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Minimal Varieties and Harmonic Maps in Tori

TADASHI NAGANO AND BRIAN SMyYTH1!)

Introduction

A little over a hundred years ago H. A. Schwarz constructed triply-periodic
minimal surfaces in 3-space. This provides us with the first compact minimal surface
in a flat real 3-torus. All compact complex submanifolds in complex tori provide
further examples. More explicit examples of this type are mentioned in §3. We have
made a systematic study of compact minimal submanifolds in flat tori and this is our
account.

The first observation is that a harmonic 1-form on a flat torus is harmonic when
restricted to a minimal submanifold (see Corollary 1). Since the submanifolds are
compact, harmonic theory enters quite naturally and the Albanese apparatus intro-
duced in §1 contains all the necessary harmonic theory. There is some advantage in
presenting arguments valid for the weaker notion of a harmonic map into a flat torus,
and this is the course taken in §1 and 2.

Our main results are:

i) that two minimal isometric (resp. holomorphic) immersions in a flat (complex)
torus which are homotopic differ by a translation. (Theorem 2).

ii) any compact minimal submanifold in a torus has a torus which acts freely and
equivariantly as its connected isometry group. The quotient manifold lies minimally
in a flat torus and has negative Ricci curvature on an open dense set. (Theorem 3).

In the applications in §4 we pay particular attention to submanifolds with non-
vanishing Euler number. This includes a result of Y. Matsushima [10] obtained by
the method of theta functions. In another application to Riemannian geometry we
show that the fundamental group of a compact manifold which admits a metric of
negative Ricci curvature need not have exponential growth and can even be free
abelian. This answers in the negative a question raised by Milnor [11].

We thank Professor Matsushima for the many times we have benefited from his
opinion and the interest shown in this work; it was from his lectures in 1968 that the

1) Work supported by N.S.F. Grant GP 29662; these results were announced at the A.M.S.
Summer Institute in Differential Geometry, Stanford University, August 1973, where we learned from
S.T. Yau that he had obtained the result of Theorem 2 for complex submaniflods of certain complex
tori. A.M.S. subject classification 53-xx, 53 Axx, 53 Cxx.
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second author first learned about the Albanese map in Riemannian geometry. We
are grateful to Professor Lichnerowicz who called to our attention his paper [9] in
which this map is also developed.

§1. Harmonic Maps and the Albanese Map

The early work of Eells and Sampson [3] is of course the basic reference on har-
monic maps.

Beginning with a smooth map f from a compact oriented #-dimensional Rieman-
nian manifold M into another Riemannian manifold M’ the tensor field f, fy on M
(f« and *f, denote the differential of fand its transpose) compares the quadratic form
induced from M’ with the metric on M. The energy density of f is

e(f)=%Tr‘f*f*,

where Tr denotes trace, and the energy of fis

E(f)=[e(r)de

where dv is the Riemannian volume element on M.

If we denote the metrics on both M and M’ by { , ), it will always be apparent
from the context which one is involved. The Riemannian connexions on M and M’
will be distinguished as V and D. Let n denote the projection from the tangent bundle
T(M’)of M’ onto M'. The smooth maps v: M — T(M ") with mov=fare called vector
fields along f. Given a vector field X on M, we interpret Dyv in the obvious way as a
vector field along the map f. Let E be the vector bundle over M induced from T (M)
by f. This is a Riemannian vector bundle, i.e.

X<U, W> = <DX'J: W>+ <U, DXW>
for any pair of vector fields v and w along f and any vector field X on M. If we set

a(f) (X, Y)=Dx(fiY)—fi (VxY)

we can easily observe that o ( /') is a symmetric E-valued quadratic tensor field on M.
We call «(f) the second fundamental form of the map f. The tension field 7 (f) of
f defined by ©(f)=Tra(f) is a vector field along the map f and its significance
derives from Lemma 1.

Let f,, —e<t<eg, be a smooth variation of f,=f; the variation vector field
v=df,/dt|,- is a vector field along the map f.

LEMMA 1. (d/dt) (E(f,))|i=0=—fm <v, T(f)) dv, where t(f) is the tension
field of f, v is the variation vector field of f, and dv is the volume element on M.
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Proof. (d|dt) E(f)=[wu (dldt) (e (1)) dv.

If {ey,..., e,} is a local orthonormal frame field on a neighborhood of p in M, then
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-—Ze(v f*e> <vsz f*(Veze)> <U t(f)>
——5w o, (S
where w is the 1-form on M defined by
W(X)=<U,f*X>

and ¢ is the divergence. The lemma now follows from Green’s theorem.

DEFINITION. A smooth map f from a compact oriented Riemannian manifold
M into a Riemannian manifold M’ is called harmonic if the energy of f is critical,
that is, if the tension field 7 (/) vanishes identically on M. When f is an isometric
immersion, this is equivalent to saying f is minimal.

