0; Z/2) through dimension 5. The orientation map e:G/O-*BSO (Sullivan
[41]) splits any solution a, that is, e<>a is a homotopy équivalence. Thus a induces a

monomorphism, hence an isomorphism, on cohomology in dimensions less than 5.

It follows that

is an isomorphism. But, PL/O is 6-connected (Cerf [11]) and TOP/PL=K(Z/2, 3).

Therefore we hâve

n4 (BSO)-^ tt4 (G/O)-^> n4 (G/PL)^ n4 (G/TOP).

The Hurewicz homomorphism for BSO in dimension 4 is multiplication by 2 and we

conclude that u*T*(k4)=p1. This complètes the proof.
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In [9] we determined the map % G/0 -» G/TOP on cohomology with Z/2
coefficients. The resuit îs

r*(Qi(kAn))=O if n±V
t*(Ci(*4.)) isdualtoM2B;2n if « 2'

T*(A4.-2) 0 if *
t*(^4»-2) îsdualto u2lI_1,2l,_1 if w 2'

Hère dual means dual with respect to the basis {«„_ 6, w7} of gi/,. (G/O, Z/2)
Remark 4.4. The resuit for T*(&4n_2) (w 2') was formulated somewhat differ-

ently in [9]. There we proved ([9], 3 6)

where j SG -> G/O îs the natural map, ea the unique class of degree a m the image of
RPCO-+SO-+SG and where * dénotes the loop product in H* (SG, Z/2)

Now, ^ Ôfl[l]*[-l] where Qa dénotes the homology opération in O00^00

(SGcQ^S™) associated with the loop structure and Wa,6=y*(ÔaÔft[l]*[-3]) To
get from (*) above to 4.3 ît suffices to prove m QH* (SG, Z/2),

(i) <t*(/:4w_2), m2»-i,2»-i>^0 when n T
(11) efl-eft M2n-i}2«-i + other terms when a+^ 4w —2 and n 2l.

(m) efll - - eflk îs a hnear combination of the ul9 Itf when k>2
The statements (i), (n) and (m) are conséquences of the vanous formulas in

H*(Q(S°); Z/2) relating the loop structure and the composition structure (see e g.

[22], §§ 3 and 4). We leave this unillummating and tedious computation to the reader.

Let ic4n+2eH4n+2(B2(BITOP), Z(2)) be a fundamental class satisfying (a) of 3.6.

The cohomology suspension maps £4n+2 to a primitive fundamental class k4n+1 in
#4n+1(5(G/TOP),Z(2)) whose image in H4n+i (B(G/O)9 Z(2)) îs unambiguously
determined (compare 3.6 or Theorem D in §1).

THEOREM 4 5. The natural map Bz:B(GIO) -> B (G/TOP) is given as

where è4n+1 is the class defined in 4.1 and un is a unit ofZ(2).
Proof. According to 4.1 (i) and 4.2 the rational réduction of both sides agrée.

Smce B(GjO) is Henselian a 4n+1 dimensional primitive cohomology class is
determined by its rational réduction and îts réduction to Z/2 coefficients. Now,

G*:PH2n+1(B(GIO);ZI2)^>PH2n(GIO;ZI2)
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is injective (in fact an isomorphism). To complète the proof we need to show that

But this is a conséquence of 3.6 (c) and 4.3.

We get as an immédiate corollary Theorem B of the introduction.

COROLLARY 4.6. The composite

G10 -U G/TOP^K (Z(2), 4/i)

defines the cohomology class 2a(n)"1wna*(ê4M+1).
We conclude this section by transferring the results above to an évaluation (2-

locally) of the map Bn:BSG-*B(GjTO¥). First recall that the Stiefel-Whitney classes

are universally defined as classes of H* (BSG; Z/2). The natural map BSO-+BSG
therefore induces a surjection in mod. 2 cohomology and

H* (BSG; Z/2)~H* (BSO; Z/2)®H* (B(GjO); Z/2).

