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Ringepimorphismen und Morita-projektive Moduln iiber

kommutativen Dedekind-Ringen

von REINHARD KNORR

Ziel dieser Arbeit ist die Klassifizierung der Morita-projektiven (s.u.) Moduln
iiber einem kommutativen Dedekind-Ring R (Satz 2). Dabei ergibt sich eine explizite
Beschreibung der ringepimorphen Bilder von R; es zeigt sich namlich, daB ein Ring-
homomorphismus «:R— T genau dann ein Epimorphismus in der Kategorie der
unitiren Ringe (im folgenden Ringepimorphismus genant) ist, wenn — bis auf Iso-
morphie — T' der Bizentralisator eines Morita-projektiven R-Moduls ist und a die
kanonische Abbildung. Eine solche Beschreibung wurde zuerst von Cheatham und
Enochs in [7] gegeben (fiir R=Z vergleiche [1]). Sie charakterisieren die epimorphen
Bilder von R mit Hilfe ihrer R-Torsionsuntermoduln und der Faktormoduln nach
diesen. In der vorliegenden Arbeit werden die Ringepimorphismen von R explizit
beschrieben, die R-Torsionsuntermoduln werden in den Beweisen wesentlich
benutzt.

Neben Wohlbekanntem werden in der Arbeit vor allem die Ergebnisse aus [4] und
[5] sowie das Silver’sche Kriterium fiir Ringepimorphismen ([6], Prop. 1.1) ver-
wendet.

DEFINITION. Ein R-Linksmodul M heit Morita-projektiv, (MP-Moduln),
falls fiir seinen Bizentralisator Bi(xM)=: T gilt.

(a) 7M ist endlich erzeugt und projektiv,

(b) TR®rM =~ M (kanonisch).

Bemerkung. MP-Moduln sind zuerst von Morita in [5] unter dem Namen FP-
Moduln eingefiihrt und untersucht worden. Analog definiert sind Morita-injektive
Moduln (FI-Moduln in [5]). Eine Klassifizierung von Morita-injektiven Moduln
iiber Dedekind-Ringen findet sich in [4].

BEZEICHNUNGEN. Im folgenden bezeichnet R einen kommutativen Dedekind-
Ring, wenn nicht anders erwiihnt. K sei der Quotienten-Kd&rper von R, P die Menge
der Primideale #0, = und ¢ Teilmengen von P mit 7 "o =0 und » eine Abbildung von
7 in N. Jedes Ideal 4#0 von R 1iBt sich bekanntlich eindeutig als Produkt von
Primidealen schreiben; exp(A4) sei der Exponent des Primideals P in dieser Darstel-
lung. Entsprechend sei exp(r):= exp(Rr) fiir ein 0% r € R und auBerdem ex, (0):= co.
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Dann gilt bekanntlich exp(a+b)>min[exp(a), exp(b)] und exp(ab)=exp(a)
+exp(b). Mit diesen Bezeichnungen sei
(a) R®":=[] R/P"®

(b) R,:= {x/yeK|exp(x)=exp(y) VPeos}.

R™" und R, werden auf kanonische Weise zu Ringen mit 1, und es existiert jeweils
ein natiirlicher Ringhomomorphismus von R in R*” bzw. R,.

Falls © unendlich ist, kann man R als Unterring von R™ " betrachten. Damit gibt
die folgende Definition Sinn:

(¢c) Ri":={xeR™"|30+#reR: rxeRAexp(rx)=exp(r) VPeo}.

In dieser Arbeit sind die folgenden Ringe von Interesse:

(I) R™"mit 0<|n|<N,

(I1) R,®R™" mit tno=0 und |n| <N,

(III) R>" mit tno=0 und |7| >R,

(IV) R™" mit || >¥,.

Diese Ringe werden dementsprechend als Ringe vom Typ I-IV bezeichnet.

Typ I existiert nur, falls R kein Korper ist, die Typen III und 1V nur, falls R un-
endlich viele Primideale enthdlt. Typ II umfaBt auch die unter (b) beschriebenen
Ringe fiir den Fall #=0. Typ III ist ein Unterring von Typ 1V, der R und das Torsions-
ideal U:=@pc, R/P"®) von R™" enthdlt. In [4], Beweis von Lemma 4.7, ist
gezeigt, daB R}'"/Ux~R, ist.

