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Ringepimorphismen und Monta-projektive Moduln iiber

kommutativen Dedekind-Ringen

von Reinhard Knôrr

Ziel dieser Arbeit ist die Klassifizierung der Morita-projektiven (s.u.) Moduln
ûber einem kommutativen Dedekind-Ring R (Satz 2). Dabei ergibt sien eine explizite
Beschreibung der ringepimorphen Bilder von R; es zeigt sich nâmlich, daB ein Ring-
homomorphismus oc:R-+ T genau dann ein Epimorphismus in der Kategorie der
unitâren Ringe (im folgenden Ringepimorphismus gênant) ist, wenn - bis auf Iso-
morphie - T der Bizentralisator eines Morita-projektiven iÊ-Moduls ist und a die
kanonische Abbildung. Eine solche Beschreibung wurde zuerst von Cheatham und
Enochs in [7] gegeben (fur R Z vergleiche [1]). Sie charakterisieren die epimorphen
Bilder von R mit Hilfe ihrer iÊ-Torsionsuntermoduln und der Faktormoduln nach
diesen. In der vorliegenden Arbeit werden die Ringepimorphismen von R explizit
beschrieben, die i?-Torsionsuntermoduln werden in den Beweisen wesentlich
benutzt.

NebenWohlbekanntem werden in der Arbeit vor allem die Ergebnisse aus [4] und

[5] sowie das Silver'sche Kriterium fur Ringepimorphismen ([6], Prop. 1.1) ver-
wendet.

DEFINITION. Ein jR-Linksmodul M heiBt Morita-projektiv, (MP-Moduln),
falls fur seinen Bizentralisator Bi(RM) : Tgilt.

(a) TM ist endlich erzeugt und projektiv,
(b) TR®RM^M (kanonisch).
Bemerkung. MP-Moduln sind zuerst von Morita in [5] unter dem Namen FP-

Moduln eingefûhrt und untersucht worden. Analog definiert sind Morita-injektive
Moduln (FI-Moduln in [5]). Eine Klassifizierung von Morita-injektiven Moduln
ûber Dedekind-Ringen findet sich in [4].

BEZEICHNUNGEN. Im folgenden bezeichnet R einen kommutativen Dedekind-

Ring, wenn nicht anders erwâhnt. K sei der Quotienten-Kô'rper von R, P die Menge
der Primideale ^ 0, n und a Teilmengen von P mit n n <x 0 und n eine Abbildung von
n in N. Jedes Idéal A^O von R lâBt sich bekanntlich eindeutig als Produkt von
Primidealen schreiben; exP(A) sei der Exponent des Primideals P in dieser Darstel-

lung. Entsprechend sei exP r : exP (Rr fiir ein 0 # r e R und auBerdem exP (0) : oo.
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Dann gilt bekanntlich exP(a + £)^min[exP(a), exP(6)] und exP(ab)
+ exP(£). Mit diesen Bezeichnungen sei

(a) Rn'n:= fi R/Pn(P)
Pen

(b) Ra:= {xjyeK\ exP(jc)^exP(>>) VPec}.

Rnn und Rff werden auf kanonische Weise zu Ringen mit 1, und es existiert jeweils
ein natûrlicher Ringhomomorphismus von R in Rnn bzw. Rff.

Falls n unendlich ist, kann man R als Unterring von Rnn betrachten. Damit gibt
die folgende Définition Sinn:

(c) Rna'n:= {xeRn>n \ 30^reR: rxeRAtxP{rx)^txP(r) MPea).

In dieser Arbeit sind die folgenden Ringe von Interesse:

(I) jR7I'Mmit0<|7i|<K0
(II) Ra®Rnn mit7rna 0

(III) Rnff>n mit nn(T Q und

(IV) ^'nmit |tt|^K0.
Dièse Ringe werden dementsprechend als Ringe vom Typ I-IV bezeichnet.

