
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 50 (1975)

Artikel: La fonction zeta d'une monodromie.

Autor: A'Campo, Norbert

DOI: https://doi.org/10.5169/seals-38807

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-38807
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Comment. Math. Helvetici 50 (1975) 233-248 Birkhauser Verlag, Basel

La fonction zêta d'une monodromie

Norbert A'Campo

Soit P Cn+1-*Cun polynôme et soit w un point de l'hypersurface

H={zeCn +

L'application

où Sl"*1 est la sphère dans Cn+1 de centre w et de rayon s (e>0 et petit), est la fibra-
tion de Milnor de l'hypersurface H au point w La fibre F9=p~i (9), ÔeS1, est une
variété différentiable de dimension 2n, un homéomorphisme caractéristique de cette
fibration

est la monodromie géométrique de H au point w Dans ce papier nous voulons

expliquer une méthode pour calculer la fonction zêta de /,

Z(r)= fi {det(Id*-r/*, H"(Fe, C))}("1)f
+ 1

à partir d'une résolution locale de la singularité du couple (C"+1, H) au point w.

Lorsque weH est un point singulier isolé de H on a

Hq(Fe, C) 0 pour qïn,

et donc le polynôme caractéristique A (t) de la monodromie en degré n se déduit de

la fonction Z(t) par la formule

^—Z(1/OJ

où /i est l'entier tel que l'expression précédente soit un polynôme en t de terme constant

non nul. On a
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Pour des singularités isolées particulières d'hypersurfaces il y a des méthodes de

calcul du polynôme A(t) plus efficaces (Pham [12], Milnor et Orlik [10],
La méthode de Brieskorn [3] et celle exposée ici sont générales et, pour cette raison,

pas toujours faciles à exécuter.
Par la résolution des singularités on peut ramener l'étude d'une monodromie

géométrique d'un point d'une hypersurface à l'étude d'une monodromie géométrique
globale d'une hypersurface à croisements normaux. La topologie de cette dernière
situation a été étudiée par Clemens [4]. Au §2 nous refaisons cette étude en apportant
un modèle plus précis et canonique de la monodromie géométrique globale d'une
hypersurface à croisements normaux.

§1. Les résultats

Pour un entier fc> 1, soit le nombre entier

I (-l)«Trace[(/*)*; H«(F,, C)]

le nombre de Lefschetz de la fc-ième itérée de /. La fonction zêta de / est reliée aux
entiers A(fk) par la formule bien connue d'inversion suivante [14, 10]: soient

su s2,... les entiers définis par récurrence par les relations

Ii\k
alors la fonction zêta de/est donnée par

Cette formule s'obtient en écrivant pour un endomorphisme A d'un espace vectoriel
F l'identité

det (lâv -tA) exp (Trace (log (ldv - tA))) exp( - £ - Trace (A1)
\ i>n

Donc pour calculer Z(t) il suffit de connaître, pour tout k^ 1, l'entier A(fk). Dans

[1] nous avons calculé que

|0, si flP(w)-0,
U }~\i, si DP(w)*0.

Dans une lettre P. Deligne nous a expliqué que plus généralement

A(fh)=0, si 0<k<multiplicité de H au point w.
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Cette explication a été le départ de ce travail
Soit n'X-^Cn+1 une modification propre telle que en tout point de S=n~l(w)

le diviseur X0 n~1(H) soit à croisements normaux Une telle résolution locale de

(C"+1, H) au point w existe d'après le théorème de résolution des singularités de
Hironaka [7] Pour meNetm^l,on pose

Sm= {se S | l'équation de Xo en s est de la forme zm 0

pour une coordonnée locale z de X en s},

et on désigne par #(Sm) la caractéristique d'Euler-Poincaré de Sm.

