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The Universal Smooth Surgery Class

I. MADSEN and R. J. MILGRAM

1. Introduction

Geometric topology divides into 2 worlds: the world of the odd primes and the
world of the prime 21). The odd world has been beautifully explored by Sullivan, but
only partial results have hitherto been available at the prime 2. In this paper we set
up the machinery and prove the basic structure theorems necessary to demonstrate
results analogous to Sullivan’s, but for the prime 2. In a sequel [26] we apply these
theorems to study the 2-local structure of the oriented topological and PL-bordism
rings, obtaining the algebraic structure of all the groups as well as much information
on the explicit generating manifolds. In previous work (with G. Brumfiel) [9] we
initiated work in this area by calculating the mod. 2 cohomology structure of the classi-
fying spaces BTOP and BPL. This gave us the unoriented PL-bordism ring and (except
in dimension 4) the unoriented topological bordism ring as well.

To proceed from mod.2 to 2-local cohomology which then allows one to proceed
from unoriented to (2-local) oriented bordism requires much more technique than
was available in [9]. On the other hand, with these new techniques we obtain much
deeper insights into the precise differences between the theories of Differentiable,
PL, Topological manifolds and Poincaré duality spaces, not to mention the X-theories
KO, KPL, KTOP and KG (where KG is the theory of fibre homotopy sphere bundles).

All of these results follow from a study of the natural map

B(n): BG—~ B (G/TOP)

whose fibre is the space BTOP; the injection of the fibre j: BTOP — BG induces the
forgetful functor for the associated cohomology theories KTOP to KG. In fact, we
completely determine the 2-local homotopy type of B(G/TOP) and the map B(n), and
obtain as an immediate corollary a precise determination of the 2-local obstruction
to lifting a fibre homotopy sphere bundle to an honest sphere bundle.

We begin by determining B(G/TOP).

1) A statement probably due to D. Sullivan.
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THEOREM A. At the prime 2 the space B*(G/TOP) is a product of Eilenberg-
MacLane spaces,

B*(G/TOP),y=~ [ K (Zzy 4n+2)x K (Z/)2, 4n).
nz1

This result is actually best possible since an analysis of the Dyer-Lashof operations
in H, (G/TOP; Z/2) shows such a splitting to be impossible for B*>(G/TOP),,,, [24].

COROLLARY. The 2-local part of the obstruction to reducing a stable spherical
fibre space over a finite complex X to a topological sphere bundle is a graded cohomology
class in

[>e]

@ HY"'(X; Z))®HY ™ (X; Z/2).

i=1

The corollary was also obtained by Brumfiel and Morgan [10], Jones [15], and
Quinn [36], and was otiginally proved under the assumption that X is 4-connected
by Levitt and Morgan [20]. The methods of these papers all use certain refinements
of the ‘‘transversality obstruction” of Levitt to construct a fibration.

BSTOP %, BSG L] K(Z3), 4n+1)x K(Z/2, 4n—1),

where j is the forgetful map, but T is not, a priori, the natural map B(rn). Moreover,
in these papers the authors are not able to do more than to study the Z/2 and Z/4
homotopy type of the map T, so precise information on T'is lacking in their approaches.

Now we turn to the precise determination of the map B(n)*. In view of Theorem
A this involves defining suitable fundamental classes y; in H* (B(G/TOP)) and cal-
culating their images in H*(BSG). The map B(rn):BSG — B(G/TOP) is an H-map
(in fact an infinite loop map2) [4], and, again from Theorem A, we can assume our
fundamental classes in H*(B(G/TOP)) are primitive. Hence B(n)* (y;) is primitive
with respect to the coproduct induced from Whitney sum.

On the other hand B(r) factors as the composite

BSG 2 B(G/0) 3 B(G/TOP)

where BJ and Bt are again the natural maps — in fact infinite loop maps. Here B4, in
view of the close connection between SG and SO, is not too hard to analyse, so our
main efforts go into studying the map B(t), which is, of course, the map of classifying
spaces associated with the natural map

7:G/O - G/TOP.

2) It is this fact which ultimately enables us to complete the calculation.
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By inspection one is able to check that t* determines B(1)* in cohomology. Thus
our problem reduces to determining suitable primitive fundamental classes in G/TOP
and evaluating their images in H*(G/O).

Specific cohomology classes were constructed in H*(G/TOP; Z,,) and
H*~2(G/TOP; Z/2) in [32], [35], [38]. For our purpose the class K,;e H*'(G/TOP;
Z,,) constructed in [32] is the more convenient one. It is not primitive, in fact

i—-1

V(Ky)=Ku®148 ) K, @Ky 4j+1QK,y;.
j=1

A primitive class, agreeing with K,; modulo decomposables, is obtained as
1
k4~i = 8__ Si (8K4, ceey 8K4i)
i

if we let s; be the i’th Newton polynomial. The classes k,;_, and k,; together define a
homotopy equivalence of H-spaces

K:G/TOP - [] K(Z 5, 4i) x K (Z/2, 4i—2)

where the H-structure on the right is the usual one.

In [23] the higher torsion structure of BSG and B(G/O) as well as their loop spaces
was examined. It was shown that PH***! (B(G/0); Z(,))=Z,,®T where T'is a Z2
vector space and a specific generator &,,,, for the free summand was constructed.
Let o*:H*(B(G/0O); Z(;,) = H*(G|O; L;,) denote the cohomology suspension.

THEOREM B. The composite G/0L, G/TOP ¥ K(Z,,,, 4n) defines the cohomo-
logy class 2*™~1g* (8,,.,) where a(n) denotes the number of non-zero terms in the
dyadic expansion of n.

To obtain our main result from B we need, first of all, information on the primitive
elements in H*(BSG; Z,,). From [23], §5, we have the exact sequences

0 — PH**'(B(G/0); Z()) <> PH*(G/0; Z(3,) ©
0— Z/2'™*! _, PH*"*1(BSG; Z,)) = PH*(SG; Z/2)

where v(n) is the 2-adic valuation on n. The natural map BA: BSG — B(G/O) maps
the element &,,,,€H***'(B(G/0); Z,,) to an element é,,,, of order 2**”*2 and
4-é,,,, is the generator in the kernel of *: PH*"*! (BSG; Z,,) > PH*"(SG; Z;)).

As the next step we ‘‘deloop” the primitive element k; in H* (G/TOP; Z,).
This is not necessarily possible ‘‘on the nose” since not all 2-local primitives in the
cohomology of a K(Z,,), n) are in the image of the suspension map, but we can show
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THEOREM D. Thereis aprimitive graded class k , ., € PH**** (B(G/TOP); Z,,)
satisfying

(i) 0* (kyp+1)—ka, has order 2

(ii) ™ (0* (kan+1)—k4n)=0in H**(G/O; Z,)).

From these results it follows that (Br)* (ky,.;)=2™"1 é,,., and we get ((b)
below is immediate from [9]).

COROLLARY E. The 2-local part of the obstruction to reducing a stable spherical
fibration & over X to a topological bundle is a graded cohomology class

Oan-1(E)+ 041 (O)eH* 1 (X; Z2)DH** ' (X; Z,)).

Furthermore,

(@) O4n41 (&) has order at most 2° (MW~ (M+4

(b) 044-1(&)=0 unless n is a power of 2.

The class 6,4, (&) is almost explicit. We know [23] that if w, is the n’th Stiefel-
Whitney class in H*(BSG; Z/2) then w}, is the restriction of a universally defined
Z/8 class, p,. If it were known that the coproduct for p, had the form

Y (Pn)=) Pi®Pn—i+Y, W3ir 1 ®W; mn—i)—1 (*)

as a class of H*(BSG x BSG; Z/8) then the class é,,,, in H*"*'(BSG; Z,,) could
be written explicitly as a Bockstein of the ‘‘primitive” in the p,;. Unfortunately, we
have not been able to prove (*) so we leave it as a conjecture.

The class a,:_, (¢) is connected with the secondary cohomology operation V; ;
based on the Adém relation

S¢* 'S¢ '+ Y S¢* ¥ sq¥=0.