Es ist klar, daB wiederum kanonische Ringhomomorphismen von R in die Ringe
vom Typ I-IV existieren.

Fiir diese gilt (vergl. auch [8], Prop.):

LEMMA 1. Sei T ein Ring vom Typ I, II oder III. Dann ist die kanonische Ab-
bildung von R in T ein Ringepimorphismus.

Beweis. Fiir Ringe vom Typ I ist die Behauptung klar, weil die kanonische Ab-
bildung von R in R™" nach dem Chinesischen-Reste-Satz surjektiv ist.

Sei nun T=R,. Es geniigt, R,QzR,=~R, zu zeigen. Sei a/beR,. Weil R ein
Dedekind-Ring ist, existieren x, yé R mit Ran Rb=Rx+Ry. Sei rja=sb=x,
r,a=s,b=y, also alb=s,/r,=s,/r,. Weil a/beR, ist, gilt fiir alle Peo, daB exp(a)
>exp(b); also exp(a)=max [exp(a), exp(b)]=exp(Ran Rb)=min [exp(x), exp(y)]
=eXp(a)+min[exp(ry), exp(r,)]. Fiir alle Peo ist also min[exp(r;), exp(r;)]=0.
Dabher ist R,r; + R,r,=R,, d.h. es gibt a, fe R, mit ar; + fr,=1. Also ist as; + fis,=
=ar, (sy/ry)+Br, (sz/r;)=a/b, und fir beliebiges yeR, gilt: (a/b)®y= (a/b)
® (ria+ryp) y=(a/b) ri®uy+ (a/b) r,;@Py=s,@ay+5,@Py=1® (s;a+5,8) y=
=1@® (a/b) y. Daraus folgt R,®gR,=R,.
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Sei a/beR,, xe R und Pen. Nach [4], Lemma 3.12, existieren r, se R mit r/se R,
exp(r)=0 und exp(s)=n(P). Daher ist Rr+P" P =R, d.h. es gibt teR und
ueP™® mit 1=tr +u. Also ist x—trxeP" " und (a/b)® (x+ P"®)= (a/b)® (trx
+ P" ")) = (ar [bs) s@ (tx+ P"P)= (ar [bs)® (stx+ P"P)=0, weil seP"P) ist.
Damit ist R,® xR/ P" ") =0 fiir Pen gezeigt. Es folgt sofort R,®zR™"=0, und das
bisher Bewiesene ergibt die Behauptung fiir Ringe vom Typ II.

Sei nun T=R7'" und U das Torsionsideal von T. Aus der exakten Folge

0-U->T->T/U-0 (%)
wird durch Tensorieren iiber R die exakte Folge
UQU L TRU - T/IU @ U~ 0.

Es ist T/U = R,, und oben wurde R,®zR/P"F =0 fiir Pen gezeigt. Also ist T/U
®U =0 und B ein Epimorphismus. Fiir P, QeP ist bekanntlich R/P"P)® R/Q" @
~ R/(P"P) + Q" @) (kanonisch), also ist die Abbildung u®u’+> uu’ ein Isomorphismus
von U®U auf U. Sei 4 die kanonische Abbildung von T®U in U. Es ist Af (u®@u')=
=uu’, also ist Af ein Isomorphismus, und weil § ein Epimorphismus ist, ist A ein
Monomorphismus.

Aus (*) wird durch Tensorieren iiber R die exakte Folge U T/U - T® T/U
S TIURTIU -0, aber URT/U=0, also TRT/UxT/UQT/U~R,®R,~R,
~ T/U (kanonisch). Sei v der kanonische Isomorphismus von T® T/U auf T/U. Aus
(*) gewinnt man das Diagram

TQU--TRT->TRQT/IU->0

[

0O-U -»> T - T|/U-DO,

dessen Zeilen exakt sind und das kommutativ ist, wenn fiir 4 die kanonische Ab-
bildung eingesetzt wird. Offenbar ist x4 ein Epimorphismus, und weil 4 und v Mono-
morphismen sind, gilt dies auch fiir u. Daraus folgt die Behauptung fiir Ringe vom
Typ III.