THÉORÈME 1. On a

VE k>l9E
m | k

2) A(f°) X(F0)= X mX{Sm)

Les nombres A(fk) sont des invariants topologiques de la singularité w de //.
Donc le théorème 1 implique le

THÉORÈME 2. Les nombres #(Sm), m^\, ne dépendent pas de la resolution
choisie et sont des invariants topologiques de la singularité w de H

Avec les formules d'inversion le théorème 1 donne le

THÉORÈME 3. La fonction zêta def est

z(t)=ft(i-ryxiSm)

Pour le cas d'une singularité isolée de H au point w on a

THÉORÈME 4 Le polynôme caractéristique def est

et

EXEMPLE 1. Soit P (x, y)={x2+yz){x2y2 + xb+yb) et soit w la singularité de

//={P=0}c:C2 au point 0.
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Par éclatement de OeC2 on obtient

1 \1 V

Puis par éclatement des points AetB vient le diagramme

et après éclatement du point C,

A

16

8

i

6

1 1

1

1

9

La modification obtenue en composant ces éclatements convient pour appliquer les

théorèmes. L'ensemble S est dessiné en traits gras. Donc 56 est homéomorphe à

P1 -2 pts, x(S6) 0; SB, S9 et St6 sont homéomorphes à P1 -3 pts, x(S8) x(S9)
#(S16)= — 1, et d'après les théorèmes les invariants de la singularité de H au point

Osont

^=1 + 8 + 9+16 34,

Le polynôme A(t) n'est autre que le polynôme d'Alexander de l'entrelacement
orienté H nS^aS^S3 [9, 15] et peut donc le calculer (moins rapidement) par la
théorie des noeuds.
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EXEMPLE 2. Soit ^j'1 Phypersurface régulière de degré c/dans P" d'équation
homogène

zod + z1d+... + zwd=0. (1)

Soit //l'hypersurface de Cn+1 d'équation (1). Soit Fe la fibre de la fibration de Milnor
de H au point 0. On a [12]

H dimHn(Fe,C) (d-l)n+1. (2)

En éclatant 0eC" + 1
on obtient une résolution de (Cn + 1, H), qui permet d'appliquer

les théorèmes. On a

C_p» et cS-P et Sm

Donc

A(t)=\{t-\)-l<f-\yAS*TlY', (3)

fi dcgA(t) (-lfl-\+dx(Sd)-]. (4)

Les nombres x(Sd) et xCEâ'1) sont lies par

*ta)+zŒ3~1)=x(P")=»+i- (5)

Donc avec (2), (4) et (5) on obtient la formule bien connue

§2. La monodromie géométrique globale d'une hypersurface à croisements normaux

1) Soit P.X^D une application analytique propre de X, espace analytique lisse,

sur le disque unité D de C. On suppose que Aro=P"1(0)czAr est une hypersurface
à croisements normaux dans X, union de composantes lisses (donc pas de self
intersections), et que Xt=P~l(t) est lisse pour tout teD-{0}. La restriction de P,

p:X-X0->D-{0} est une application fibrée localement triviale. La monodromie
géométrique globale est un difféomorphisme caractéristique/: Xt -+ Xx de la fibration/?.

Nous voulons décrire une construction d'une telle monodromie géométrique, ne
dépendant que du plongement de Xo dans X et de P. Nous nous sommes largement
inspirés du travail de Clemens [4].
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Les constructions vont donner un diagramme commutatif

fî _U N -^ S1

Q

0

et un flot gA, ÀeR, sur la variété N. Ce diagramme dépend canoniquement du plonge-
ment Xo q: X et de P, mais seulement la construction de gx et de nP fait intervenir P.
Les propriétés principales sont

1 ff et TV sont des variétés différentiables à coins homéomorphes à

donc au bord d'un voisinage régulier de JSf0 dans X,

2) «P et /iPof sont des fibrations équivalentes à la fibration P restreinte au-
dessus de dD.

3) êo Uff9 et nPorogx (lmoà2n) + nP°r, ÀeR;

donc g2n induit un difféomorphisme de F= («Pof)~1(l). L'homéomorphisme
^= ?2« | ^est la monodromie géométrique cherchée.

Construction de Xo et de r. Soient Cl9..., Cn les composantes lisses de Xo. Soient
Y l'union disjointe des composantes Cu et r': Y-*X0 la surjection canonique. Pour
un point xeX0, xeChn nCik et x$Cj9 j^iO9...9ik9 la pré-image (r/)~1(x) est
formée de k+l points xio,..., xik de F. On convertit r' en une équivalence d'homo-
topie en ajoutant pour tout xeX0 à Y un &-simplexe Ax—[xio,..., xtk]. L'espace
ainsi obtenu à partir de Y est l'espace Zo et l'application r prolonge r' en posant
r(Ax) x. Donc la restriction de r au-dessus de {xeX0 | # (r')"1 (*)==£+1} est une
application fibrée de fibre type le &-simplexe standard Ak. La figure aide à voir ce qui
se passe en basse dimension.