LEMMA 2. A harmonic map pulls a parallel 1-form back to a harmonic 1-form.

Proof. Let w be a parallel 1-form on M. Certainly u=f*w is closed. To calculate
the divergence of u at a point p of M we take a local frame field {e,,..., e,} on M
in a neighborhood of p. Then

i (Vo) &
e;(u(e))—n(Vee)
(W (f*ei)) —w ([« (Ve;ei))

(Df*es“) (f*e )+ Z w (De:f*e f* (Ve;ei))
= +W(f(f ),

since w is parallel. Thus g is harmonic if f is harmonic.

.

fl
‘M’,ﬂ'.M’ "M= n
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COROLLARY 1. A smooth map f of M into a flat torus T is harmonic if and only
if f pulls harmonic 1-forms back to harmonic 1-forms.

Proof. A harmonic 1-form on T is parallel. Thus, by Lemma 2, its pull-back to M
is harmonic if f is harmonic. If, conversely, the pull-back of every harmonic 1-form
is harmonic, it is immediate from the proof of Lemma 2 that

w(z(f))=0

for every harmonic 1-form w on 7. Consequently t( f)=0, i.e. f is harmonic.

COROLLARY 2. If fi, f,: M — T are harmonic maps then so are the maps f, + f,
and oof; for any homomorphism o of T into itself.

Fortunately there is no question of existence of such maps, for every compact
Riemannian manifold M with nonzero first Betti number enjoys a nontrivial canonical
harmonic map into a canonical flat torus, known as the Albanese map and Albanese
torus of M, respectively. As the Albanese map, and particularly the universal property
of this map, are so effective in this work, we should begin by explaining these.

Let M be a compact connected oriented Riemannian manifold and b the real
vector space of all harmonic 1-forms on M. Let ¢ be the natural projection from the
universal cover M of M. Fix x,e M, say o(xo)=p,. We define a smooth map

a:M—p*

by line integrals
3(x) (w)= [ ¢*w
X0

where h* is the dual space of }). For cen, (M)

d(ox)=a(x)+y (o),

where ¥ (6) (w)=[2X° o*w, so that ¥ is a homomorphism from =, (M) into h* as an
additive group. It is a fact that A=y (n, (M)) is a lattice in the vector space h*, and
clearly this vector space has a natural Euclidean metric from the global inner product
of forms on M. With the quotient metric, we call the torus 4 (M )=h*/4 the Albanese
torus of the Riemannian manifold M. It is a simple matter to check that @ projects
to a map a: M — A(M), called the Albanese map. From the very construction of a,

it will be clear that the map it induces on fundamental groups

a:ny (M) - n,(4)
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is surjective and that a* maps the space of harmonic 1-forms on 4= A4 (M) isomorphi-
cally onto f). So by Corollary 1, the Albanese map a is harmonic.

PROPOSITION 1. (Universality of the Albanese map). Let a:M— A be the
Albanese map of a compact oriented Riemannian manifold M. If f: M — T is any other
harmonic map of M into any flat torus T, then there is a unique affine map

g:A-T

with f=goa.
Proof. In the above construction a(p,)=1,. After a translation in 7, we may as-
sume f(po)=17. Recall a* is an isomorphism. The map

(@a*) tof*.H' (T,R)> H' (A4, R)

is a homomorphism, thus it coincides with the codifferential g* of some homomor-
phism,

g:A-T.

Consequently f*=a*-g*. Now fand goa are harmonic maps and so, by Corollary 2,
is f—goa. However the latter map must be constant, by the above, and is the identity
at po. Thus f=goa. The uniqueness is clear because a(M ) generates 4 as a group.

As an illustration of the efficacy of the Albanese map, we end this section with an
application.

THEOREM 1. Let f be a harmonic map from one compact orientable Riemannian
manifold M into another M', which has nonnegative Ricci curvature. Then on cohomology

f*:H'(M',R)—> H' (M, R)

is injective if and only if f (M ) does not lie in an orthogonal trajectory of a parallel vector
field on M.

Remark. This result for minimal immersions is the subject of a paper by E. Kelly
[6].

Proof. Let a and a’ denote the respective Albanese maps of M and M’ into their
Albanese tori 4 and A’. If wis a harmonic 1-form on A’, it is parallel; so, by Lemma 2,
(a’)* w is harmonic. But Bochner’s theorem then assures us that (a’)* w is parallel.
Applying Lemma 2 once more to the harmonic map f, we find that f*(a’)* w is har-
monic. By Corollary 1, @’ f is a harmonic map. From universality, a’o f=goa for
some affine map

g:A-> A
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Since (a)* and (a’)* are isomorphisms, if f* is not injective neither is g*. This
in turn means g(4) is a proper closed subgroup of A’. Let w be a harmonic 1-form
on A’ perpendicular to g(4); then v=(a’)* w is a parallel 1-form on M’ by the same
reasoning as above. Now v can only be zero when H' (M ', R)=0 and f* is then
trivially injective. If v#0 we still have f *v=0 because g*w=0; consequently (M) is
in an orthogonal trajectory of the parallel field dual to v on M.