The higher torsion structure of BSG and of the map i.BSG -> B (G/O) was examined
in [23]. We give a brief review of the results. The "mod. 2 Pontrjagin classes"

w22neH4n(BSG; Z/2) lift to classespneH4n(BSG; Z/8) and not to H4n(BSG; Z/16).
Indeed, in the £t3-term of the Bockstein spectral séquence for BSG,

where e4n+i £ wln_2ki*(s4k+1). Tne primitive élément i*(è4k+l) survives to the

£I3 + v(fc)-term (& 2v(fc)-odd) of the Bockstein spectral séquence where it becomes a

boundary of the Newton polynomial in the classes w\, w\,.... It follows that i* (è4k+i)
is a torsion élément of order 2v(&) + 3 in #4fc+1 (BSG; Z(2)).

We finally recall from [23] the behaviour of the cohomology suspension. The

séquence

0->ZI2v(n)+ï-*PH4n+i (BSG; Z{2))ï*>PH4n(SG; Z(2))

is exact where the cyclic summand is generated by 4/*(ê4n + 1).

COROLLARY 4.7. The natural map BSG^B(G/TOP) maps Ê4m+1 to a class of
order 2v{n)-*(n)+4.

5. Topological Réductions of Spherical Fibrations

Stable spherical fibrations, that is, fibre spaces whose fibres are homotopy sphères

of high dimension compared with the base space, are classified by BSG. Since the
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nt{BSG) are finite for ail / the homotopy set [X, BSG] is a finite abelian group when
X is a finite complex. In géométrie terms, a spherical fibration £ splits in a sum of its
/>-primary parts, £=®£(p) where paÇ(P) is trivial for a sufficientïy high power of/?.
On the classifying space level we get

BSG* n BSG(p)
p prime

where [X, BSG{P)] [X, BSG~\®Z{P) and Zip) dénotes the integers localized at
p,Zip)={rlseQ\(s,p)=l}.

The question of reducing a spherical fibration to a honest (topological) sphère
bundle splits accordingly in its /7-primary parts. At odd primes the réduction problem
has been extensively explored by Sullivan [41].

Consider (away from the prime 2) the orientation séquence

SG-UBO® -+ BKOG -> BSG (*)

where BKOG is the classifying space for odd-local spherical fibrations with a

KO( )®Z [£] orientation and BO® dénotes the infinité loop space whose underlying
//-structure is induced from tensor product of vector bundles of virtual dimension 1.

The séquence (*) can be identified (in the world of odd primes) with the natural

séquence

SG -> G/TOP -? JSSTOP -> BSG.

Thus one gets

THEOREM 5.1. (Sullivan). An odd-primary stable spherical fibration admits a

topological (PL) réduction ifand only ifit is orientable with respect to KO( )®Z[£].
Recently in [28] it has been proved that (*) can be continued to the right as a

fibration séquence of infinité loop spaces. In particular we hâve the fibration

BKOG -» BSG%B {BO®).

On the other hand Adams and Priddy [2] hâve proved that (at each prime separately)
there is only one infinité loop space structure on the space BSO. Therefore, at an odd

prime/», 2?(2?O®)(P)=520(P).

COROLLARY 5.2. Let Çbea stablep-primary sphericalfibration (p an oddprime)
classified by a map X-* BSG. Then { has a topological (hence PL) réduction ifand only

if the composite X-+BSG?UB2O represents zéro in KO'1 (X).
Next, we consider a 2-primary stable spherical fibration £ over X. The natural

fibration

&STOP -+ BSG -> B (G/TOP)
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along with our 2-local splitting results for B (G/TOP) show that the obstruction to
reducing £ to a topological bundle is a graded cohomology class

4»-i(É), (5.3)

where a4n+1 (Ç)eH4n+l (X; Z(2)) and aAn.x (Oe//4""1 (X; Z/2).
More precisely, we find from 4.5 and the discussion preceding 4.7.