Construction de N, N, q et q. Pour y'=l,..., n soit ni Zj->X l'éclatement réel

orienté de centre Cj. Donc au dessus de xeCj sont les directions normales réelles

orientées à Cj en x et itj est un difféomorphisme hors de Cy. Donc Zy est une variété
différentiable à bord et son bord dZj nJl(Cj) est difféomorphe au bord d'un
voisinage tubulaire de Cj dans X. Soit n:Z-+ Xlc produit fibre des nj au-dessus de X.
Alors Z est une variété différentiable à coins et n est un difféomorphisme hors de Xo.
Le bord dZ=n~1{XQ)=N est une variété différentiable à coins. La restriction de

n à dZ est l'application q:N-+X0. La variété N est homéomorphe au bord de tout
voisinage régulier de Xo dans A" et q est une rétraction.
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Xo={xy o}cC2 Y Xo

239

La

N

c2

Xo {

/
variété

^X

xyz=ojcC3

Ci

/s y

C3

N s'obtient par

Ci

c2

///
produit

Y

X

C

Ci

yi

xy><3

/
fibre

C3

de q

2

2

V3

etr

Xi

Ci

Xo

c2

Xo Â

Ci

[X1 i

/A \

£Jx

au-dessus de Xo

XoL

c2

/1

\y3

et q est la projection induit par g.
Construction de nP: Soit nD:D-+D l'éclatement réel orienté de D de centre 0.

On a D= [0, 1] x S1 et ^(r, 0)=r0eD. Donc les coordonnées (r, 0) sur 5, /*e[0, 1]
et de S1, deviennent les coordonnées polaires de Z) via nD.

L'application P induit par restriction

P:X-Xo\-+D-{0},

et donne aussi une application n^
* oP°tc, qui est encore notée

et qui se prolonge par continuité en une application

P.Z^D.

Nous notons nP la restriction deFhN. Donc
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Construction de gA: Soit cr(XQ) le lieu des croisements de XQ. Au-dessus de

X-ct{X0) la projection g est un Sl-ûbré principal. On peut définir un flot gx sur

où (jc, e)eQ"1(X0-cr(X0))9 xeX0-cr(X0)9 9eq~1(x)^S1 et où mx désigne la
multiplicité de l'équation P=0 en x.

Le flot gk ne possède pas un prolongement à N tout entier. En effet soit xeX0;
on suppose que xeCion... nCik et que x$Cj9 siy=*0,..., ik; la fibre e"1^) est le

produit d'espaces homogènes sous Sx

et si l'on veut prolonger par continuité à g 1(x) la restriction de gy à g l x
x (Cit-cr(X0)\ /=0, 1,...,& on doit poser

X

où mfï désigne la multiplicité de Ch, c'est-à-dire, la multiplicité de l'équation P=0
aux points de Cil — cr(X0). Donc on voit que g(P^g(P si l^V. Cette difficulté nous
oblige à considérer fit.

Par r le flot gx se transporte sur (r ^)~1(Ar0 — cr(if0)) car f est un homéomor-
phisme au-dessus de q~1(X0 — ct(X0)). Ce flot doit être prolongé à fit tout entier.
La formule suivante fait l'affaire: «pour xeX0, aeAx=[xio,..., xik]czX0; pour
(a; 0lo,..., fljeg"1^), on pose

où afo,..., ûik désignent les coordonnées barycentriques de a dans

Le flot gx sur iV est le flot cherché. Il satisfait à

Les formules montrent que fiP=nP°f:fit-+ S1 est une submersion, donc une fibration
de fit sur S1 et que g2n réalise la monodromie géométrique de la fibration nP. Soit
{HP)"1 (l)=jp la fibre. On pose/=g2jt | F:F-*F, c'est la monodromie géométrique
cherchée.
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2) LEMME F Z-* D est une fibration localement triviale.
Preuve. Etant donné que l'application P est propre, il suffit de vérifier que F est

localement sur Z une projection d'après un théorème de L. Siebenmann [17]: tout
zeZ admet un voisinage Kpour lequel il existe un diagramme commutatif d'applications

continues

homéomorphisme p /y\ ^

P | V I projection

P{V)