§2. Rigidity of Harmonic Maps

LEMMA 3. If two harmonic maps f1, f,: M — T of M into a flat torus are homo-
topic, then they differ by a translation.

Proof. After translation, we may assume f; (po)=f2(po)=1r for some point
Po€ M. Since f; and f, are homotopic, their induced maps on de Rham cohomology
coincide. Thus for any harmonic 1-form w on T the forms f;*w and f,'w are cohomolo-
gous. But these are harmonic forms by Lemma 2. Hence f;*w=f,'w for all harmonic
1-forms w on 7. As a result, the maps f; and f, coincide in a neighborhood on p,, and
by connectedness this extends to all of M.

COROLLARY 3. If two holomorphic maps of a compact Kahler manifold M into
a complex torus are homotopic then they differ by a translation.

Proof. Since the maps f; and f, are holomorphic each pulls the holomorphic
1-forms on the torus back to holomorphic 1-forms on M. But the real and imaginary
parts of a holomorphic 1-form on a Kahler manifold are harmonic. Such maps are
harmonic by Corollary 1, and applying Lemma 3 the result follows.

The next result follows from the work of Eells and Sampson [3], but we give an
elementary proof.

COROLLARY 4. Given a smooth map f from a compact Riemannian manifold M
into a flat torus T there is a unique (to within translation) harmonic map homotopic to f.
Proof. The map

(@) 'of*:H' (T,R)> H' (4, R)
is a homomorphism and so coincides with the codifferential of some homomorphism
g:A-T.

Therefore F=f—goa induces the trivial map on first cohomology. Then if (y’,..., y™)
are cartesian coordinates on the universal cover R™ of T the forms dy’ on T are pulled
back to exact forms on M. Thus F*dy'=dh, for each i, where A; is some smooth real
function on M. Then the map A= (hy,..., h,) of M when projected into T must differ
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from F by at most a translation. Since R™ is contractible the map 4 is null-homotopic
and the same will be true of F=f—goa; in other words f'is homotopic to the harmonic
map geoa. The uniqueness follows from Lemma 3.

PROPOSITION 2. A harmonic map f:M—T induces a homomorphism
F:1,(M)— T with the equivariance property

f°U=LF(a)°f

where @ is any element of the identity component I,(M ) of the isometry group of M
and L. customarily denotes left translation by t. Moreover F is harmonic with respect to
the bi-invariant metric on I,(M).

Proof. Suppose f(py)=1r for some p,e M. If ael,(M ) then f and foo are homo-
topic harmonic maps and so, by Lemma 3, differ by a translation L ,,. Clearly Fis a
Lie group homomorphism with the above equivariance property. While we can show
F is harmonic by the theory of Lie groups, we prefer a more direct argument. Let ¢
denote the map of I, (M) onto the orbit of p,. Let w be any harmonic 1-form on T
and set v=f*w. By equivariance the form v is invariant by I,(M), i.e. T*v=v for all
1€ly(M). Thus

(Lo)* @*v=(g°L.)* v=(to@)* v=g*t*v=0%.

(R.)* 0*v=(¢°R,)* v=(togcad(1))* v=ad (1)* ¢*t*v,
=ad (7)* o*f/*w, by the above,
=(fogoad (1))* w=(fe0)* w=g*,

from equivariance and the fact that 7 is abelian. Since g*v=(f°g0)* w is a bi-in-
variant 1-form on I, (M) it is a harmonic 1-form in the bi-invariant metric. However
F=fog since f(p,)=17. By Corollary 1, F is harmonic with respect to the bi-invariant
metric.

Remark. We have noted a further property of such a harmonic map which, while
it is of no use to us here is curious enough to be remarked upon. It is that the symmetric
2-form Q on M induced by f from the metric on T is invariant by I, (M ). Indeed, if o
is any isometry of M which is homotopic to the identity then, by Lemma 3, fooe=Lgof
for some seT. Hence

Q(U*X’ 04 Y )={ fx04X, fx05Y D ={L; [ X, L, £ Y > = fiX, fHY>=Q(X, Y)

for smooth vector fields X and Y on M.