Typ I existiert nur, falls R kein Kôrper ist, die Typen III und IV nur, falls R
unendlich viele Primideale enthâlt. Typ II umfaBt auch die unter (b) beschriebenen

Ringe fur den Fall n 0. Typ III ist ein Unterring von Typ IV, der R und das Torsions-
ideal £/: ®Pen RjPn{P) von Rnn enthâlt. In [4], Beweis von Lemma 4.7, ist

gezeigt, daB Rl'n/U^Ra ist.
Es ist klar, daB wiederum kanonische Ringhomomorphismen von R in die Ringe

vom Typ I-IV existieren.
Fur dièse gilt (vergl. auch [8], Prop.):

LEMMA 1. Sei T ein Ring vom Typ I, II oder III. Dann ist die kanonische Ab-
bildung von R in T ein Ringepimorphismus.

Beweis. Fur Ringe vom Typ I ist die Behauptung klar, weil die kanonische Ab-
bildung von R in Rn'n nach dem Chinesischen-Reste-Satz surjektiv ist.

Sei nun T Ra. Es genûgt, jRff®^^i?ff zu zeigen. Sei ajbeRa. Weil R ein

Dedekind-Ring ist, existieren x,yeR mit RanRb=*Rx+Ry. Sei rla slb x,
r2a=s2b y, also alb=silr1=s2/r2. Weil a/beRa ist, gilt fur aile Pecr, daB exP(a)

^ exP (b) ; also exP (a) max [exP (a), exP (è)] exP (Ra n Rb) min [exP (x), exP (y)~]

exP(a) + min[exP(r1), exP(r2)]. Fur aile Pea ist also min[exP(r1), exP(r2)]=0.
Daher ist Rert + Rar2 ~ &«> d.h. es gibt a, j8e Ra mit arx + fir2 1. Also ist ocs1 + ps2

(xrl(si/r1)+pr2(s2lr2) a/b9 und fur beliebiges yeRa gilt:
®(r1a+r2/?) y=(a/b)

10 (a/b) y. Daraus folgt
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Sei ajbeR^ xeR und P en. Nach [4], Lemma 3.12, existieren r, seR mit r/seRff,
exP(r) 0 und exP(s)=n(P). Daher ist Rr + Pn(p) R, d.h. es gibt teR und
uePn(P) mit 1 =//•+«. Also ist x-trxePn(P) und (alb)®(x+PniP))=(a/b)®(trx
+ Pn{P))=(arlbs)s®(tx+PniP))=(arlbs)®(stx+Pn(P)) O, weil ^ePM(P) ist.
Damit ist R<T®RRIPn{P) 0 fur Peu gezeigt. Es folgt sofort Ro®RR**H 0, und das
bisher Bewiesene ergibt die Behauptung fur Ringe vom Typ II.

Sei nun T Rl'n und U das Torsionsideal von T. Aus der exakten Folge

0->U->T-+T/U->0 (*)

wird durch Tensorieren ùber R die exakte Folge

U®U h T®U ~+ T/U®U->0.

Es ist T/U^Re, und oben wurde Ra®RRIPn(p) 0 fur Pen gezeigt. Also ist T/U
®U 0 und p ein Epimorphismus. Fur P, geP ist bekanntlich R/Pn(P)®RR/Qn^Q)

S R/(Pn(P) + Qn(Q)) (kanonisch), also ist die Abbildung u®u'*-*uu' ein Isomorphismus
von (7® (7 auf 17. Sei A die kanonische Abbildung von T® U in (7. Es ist AP(u®u')
— uu\ also ist Àp ein Isomorphismus, und weil p ein Epimorphismus ist, ist k ein

Monomorphismus.
Aus (*) wird durch Tensorieren ûber R die exakte Folge U®T/U -> T®T/U

09 aber U®T/U 0, also T®TIU^T/U®T/U^R(T®R<r^R(T
(kanonisch). Sei v der kanonische Isomorphismus von T® T/U auf T/U. Aus

(*) gewinnt man das Diagram

t ®u -> t ® r-> r ® t/u -> o

0-> 1/ -> T -? T/U -+0,

dessen Zeilen exakt sind und das kommutativ ist, wenn fur \i die kanonische

Abbildung eingesetzt wird. Offenbar ist fi ein Epimorphismus, und weil À und v Mono-
morphismen sind, gilt dies auch fur jjl. Daraus folgt die Behauptung fiir Ringe vom
Typ III.