Ceci est vrai pour zeZ—N, car P | Z—N est une submersion Pour zeN on utilise
l'expression explicite de P dans des coordonnées convenables soit g(z)eX0 tel que
q(z)eX1qc\ nXlk et que q(z)$Xj siy j0, h> soient (xl9 xn) des coordonnées
locales de X au point q (z) telles que P s'écrive

*(*) < *?k

Près de zeN on a les coordonnées

et

L'expression de P dans ces coordonnées est

On vérifie directement que F est localement une projection au point zeN
Rappelons que nP—P | N et que p=P\Z—N. Donc le lemme prouve que les

fibrations «J° et/? sont isomorphes
L'application f N->TV est telle que pour tout xeN la pré-image (f)~1(x)cziV

est un simplexe de dimension inférieure à la dimension de la fibre de nP. Ceci entraîne

que nP—nPof est encore une fibration et qu'elle est isomorphe à la fibration nP.

De ce qui précède il résulte que la monodromie /, construite ci-desus, est un bon
modèle de monodromie pour la fibration p X—Xo -? D— {0}

3) Pour un point aeX0, aeAx= [xl0, xlk~] on définit sa multiplicité par

La fonction m est continue Observons que



242 NORBERT A'CAMPO

On pose

F{m>1]={zeF\rn(Q(z))>l}, F{m=l) F-F{m>1}.

Le résultat suivant a été obtenu indépendamment par D. Sullivan [Tokyo 1973].

PROPOSITION. / | F{m>1)n'apas de points fixes etf \ F{m=1} Id.
Preuve. f= g2it \ F et g2n est une translation dans l'espace homogène q'1 (a) pour

tout aeX0. Si m(a)=l cette translation est l'identité et si m(a)>\ elle n'a pas de

points fixes.

Pour une singularité d'hypersurface complexe OeHaCn+i, H={zeCn+1 \

P(z) 0}, équipée d'une résolution

n:(X,X0)-+(Cn+1,H)

on dispose de

a) la fibration de Milnor de H au point 0, notons Fd sa fibre et Fd FeuK où K
est la frontière du point singulier 0 dans H,

b) la fibration n(Pon):N-+S1 avec la fibre F qui se projette par q \ F=qf sur
Xo. PosonsF{m>lh0={zeF{m>1} 17coro^F(z) 0}.

THÉORÈME 5. Les variétés ouvertes F{m>i}f0 et Fe sont homéomorphes par un

homéomorphisme qui conjuge la restriction/ | F{m>ih 0 à une monodromie géométrique
f'-F0 -*F9 de la fibration de Milnor de H au point 0. Cette monodromie géométriquefa
les propriétés suivantes:

i) f n'a pas de points fixes,1)
ii) / se prolonge par continuité en un homéomorphisme f de Fe. Si la singularité

de H en 0 est isoléefest Videntité sur d (F0) F0 — Fd,

iii) / est une application distale, donc son entropie est nulle [11].
4) Rappels (Clemens [4], SGA7(1) et SGA7(2) [6]): Le faisceau W* des cycles

évanescents sur Xo est le faisceau de Leray de la rétraction

Donc pour un ouvert UcX0 il vaut

1) Par induction sur la dimension et sans utiliser la résolution des singularités, Le Dûng Trâng
démontre que la monodromie géométrique d'un point singulier peut être choisie sans point fixe.
Sa méthode utilise la monodromie relative par rapport à une section hyperplane générique. Son
travail apparaîtra dans le Journal des Mathématiques de l'Université de Tokyo.
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La suite spectrale dont le terme E^ est

aboutit sur Ep^q Hp+q(F, C). L'action de / induit une action de monodromie T
sur le faisceau W* par

et les actions T\'q sur les termes E^q aboutissent sur

Lorsque l'on désire étudier une hypersurface complexe à l'aide d'une résolution locale

au point OeH9 on doit restreindre la suite spectrale au-dessus de 5f=7t~1(0)cAr0.
La suite spectrale, amorcée par E%'q Hp(S, Wq), aboutit sur Hp+q(Fe, C) où F9

est la fibre de Milnor de H au point 0

§3. Démonstration du théorème 1

Soit n:(X, X0)-*(Cn+\ H) une résolution locale de la singularité OeH de H
Donc n(X0) H, n:X— X0-+Cn+î — H est un isomorphisme et au voisinage de