PROPOSITION 3. If f: M — T is a harmonic immersion, then
i) F is an immersion,
ii) each nontrivial isometry of M homotopic to the identity has no fixed points,
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iii) I, (M) is a torus acting freely on M and is contained in the isometry group of the
Riemannian metric induced by f on M,

iv) The Albanese map of M is an immersion.

Proof. i) If F is not an immersion, there is a nontrivial one-parameter subgroup
{o,} of I,(M) such that F(o,)=1 for all t. By equivariance

Sfea,=f

for all ¢. Thus for each pe M, the curve o,(p) is mapped to the point f(p). Since f is
an immersion, a,(p)=p for all t. Hence each o, is the identity, contradicting our
assumption. Therefore F is an immersion.

ii) Let o be an isometry of M homotopic to the identity and fixing a point p,e M.
After applying a translation to f, if necessary, we may assume f(py)=1;. Then by
Lemma 3 the maps f and foo differ by a translation. However, as they coincide at p,
we must have foo=f. Taking differentials at p,, since f, is injective on T, (M)
a simple argument with the exponential map at p, shows that o is the identity.

iii) Since F is an immersion, the induced map on Lie algebras is injective. Thus
the Lie algebra of I, (M) is abelian. So I, (M) is a compact abelian Lie group, that is,
a torus. The remark preceeding Proposition 3 completes the proof.

iv) This follows at once on applying the universal property to f.

While the next result is well known a new proof may be of interest.

COROLLARY 5. If M is a homogeneous space of a compact semisimple Lie group
G, then the first Betti number of M is zero.

Proof. Let a denote the Albanese map of M into its Albanese torus A. As above,
we have a homomorphism

F:G- A

and it is harmonic with respect to the bi-invariant metric on G, by Proposition 2.
Since G is semisimple and A4 is abelian, F is constant. By equivariance, aco=a for
all ceG. Since M is homogeneous this implies that a is constant. It is easily seen that
the Albanese map is constant only if the first Betti number of M vanishes.

§3. Minimal Submanifolds in a Torus

As mentioned in §1, a minimal immersion f of M in another Riemannian manifold
is harmonic with respect to the metric induced on M by f. Our knowledge of minimal
submanifolds in a flat torus goes deeper than anything obtained above for harmonic
maps. But even the results of the previous section (Lemma 3) provide a very strong
rigidity theorem for submanifolds.
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THEOREM 2. (i) If two minimal isometric immersions of a compact Riemannian
manifold into a flat torus are homotopic then they differ by a translation.

(i1) If a compact complex manifold admits a holomorphic immersion in a complex
torus then any holomorphic map homotopic to it differs from it by a translation.

The only other class of submanifolds enjoying a comparable degree of rigidity would
be nonsingular algebraic varieties in complex projective space [2].

Nor is there any want for examples; the Albanese map of a compact Kéhler mani-
fold M is holomorphic, so if it is an immersion it is a minimal immersion in a flat
complex torus. The universal property makes this equivalent to M admitting a holo-
morphic immersion in some complex torus. It is very easily seen that it is also equiv-
alent to the holomorphic cotangent bundle of M being ample [10]. Explicit examples
would be

i) any compact Riemann surface of positive genus,

ii) the Fano surface of lines on a cubic in 4-dimensional complex projective space
[16],

iii) a generic hyperplane section of an abelian variety in complex projective space.

While there are real examples, we have currently no way of generating an abundant
supply. The simplest one is perhaps the following

iv) a surface constructed by H. A. Schwarz [15]. A regular tetrahedral frame with
two opposite edges removed is taken as boundary and the solution of the Plateau
problem for this boundary is reflected across each linear edge and the process repeated
indefinitely. This determines an imbedded triply-periodic minimal surface in E* with-
out singularities. The quotient by the period-lattice is a compact minimal surface in a
flat 3-torus.

It is of interest to note that a minimal immersion of a torus in a flat torus must be a
homomorphism with finite kernel. This can be readily seen from universality and the
fact that the Albanese map of a torus 7 is the identity map on 7 no matter what the
metric on 7. In fact this proves that every harmonic map of a torus in a flat torus is a
homomorphism.

We now begin the proof of the main theorem of this paper, Theorem 3 in this
section. For obvious reasons we like to refer to it as the reduction theorem.

Let f be a minimal immersion of a compact orientable manifold M" into a flat
torus T"*". Consider M with the induced metric. In §1 we defined the second funda-
mental form « of £ and now for each pe M, we set

n,={XeT,(M)|a(X,Y)=0 forall YeT,(M)},

calling it the relative nullity space at p.
For & normal to M atp

<A§X’ Y>=<CX (X9 Y): €>
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defines a symmetric endomorphism of T, (M ). Because f is an immersion

CX(X, Y)=a§1 <AaX’ Y> éa: (])

where {¢,,..., &,} is an orthonormal frame for the normal spaceto Matpand 4,=4,_.
In addition we have Tr 4,=0 for all £, on account of ' being minimal. We remark that
the Gauss equation (see [7]) yields

S(X, ¥)=(Y(Tr A, A,— 42 X, ¥>
where S is the Ricci tensor of M. This reduces to

S(H, V)= (T 4D X, ¥ )
since f is minimal.