0<j<i-1

Indeed, if all Stiefel-Whitney classes of ¢ vanish then o,:_, (&) is defined by setting

¥, (U)=05_1(§)V U,

where U is the Thom class of £ in the Thom complex (Mahowald, unpublished). Here,
we note, that ; ; has zero indeterminacy, so y; ;(U) is well defined.

Recently Ravenel [37] has introduced certain twisted secondary Stiefel-Whitney
classes 4;(&) defined without any preconditions on the Stiefel-Whitney classes of &
and has proved that

Azi_q (€)=62*-—1 (6)

at least modulo decomposables. It would be very useful if we knew the exact difference
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between these two classes. For example, they would have to be equal if 1,._, (¢) were
universally primitive. What seems to be needed is a Cartan formula for the 1,.

In the special case where X is a Poincaré duality space of dimension # all of whose
Stiefel-Whitney classes vanish and & is its Spivak normal fibration we have the follow-
ing partial characterisation of the class ,:_; (¢):

PROPOSITION F. If xe H"™*'*1(X; Z/2) and \, ; is defined on x, then
(0211 () v x, [X =LY, (x), [X]>

and \; ; is defined with zero indeterminacy.

Remark. It should be possible to give a similar Wu formula for the Ravenel
operations.

In particular, if the y; ; are defined on the entirety of H"~2'*1(X; Z/2) then the
0,:—4 (&) are uniquely determined by Proposition F. This will be the case if and only
if all the Sq’ vanish identically in H"~2'*1(X; Z/2).

We conclude by pointing out

PROPOSITION G. Let X be a simply connected Poincaré duality space of dimen-

sion at least 5 and ¢ its Spivak normal fibration. Suppose
(i) 03:-1(&)=0 for all i

(i) 2* W1 H**1(X; Z,,) is torsion free for all k.

(iii) X is orientable with respect to KO( )®@Z[1].
Then there is a PL-manifold M and a map f: M — X which is a homotopy equivalence.

We have organized the paper in five sections,

§1 Introduction

§2 The 2-local structure of B*(G/TOP)

§3 Delooping the universal surgery class

§4 The universal smooth surgery class

§5 Topological reduction of spherical fibrations.
In §2 we prove Theorem A and in §3 Theorem D. The evaluation of the natural maps
Bt:B(G/0)— B(G/TOP) is done in §4. In §5 we prove the rather obvious geometric
corollaries listed above.

2. The 2-local Structure of B(G/TOP)

In this section all spaces and maps are to be taken in the 2-local category (see e.g.
D. Sullivan [41] for the definition and the simple properties of the 2-local category).
The spaces G/TOP and G/PL are the fibres of the natural maps BSTOP-4 BSG
and BSPL-% BSG, respectively. In [4], Boardman and Vogt proved that BSTOP,
BSPL and BSG have natural structures as infinite loop spaces (the underlying H-space
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structure in each case is the one associated to Whitney sum). They also proved that i
and i’ are infinite loop maps. This gives G/TOP and G/PL an infinite loop space struc-
ture. We prove that B(G/TOP) is a product of Eilenberg-MacLane spaces and that
B(G/PL) has a single non-zero K-invariant in dimension 6. We also show that
B*(G/TOP) is a product of Eilenberg-MacLane spaces whereas B?(G/PL) has one
non-zero K-invariant in dimension 7.

The proofs are very formal, based on the known structure of H,(G/TOP; Z/2)
as a module over the Dyer-Lashof algebra of homology operations and on standard
results about primitives in a differential Hopf algebra. There is one slightly unusual
argument though (Theorem 2.15) in which we find it necessary to bring in higher
Massey products and their connection with Eilenberg-Moore spectral sequences as
well as with Dyer-Lashof operations. The techniques here may have wider implications
for H-spaces, so they could well have a certain independent interest.

The main line of argument is to first restrict, for dimensional reasons the types of
integral primitives in the cohomology of the r’th stage in a Postnikov resolution of
B(G/TOP). Next we show (using the Massey products) that E, = E_ in the Eilenberg-
Moore spectral sequence converging to H* (B(G/TOP); Z/2). Combining this fact
with our previous study of the possible primitives quickly gives the main results.

In our original exposition of these results [25], we outlined a somewhat different
proof. Using the notion of a Mahowald orientation we gave geometric reasons why
most of the differentials in the Eilenberg-Moore spectral sequence converging to
H*(B(G/TOP); Z/2) had to vanish. But we needed the algebraic techniques used here
to handle some special cases. It then turned out that the algebraic techniques actually
applied to all the differentials and there was no need anymore to use the geometric
arguments. One might wonder, though, if our geometric arguments could not them-
selves be strengthened to prove the entire theorem.

From [40] we know that G/PL is almost a product of Eilenberg-MacLane spaces.
In fact,

G/PL~QE;x [[ K(Zy 4n)x [] K (Z[2, 4n—2)
n>1

n>1

where E, is the 2-stage Postnikov system obtained as the fibre in the fibration

with K-invariant B, (Sq®15).
From Kirby and Siebenmann [17] it follows that G/TOP has the homotopy type
of a product of Eilenberg-MacLane spaces, namely
G/TOP= [[ K(Z,), 4n)x [] K(Z/2, 4n-2).
nz1

n=1
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(In Section 3 we review the construction of a specific identification of G/TOP with the
given product of Eilenberg-MacLane spaces. This refined statement is not needed
however for the conclusions of this section).

The natural map G/PL — G/TOP has fibre K(Z/2, 3). From [32], [35] and [38]
we know that H*(G/TOP; Z/2) is a primitively generated Hopf algebra while in
H*(G/PL; Z/2) we have

T(k4)=k4®]. +k2®k2+ 1®k4,

where k, is the non-zero class in H*(G/PL; Z/2) (compare [9], 9.16). Apart from the
unusual behaviour of k,, the fundamental classes k,;e H*'(G/PL; Z/2) are all
primitive. The classes k,; are Z/2-reductions of integral primitive fundamental classes
(cf. §3).

For a space X, let (E,(X), d,) denote its mod.2 Bockstein spectral sequence in
cohomology [5],

E, (X)=H*(X; Z|2)
E,(X)=H*(X; Z,,)/Tor.

When X is an H-space then (E,(X), d,) is a spectral sequence of Hopf algebras. Let
JriH*(X; Z/2")— E,(X) denote the reduction homomorphism. It is a surjection with
kernel 2*H*(X; Z/2" ')+ 0,8, H*(X; Z/2" 1), where 2* is induced from the in-
clusion Z/2""*<Z/2", B,_, is the integral Bockstein homomorphism associated with
the coefficient sequence ()-—»Z(Z)z'—'>1Z(2)—+Z/2’“1 —0 and g, is the reduction to
Z/2" coefficients. If j,(x)#0 then x has order 2" in H*(X; Z/2").

We recall that an element xe H*(X; Z,,) is called primitive if A(x)=u(x®@1+
+1®x), where

A:H*(X; L)) > H*(Xx X; Z(,))
is induced from the multiplication in X and

is the exterior product. The subgroup of primitive elements is denoted PH* (X; Z,,).
We observe

LEMMA 2.1. Let xe H*(X; Z/2"), where X is any H-space. Then 2" Yx is primitive
if and only if j,(x) is primitive.

We shall examine the structure of PH* (X; Z,,) in the case where the underlying
space has the homotopy type of a product of Eilenberg-MacLane spaces K (A, n)
with A=Z,, or Z/2. We begin by reviewing the Bockstein structure of a single
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K(A4, n). Let B{x} be the following DG-Hopf algebra over Z,,

B{x}=P{x}QE{y}, oOx=4y
degx=4n, degy=4n+1
v (x)=10x+x®1, v (y)=1Qy+y®l1.

The associated Bockstein spectral sequence is

E, B {x}=P{x"}QE {yx"" "'}
dr+2 (x2r)=y.x2r—1 .