S=n~1 (0) le diviseur Xo de Xest à croisements normaux. Soit 5* le heu cr(X0)r\S.
Pour l'action de T sur la fibre W's9 se S, du faisceau W\ les nombres de Lefschetz de

ses itérées sont

A(T\ W's)= X (-1)* Trace (T\ Wqs)

et sont donnés pour fceN, k^ 1, par

a)
o,
o,

m

si

si

si

seS*9
seSm

seS»
et

et
m,
m

\k..
\k.

En effet, la fibre W's du système de faisceaux W' en ^ s'identifie à la cohomologie de

la fibre de la fibration de Milnor de Xo en s, et cette identification est compatible
avec l'action de la monodromie. Donc les formules (1) résulteront de l'étude géométrique

des singularités d'hypersurfaces à croisements normaux. (Voir §2 et [1], §2.)
La suite spectrale dont le terme El est E%>q Hp(S, Wq) aboutit sur H'(Fe, C),
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la cohomologie de la fibre de la fibration de Milnor de H en 0 et les actions de T
sur les termes E"2 aboutissent sur/*, la monodromie de H en 0, voir §2, no. 4.

Soit N un voisinage régulier fermé de S* dans S. Posons

dmN= Sm n ÔN9 $m Sm- (tf- ON).

Donc x(§m)=x(Sm) et x(dmN) 0 car ômN est une variété orientable, sans bord,
compacte et de dimension impaire. En utilisant la suite de Mayer-Vietoris en cohomologie

associée à la décomposition

m

on obtient

A(T\El)= Z (- 1)P+*Trace[T*; H"(S,
p,q»O

I (-l)p+<!Trace[r*;/F(JV, ««)] (1)

- X (-ir+'Trace[T";//''(U5miV, ««)] (2)
p,q^O m

+ I (-l)'+«Trace[7^ff'(USL,n]. (3)
p,q^O m

Le premier terme (1) est nul, en vue de l'isomorphisme HP(N, Wq)^>Hp(S*, Wq)

induit par l'inclusion et de A(Tk, Y's) 0, seS*.
Le second terme (2) est nul car il vaut

X I (-l)p+4Trace[T*; //p(amN, *")]= X X(SmN)A(Tk, «P;j 0

où 5m est un point de dmN, m^l, puisque la restriction de W' à dmN est localement

constante.
Le troisième terme (3) vaut

I mX(Sm),
m\k

car pour seSm on a

£ (-l)p+«Trace[7*; H"(Sm, V«)] x{Sm) A(Tk, Ts)
p,q>0

0, si m)(k,
9

si m|fc,

puisque la restriction de W* a Sm est localement constante. Donc le théorème 1
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découle de

m | k

et de

X(F.) A(f°)=Z mX(Sm)= l mX(Sm).
m| 0 m^l

Remarque. Soit Hc:Cn+1 une hypersurface, weH. Soit m0 la multiplicité de H
en w. Alors on a

Dans le cas «=1, on peut interpréter cette formule par: après éclatement de weC2
on obtient que 2 — x(Smo)=x est le nombre t de tangentes à H en w comptées sans

multiplicités. Donc la formule

A(f"">)=mo{2-T) (1)

relie la monodromie, la multiplicité, et le nombre de tangentes à H en w. Il résulte
de (1) que la multiplicité est un invariant topologique pour les singularités de courbes
planes irréductibles car dans ce cas t 1. Donc dans le cas de courbes planes non
irréductibles la multiplicité est aussi un invariant topologique, car on peut raisonner
branche par branche. Ainsi on a retrouvé un résultat de Zariski, qui est un début
de réponse à sa question [16]: la multiplicité d'une singularité isolée d'hypersurface
est-elle un invariant topologique?