LEMMA 4. For an immersion [

n,={XeT,(M)| AX=0 for all £ normal to M at p}
={XeT,(M)|S(X, Y)=0 forall YeT,(M)},

the latter holding because f is minimal.

Proof. The first identity follows from the fact that « only takes values normal to
M when fis an immersion. From (1) we infer that Xen, if and onlyif Xe(");-, Ker4,.
Since each 4, is symmetric, (-, Ker4,=Ker)7_, 42 which by (2) is just the kernel
of the Ricci tensor. This completes the proof.

Now assume m=min, ,dimn,>1 and denote the open set {pe M | dimn,=m}
by G.

LEMMA 5. n is a totally geodesic foliation on G.
Proof. The equation of Codazzi is written

(ﬁx“) (Y, Z)=(§Y°‘) X, Z), (3)
where
(Vxa) (X, Z)=(Dxa (Y, Z))" o (VY, Z)~a (Y, VxZ),

the superscript N being used here to indicate normal components are taken [7]. If X
and Z are sections of the bundle n, and Y is any vector field on G, a simple computa-
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tion shows that (3) reduces to
a(Y,VxZ)=0,

that is, VxZ is a section of n. Thus the leaves of 1 are totally geodesic in M.

LEMMA 6. With the metric induced from M the leaves of n are complete.

This lemma is due to P. Hartman and his proof applies verbatim when the ambient
space is a flat torus [1, 5].

We now let N™ denote the leaf of 1t passing through p,eG. If X and Y are vector
fields along N then

Dy fiY=£ (VxY)+a(X, Y)=f, (VxY)

which is tangent to f(N) since VyY is tangent to N on account of N being totally
geodesic. Thus f(N) is a totally geodesic submanifold of 7"*? and is complete by
Lemma 6.

LEMMA 7. f(N) is a subtorus of T.

Proof. Assume f(N) is not compact. From the above we know it is a complete
totally geodesic submanifold of 7. Therefore its closure T in T is a subtorus of dimen-
sion />m. Since M is compact, f(M )>T. Since f is locally an imbedding, it is per-
missible and convenient to think of M as sitting in 7 containing a totally geodesic
subspace N of T passing through p,e M and the closure N’ of N in T again lies in M.
For peN’ there exists Xen,, such that j(z)=expzX comes arbitrarily close to p.
Noting that the velocity vector y(¢) is always in the distribution we have

Dy Y=V; ) Y+a(y(t), Y)=V;Y

for all vector fields Y tangent to M along y. Thus the tangent space to M is parallel in
T along the curve y(¢); which by the above choice of y means that 7,(M) is parallel
to T, (M) in T. Consequently the normal space to M in T is constant along N'.
This means that we may choose locally an orthonormal frame field {&,,..., &,} for
the normal bundle to M in T such that Dy¢,=0, 1 <a<r, when X is tangent to N'.
Hence, for each X tangent to N’ we have 4,X=0, 1<a<r. In particular n,, must
have dimension >/>m. This contradiction proves the lemma.

LEMMA 8. The spaces fy(n1,), for all peG, are parallel to each other in T. In
particular n is a parallel foliation on G.

Proof. The Lie algebra t of T'is identified with the tangent space to T at the identity.
By Lemma 7, f, (1) is parallel to an m-dimensional subalgebra ¥V, of the Lie algebra
t which determines a compact subgroup of 7. But the set of such subalgebras is



260 TADASHI NAGANO AND BRIAN SMYTH

countable so ¥, is independent of peG, that is, the f, (1) are all parallel to each other
in 7. In particular the spaces n, are all parallel to each other in the metric of M.

LEMMA 9. G is an open dense subset of M.

Proof. Let (x',..., x") be normal coordinates in a neighborhood U of any point
Po in M. The coordinate functions f;, ..., f,+, are analytic functions of the variables
(x%,..., x") on the region U (see [13] for example). In particular the same is true of
the second fundamental form and, by the equation (2) above, the Ricci tensor S of
M. If U is an open set in the complement of G, then the analytic operator A"™™S
(denoting the (n— m) exterior power of S') vanishes on U and, by analyticity, on all
of M. We have proved then that G is dense. Openness was clear from the outset.

LEMMA 10. For peG and uen, there is a parallel (and therefore Killing) vector
field X on M with X,=u. In other words n extends from G to a parallel foliation on
all of M.