Im Kontrast dazu gilt:

LEMMA 2. Sei T ein Ring vom Typ IV und M ein endlich erzeugter, treuer
T-Modul. Dann ist die kanonische Abbildung o:T® gM — M kein Monomorphismus.
Beweis. T ist selbstinjektiv als direktes Produkt von selbstinjektiven Ringen. Weil
M endlich erzeugt und treu ist und 7 kommutativ, 1Bt sich T in eine endliche direkte
Summe von Kopien von M einbetten. Daher ist ;7@ ;X = @;-; rM. Nach [4],
Lemma 3.6 ist T/R teilbar. Sei ¢ ein Element von T, das in unendlich vielen Kompo-
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nenten gleich 0 und in unendlich vielen Komponenten ungleich O ist. Dann ist ¢ + R
kein Torsionselement von T/R, also T/R kein Torsionsmodul. Wegen der Struktur
von teilbaren Moduln iiber kommutativen Dedekind-Ringen enthalt 7/R eine Kopie
von K als direkten Summanden.

Mit der exakten Folge

0-R->T->T/R-0
ist auch die Folge
RIM 5 T®OM - T/IRQM -0

(Tensorieren iiber R) exakt. Angenommen, a sei ein Monomorphismus. Dann ist
p ein Epimorphismus, also T/RQM =0. Weil T direkter Summand in einer direkten
Summe von Kopien von M ist, gilt dann auch 7/R® T =0, also erst recht T/R® T/R=
=0. Aber daraus folgt K®K=0, im Widerspruch zu Lemma 1.

LEMMA 3. Sei T ein Ring vom Typ I-IV und M ein endlich erzeugter, treuer,
projektiver T-Modul. Dann ist M ein Generator.

Beweis. Ringe vom Typ I sind Quasi-Frobenius-Ringe, also ist jeder treue Modul
ein Generator. Fiir Ringe vom Typ IV zeigt der Anfang des Beweises von Lemma 2,
daB jeder endlich erzeugte, treue Modul ein Generator ist.

Wenn T =R, ist, dann ist T bekanntlich ein Dedekind-Ring und jeder endlich
erzeugte, projektive 7-Modul ein Generator. Daher ist jeder endlich erzeugte, treue,
projektive T-Modul ein Generator, falls 7 vom Typ II ist.

Sei nun 7 vom Typ III, ;M endlich erzeugt, treu und projektiv und ;X #0 ein
beliebiger Modul. Es geniigt zu zeigen, dal Hom; (M, X)#0 ist. Zur Abkiirzung sei
T, fiir die P-Komponente von R>" geschrieben, d.h. Tp=R/P"®),

(a) UX #0. Dann existiert Pen mit TpX #0. Da M treu ist und Tp ein direkter
Summand von T (als zweiseitiges Ideal), ist TpM ein treuer Tp-Modul, also ein
Generator als Tp-Modul. Daher ist Hom, (TpM, TpX)#0, also auch Hom (M, X)
#0, weil TpM ein direkter Summand von M (als 7-Moduln) ist.

(b) UX=0. Dann ist X ein 7/U-Modul, also ein R,-Modul. Ebenso ist M/UM
ein R,-Modul und als solcher treu: Sei (¢ + U) (m+ UM )=0 fiir alle me M. Dann ist
tme UM fiir alle me M und speziell fiir die erzeugenden Elemente m;, ..., m, von ;M.
Daher gibt es 0% r;e R mit r;(tm;)=0 fiir i=1,..., n. Sei nun r:=]]j-; r;; dann ist
0 r e R, und fiir beliebigesm=Y 7_; t;m;aus M gilt (rt)m=y7_; (t;] [j2:r;) (ritm))=
=0. Weil M true ist, folgt rt=0, also teU, dh. t+U=0eT/U=R,.
AuBerdem ist M/UM als R,-Modul endlich erzeugt und daher Generator. Daher
ist Homg (M/UM, X)#0, also auch Hom;(M/UM, X)#0 und erst recht
Homr (M, X)+0.
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Im nichsten Lemma sind R und T beliebige Ringe. Sei « ein Ringhomomorphis-
mus von R in 7. Ein 7-Modul M wird zu einem R-Modul durch rm:= a(r) m fiir
reR und me M. Es gilt:

LEMMA 4. Sei a:R— T ein Ringepimorphismus und M ein T-Modul. Dann:

(a) 7TR®@rM =~ M (kanonisch)

(b) End(yM)=End (xM) und daher Bi(;M)=Bi(zM)

(c) Wenn M ein MP-Modul ist, dann auch M.