Im Kontrast dazu gilt:

LEMMA 2. Sei T ein Ring vom Typ IV und M ein endlich erzeugter, treuer
T-ModuL Dann ist die kanonische Abbildung ol\T®rM -*M kein Monomorphismus.

Beweis. T ist selbstinjektiv als direktes Produkt von selbstinjektiven Ringen. Weil

M endlich erzeugt und treu ist und T kommutativ, lâBt sich T in eine endliche direkte
Summe von Kopien von M einbetten. Daher ist TT®TX^®ni=1 TM. Nach [4],
Lemma 3.6 ist TjR teilbar. Sei / ein Elément von T, das in unendlich vielen Kompo-
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nenten gleich 0 und in unendlich vielen Komponenten ungleich 0 ist. Dann ist t -f R
kein Torsionselement von TjR9 also T/R kein Torsionsmodul. Wegen der Struktur
von teilbaren Moduln ûber kommutativen Dedekind-Ringen enthâlt TjR eine Kopie
von K als direkten Summanden.

Mit der exakten Folge

0-+R-> T-> T/R-+0

ist auch die Folge

i> T®M -> TjR®M ->0

(Tensorieren ùber R) exakt. Angenommen, a sei ein Monomorphismus. Dann ist
P ein Epimorphismus, also T/R®M 0. Weil r direkter Summand in einer direkten
Summe von Kopien von M ist, gilt dann auch T/R®T 09 also erst recht T/R® T/R=

0. Aber daraus folgt K®K=09 im Widerspruch zu Lemma 1.

LEMMA 3. Sei T ein Ring vom Typ I-IV und M ein endlich erzeugter, treuer,
projektiver T-Modul. Dann ist TM ein Generator.

Beweis. Ringe vom Typ I sind Quasi-Frobenius-Ringe, also ist jeder treue Modul
ein Generator. Fur Ringe vom Typ IV zeigt der Anfang des Beweises von Lemma 2,

daB jeder endlich erzeugte, treue Modul ein Generator ist.

Wenn T=Ra ist, dann ist T bekanntlich ein Dedekind-Ring und jeder endlich

erzeugte, projektive J-Modul ein Generator. Daher ist jeder endlich erzeugte, treue,
pfojektive T-Modul ein Generator, falls T vom Typ II ist.

Sei nun T vom Typ ///, TM endlich erzeugt, treu und projektiv und TX=£0 ein

beliebiger Modul. Es genugt zu zeigen, daB HomT(M, X)#0 ist. Zur Abkûrzung sei

TP fur die P-Komponente von Rna'n geschrieben, d.h. TP R/Pn(P\
(a) UX^O. Dann existiert Peu mit TPX^0. Da M treu ist und TP ein direkter

Summand von T (als zweiseitiges Idéal), ist TPM ein treuer rP-Modul, also ein
Generator als rP-Modul. Daher ist Homrp(rPM, TPX)^09 also auch HomT(M, X)
^=0, weil TPM ein direkter Summand von M (als T-Moduln) ist.

(b) UX=0. Dann ist X ein T/U-Modul, also ein l^-Modul. Ebenso ist M/UM
ein JVModul und als solcher treu: Sei (t + U) (m+ UM) 0 fur aile meM. Dann ist

tme UM fur aile meM und speziell fur die erzeugenden Elemente ml9..., mn von TM.
Daher gibt es 0^rteR mit ri(tmi) 0 fur / 1,..., n. Sei nun r: Y\tl=i rf» dann ist

0# r eR, undfur beliebigesm ^= t rfm£ aus Mgilt {rt)m=Yj= î
=0. Weil TM true ist, folgt rt=09 also teU, d.h.
AuBerdem ist M/UM als i£ff-Modul endlich erzeugt und daher Generator. Daher
ist HomR<r(M/UM9 Z)#0, also auch HomT(M/UM, Z)#0 und erst recht
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Im nâchsten Lemma sind R und T beliebige Ringe. Sei a ein Ringhomomorphis-
mus von R in T. Ein T-Modul M wird zu einem iWVtodul durch rm: a(r) m fur
reR und meM. Es gilt:

LEMMA 4. Sei ol:R-+T e/« Ringepimorphismus und M ein T-Modul. Dann:
(a) TTR®RM^TM (kanonisch)
(b) End(rM) End(*M) und daher Bi(TM) Bi(RM)
(c) We«« rAf ein MP-Modul ist, dann auch RM.
Beweis. (a) und (b) sind wohlbekannt; siehe z.B. [7]: die Behauptungen sind

Spezialfàlle von (9) bzw. (7) von Th. 1. (c) Sei TM ein MP-Modul und S : Bi (TM).
Wegen (b) geniigt es, SSR®RM^SM (kanonisch) zu zeigen. Es ist

Wie oben sind aile Abbildungen kanonisch; daB die beiden ersten Isomorphismen
sind, ist bekannt, die dritte ist dies wegen (a) und die vierte, weil TM ein MP-Modul ist.

SATZ 1. Sei R ein kommutativer Dedekind-Ring. Genau dann ist RM ein MP-
Modul, wenn es einen Ring T vom Typ I, II oder III gibt, so dafi TM ein endlich er-
zeugter, treuer, projektiver Modul ist. In diesem Fall ist T Bi(RM).

Beweis. Sei RM ein MP-Modul und T : Bi (RM). Es geniigt zu zeigen, daB T vom
Typ I, II oder III ist. Nach [5], Th. 4.1 gibt es einen Morita-injektiven Modul RN mit
T Bi(RN). Nach [4], Th. 2 und nach Lemma 2 folgt die Behauptung.

Sei umgekehrt T ein Ring vom Typ I, II oder III und TM ein endlich erzeugter,
treuer, projektiver Modul. Nach [5], Cor. 1.2 ist TM ein MP-Modul. Nach Lemma 1

ist die kanonischeAbbildung von R in Tein Ringepimorphismus. Nach Lemma 4 ist

RM ein MP-Modul und Bi(RM) Bi(TM). Aber Bi(rM)= T, denn nach Lemma 3

ist TM ein Generator.

KOROLLAR. Sei R ein kommutativer Dedekind-Ring mit unendlich vielen Prim-
idealen. Die Ringe vom Typ I, II und III sind genau die ringepimorphen Bilder von R.

Beweis. DaB dièse Ringe ringepimorphe Bilder von R sind, ist Lemma 1. Sei

(x.R-* Tein Ringepimorphismus. Dann ist nach Lemma 4 mit Trauch ^rein MP-
Modul und Bi(Rr)= T. Nach dem Satz ist T vom Typ I, II oder III.

Bemerkung. Falls R nur endlich viele Primideale hat, sind die Typen I und II
genau die ringepimorphen Bilder von R; falls R ein Kôrper ist, nur R selbst.

Im Hinblick auf Satz 1 geniigt es zur Klassifizierung der MP-Moduln ùber kom-
mutativen Dedekind-Ringen, die Struktur der endlich erzeugten, treuen, projektiven
Moduln ûber Ringen vom Typ I—III zu klâren. Dies geschieht im folgenden getrennt
fur die einzelnen Typen.



272 REINHARD KNÔRR

(I) T Rnn mit n endlich. Tist ein Quasi-Frobenius-Ring, daher ist ein projek-
tiver T-Modul auch injektiv. Nach [4], Lemma 2.2 hat ein endlich erzeugter, treuer,
projektiver T-Modul M also die Form

m^ e [i?/p"(p)]MP)
Pen

mit k(P)eN fur aile Pen. Umgekehrt sind solche Moduln offenbar endlich erzeugt,
treu und projektiv.