The structure of E, (K (A, n)) is for r>2 expressable in terms of these model spectral
sequences (see e.g. Browder [5])

(i) E.(K(Z/2,n))=Q® E,B{x}
(ii) E, (K(Z ), 2n))=P {1,,}® ® E,B {x;}, (2.2)
(iii) E, (K(Z(z)a 2n—1))=E{1,,.,}® ® E,B {xi} >

where 1,, and 1,,_; are reductions of integral primitive elements. The number of
factors in each of the cases above as well as the naming of the elements x; in
E,(K(A, n))=H*(K(A, n); Z/2) is available but irrelevant for our purpose. We shall
however use that each x;e H** (K (4, n); Z/2) is a square of a primitive (indecompos-
able) element.

Let P:H*(X;Z/2")—» H*(X;Z/2'*') be the Pontrjagin squaring operation
(Thomas [42]) and let P~ V: H*(X; Z/2) > H*(X; Z/2") be the (r—1) st iterate.
The Pontrjagin square is a refinement of the cup product square; in particular,
i,P" "' (x)=x*"1. From the remarks following 2.2 we know that j, P~ (x,)=z%
for a certain indecomposable and primitive element z;e E, (K(4, n)).

LEMMA 2.3. The subgroup of primitive torsion elements in H*(K(A, n); Z,,)
form a vector space over Z2. In fact Tor PH* (K (A, n); Z,,) is spanned by the elements

(i) 2r18,PU""V(z), zeTorPH?*(K(4,n);Z/2)
(i) (B, (2))* zeTorPH! (K (A, n); Z/2).

Proof. It is a consequence of 2.1 that the elements 2" ~!8,P("~1)(z) are primitive.
It suffices to prove that a primitive torsion element p is a linear combination of the
elements listed in (i) and (ii). Suppose inductively that

r-1
g,=p+ Y 271B,P¢ "V (z)
i=1

is divisible by 2"~! in H*(K (A, n); Z,,). From 2.1 it follows that j,((1/2"7!) q,) is
primitive and from 2.2 that there is an element z,ePH° (K(A,n); Z/2) with
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L((1/277Y) 4,)=j.(B,P"~V (z,)). But then g,+2""'$,P"~V (z,) reduces to zero in
H*(K(A, n); Z/2") and is therefore divisible by 2". This process stops since K (4, n)
is of finite type. We finally note that if j, (p)=(p, ())** for a>0 then p= g, (z)*" since
the elements §,P"~") (z) for r>1 all have dimension congruent to 1 (mod4). This
completes the proof.

A product of Eilenberg-MacLane spaces can have several H-space structures.
Let E, | be the fibre in the fibration

Eq— K(Z/2,k+3) 35 K(Z)2, k+7).

Then QE, y=FE, ,_;. In particular, E, , has the homotopy type of K(Z/2, 3)x
x K(Z/2, 6). The H-space structure on E, o however is distinct from the ordinary
structure on the product, since in H*(E, ; Z/2),

Y(16)=16@14+1,Q1;+1@15.

(Compare [1]).
More generally, if X is an H-space which is homotopy equivalent to a product of
K(Z/2,i)s and K(Z,), j)’s and if

K(Z)2,4n+1) L E L X5 K(Z)2, 4n+2)

is a fibration sequence with n*(i4,4,)=Sq*"*'(x) for some primitive element
xe H*"*1(X; Z/2), then in H*(QE; Z/2) there is a class 1,, with j*(14,) the generator
of H*"(K(Z/2, 4n); Z/2) and such that

¥ (14n) =0* (i* (x))®0* (iI*(x))

where ¥ is the reduced diagonal. This follows easily using the methods of [18] or [33].

By an abelian Hopf algebra we shall mean a commutative and cocommutative
Hopf algebra. Let 4 be an algebra over Z/2 equipped with two coalgebra structures
Y, and ¥, and such that (4, y/;) are abelian Hopf algebras. Further, suppose that
(A4, ¥,) is primitively generated. (4, y,) is a tensor product of monogenic Hopf
algebras by a theorem of Milnor and Moore [34]. Moreover, the primitive elements
of (4, y,) are contained among the indecomposables and elements of the form x?
with x primitive. We conclude that the primitive elements of (4, ¥, ) occur in a subset
of the same dimensions as the primitive elements of (4, ¥,). As a corollary of the
proof of 2.3 we then get

LEMMA 2.4. Let X be a homotopy commutative H-space and suppose the under-
lying space has the homotopy type of a product of Eilenberg-MacLane spaces,
X~[] K(Z), j)- Then a primitive torsion element of H*(X;Z,)) either occurs in
dimension 4t+1 or it has a non-zero Z|2 reduction.
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We shall now consider the Eilenberg-Moore spectral sequences of a fibration of
infinite loop spaces

X—>EX-> BX (EX~%)

converging either to H, (BX; Z/2) or H*(BX; Z/2). The latter is a first quadrant
spectral sequence of cohomology type with

E3 " =EXthyx; 2/2) (Z/2, Z/2)

E,=E,H*(BX;Z/2). (2.5)

The spectral sequence is associated to the usual geometric filtration B XcB,Xc---c
B, Xc:-- of BX by the ‘‘number of joins” [29]. In particular, the spectral sequence
admits an action of the Steenrod algebra. A result of A. Clark [12] asserts that {E,,d,}
is a spectral sequence of differential abelian Hopf algebras.

There is a natural identification ZX'= B, X and the resulting inclusion ¢:2X — BX
may be identified with the usual suspension map ZQBX — BX ([29], [39]). Thus
EN*cE}*=PH*(X; Z/2) determines exactly the image of the cohomology suspen-
sion o*.

Dually we have a first quadrant homology type spectral sequence with

E?=Tory, x.z/2)(Z[2, Z/2)

E*=E°H, (BX; Z]2). (2.6)

Again, {E", d"} is a spectral sequence of differential abelian Hopf algebras, and the
elements of E;°, give the image of 6,:QH,(X; Z/2)—»PH,(BX; Z/2).

The following two lemmas are often useful when dealing with the Eilenberg-Moore
spectral sequences. We recall that a Hopf algebra 4 is called primitive if the natural
map P(A4)-5Q(A) is surjective and is called biprimitive if j is an isomorphism.

LEMMA 2.7. Suppose A is a primitive abelian differential Hopf algebra. Then
H (A, d) is again primitive.

Proof. The Hopf algebra A is primitive if and only if P(4*)— Q(A*) is injective.
The lemma now follows from the exact sequence

0 P(H(A*)SP(H(4%) > Q(H(4%)),
since £=0 on P(A*) implies that £=0 on P(H (4*)).

LEMMA 2.8. Let A={A"*} be a primitive abelian differential bigaded Hopf
algebra with differential of bidegree (n, —n+1). Suppose A has the property that every

primitive element pe A™* with r=3 occurs in odd total degree or in total degree con-
gruent to 0(mod4). Then H(A) has the same property.
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Proof. First, if A is biprimitive, then
A=Q E{x}®E{y}®Q E{z;}
i J
with differential dx;=y;, dz;=0, and the lemma follows easily by direct computation,

H(A)=Q E{xy}®® E{z;}.

When A4 is not biprimitive, we use the spectral sequence of Browder ([6], 3.3 and 3.4).
It is a spectral sequence of biprimitive Hopf algebras with E; (4) the biprimitive form
of A and E_, (A4) the biprimitive form of H(4). Since a primitive Hopf algebra and its
biprimitive form have the same primitive elements, the lemma follows.

As a final preparation for our main theorems we review the connection between
matric Massey products and the Eilenberg-Moore spectral sequence as well as the
connection of matric Massey products with the Dyer-Lashof operations. The references
for this are [14], [21] and [30].

Let (4,d) be a DG-algebra. Massey products are higher order operations in
H(A, d) which arise whenever H (A4, d) has more multiplicative relations than A.
The simplest case is the triple product {4, b, ¢> defined for elements 4, b and ¢ of
H(A, d) with db=0 and bé=0. Choose a, b and c in A representing the respective
classes. Then ab=du and bc=dv for some u and v in 4 and uc+av is a cycle (we are
working over Z/2). The set of all the associated homology classes {uc+ av} is denoted
{a, b, ¢>. It is easy to see that this set determines a unique element in the quotient
group H(A)/GéH(A)+H(A) é.