Beweis. (a) und (b) sind wohlbekannt; siehe z.B. [7]: die Behauptungen sind
Spezialfille von (9) bzw. (7) von Th. 1. (c) Sei +M ein MP-Modul und S:= Bi(;M).
Wegen (b) geniigt es, ;Sg®zM =M (kanonisch) zu zeigen. Es ist

sSRORM = (sST®1TR)®rM 2 5S1® (1 TR®OrM )= sS1® 1M =M.

Wie oben sind alle Abbildungen kanonisch; daB8 die beiden ersten Isomorphismen
sind, ist bekannt, die dritte ist dies wegen (2) und die vierte, weil ;M ein MP-Modul ist.

SATZ 1. Sei R ein kommutativer Dedekind-Ring. Genau dann ist xM ein MP-
Modul, wenn es einen Ring T vom Typ I, II oder III gibt, so daff +M ein endlich er-
zeugter, treuer, projektiver Modul ist. In diesem Fall ist T = Bi(gM ).

Beweis. Sei gkM ein MP-Modul und 7':= Bi(gM). Es geniigt zu zeigen, dal 7 vom
Typ I, IT oder Il ist. Nach [5], Th. 4.1 gibt es einen Morita-injektiven Modul zxN mit
T =Bi(xN). Nach [4], Th. 2 und nach Lemma 2 folgt die Behauptung.

Sei umgekehrt 7" ein Ring vom Typ I, II oder Il und M ein endlich erzeugter,
treuer, projektiver Modul. Nach [5], Cor. 1.2 ist ;M ein MP-Modul. Nach Lemma 1
ist die kanonische Abbildung von R in T ein Ringepimorphismus. Nach Lemma 4 ist
rM ein MP-Modul und Bi(3xM)=Bi(;M). Aber Bi(;M)=T, denn nach Lemma 3
ist +M ein Generator.

KOROLLAR. Sei R ein kommutativer Dedekind-Ring mit unendlich vielen Prim-
idealen. Die Ringe vom Typ I, II und III sind genau die ringepimorphen Bilder von R.

Beweis. DaB diese Ringe ringepimorphe Bilder von R sind, ist Lemma 1. Sei
o: R— T ein Ringepimorphismus. Dann ist nach Lemma 4 mit 7 auch 7 ein MP-
Modul und Bi(3T)=T. Nach dem Satz ist 7 vom Typ I, II oder IIL

Bemerkung. Falls R nur endlich viele Primideale hat, sind die Typen I und II
genau die ringepimorphen Bilder von R; falls R ein Korper ist, nur R selbst.

Im Hinblick auf Satz 1 geniigt es zur Klassifizierung der MP-Moduln iiber kom-
mutativen Dedekind-Ringen, die Struktur der endlich erzeugten, treuen, projektiven
Moduln iiber Ringen vom Typ I-III zu klaren. Dies geschieht im folgenden getrennt
fiir die einzelnen Typen.
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(I) T=R"™" mit = endlich. T ist ein Quasi-Frobenius-Ring, daher ist ein projek-
tiver T-Modul auch injektiv. Nach [4], Lemma 2.2 hat ein endlich erzeugter, treuer,
projektiver 7-Modul M also die Form

Mz @ [R/P"PF®
Pexn
mit k(P )eN fiir alle P en. Umgekehrt sind solche Moduln offenbar endlich erzeugt,
treu und projektiv.