Proof. Given uen,, peG, it determines a parallel vector field X on T tangent to M
at each point of G. Since G is an open dense set, X is tangent to M everywhere and
since it is paiallel on T its restriction is a parallel vector field on M.

As we have constructed m linearly independent parallel fields, dim/Z, (M )=m.
On the other hand a classical result of Bochner on compact Riemannian manifolds
with negative semidefinite Ricci tensor tells us that dim/, (M )<m, seeing as the
maximal rank of the Ricci tensor is n—m. So I, (M) is an m-dimensional torus acting
freely on M and its orbits are the leaves of 1. We note at this point that we have a local
splitting for the Riemannian manifold M, that the leaves of the foliation orthogonal
to n are not necessarily compact and that G is an open dense subset of M.

Let us assume f(p,) =1 for some poe M. With the notation of the previous section,
we have the diagram :

I, 55 F(y)<T

[

M — T

- l 1"

M1, L% TIF (I,).

The tori I, and F(I,) act freely on M and T respectively so that M/I, and T/F(l,) are
compact manifolds of dimension n—m and n—m+r, respectively, and the projections
np and w; have maximal rank. Clearly there is a natural map

fi:M[l[,=M, > T1=T/E(Io)

making the above diagram commute. Evidently the map f; is an immersion and it is
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equally clear that it is a minimal isometric immersion with respect to natural metrics
on M, and T (that is, the metrics which make =,, and 7, restricted to the horizontal
spaces, into isometries).

THEOREM 3. Let f be a minimal isometric immersion of a compact orientable
Riemannian manifold M" in a flat torus T"*". Then

i) The identity component I,(M ) of the isometry group of M is a torus acting freely
on M and the orbits are parallel in M (in fact correspond to the flat factor in the local
Riemannian decomposition).

ii) This action makes M a principal torus bundle over a compact Riemannian mani-
fold My =M|I,(M). Moreover f induces a minimal isometric immersion of M, in the
torus Ty =T|F(l,), where F is the homomorphism from I, to T induced by f, also with
codimensionr.

ili) The Ricci tensor of M, is negative definite on an open dense set. In particular
the isometry group of M, is finite.

§4. Applications

The reduction theorem of the previous section gives information bearing directly
on minimal submanifolds in tori and supplies us with enough detail on a certain class
of minimal submanifolds to be helpful in questions of a purely Riemannian nature.
First the direct applications.

A compact complex manifold M admits a holomorphic immersion in a complex
torus if and only if M has ample holomorphic cotangent bundle and admits a Kdhler
metric, where by ample we mean that the holomorphic 1-forms on M determine the
full cotangent space at each point of M. This follows directly from the universality of
the Albanese map of M and is verified in [10].

COROLLARY 6. Let M be a compact Kdihler manifold with ample holomorphic
cotangent bundle. Then the identity component Auty(M) of the Lie group of all holo-
morphic transformations of M is a complex torus acting freely on M. The quotient
M, =M|Auty(M) is a compact complex manifold with ample holomorphic cotangent
bundle and admits a Kéhler metric with negative Ricci curvature on an open dense set.
In particular Auty(M,) is trivial.

Proof. The Albanese map a of M into its Albanese torus 4 (M) is a holomorphic
immersion because the holomorphic cotangent bundle is ample. The metric induced
on M by this map is of the form Y, w*%% where w', ..., w? is a basis for the space of
all holomorphic 1-forms on M. Thus any holomorphic transformation of M will
leave this metric invariant so that Aut, (M ) coincides with the identity component of
the isometry group of M. Since a holomorphic immersion is minimal we may apply
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Theorem 3 to conclude that Aut, (M) is a complex torus, of complex dimension s say,
acting freely on M. The quotient compact complex manifold M, = M/Aut, (M) admits
a holomorphic immersion f; in a complex torus 7; by the argument of Theorem 3.
In particular the holomorphic cotangent bundle of M is ample. Since f; is minimal
we can see from Eq. 2 in §3 that the Ricci curvature of the metric it induces on M, is
nonpositive. Supposing that the Ricci curvature is not negative on an open dense set
we deduce from Theorem 3 that Aut, (M, ) is nontrivial. But if we follow the commu-
tative diagram at the end of the preceding section — with @ and A (M) replacing f and
T - we find that a (M) is invariant by a complex subtorus of 4 (M ) of dimension larger
than s. This implies dim Aut, (M )>s, which is a contradiction.

COROLLARY 7. Let M be a compact orientable manifold minimally immersed
in a flat torus. The following are equivalent for the induced metric

i) 1(M) is finite,

ii) S<O0 on an open dense set in M.
Moreover these hold if the Euler number y (M )+#0.

Proof. This is contained in Theorem 3.