DEFINITION 2.9. Let A be as above and suppose M and N are matrices with
entries in 4 of type n x m and m X k, respectively. We say that M and N are multipliable
if deg(m,;)+deg(n;,) depends only on i and k.

When M and N are multipliable matrices, then M- N is again a matrix with entries
in A.

DEFINITION 2.10. Let M;, ..., M, be a system of matrices in H (4, d) such that
M, is a row and M, a column and such that M; and M, are multipliable for all i.
The n-fold matric Massey product {(M,,..., M,) is said to be defined if there exist
matrices N;; (1<i<j<n+1 and 1<j—i<n—1) with entries in 4 satisfying

dijN=ZkNikaja dNi,i+1=O

and with the class of N; ;,, in H(4, d) equal to M;. The value of {M;,..., M,} is
the set of all classes in H(A4, d) represented by cycles of the form N Ny n41.
It should be noted that any two values of (M, ..., M,> differ by elements in cer-
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tain (n—1)-fold matric Massey products (the reader might consult [30] pp. 41 and 42
for examples of these products).

The next theorem which is due to J. P. May [27] connects matric Massey products
with the Eilenberg-Moore spectral sequence of a fibration X — EX — BX (see 2.6).

THEOREM 2.11. (May). Let X be a connected strictly associative H-space with
a strict unit. Then the suspension map

has kernel the set of all k-fold matric Massey products with 2<k<r.

Suppose now that X is an infinite loop space. Passing to the Moore loop space we
can assume that X is strictly associative with a strict unit. Then the singular chain
complex C,(X; Z/2) is a DG-algebra and matric Massey products make sense. The
infinite loop space structure gives among other things a map (Dyer-Lashof [13])

O: W®z/315,1Cx (X; Z2)®Cy (X; Z)2) — Cy (X; Z)2),

where W is the standard Z/2[X,]-free resolution of Z/2 with a single generator e;
in each dimension i. Let xU,;y=0 (e;®x®y) and define chain level operations

qi(x)=xuix+5xu,-+1x.
There are induced operations in homology
Qi:H,(X; Z[2) > Hppy i (X5 Z)2).

(The Dyer-Lashof operations Q' are defined as Q' (x)=Q,_,(x) for xeH,(X; Z/2)).

Matric Massey products on differential graded algebras with additional structure
were considered in [30]. It is not hard to see that the singular chains of an infinite
loop space have the required extra structure to assure that Theorem 0 of [30] is valid
(compare [21]). Thus we have

PROPOSITION 2.12. Let X be an infinite loop space and let xe Hy (X; Z/2) be an
element of the matric Massey product {My,..., M,». Then Q,(x) is contained in the
n-fold Massey product

OuM, O 0 0o M,
<(Q2M1, 0:1My, QoM,), (QfMj QoM, 0 ),..., (Q(l)M”)> )

Q. M, OM; QoM, 0. M,

In [24] the action of homology operations in H, (G/TOP; Z/2) was determined.
Let k,,e H*"(G/TOP; Z/2) be any fundamental class, that is, a class which projects
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non-trivialy to the quotient group Z® ,QH* (G/TOP; Z/2) of indecomposable ele-
ments over the Steenrod algebra. From [24] we have

PROPOSITION 2.13. For every class x in H,(G/TOP; Z/)2), Q,(x)=0 and
Q. (x)=0. However, if {x,ky;4,)#0 then {Q,(x), kg;s 6> #0 as well.

Let (E",d") denote the Eilenberg-Moore spectral sequence of the fibration
G/TOP — E(G/TOP) - B(G/TOP) (compare 2.6). In view of 2.11, 2.12 and 2.13 we
get

PROPOSITION 2.14. Let xe H;(G/TOP; Z/2) and suppose that the suspension
o,(x)eE] ; is a boundary, o,(x)=d"(y) for some yeE/, | ;_,_,. Then a,(Q,(x))=0
in Ef 2j42-

In the beginning of this section we remarked that H* (G/TOP; Z/2) was a primitive
Hopf algebra. Therefore H, (G/TOP; Z/2) is an exterior algebra and the E,-term of
the Eilenberg-Moore spectral sequence converging to H*(B(G/TOP); Z/2) has the
form

E,=P{[p] | pePH*(G/TOP; Z/2)}.

Moreover, since all the generators have filtration degree 1, they are primitive and E,
is consequently a primitive abelian Hopf algebra.

THEOREM 2.15. The FEilenberg-Moore spectral sequence converging to
H*(B(G/TOP); Z)2) collapses, i.e. Ey=E. In particular : QH* (B(G/TOP); Z/2) -
— PH*(G/TOP; Z/2) is an isomorphism.

Proof. Since the spectral sequence is a module over the mod. 2 Steenrod algebra 4
(and in particular d, is an A-homomorphism) and since G/TOP is a product of
Eilenberg-MacLane spaces, it suffices to prove that [k,4,+,]and [k,,]in E, are infinite
cycles. First consider the [k,,]. They are primitive and therefore if d, ([k4,])#0, it
must be a primitive element of total degree 4n+2 and with filtration degree r+12>3.
But in E, the primitives of filtration degree at least 3 all have total degrees congruent
to 0(mod4). According to 2.7 and 2.8, each stage E, in the spectral sequence has no
primitive elements in filtration degree >3 and total degree congruent to 2(mod4).
Thus [k,,] is an infinite cycle.

We next consider the elements [k,,.,]. To prove that these elements are infinite
cycles we first note that the Eilenberg-Moore spectral sequences, E, and E” converging
to H*(B(G/TOP); Z/2) and H,(B(G/TOP); Z/2), respectively, are dual to each
other. Suppose that d, ([k,,+,])#0, then there exist ye E" and xe H, (G/TOP; Z/2)
such that d"(y)=o0,(x) and {[ks,+.), 0.(x)>=1. But then 2.13 implies that
{[ksn+6])> 0,(Q2(x)))>=1 and in particular ¢,(Q,(x))#0. This contradicts 2.14 and
finishes the proof.
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Let

+o—> BEs —— BE, ——— BE; ——— BE, ——— K(Z/2,3)

K(Z2,12) K(Za10) K(Z2.8)  K(Z6)

be a Postnikov decomposition of B(G/TOP). It is completely determined by specifying
the K-invariants K,=n) (1) in H*(BE,; n,(G/TOP)). Since G/TOP is an infinite loop
space, the same is true of each stage BE,. In particular K, must be in the image of the
suspension map and hence primitive. This fact sharply limits the possibilities for the
K-invariants.

THEOREM 2.16. There is a (2-local) homotopy equivalence
B(G/TOP)=~ [[ K(Z/2, 4n—1)x K (Z3), 4n+1).
n=1

Proof. The proof is by induction over the Postnikov decomposition of B(G/TOP).
Suppose that the r’th stage BE, has the homotopy type of a product of Eilenberg-
MacLane spaces. We must show that the K-invariant in the next stage is zero. Con-
sider the projection n: B(G/TOP)— BE,. The K-invariant is determined by the first
dimension in which 7 is not a homotopy equivalence and is non-zero only if

n*: H**! (BE,; n,(B(G/TOP))) » H**' (B (G/TOP); n, (B (G/TOP)))

is not injective. In our case the kernel must be cyclic with a primitive generator.

If s=4i+1, we require a primitive element K, of H**?(BE,; Z,,) and from 2.4
either K,=0or g, (K,)#0in H**%(BE,; Z/2). In the latter case, consider ¢* (¢, (X,)).
It is surely zero since G/TOP is a product of Filenberg-MacLane spaces. Hence
0, (K,)=y* for some primitive element y. This follows from the exact sequence
(Milnor-Moore [34])

0— PH*(BE,; Z/2) 5, PH*(BE,; Z/2) > QH*(BE,; Z/2)

together with 2.15. Since y is odd dimensional, it is indecomposable and thus ¢* (y) #0
in H*(G/TOP; Z/2). In this case we would have in H*(G/TOP; Z/2)

¥ (01 (ksi))=0* (»)®0* ()

(compare the paragraphs preceding 2.4). This contradicts the fact that H* (G/TOP;
Z/2) is a primitive Hopf algebra.
If s=4i—1, then the possible K-invariant K, belongs to H*(BE,; Z/2). That this
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must be zero follows by a counting argument and uses the fact that the additive struc-
ture of H*(B(G/TOP); Z/2) is the same as the additive structure of H* ([ K(Z,),
4n+1)x K(Z,,, 4n—1); Z/2)). This completes the proof.