(II) T=R,®R"," mit = endlich und = no=0. R, ist ein Dedekind-Ring, die end-
lich erzeugten, projektiven R,-Moduln sind also bis auf Isomorphie direkte Summen
von Idealen (siehe z.B. [3], §22). Ein projektiver 7-Modul ist direkte Summe eines
projektiven R,-Moduls und eines projektiven R™"-Moduls. Wegen (I) sind daher die
treuen, projektiven und endlich erzeugten 7-Moduln genau die der Form

k
M= @ 4,0 ® [R/P" P}
i=1 Pern
mit k, k(P )eN und Idealen 4; von R,.

(III) T=R>". Dieser Fall bereitet mehr Schwierigkeiten. Zur Vorbereitung
dienen die folgenden Lemmata.

LEMMA 5. Sei T ein beliebiger kommutativer Ring und A:= Ta+ Tb mit a, be T,
so daf a kein Nullteiler ist. Dann sind gleichwertig:

(a) A ist projektiv.

(b) Es gibt Elemente u, v, x, ye T mit u+ y=1, bu=av und bx=ay.

Beweis. Sei k: T@® T — A der kanonische Epimorphismus.
,» = Wenn A projektiv ist, existiert ein Homomorphismus «, der das Diagramm

. A
& 1 id
el
> A

TeT

>0
X
kommutativ macht.

Sei (u, x):=a(a) und (v, y):=a(b). Dann ist (bu, bx)=bo(a)=ax(b)= (av, ay),
also bu=av und bx=ay. AuBerdem ist a=xo(a)=ua+xb=ua+ ya= (u+y)a, also
u+y=1.

,, <= Seien u, v, x, ye T mit den angegebenen Eigenschaften. Durch triviale Rech-
nung findet man, daB durch a(ra+sb):= r (4, x)+s(v, y) ein Homomorphismus
a:A— T® T wohldefiniert ist mit ka=id,. Also ist 4 projektiv.
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LEMMA 6. Sei T:=Ry" und U:=@p., R/P"'P) das Torsionsideal von T. Jedes
Ideal A von T mit U <A ist treu, projektiv und von zwei Elementen erzeugt.

Beweis. U ist offenbar treu, also auch A4. Es ist A/U #0 ein Ideal von T/U =~ R,;
dies ist ein Dedekind-Ring, daher ist 4/U projektiv und von zwei Elementen d, b
erzeugt. Diese Elemente konnen #0 gewihlt werden und sind keine Nullteiler von
T/U. Nach Lemma 5 existieren Elemente @, o, ¥, e T/U mit @+ y=1, bii=dv und
bx=ay.

Sei ae T ein Urbild von 4. Dann ist a¢ U und aus der Definition von R}'" folgt
leicht, daB die P-Komponente ap von a eine Einheit von R/P"®) ist fiir fast alle
P ern. Daher kann 0.B.d.A. angenommen werden, daB a in allen Komponenten Ein-
heiten hat. Dann ist g kein Nullteiler in 7, und as gilt U < Ta. Entsprechend 148t sich
ein Urbild b von b wiihlen, das in allen Komponenten Einheiten hat. Wegen U < Ta ist
A= Ta+ Tb. Sei ue T ein beliebiges Urbild von # und y:= 1 —u. Dann ist y ein Urbild
von j, und fiir ein beliebiges Urbild x’ von X ist daher w:=bx'—ayeU. Weil UL Tb
ist, existiert ein w'e T mit w=w'b. Mit x:= x"+w' ist dann bx=ay. Entsprechend 148t
sich ve T wihlen, so dall bu=av gilt. Aus Lemma 5 folgt nun die Behauptung.

BEZEICHNUNG. Sei u=n und eu eine durch = indizierte Folge mit

(e)r= 1eR/P"® fiir Pey
“P710eR/P" P sonst.

Falls u oder 7\ u endlich ist, gilt offenbar e,e T:= R7’". Wenn e, e, € T sind, dann ist
e,e.=e, .., insbesondere ist e, idempotent. Es sei ep:=ep,; dann ist e, T=R/P" P,
AuBerdem existiert zu ue U eine kleinste endliche Teilmenge u <7 mit e,u=u, nimlich
p:={Pen | up#0}.