COROLLARY 8. Let M" be a complex hypersurface in a flat complex torus. The

following are equivalent
i) x(M)#0,

ii) Auty (M) is the identity,

iii) S<O0 on an open dense set,

iv) the Gauss map I': M™ — P"(C) is nonsingular on an open dense set and surjective.

Remark. This result was obtained by a very different approach by Matsushima [10].

Proof. By Corollary 5, or rather its complex counterpart, we have i)=>ii)=-iii).
The Euler number is, to within a nonzero multiple, the integral of the Jacobian of I',
which is really the determinant of the second fundamental form [12]. The integrand
therefore never changes sign and both iii) and iv) imply it is nonzero somewhere, that
is, iii) or iv)=>1). Now i)=-1iii) and it follows from iii) and equation (2) in the previous
section that I' is an immersion on an open dense set. It suffices to add that the Gauss
map is onto; for if we are given a parallel vector holomorphic plane field {v, Jv} (here
J is the complex structure on 7') which does not lie in I" (M), then the vector field v
is never normal to M. Thus v determines a nonvanishing vector field on M, which is
impossible by i). In other words I’ is onto, 80 i)=>iv).

Our investigation has led us to a rich source of examples in Riemannian geometry.
Beginning with an abelian variety 7"*!, that is, a complex torus holomorphically
imbedded in complex projective space we let V" denote any nonsingular hyperplane
section. By Lefschetz’ theorem on hyperplane sections,

m (V") — i (T")
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is a bijection for i<n, where 7; denotes the ith homotopy group. In particular for
n>1, 7, (V)=@?*"*? Z. If the Euler number y (V) were zero, Corollary 4 would say
that 7 admits a parallel vector field. Since our hyperplane section is generic, we can
certainly assume y(¥)#0 from the outset. As a matter of fact it turns out to be no
assumption. Matsushima [10] shows x(¥)#0. If =;(V)=0 for all i>1 then V is
homotopically equivalent to a real (2n+2)-torus since they have the same homotopy
groups; for reasons of dimension alone this is not possible. Hence =, (V') #0 for some
i> 1. By Theorem 3 the Ricci tensor S is negative definite on an open dense subset of V.
As remarked earlier, the Gauss map (see §5)

r:v"=P"(C)

is an immersion precisely on the subset of ¥ where S is negative definite. This subset
cannot be V itself for then I would be a covering map, i.e., ¥ would be simply con-
nected, which is obviously absurd.

To summarize, we have constructed for each n>1:

A Hodge manifold V" with negative Ricci curvature on an open dense set # V
satisfying

(i) x(V)#0,
(ii) = (V)= @2 Z,

(iii) =;(V)#0, for some integer i>1.

To this we may add that this Kidhler metric on V can be deformed into a Riemannian
metric having strictly negative Ricci curvature everywhere, for P. Ehrlich has shown
in his thesis [4] that such a deformation is always possible starting from a compact
Riemannian manifold with non-positive Ricci curvature provided the Ricci tensor is
negative definite at some point.

These examples show that very basic results on the topology of Riemannian mani-
folds of nonpositive sectional curvature vanish once the curvature condition is
replaced by the corresponding condition on the Ricci curvature. For example:

(a) The universal cover of a compact Riemannian manifold of nonpositive cur-
vature is a cell by the theorem of Hadamard and Cartan. The universal cover of V
is not a cell.

(b) If a compact Riemannian manifold of nonpositive curvature has abelian
fundamental group, then it is flat [8]. The fundamental group of V' is abelian and V
is far from flat.

(c) The fundamental group of a compact Riemannian manifold of negative cur-
vature has exponential growth. This was first proved by Milnor [11] and he raised
the question of whether it might still hold for manifolds with strictly negative Ricci
curvature. But V carries a Riemannian metric of negative Ricci curvature while its
fundamental group is free abelian. This answers Milnor’s question in the negative.

This indicates that the topological implications of the existence of metrics of
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negative Ricci curvature may be remote, except of course in dimension £ 3. A decidedly
more difficult question than Milnor’s is whether spheres can carry Riemannian metrics
of negative Ricci curvature.

§5. The Density of the Gauss Map

As there is an absolute parallelism in a flat torus we can define a Gauss mapping
from a submanifold M" in T"*" into the Grassmann manifold of unoriented n-planes
at the point 1,e7. This map will be denoted I. The work of Ruh and Vilms [14]
applies, telling us that I" is harmonic when M is minimal. In the special case that A"
is a complex manifold holomorphically immersed in a complex torus 7"*", the map I'
sends a point of M to the complex n-dimensional plane tangent to M at that point.
Thus the natural range for I' is the Grassmann manifold of all complex n-planes.
The Gauss map is then holomorphic.