It is now easy to prove the main result of this section

THEOREM 2.17. There is a (2-local) homotopy equivalence
B*(G/TOP)=~ [] K(Z ), 4n+2)x K (Z/2, 4n).
n=1

Proof. First, it is a simple dimensional argument to see that the Eilenberg-Moore
spectral sequence converging to H*(B?(G/TOP; Z/2) collapses. Therefore

o: QH* (B2 (G/TOP); Z/2) » PH* (B(G/TOP); Z/2)

is an isomorphism. For B?(G/TOP) the K-invariants occur in dimensions 4s+3 and
4s+1. Let B*(E,) denote the r’th stage in the Postnikov decomposition for B (G/TOP)
and assume it is a product of Eilenberg-MacLane spaces. Then the r’th K-invariant
is a primitive element in either H***3(B’E,; Z,,) or in H***!(B’E,; Z/2). In the
first case K, is non-zero only if ¢, (K,)#0. But g, (K,) is an odd-dimensional primitive
and hence indecomposable. Since 6* (¢, (K,)) =0 we conclude that g, (K,) is itself zero.

In the second case a similar remark applies. This proves the theorem.
We shall finally determine the spaces B(G/PL) and B*(G/PL). Let E; and Ej; ,
be the fibres in the fibrations

E,— K(Z/2,3) 255, K (Z,,,, 6),
E; — K(Z[2,4) 25, K(Z,), 7).

THEOREM 2.18. There are (2-local) homotopy equivalences
B(G/PL)~E, x f[z K(Zy, 4n+1)x K (Z[2,4n—1)

B?(G/PL)~E; , x [1 K(Zy, 4n+2)x K (Z[2, 4n).

Proof. Consider the fibration

K(Z/2,4) - B(G/PL) - B(G/TOP).

It is of course a fibering in the category of infinite loop spaces and thus classified by a
stable mapping

B(G/TOP)A K (Z/2, 5).
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In particular B(G/PL) is the fibre of 1. But
PH® (B(G|TOP); Z/2)=Z/2@Z/2

with generators Sq?(13) and g, (15), respectively. Moreover, in view of the known
structure of G/PL the only possibility for A* (1) is A*(1)=Sq?(13)+¢; (15), and the
result on B(G/PL) easily follows. The result for B?(G/PL)is shown in a similar fashion.

3. Delooping the Universal Surgery Class

The space G/TOP is the classifying space for ‘‘normal maps’. A homotopy class
ML, G/TOP (M a manifold, dim M >4) is equivalent to a normal cobordism class
M’ — M. The simply connected surgery obstructions thus give invariants of the set of
homotopy classes [ M, G/TOP] —in fact of the smooth bordism of G/TOP. If dim M <4
one first cross with CP? and then take the simply connected surgery invariants. These
invariants are expressable in terms of characteristic classes of the map f: M — G/TOP.
Indeed, there is a class ([38])

k4*_2=k2 +k6+ "‘H4*_2 (G/TOP; Z/2)

such that the Kervaire invariant sx (M 2", ') of the normal cobordism class associated
with f is given by the formula

sk (M?", f)=Cf* (kax-2) V (M), [M]), (3.1)

where V(M) is the total Wu class of M.

Next, let M*" be a smooth Z/2"-manifold, that is, a smooth ‘‘manifold” with
Z/2" cone singularities along a codimension one submanifold 6 M (see [32] or [35]
for a precise definition). Let v: M — BSO denote the Z/2"-normal bundle. As in the
non-singular case a homotopy class of maps f: M — G/TOP gives rise to a normal
cobordism class af Z/2-manifolds M'— M and hence an index obstruction
s;(M, f)eZ/|2". The invariant s;(M, f) only depends on the bordism class of (M, f')
as an element of Q, (G/TOP; Z/2") and is consequently expressable in terms of charac-
teristic classes. Precise formulas were given in [32] and [35]. Let e H*(BSO; Z,))
be the modified (inverse) Hirzebruch class [35]; it is the unique class whose rational
reduction is the inverse Hirzebruch polynomial and whose Z/2-reduction is the square
of the total Wu-class. Let v: M — BSO denote the Z/2" normal bundle. There is a
graded class

K4*=K4+K8 + ’“GH4* (G/TOP; Z(z))
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such that the index invariant s, (M, f)eZ/2" is given as

st (M, [)=<f*(Ks) v*(£), [M]) +
+257f* (kay-2) v* (203, 8q"0y;), [6M]). (3.2)

Here v,; denotes the 2i’th Wu class, k,,_, the class in 3.1 and 2¥~! the injection
Z/2<Z/2*,

The classes & and K are uniquely characterised by 3.1 and 3.2 since the bordism
groups N, (G/TOP) and Q,(G/TOP;Z/2") map onto H,(G/TOP; Z/2) and
H,(G|TOP; Z/2"), respectively.

Remark. The class K,; above is the class constructed in [32]. In [35] a different
class L,; was constructed using the genus ¥ Sq' V rather than Zv,; Sq* v,;. The differ-
ence between K,; and L,; is easily seen to be a class of order 2 in the subgroup of
H*(G|TOP) generated by the action of the Steenrod algebra on the classes k,;_,.
The precise formula is (compare [8])

Ly, —K4,~=B1Sq (2*) Sql k4,—2

where Sq(2*)=1+)2, Sq?'. The classes k,_ , are primitive, whereas the coproduct
on K,, is

1
l/’(K‘tn)=1®K4n+8( Ku®K, (n—-i)>+K4n®1

n—
i=1

so that 8K, is a multiplicative class.
We recall that when X, is a multiplicative class then the Newton polynomial
Su(X4s..» Xa,) is an additive (i.e. primitive) class. It is given by the formula

Sn (X4_,..., X4n)=z a(il, ey in) X‘;_l, ceny X:{;t

where the summation is over all n-tuples with Y ri,=n and where the coefficient
a(iy,..., i,) s

(“' 1)0 a(il, nsny i,,)=n(i1+-'-+i,,——1)!/i1! coe l.n!, Q"—'Z i,..

From the well known formula for the 2-adic valuation on k!, v(k!)=k—a(k) it
follows easily that 8%(iy,..., i,) is divisible by 8n and in fact divisible by 32n when
(i1y--es i5)#(0,..., 0, 1). Let §, be the polynomial

1
5,,(X4,..., X4")=§ Sn(8X4,..., 8X4_").

It has coefficients in Z,, and

§50(Xgy s X4p)=X,, (mod4).



298 1.MADSEN AND R.J. MILGRAM

The element k4,=35,(Ky,..., K4,) is a primitive class in H*(G/TOP; Z,,). It
differs from K,, only by decomposable terms, in fact, by 4-(decomposable terms).
The classes k,,_, and k,, together define a specific 2-local homotopy equivalence of
H-spaces

K: (G/TOP) )= [] K (Zezy, 4n) x K (Z/2, 4n—2). (3.3)
n=1

Next, we recollect some results on the homological structure of G/O. First of all ([22])
H, (G|O; Z[2)=P{u, ;| b<a<2b}®P{u; | Ie #},

where ¢ is the set of sequences /=iy, iy,..., I,) of positive integers which satisfy
2<n,  i;4<2;, 1<ig—ij—-—i,.

The degree of u, ; is a+b and the degree of u; is ig+ -+ +i,.

Let {:H,,(G/O; Z/2)—> H,(G|O; Z/2) denote the halving map. It is the Z/2-dual
of the cup-squaring map in cohomology, {* (x)=x2. The value of { on the basis above
is

{ (424, 25)=Ua, 5> {(uar)=u;.