(II) T Ra®Rn,n mit n endlich und un0 0. Ra ist ein Dedekind-Ring, die endlich

erzeugten, projektiven i^-Moduln sind also bis auf Isomorphie direkte Summen

von Idealen (siehe z.B. [3], §22). Ein projektiver T-Modul ist direkte Summe eines

projektiven i£ff-Moduls und eines projektiven /^'"-Moduls. Wegen (I) sind daher die

treuen, projektiven und endlich erzeugten T-Moduln genau die der Form

M S ®At® © [i?/Pn(P)]MJ>)
i=l Pen

mit k, k(P)eN und Idealen At von Ra.

(III) T Rl'n. Dieser Fall bereitet mehr Schwierigkeiten. Zur Vorbereitung
dienen die folgenden Lemmata.

LEMMA 5. Sei Tein beliebiger kommutativer Ring und A:= Ta+Tb mit a, beT,
so dafi a kein Nullteiler ist. Dann sind gleichwertig:

(a) A ist projektiv.
(b) Es gibt Elemente u, v, x, ye T mit u+ y= 1, bu — av und bx—ay.
Beweis. Sei k: T®T -*A der kanonische Epimorphismus.

„=>" Wenn A projektiv ist, existiert ein Homomorphismus a, der das Diagramm

kommutativ macht.
Sei (w, x): a (a) und (t;, y):= oc(b). Dann ist (bu, bx) ba(a) aai(b)= (av9 ay\

also bu av und bx=ay. AuBerdem ist a=Koc(a) ua + xb ua + ya= (u+y)a, also

u+y=l.
„ <= " Seien u,v,x9yeT mit den angegebenen Eigenschaften. Durch triviale Rech-

nung findet man, dafi durch <x(ra+sb):= r (u,x) + s(v,y) ein Homomorphismus
a:A-> T® T wohldefiniert ist mit kol idA. Also ist A projektiv.
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LEMMA 6. Sei T:= Rl>n und U: ®Pen RjPn{p) das Torsionsideal von T. Jedes

Idéal A von T mit U <A ist treu, projektiv und von zwei Elementen erzeugt.
Beweis. U ist offenbar treu, also auch A. Es ist A/U^O ein Idéal von TIU^Rff;

dies ist ein Dedekind-Ring, daher ist A/U projektiv und von zwei Elementen â, h

erzeugt. Dièse Elemente kônnen ^0 gewâhlt werden und sind keine Nullteiler von
T/U. Nach Lemma 5 existieren Elemente «, v, x, ye T/U mit w + j?=ï, bû=âv und
bx ây.

Sei ae T ein Urbild von à. Dann ist a$U und aus der Définition von Rl'n folgt
leicht, daB die P-Komponente aP von a eine Einheit von RjPn{P) ist fur fast aile
Peu. Daher kann o.B.d.A. angenommen werden, daB a in allen Komponenten Ein-
heiten hat. Dann ist a kein Nuîlteiler in T9 und as gilt U ^ Ta. Entsprechend lâBt sich
ein Urbild b von b wâhlen, das in allen Komponenten Einheiten hat. Wegen U ^Ta ist
A= Ta+ Tb. Sei ue 7ein beliebiges Urbild von ù undj>:= 1 —u. Dann ist .y ein Urbild
von y, und fur ein beliebiges Urbild x' von x ist daher w: bx' — aye U. Weil U < Tb
ist, existiert ein w'eT mit w=w'b. Mit x : x' + wf ist dann bx=ay. Entsprechend lâfit
sich ve T wâhlen, so daB bu av gilt. Aus Lemma 5 folgt nun die Behauptung.

BEZEICHNUNG. Sei \iÇkn und e\i eine durch n indizierte Folge mit

{\eRjPn{p) fur Peu
[€fl)p~~\(p) sonst.