THEOREM 4. Let M" be a compact complex manifold holomorphically immersed
in a flat complex torus T"*". If x(M)#0, every parallel field of holomorphic planes
on T"*" is normal to M somewhere. Moreover, when r=1, the Gauss map is onto if and
only if the Euler number of M is nonzero.

Proof. If a constant vector field a is nowhere normal to M, then its component
tangential to M is a nonvanishing vector field on M. This is not possible when
x (M )#0. Now whenever a is normal to M, so also is Ja where J stands for the com-
plex structure of 7. Here we have used the fact that M is a complex submanifold. The
holomorphic plane field {a, Ja} is therefore normal to M at some point. When r=1,
this is but another way of saying that I': M" — P"(C) is onto; the converse is already
contained in Corollary 8.

Of course for compact real hypersurfaces M" of a torus 7"*!, whether minimal
or not, the Gauss map I': M"— S" is onto if y(M)#0. However, as of writing, we
do not have a complete description of I" (M ) for general real minimal hypersurfaces.
By virtue of the reduction theorem (Theorem 3) we need only concern ourselves with
those submanifolds whose Ricci tensor is negative definite on an open dense set. In
this respect we add

PROPOSITION 4. Let M" be a compact minimal hypersurface in a flat torus
T"*1, If the isometry group of M is finite, then the image of the Gauss map
rm"—»S"

lies in no closed hemisphere of S".
Proof. We may suppose M is orientable and denote by ¢ a unit normal vector
field along M. Assume I' (M) lies in a closed hemisphere of S”, that is to say, there
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is a constant unit vector field @ on 7"*! such that (&, a) >0 on M. A routine compu-
tation for the Laplacian of <&, a) gives

A& a)=—TrA* &, a)

where A is the second fundamental form. In the previous notation {AX, Y)=
=<{a(X, Y), &. By Green’s theorem, Tr 4% { &, a) =0. However if the isometry group
of M is finite, then TrA4? is negative on an open dense set. This is by Theorem 3.
Thus (¢, a) =0. However this means that a is everywhere tangent to M, thatis, M has
a parallel vector field. This again is impossible since the isometry group of M is finite.

REFERENCES

[1]1 ABE, K., Characterization of totally geodesic submanifolds in SN and CPN by an inequality,
Tohoku Math. J. 23 (1971), 219-244.
[2] CALaBy, E., Isometric imbedding of complex manifolds, Ann. of Math. 58 (1953), 1-23.
[3] EELLs, J. and SampsoN, J. H., Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86
(1964), 109-160.
[4] EHRLICH, P., Local convex deformations of Ricci and sectional curvature of compact manifolds,
Proceeding of A.M.S. Summer Institute, Stanford University, 1973.
[5] HARTMAN, P., On isometric immersions in Euclidean space of manifolds with non-negative sectional
curvature, Trans. Amer. Math. Soc. 115 (1965), 94-109.
[6] KEeLLY, E., Cohomology of compact minimal submanifolds, Michigan Math. J. 19 (1972), 133-135.
[71 KoBAyasHi, S. and Nomizu, K., Foundations of Differential Geometry, Vol. 2, Interscience, New
York, 1969,
[8] Lawson, H. B. and YAu, S. T., Compact manifolds of nonpositive curvature, J. Diff. Geom. 7
(1973), 211-228.
[9] LiICHNEROWICZ, A., Applications harmoniques dans un tore, C.R. Acad. Sci. Paris 269 (1969),
912-916.
[10] MaTsusHIMA, Y., Holomorphic immersions of a compact Kéhier manifold into complex tori, to
appear in J. Diff. Geom.
[11] MILNOR, J., A note on curvature and fundamental group, J. Diff. Geom. 2 (1968), 1-7.
[12] Nomizu, K. and SMYTH, B., On the differential geometry of complex hypersurfaces. I1. J. Math.
Soc. Japan 20 (1968), 498-521.
[13] REIFENBERG, E. R., On the analyticity of minimal surfaces, Ann. of Math. 80 (1964), 15-21.
[14] RuH, E. and ViLMs, J., The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970),
569-573.
[15] ScuwaRrz, H. A., Bestimmung einer speziellen Minimalfliche usw., Preisschrift, in Gesammelte
Mathematische Abhandlungen, Band 1, pp. 6-91; Verlag von Julius Springer, Berlin, 1890.
[16] TiURIN, A. N., On Fano surfaces of non-singular cubics in P4, Izvestija Akad. Nauk SSSR Ser.
Mat. 34 (1970), 1200-1208.

Department of Mathematics
University of Notre Dame
Notre Dame, Indiana 46556

Mathematisches Institut,
Wegelerstrasse 10,
53 - BONN

Received May 31, 1974.






	Minimal Varieties and Harmonic Maps in Tori.