In particular ( is surjective. Hence {* is injective and H*(G/O; Z/2) is a polynomial
algebra. The space G/O is an infinite loop space ([4]) and as such it admits homology
operations

Qa:Hn (G/O; Z/2) - Hn+a (G/O’ Z/2)
as well as Pontrjagin squaring operations ([23])
P:H,(G/O; Z[2") - H,,(G|O; Z[2*).

Let §, be the r’th order integral (or rather 2-local) Bockstein operator and g, the
reduction homomorphism to Z/2" coefficients. Then

01B: (up)=(io—1) uy_ 4, 0181 (s, 5)=(a=1) uy_1, 4,

where I—A44,=(iy—1, iy,..., i,). We note that the sequence /—4, is not necessarily
in #, indeed I—A4,¢ ¢ if and only if iy —i; —---—i,=1. In this case u;—4, is to be
interpreted as u2, J=(iy, ..., in).

The higher torsion structure of G/O is a consequence of the following ‘‘universal”
formulas

Qrﬂr+1(ﬁ(r) (u))::p(r_l)(u).ﬁrp(r‘l) (U), r>2
0182 (P(u))=u-Byu+ Q" (018 (),
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where ue H,,(G/0; Z/2) and P (u)e H, (G/O; Z/2"*1) is the r’th iterated Pontrjagin
square.

In [23] we found that G/O is Henselian. Roughly, this means that the higher
torsion of H,(G/O; Z,,) is generated from H,,(G/O; Z/2) under iterated use of the
Pontrjagin square followed by a Bockstein. We list as an immediate consequence

LEMMA 3.4. A primitive class in H*(G/O; Z,,) is determined by its Z]2 and Q
reductions together with its value on the classes P (u), ue H,,(G/O; Z/2) and r > 1.
Let 7: G/O — G/TOP be the natural (infinite loop) map and consider the composite

11: Tor PH*(G/TOP; Z,,) 24 PH*(G/TOP; Z/2) X, PH*(G/|0; Z/]2).
As a final preparation for the proof of Theorem D we shall need

LEMMA 3.5. Imt}=Sq'Im(z*).

Proof. One inclusion is obvious since Sq! is the reduction to Z/2 coefficients of the
integral Bockstein. The space G/TOP is a product of Eilenberg-MacLane spaces as far
as Z,, homology goes. From 2.3 we see that it suffices to prove that any element
t*(Sq' (7))*" with /ePH*(G/TOP; Z/2) in fact belongs to t*(Sq! PH*(G/TOP)).
To this end we shall use the main result of [9]: 7, maps the elements u, e H, (G/O; Z/2)
to zero and defines a monomorphism from the vector space generated by the u, , to
the indecomposable elements of H, (G/TOP; Z/2).

Now, if Sq'(/)*" evaluates non-zero on 7,4 (4, ,) then a is even and a>b. If
I,ePH*(G/TOP; Z/2) is an element such that t*(/;) is dual to u,_, , then Sq* (/)*" +
+1*(Sq'/,) annihilates u, , and evaluates as Sq' (/)" on the rest of the u; ;. This
proves the lemma.

In §2 we saw that the double delooping B?(G/TOP) is 2-locally a product of
Eilenberg-MacLane spaces. In 3.3 we reviewed a specific identification K (as H-spaces)
of (G/TOP),, with a product of Eilenberg-MacLane spaces. The natural question
arises if Ke H* (G/TOP) is in the image of the double suspension

o%: H* (B2 (G/TOP)) » H* (G/TOP).

The 4n—2 dimensional components of K are primitive classes with Z/2 coefficients
and they deloop. The 4n-dimensional components of K, however, are classes k,, with
Z,, coefficients and they are not, a priori, in the image of 6. We have not been able
to decide if X itself is in the image of 62, so we leave this as a conjecture.

A cohomology class ke H*"(B%(G/TOP); A) (A=Z/2 or Z,,) is called a funda-
mental class provided its value on the spherical 2n-dimensional homology class is a
unit in A.
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THEOREM 3.6. There are graded classes

E4*+2=E5+E12+ "'EH4*+2 (BZ (G/TOP); Z(z))
kow=ks+kg+---e H** (B*(G/TOP); Z/2)

which satisfy

(a) k,, is a fundamental class

(b) o? (I€4n)=k4n—2

(¢) 0% (kyns2)—k4n has order 2 and is annihilated by v*:H*(G/TOP; Z))—
- H*(G|O; Z3)).

Proof. The double cohomology suspension

o2: QH* (B*(G/TOP)) - PH* (G/TOP)

is an isomorphism with both Z/2 and Q coefficients. From the previous lemma it
follows that there is a fundamental class k,,,€ H*"*?(B*(G/TOP); Z,,) such that
o2 (124,,+2)—k4,, is a primitive torsion class whose reduction to Z/2 coefficients maps
to zero in H*(G/0O; Z/2). Moreover (2.3)

o’ (E4n+2)_k4”= (ﬁly)za

for some ye PH* (G/TOP; Z/2). We must argue that t* (B, (»))**=0in H*(G/0; Z,)).
The Z/2-reduction of t* (B, (y))** is zero (by construction) and since H*(G/0; Z/2)
is a polynomial algebra g,t*B, (y)=0.

To see that t*B; () is itself zero it suffices to check that {t*B; (y), P (u))=0
for all ueH,,(G/0; Z/2) and all r >1, (3.4). But

018, +1 PO (u)=0, £V (u) 0,8,P" VYV (u) for r>=2
0182 P (u)=0%* (018, (u))+u-B; (u),

where ue H,,(G/O; Z/2). Furthermore,

But* (), PO () =<1*(9), e1Br+1 P (u))eZ2< Z/2 .

Since t* () is primitive B;t* () annihilates ) (u) for r >2. For r=1 we use ([22],
§4) that 0**(u,,,) =421, a, 5, + decomposable terms if a+ b= 2k — 1. Now, T4 (42, 4, 5))
=0 and the result follows. Finally the existence of the classes k,, is immediate.

We note that Theorem D of the introduction is an obvious consequence of 3.6
since the image under the suspension map of a fundamental class in H* (B*(G/TOP))
is a primitive fundamental class of H* (B(G/TOP)).
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4. The Smooth Surgery Class
In this section we determine the composite
G/0 -5 G/TOP %, Il K(Z,,, 4n)x K (Z/2, 4n—2)
n=1

where 7 is the natural infinite loop map and K is the H-map equivalence of 3.3. At
the same time we evaluate the 2-local part of the infinite loop maps

Br: BSG ~» B(G/TOP)
Bt: B(G/O) - B(G/TOP).

The results of the section are all 2-local and we consequently assume all spaces and
maps to be taken in the 2-local category.

We start out by reviewing the basic primitive class 8,,,,; in PH*"*' (B(G/0); Z,,).
A more thorough treatment can be found in [23].

We fix a solution of the Adams conjecture a: BSO — G/O, that is, a mapping such
that the diagram

GJO

BSO X2=%, BSO

is homotopy commutative. Here i is the natural infinite loop map and > —1 the map
which represents /> —1 in 2-local real K-theory. There are at least two natural solu-
tions o available — the one constructed by Sullivan [41] and the one constructed in
[8] as an application of the Becker-Gottlieb proof of the Adams conjecture. For our
purpose, however, it does not matter which map we pick. The only relevant point is
that o is well defined in the rational category. This follows since the fibre of i is the
space SG whose rational type is that of a point by a famous theorem of Serre. The
map > — 1 is an H-map and a rational equivalence « is consequently an H-equivalence
in the rational category.
It is well known that H* (BSO; Z,,) only has torsion of order 2 and that

H* (BSO; Z(z))/T0r=P {al, az, ...} 9

where a, is dual to the n’th power of the first Pontrjagin class. By a slight abuse of
notation we also denote by a, a lifting to H*(BSO; Z,,) of the generators above.
The Adams conjecture along with a simple spectral sequence argument leads to

H, (B(G/0); Q)=E {0404 (a,), 0404 (a3), ...}

where E{ } is the exterior algebra.
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In the previous section we listed the homology with Z/2 coefficients of G/O. It is a
polynomial algebra with generators u, ,(b<a<2b) and u,(Ie _#). The Eilenberg-
Moore spectral sequence

Tory, (6/0,z/2) (Z/2,Z/2)= H, (B (G/0)§ Z/2)

then collapses for trivial reasons. In particular, the indecomposable elements of
H, (B(G/0); Z/2) are contained among the classes o (1, ;) and o, (u;).