Falls fi oder 7r\ju endlich ist, gilt offenbar efleT: Rnaf ". Wenn e^ ete T sind, dann ist

Vt e/int» insbesondere ist e^ idempotent. Es sei eP:=e{P}; dann ist ePT~RjPn{P).
AuBerdem existiert zuueUeine kleinste endliche Teilmenge /zcn mit e^u w, nâmlich

LEMMA 7. 5e/ T e/n iîmg vom Typ III und U das Torsionsideal von T. Genau dann

ist M ein endlich erzeugter, treuer, projektiver T-Modul, wenn es eine endliche Tell-

menge \i^n, natùrliche Zahlen k(P) fur Peu und endlich viele Idéale U < Ai9 i 1,...,
O, von Tgibt, so dafi mit t: 7c\ju gilt

k

Mç* ® exAt® ©
i 1 P e fi

Beweis. Es ist A^e^Qe^ fur i l,..., k. Daher ist mit At (Lemma 6) auch

ezAi endlich erzeugt und projektiv. Dasselbe gilt offenbar fur RjPniP) ePT. Ein M
von der angegebenen Form ist also endlich erzeugt und projektiv. Wegen r u n n und

k(P)^ 1 fur Pe/i ist ^ ^M; mit ^ ist also auch M treu.
Sei umgekehrt M ein endlich erzeugter, treuer, projektiver T-Modul. Dann ist

M : MjUM ein endlich erzeugter, projektiver TjU A,-Modul. UM ist nicht endlich
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erzeugt und treu, also ist M^O. Weil Ra ein Dedekind-Ring ist, gibt es Idéale Âh
i l,...,k>0, wonRa mit M^0j=1 Ât.

Seien At die Urbilder von Â{ in T9 dann sind die At projektive Idéale von T mit
U<At und Âi^Ai/U. Sei X: 0j=1 Ai9 dann ist XjUX^M, und weil JT und M
projektiv sind, existieren T-Homomorphismen a und /?, die das Diagramm

a//

kommutativ machen. k und A sind dabei Epimorphismen.
OfFenbar ist k(1 - £a) 0, also Imt : (1 -/ta) M <KerK UM ; auBerdem ist mit

M auch Imx endlich erzeugt. Ebenso ist Im2:= (1 —ajS) 2f< UX und endlich erzeugt.
Wenn a(m) 0 ist, dann ist m= (1 — /?a) (m), also gilt Kera^In^.

Sei ju:= {Pe;r | 3yelmlulm2:ePy^0}. Imi ist von endlich vielen Elementen

erzeugt, die o.B.d.A. die Form Wj/Mj, ï 1,...,j haben. Fur jedes i ist epi/^m—O fur
fast aile P etc. Eine analoge Obeilegung gilt fur Im2, daher ist \i endlich. Sei t : 7c\/i.
Es ist Imj < e^M ; denn sei vm ein erzeugendes Elément. Dann gibt es eine endliche

Teilmenge v s n mit evt? y. Also ist exvm exevvm ^Pemv ^p^'w 0, weil t n vn \i 0,

und daher ww= (^t +^) u/w e^vmee^M. Analog zeigt man lm2^eflX.
Nun sei y:M -+X definiert durch y(m): ez(x(m). Offenbar ist Imy^e^. Sei

x^e.xee^. Dann ist (l-a£) (jc)= (1-ajî) (exx) ex(l-ap) (x)elm2netX^efiX
nexX=*09 also x=ajS(x) ajS(^t2Jc) ^a[^j8(A:)] y[et)S(x)]. Daher ist y | eTM ein

Epimorphismus auf exX. Sei weKery; dann ist 0 <y(m) ^ta(m) a(eTm), also

^meKera^Imi ^e^M. Daher ist y | exM injektiv, und es gilt exM^exX= ©J=1 exA{.

Wegen M exM®ellM ist e^M ein endlich erzeugter, treuer, projektiver Modul ûber

e^T^R^11. Mit (I) folgt die Behauptung.
Aus den vorstehenden Ergebnissen folgt unmittelbar

SATZ 2. 5e/ R ein kommutativer Dedekind-Ring. Genau dann ist RM ein MP-
Modul, wenn Teilmengen n, n, ereP mit fi^n, fi endlich und nna 0, Abbildungen

n:n-*N und k:fx-*N und eine ganze Zahl s^O existieren, so dafi M zu einem der

beiden folgenden Moduln isomorph ist:

(a) e^eecrt=l Peu

mit Idealen At von Ra oder
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(b) ©M,e©WP"(fT(f)
i=l Peu

mit n unendhch, U <At Idéale von R^'" und t n\n
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