LEMMA 7. Sei T ein Ring vom Typ Il und U das Torsionsideal von T. Genau dann
ist M ein endlich erzeugter, treuer, projektiver T-Modul, wenn es eine endliche Teil-
menge u<n, natiirliche Zahlen k (P) fiir P € i und endlich viele Ideale U <A,,i=1,...,
k#0, von T gibt, so daf mit ©:=n\yu gilt

k
M= @ ed® @ [R/P"PT®.
i=1

Pepu

Beweis. Es ist A;=e,A;®e,A; fir i=1,..., k. Daher ist mit 4; (Lemma 6) auch

e A, endlich erzeugt und projektiv. Dasselbe gilt offenbar fiir R/P"")=e,T. Ein M

von der angegebenen Form ist also endlich erzeugt und projektiv. Wegen U u=mn und
k(P)>1 fir Peu ist A, <M ; mit 4, ist also auch M treu.

Sei umgekehrt M ein endlich erzeugter, treuer, projektiver 7-Modul. Dann ist

M := M/UM ein endlich erzeugter, projektiver T/U = R,-Modul. UM ist nicht endlich
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erzeugt und treu, also ist M #0. Weil R, ein Dedekind-Ring ist, gibt es Ideale A4,
i=1,...,k>0,von R, mit M= Pk_, 4,

Seien A; die Urbilder von A4; in T, dann sind die 4; projektive Ideale von T mit
U<A; und A;=A4,/U. Sei X:=@*_, A,, dann ist X/JUX=M, und weil X und M
projektiv sind, existieren 7-Homomorphismen « und f, die das Diagramm

kommutativ machen. ¥ und 4 sind dabei Epimorphismen.

Offenbar ist x (1—Ba)=0, also Im, : = (1 — fa) M <Kerk=UM ; auBerdem ist mit
M auch Im, endlich erzeugt. Ebenso ist Im,:= (1—af) X <UX und endlich erzeugt.
Wenn o (m)=0 ist, dann ist m= (1 —fa) (m), also gilt Kera <Im,.

Sei p:={Pen|3dyelm, ulm,:epy+0}. Im, ist von endlich vielen Elementen
erzeugt, die 0.B.d.A. die Form u;m,, i =1,..., s haben. Fiir jedes i ist epu;m;=0 fiir
fast alle P en. Eine analoge Ube1legung gilt fiir Im,, daher ist u endlich. Sei t:= n\ u.
Es ist Im; <e, M ; denn sei vm ein erzeugendes Element. Dann gibt es eine endliche
Teilmenge vS 7 mit e,v=v. Also ist eym=e.e vm=) pc.n, eppm=0, weil tnvAp=0,
und daher vm= (e, +e,) vm = e,ymee, M. Analog zeigt man Im,<e,X.

Nun sei y: M — X definiert durch y(m):= e,o(m). Offenbar ist Imy<e X. Sei
x=exeeX. Dann ist (1-af) (x)=(1—0ap) (e.x)=e,(1—ap) (x)eIm,ne X <e, X
NneX =0, also x=af (x)=af (e?x)=ea[e.f(x)]=y[e.f(x)]. Daher ist y | e.M ein
Epimorphismus auf e X. Sei meKery; dann ist 0=y(m)=ea(m)=a(em), also
e;meKera<Im; <e,M.Dabher ist y | e, M injektiv, und es gilt e M e X = D[, e.4;.
Wegen M =e M @e, M ist e, M ein endlich erzeugter, treuer, projektiver Modul iiber
e,T=R"". Mit (I) folgt die Behauptung.

Aus den vorstehenden Ergebnissen folgt unmittelbar

SATZ 2. Sei R ein kommutativer Dedekind-Ring. Genau dann ist xM ein MP-
Modul, wenn Teilmengen pu, n, c <P mit ucn, u endlich und nno=0, Abbildungen
n:n—-N und k:u— N und eine ganze Zahl s>0 existieren, so daf} M zu einem der
beiden folgenden Moduln isomorph ist:

(8) @ 4@ @ [R/P"OT®
i=1

Pep

mit Idealen A4; von R, oder
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(b) Qs-) e, A;® P [R/P" (P)]k (P)
i=1

Peyu

mit 7 unendlich, U < 4, Ideale von R}'" und 7:= n\pu.
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