In [23] we found that the space B(G/O) is Henselian. A primitive (4n+ 1)-dimen-
sional cohomology class (with Z,, coefficients) is consequently determined by its Q
and Z/2 reductions.

The “basic” primitive class ,,.,€PH*"*!(B(G/0O); Z,,,) is uniquely charac-
terized by

(1) @o(84n+1) is dual to oyay (a,)
(ii) o1 (84,+1) annihilates the elements o, (#;) and (4.1)

o4 (u,,,) (a#b) and evaluates non-zero on o (4, 2,)-

The existence of such a class &, is not completely obvious. It requires checking
that the defining conditions (i) and (ii) in 4.1 are compatible. The argument can be
found in [23] and we shall not repeat it here.

The homology suspension from QH,,(G/O) to QH,,,,(B(G/0)) is an isomor-
phism with both Q and Z/2 coefficients. It follows from this (since B(G/O) is Hense-
lian) that

o*:PH*"*! (B(G/|0); Z,)) » PH*"(G|O; Z,,)

is injective. In view of 3.6 it is therefore equivalent to evaluate 7:G/O — G/TOP and
Bt:B(G/O)- B(G/TOP) in the 2-local category.

Let « (n) be the number of non-zero terms in the dyadic expansion of u, 5, (py, ..., )
eH*"(BSO; Z,,) the Newton polynomial in the Pontrjagin classes and k,,€
H*"(G/TOP; Z,,) the fundamental class constructed in §3 (3.3).

LEMMA 4.2. In cohomology with rational coefficients
a*t* (kyp) =21y, -5, (P15 s Pn)

where u, is a unit of Z,).
Proof. We consider the exact homotopy sequence of the fibration PL/O - G/05
- G/PL,

o 714, (G/O) > 14, (G/PL) D14,y (PL/O) —---.
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Forn>1, n,,-, (PL/O) is the group I',,_,; of homotopy 4n— 1 spheres. The image of
the boundary homomorphism is the subgroup 4P,, of homotopy spheres which bound
parallelizable manifolds, [16]. The structure of bP,, was determined in [16]; it is
cyclic of order @, with

@,=num (B,/4n) 2*"" % q,(2*" "1 1),

where a,=1 for n even, a,=2 for n odd and num (B,/4n) is the numerator in the n’th
Bernoulli number B, divided by 4» — which is an odd number.
It is a well known consequence of the Pontrjagin character that

<pn9 h (l4n)>=an (2’1— 1)'

where p,e H*"(BSO; Z) is the Pontrjagin class, 1,,en,,(BSO) the generator and A
the Hurewicz homomorphism. Since the Newton polynomial s,(p,..., p,) is con-
gruent to np, modulo decomposable terms

<sn (pb -~-,Pn), h(14n)>=nan (2”—1)'

Suppose now first that n> 1. The fundamental class k,,€ H*"(G/TOP; Z,,) maps
onto a fundamental class of H*"(G/PL; Z,,) (cf. §2). On the other hand, t«¢: BSO —
— G/PL is multiplication with @, on homotopy in dimension 4x so that

<a*t* (k4n)9 h (l4n)> = @n J
Since (2n)!=22""*™.y _where u, is an odd number, we get
a*t* (k1) =2"""1u,s5,(P1s s Pu)-

For n=1 we must proceed a little differently. One checks that H, (BSO; Z/2)~
~ H, (G/O; Z/2) through dimension 5. The orientation map e:G/O — BSO (Sullivan
[41]) splits any solution a, that is, eoa is a homotopy equivalence. Thus « induces a
monomorphism, hence an isomorphism, on cohomology in dimensions less than 5.
It follows that

ty: T4 (BSO) > 1, (G/O)

is an isomorphism. But, PL/O is 6-connected (Cerf [11]) and TOP/PL=K(Z/2, 3).
Therefore we have

74 (BSO)—> 14 (G|0) — 1, (GIPL)— 74 (G/TOP).

The Hurewicz homomorphism for BSO in dimension 4 is multiplication by 2 and we
conclude that a*t* (k,)=p,. This completes the proof.
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In [9] we determined the map 7:G/O — G/TOP on cohomology with Z/2 coeffi-
cients. The result is:

(01 (k4,))=0 if n2i
* (01 (k4n)) is dual to u,, ,, if n=2¢
T* (k4n—2)=0 if n;ézl
™ (k4n-2) isdual to  uy,_q 5,-y if n=2".

Here dual means dual with respect to the basis {u, ,, u;} of OH,(G/0; Z/2).
Remark 4.4. The result for t*(k,,-,) (n=2') was formulated somewhat differ-
ently in [9]. There we proved ([9], 3.6)

(P (kana)ja (et ey #0  (a+b=dn—2,n=2) “
(t* (kap—2)s ju (€0, %2 e, )>=0 for k>2,

where j: SG — G/O is the natural map, e, the unique class of degree a in the image of
RP*® — SO — SG and where = denotes the loop product in Hy, (SG; Z/2).

Now, e,=Q°[1]*[—1] where Q° denotes the homology operation in Q*S*
(SG=Q*S>) associated with the loop structure and u, ,=j4 (Q*Q°[1]*[—3]). To
get from (x) above to 4.3 it suffices to prove in QH, (SG; Z/2),

(i) <t*(Kan-2)> Uzn-1,2n-1)#0 when n=2'

(ii) e, e,=usp,_1, 24—y +Other terms when a+b=4n—2 and n=2"

(iii) e,, L. e,, is a linear combination of the u,, Ie ¢ when k> 2.

The statements (i), (ii) and (iii) are consequences of the various formulas in
H,(Q(S°); Z/)2) relating the loop structure and the composition structure (see e.g.
[22], §§ 3 and 4). We leave this unilluminating and tedious computation to the reader.

Let k4, ,,e H*"*2(B?(B/TOP); Z,,) be a fundamental class satisfying (a) of 3.6.
The cohomology suspension maps k4,., to a primitive fundamental class k,,,, in
H*"*'(B(G/TOP); Z,,,) whose image in H*"*'(B(G/0); Z,,) is unambiguously
determined (compare 3.6 or Theorem D in §1).

THEOREM 4.5. The natural map Bt:B(G/O)— B(G|/TOP) is given as
(BT)* (k4n+1)=2a m=1 un§4n+1

where 4,1 is the class defined in 4.1 and u,, is a unit of Z ).

Proof. According to 4.1 (i) and 4.2 the rational reduction of both sides agree.
Since B(G/0) is Henselian a 4n+ 1 dimensional primitive cohomology class is deter-
mined by its rational reduction and its reduction to Z/2 coefficients. Now,

¢*:PH?"*1(B(G/0); Z|2) » PH*"(G/O; Z)2)
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is injective (in fact an isomorphism). To complete the proof we need to show that
017* (0% (k4ns1))=2""""0,0% (84541).

But this is a consequence of 3.6 (c) and 4.3.
We get as an immediate corollary Theorem B of the introduction.

COROLLARY 4.6. The composite
G/O— GITOP X% K (Z, 5y, 4n)

defines the cohomology class 2*™ 1 u,6* (£4,41).

We conclude this section by transferring the results above to an evaluation (2-
locally) of the map Br: BSG — B(G/TOP). First recall that the Stiefel-Whitney classes
are universally defined as classes of H*(BSG; Z/2). The natural map BSO — BSG
therefore induces a surjection in mod. 2 cohomology and

H*(BSG; Z/2)~H* (BSO; Z/2)® H* (B(G|0); Z/2).