Il serait possible d'espérer que la monodromie rationnelle

détermine la multiplicité m0 ou le type topologique: les exemples de Marie-Claire
Grima [5] enlèvent un tel espoir. En effet les hypersurfaces

sont en 0 de multiplicités différentes et de types topologiques différents, mais les

monodromies rationnelles sont équivalentes.
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§4. Deux exemples plus compliqués

Le polynôme

définit par {P=0} une hypersurface H<zCn qui présente au point 0 une singularité
isolée. B. Malgrange [8] a démontré que la monodromie h de H au point 0 n'est pas
quasi-unipotente d'échelon n— 1. Cela signifie que

(/zf~Id)w"V0 pour tout ï>1.

Donc les exemples de Malgrange prouvent que le théorème de la monodromie donne
dans le cas des singularités isolées la meilleure borne possible pour l'échelon de

quasi-unipotence. Cela est prouvé dans [2] pour les hypersurfaces dans C2.

Nous allons calculer le polynôme caractéristique de la monodromie au point 0 de

Soit no:Xo-*C3 l'éclatement de centre OeC3. La transformée stricte sous n0 de H
rencontre tt"1(0)^P2 en trois droites Ll9 L2 et L3 en position générale. Soient

n1:X1-*X0 l'éclatement de centre Ll9 n2:X2->X1 l'éclatement de centre la
transformée stricte sous nt de L2, et enfin n3:X3-+X2 l'éclatement de centre la
transformée stricte sous nt °7r2 de L3. Alors n0o7tlon2°n3 est une résolution locale de H
en 0. On a Sm=0, si m ^ 6, 8 ; S6 (P2 - 3 droites en position générale), donc x (So) 0 ;

58 est plus compliqué, la projection

n1on2°nz | S8:S8-+ (J Lt L
i

admet génériquement la fibre (P1 —3 pts), sauf pour 24 points non doubles de L la
fibre est (P1 - 2pts) et pour les 3 points doubles de L la fibre est (P1 -1 pt) u (P1 - 3

pts). Donc la caractéristique d'Euler-Poincaré de la fibre est génériquement — 1, et
elle est 0 aux 27 points non génériques. Donc /(58)=-27. -1=27, car -27 x
(L—les 27 points non génériques) et — 1 =# (fibre générique). D'où

La singularité isolée non quasi-homogène au point 0 de

a été étudiée par Siersma [13].
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Ici nous calculons le polynôme caractéristique de la monodromie de H au point 0.

Soit nQ;XQ-+C3 l'éclatement de centre OeC. La transformée stricte de H rencontre
Trô^O)^/*2 en une courbe unicursale à un point double ordinaire C. Soit aeC ce

point double, qui dans les coordonnées homogènes [#, y, z\ sur ttq
1
(0) s'écrit

a= [0, 0, 1]. On peut trouver en a des coordonnées locales (u, v, k) de Xo de sorte

que localement en a l'on ait

Aux points senô1 (0), s^a9 le diviseur 7io
* (#) de Xo est à croisements normaux.

Soit n1:Xl-+X0 l'éclatement de centre C. Le centre C n'est pas lisse, donc on
éclate d'abord une branche de C localement au point a et de proche en proche, suivant
la courbe C on finit par éclater la transformée stricte de l'autre branche de C au
point a. La modification composée n0on1 est une résolution locale de H au point 0.

On a Sm 0, si m#3,4; S3 P2-C, donc x(S3) x(V2)~x(C) 2; la projection
n±\SA:S^-^C admet au dessus de seC, s^a, la fibre (P1 —2 pts), et au dessus de a
la fibre (P1 -1 pt)u (P1 -2 pts); donc x(S4)= 1. On trouve que le polynôme caractéristique

de la monodromie de H au point 0 est A (t) (t-1)"1 (t3-1)2(/4-1).
Dans le déploiement de la singularité de H au point 0 se trouve le type topologique

de la singularité isolée homogène Oe{x3H-j>3 + z3 O}c:C3 dont le polynôme
caractéristique de la monodromie est A(t) (t—l)~1(t3—l)3. Donc on voit que

par petite déformation de la singularité de H au point 0 on peut échanger dans le

polynôme caractéristique de la monodromie le facteur (t4—1) contre le facteur
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