THEOREM 5.4. The 2-primary obstruction a(^) satisfies

0) a4n-i (O — Q unless n is a power ofl
(ii)^4»+i(0 2a(<>)-1-a4»+i(0,

where £4.n+i(£) w « characteristic class of order at most 2v(n) + 3. Moreover, in the

E3 + V(nyterm of the Bockstein spectral séquence of X,

where w2i{£,) is the 2/'th Stiefel-Whitney class andsn the Newtonpolynomial.
Remark. There is a curious différence between 5.4 and récent results of Brumfiel

and Morgan [10]. At the prime 2 they construct a fibration (see also [15] and [36])

BSTOV - BSG-t*f] K(ZW, 4«+1) x f] ^(Z/2, 4n-1)

based on the transversality obstruction in the Poincaré duality category. This leads to
an obstruction class

'(0 1 '4.-1 (O + I'4.-1 (0

to topological réduction. The class t4.n+l(^) has order 8 whereas our class <t4iï+1(^)
has order 2v(n)~a(n) + 4. The explanation seems to be that e4n+1(^) is an additive
characteristic class, in fact, a higher-order Bockstein applied to a "Newton type"
polynomial in the mod. 8 Pontrjagin classes of £ whereas f4n+1(£) is a third-order
Bockstein in a "Hirzebruch type" polynomial in the mod. 8 Pontrjagin classes. The

relationship between ^4n+i(^) and tAn+1(Ç) is, however, not fully understood at
présent.

The An— 1 dimensional components of t{£) and a{^) are related by

where K(£) is the total Wu class.

Let X be a simply connected Poincaré duality space of dimension n^5 and let {
dénote its Spivak normal fibration. Topological (or PL) réductions of <J and (homo-
topy) manifold structures on Xcorrespond via the theory of simply connected surgery.
In particular, we hâve the following well known conséquences of the plumbing the-

orem ([7]).
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THEOREM 5.5. There is a topological (PL) closed n-manifold in the homotopy

type ofXif and only if t; admits a topological (PL) réduction.

When 2<x(n)~iH*(X; Z(2)) is torsion-free then the obstructions aAn+l(Ç) vanish
and Zhas a PL-manifold structure if and only if (j2l_1(^) 0 and £ is KO(
orientable.

We conclude this section with a discussion of the obstruction o2i
Z/2). Let U be the Thom class in Hk(T(Ç); Z/2) and let i/^, be the secondary opération

associated with the relation

If the Stiefel-Whitney classes of £ ail vanish then ^iti{U) is defined with zéro

indeterminacy (since Sq2i~2J(xU) Sq2l~2i(x) U and Sq2'"2J(x) 0 when xe
H2J~X(X; Z/2)). We let %lt_1 ffieH2*'1 (X; Z/2) be the associated characteristic class,

r2i_1({) is an additive characteristic class on spherical fibrations with vanishing
Stiefel-Whitney classes, as we see from the Cartian formula

where Uç and Un are the relevant Thom classes.

In fact we hâve the following (unpublished) resuit of Mahowald

THEOREM 5.6 (Mahowald). The class T2l_1 (£) agrées with o2*-i (0 on spherical

fibrations with vanishing Stiefel-Whitney classes. (For a proof see [37]).
We return to the situation where X is a Poincaré duality space with normal fibra-

tion £. Suppose that X has vanishing Stiefel-Whitney classes and that ij/ifi is defined

on ail ofHH"2i+1(X; Z/2) (n dimX).

COROLLARY 5.7. With the above assumptions (t2i-i(0 is tne secondary Wu

class of\j/ith

Proof. Let UeHk(T(Ç); Z/2) be the Thom class. The Cartian formula for
along with 5.5 gives

But, the top class of H*(T(Ç); Z/2) is spherical so that \j>iA
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