The higher torsion structure of BSG and of the mapi: BSG — B(G/0) was examined

in [23]. We give a brief review of the results. The “mod. 2 Pontrjagin classes”
wi.€ H*"(BSG; Z/2) lift to classes p,e H*"(BSG; Z/8) and not to H*"(BSG; Z/16).
Indeed, in the E;-term of the Bockstein spectral sequence for BSG,

d, (wgn)=€4n+1 s

where €4,,1=) W5,_i*(844+,)- The primitive element i*(24,,,) survives to the
Es.,ay-term (k=2"®-0dd) of the Bockstein spectral sequence where it becomes a
boundary of the Newton polynomial in the classes w3, w3, .... It follows that i* (8,,4,)
is a torsion element of order 2"V *3 in H***1(BSG; Z3,).

We finally recall from [23] the behaviour of the cohomology suspension. The
sequence

0 Z/2'™*! & PH*"*1(BSG; Z;,) 55 PH*" (SG; Z(3))

is exact where the cyclic summand is generated by 4i* (84,+1)-

COROLLARY 4.7. The natural map BSG25 B(G/TOP) maps k4n+, to a class of
order 2¥ (M4

5. Topological Reductions of Spherical Fibrations

Stable spherical fibrations, that is, fibre spaces whose fibres are homotopy spheres
of high dimension compared with the base space, are classified by BSG. Since the
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n; (BSG) are finite for all i the homotopy set [ X, BSG] is a finite abelian group when
X is a finite complex. In geometric terms, a spherical fibration & splits in a sum of its
p-primary parts, {=@®¢,, where p*{,, is trivial for a sufficiently high power of p.
On the classifying space level we get

pprime

where [X, BSG,,]=[X, BSG]®Z,, and Z ,, denotes the integers localized at
P Z,,={r/seQ| (s,p)=1}.

The question of reducing a spherical fibration to a honest (topological) sphere
bundle splits accordingly in its p-primary parts. At odd primes the reduction problem
has been extensively explored by Sullivan [41].

Consider (away from the prime 2) the orientation sequence

SG -4, BO® - BKOG — BSG (*)

where BKOG is the classifying space for odd-local spherical fibrations with a
KO ( )®Z[}] orientation and BO® denotes the infinite loop space whose underlying
H-structure is induced from tensor product of vector bundles of virtual dimension 1.
The sequence (x) can be identified (in the world of odd primes) with the natural
sequence

SG - G/TOP —» BSTOP — BSG.

Thus one gets

THEOREM 5.1. (Sullivan). An odd-primary stable spherical fibration admits a
topological (PL) reduction if and only if it is orientable with respect to KO ( YQZ[}].

Recently in [28] it has been proved that (%) can be continued to the right as a
fibration sequence of infinite loop spaces. In particular we have the fibration

BKOG - BSG%4 B(BO®).

On the other hand Adams and Priddy [2] have proved that (at each prime separately)
there is only one infinite loop space structure on the space BSO. Therefore, at an odd
prime p, B(BO®),,=B*0,,

COROLLARY 5.2. Let & be a stable p-primary spherical fibration (p an odd prime)
classified by a map X — BSG. Then £ has a topological (hence PL) reduction if and only
if the composite X — BSG25 B0 represents zero in KO~ (X).

Next, we consider a 2-primary stable spherical fibration ¢ over X. The natural
fibration

BSTOP — BSG — B(G/TOP)
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along with our 2-local splitting results for B(G/TOP) show that the obstruction to
reducing ¢ to a topological bundle is a graded cohomology class

0 (&)= 0ant1(E)+D 04n-1(8), (5.3)

where 04,,, (£)e H*" 1 (X; Z,,) and 04, (E)e H*" "1 (X; Z/2).
More precisely, we find from 4.5 and the discussion preceding 4.7.

THEOREM 5.4. The 2-primary obstruction o (&) satisfies

(1) 044—1(E)=0 unless n is a power of 2

(ll) O4n+1 (5)221 UG €4n+1 (é) ’
where ¢4,.1() is a characteristic class of order at most 2* "™ *3, Moreover, in the
E5 ¢, (ny-term of the Bockstein spectral sequence of X,

d3+v(n) (5, (w, (6)2’ <oy Wap (5)2))‘_‘ €4n+1 (é)

where w,;(€) is the 2i’th Stiefel-Whitney class and s, the Newton polynomial.
Remark. There is a curious difference between 5.4 and recent results of Brumfiel
and Morgan [10]. At the prime 2 they construct a fibration (see also [15] and [36])

BSTOP - BSG-5[] K(Z 3y, 4n+1)x [ K(Z[2, 4n—1)

based on the transversality obstruction in the Poincaré duality category. This leads to
an obstruction class

t(E)=) tan-1(E)+) tan—1 (&)

to topological reduction. The class ¢,,.(¢) has order 8 whereas our class 04, (¢)
has order 2" ™ ~*(M*4 The explanation seems to be that e,,.,(£) is an additive
characteristic class, in fact, a higher-order Bockstein applied to a ‘“Newton type”
polynomial in the mod. 8 Pontrjagin classes of ¢ whereas ¢,,,,(¢) is a third-order
Bockstein in a ”Hirzebruch type” polynomial in the mod. 8 Pontrjagin classes. The
relationship between ¢,,.,(¢) and ¢4, (&) is, however, not fully understood at
present.
The 4n— 1 dimensional components of #(£) and o (£) are related by

ta,-1(8)= V(€)2'04.—1 (¢

where V(&) is the total Wu class.

Let X be a simply connected Poincaré duality space of dimension n>>5 and let &
denote its Spivak normal fibration. Topological (or PL) reductions of ¢ and (homo-
topy) manifold structures on X correspond via the theory of simply connected surgery.
In particular, we have the following well known consequences of the plumbing the-
orem ([7]).
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THEOREM 5.5. There is a topological (PL) closed n-manifold in the homotopy
type of X if and only if & admits a topological (PL) reduction.

When 2*™~'H*(X; Z,,) is torsion-free then the obstructions ¢4, () vanish
and X has a PL-manifold structure if and only if 6,:_, (£)=0 and ¢ is KO( )®Z[}]
orientable.

We conclude this section with a discussion of the obstruction ¢,:_;(£)e H*(X;
Z/2). Let U be the Thom class in H*(T(¢); Z/2) and let ; ; be the secondary opera-
tion associated with the relation

i—2 ry . )
Sq* 7 Sq* '+ Y Sq* " 8q*'=0.
j=1

If the Stiefel-Whitney classes of ¢ all vanish then y; ;(U) is defined with zero

indeterminacy (since Sq* "% (xU)=Sq* " *(x) U and Sq* % (x)=0 when xe

H¥~1(X;Z/2)). Welet 1,:_, (£)e H* 1 (X; Z/2) be the associated characteristic class,
T20-1 (§) U=¥,,: (V).

7,11 (¢) is an additive characteristic class on spherical fibrations with vanishing
Stiefel-Whitney classes, as we see from the Cartian formula

¥, (U:QU,) =Y, (U)®U,+ U:®VY; ;(U,)
where U, and U, are the relevant Thom classes.

In fact we have the following (unpublished) result of Mahowald

THEOREM 5.6 (Mahowald). The class t,:_1 (&) agrees with o,:_, (¢) on spherical
fibrations with vanishing Stiefel-Whitney classes. (For a proof see [37]).

We return to the situation where X is a Poincaré duality space with normal fibra-
tion ¢. Suppose that X has vanishing Stiefel-Whitney classes and that y; ; is defined
on all of H"~2'*1(X; Z/2) (n=dim X).

COROLLARY 5.7. With the above assumptions 6,:_,(&) is the secondary Wu
class of Y; ;,
(021 () x, [XD =Y, (x), [XT.

Proof. Let Ue H*(T(¢); Z/2) be the Thom class. The Cartian formula for y; ;
along with 5.5 gives

Ui, i (xU)=y;, 1 (x) U+ (x Vo054 (£) U.
But, the top class of H*(T'(¢); Z/2) is spherical so that y; ;(xU)=0.
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