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La fonction zéta d’une monodromie

NORBERT A’CAMPO

Soit P:C"*! - C un polynéme et soit w un point de I’hypersurface
H={zeC"*' | P(z)=0}.

L’application
p:zeSli1— Hisarg(P(z))eS!,

ou va”:' ! est la spheére dans C"*! de centre w et de rayon ¢ (¢>0 et petit), est la fibra-
tion de Milnor de ’hypersurface H au point w. La fibre Fy=p~!(0), 0€S’, est une
variété différentiable de dimension 27; un homéomorphisme caractéristique de cette
fibration

[ iFy—Fy

est la monodromie géométrique de H au point w. Dans ce papier nous voulons
expliquer une méthode pour calculer la fonction zéta de f,

Z(t)= 1—_[ {det (ld*--tf*; H‘I(Fo, C))}(—l)qn

q=0

a partir d’une résolution locale de la singularité du couple (C"*!, H) au point w.
Lorsque weH est un point singulier isolé de H on a

H1(F,, C)=0 pour q#n,

et donc le polyndme caractéristique 4 (¢) de la monodromie en degré n se déduit de
la fonction Z (¢) par la formule

4 (t):tu[‘_‘tl z(1/t)](_lw

ol u est entier tel que I’expression précédente soit un polyndme en ¢ de terme constant
non nul. On a

,u=dimHn(Fo, C).
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Pour des singularités isolées particuliéres d’hypersurfaces il y a des méthodes de
calcul du polynéme 4(z) plus efficaces (Pham [12], Milnor et Orlik [10], ...).
La méthode de Brieskorn [3] et celle exposée ici sont générales et, pour cette raison,
pas toujours faciles a exécuter.

Par la résolution des singularités on peut ramener I’étude d’une monodromie
géométrique d’un point d’une hypersurface a I’étude d’une monodromie géométrique
globale d’une hypersurface a croisements normaux. La topologie de cette derniére
situation a été étudiée par Clemens [4]. Au §2 nous refaisons cette étude en apportant
un modele plus précis et canonique de la monodromie géométrique globale d’une
hypersurface a croisements normaux.

§1. Les résultats

Pour un entier k> 1, soit le nombre entier
A(f9)=Y (=1)*Trace[(f*)*; H*(F,, C)]
q20

le nombre de Lefschetz de la k-iéme itérée de f. La fonction zéta de f est reliée aux
entiers A(f*) par la formule bien connue d’inversion suivante [14, 10]: soient
S1, 83, ... les entiers définis par récurrence par les relations

A=Y s, k=1;

ilk

alors la fonction zéta de f est donnée par
Z()=[]Q—=1)™".
i1

Cette formule s’obtient en écrivant pour un endomorphisme A d’un espace vectoriel
V I'identité

3 :
det (Idy, —tA)=exp (Trace (log (Id,, —t4))) =exp< — Y —Trace (A')) .
iz11

Donc pour calculer Z(¢) il suffit de connaitre, pour tout k> 1, I’entier A (f*). Dans
[1] nous avons calculé que

0, si DP(w)=0,
1

A(f)={ , si DP (w)#0.

Dans une lettre P. Deligne nous a expliqué que plus généralement

A(f*)=0, si 0<k<multiplicité de H au point w.
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Cette explication a été le départ de ce travail.

Soit m: X — C"*! une modification propre telle que en tout point de S==""1(w)

le diviseur X,=n""(H) soit & croisements normaux. Une telle résolution locale de
(C"*1, H) au point w existe d’aprés le théoréme de résolution des singularités de
Hironaka [7]. Pour meN et m>1, on pose

S,={seS l I’équation de X, en s est de la forme z" =0
pour une coordonnée locale z de X en s},

et on désigne par x(S,,) la caractéristique d’Euler-Poincaré de S,,.

THEOREME 1. Ona

1) A(f)=3 mx(S,), k=1,
mlk

2) A(f°)=x(Fg)= Zl my (S) -

Les nombres A (f*) sont des invariants topologiques de la singularité w de H.

Donc le théoréme 1 implique le

THEOREME 2. Les nombres x(S,), m>1, ne dépendent pas de la résolution

choisie et sont des invariants topologiques de la singularité w de H.

et

Avec les formules d’inversion le théoréme 1 donne le
THEOREME 3. La fonction zéta de f est

Z(t)=[](1 —¢m)~*Cm,

mz1

Pour le cas d’une singularité isolée de H au point w on a

THEOREME 4. Le polynéme caractéristique de f est

ol Ly ]

"“Im>1

p=dim H" (F,, C)=(=1)"[-1+ ; my (Sm)]-

EXEMPLE 1. Soit P (x, y)=(x*+y*)(x?y*+x°+°) et soit w la singularité de

H={P=0}cC? au point 0.
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Par éclatement de 0e C? on obtient

Y/
R NIZaN

Puis par éclatement des points A4 et B vient le diagramme

et apres éclatement du point C,

16

La modification obtenue en composant ces éclatements convient pour appliquer les
théorémes. L’ensemble S est dessiné en traits gras. Donc S est homéomorphe a
P! —2 pts, x(Ss)=0; Ss, Sy et S;¢ sont homéomorphes a P! —3 pts, x(Sg)=x(S,)=
=x(S16)= —1, et d’aprés les théorémes les invariants de la singularité de H au point
0 sont

u=14+8+9+16=34,
Z()=01-£%)(1-1°) (1—1'°),
A(t)=(@—-1)(®=1) (°=1) (£'®—1).
Le polynéme A4(¢) n’est autre que le polyndéme d’Alexander de I’entrelacement

orienté H nS2<S?=S2 [9, 15] et peut donc le calculer (moins rapidement) par la
théorie des noeuds.
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EXEMPLE 2. Soit ZZ“I I’hypersurface réguliére de degré d dans P" d’équation
homogeéne

zg+z{+ - +25=0. (1)

Soit H I’hypersurface de C"*! d’équation (1). Soit F, la fibre de la fibration de Milnor
de H au point 0. On a [12]

p=dim H"(F,, C)=(d—1)"*". )

En éclatant 06 C" ™! on obtient une résolution de (C"**!, H), qui permet d’appliquer
les théoréemes. On a

S e Sl ik omed

Donc
A(O)=[(t=1)"" (=170, (3)
pu=degA(1)=(—1)"[~1+dx(S,)]. (4)

Les nombres x(S,) et x (33~ ") sont liés par

1 (S)+x (i) =x(P)=n+1. )
Donc avec (2), (4) et (5) on obtient la formule bien connue

2(zi =1 - 2D

§2. La monodromie géométrique globale d’une hypersurface a croisements normaux

1) Soit P: X — D une application analytique propre de X, espace analytique lisse,
sur le disque unité D de C. On suppose que Xo=P ~'(0)c= X est une hypersurface
a croisements normaux dans X, union de composantes lisses (donc pas de self inter-
sections), et que X,=P ~!(t) est lisse pour tout te D—{0}. La restriction de P,
P:X—Xo,— D—{0} est une application fibrée localement triviale. La monodromie
géométrique globale est un difffomorphisme caractéristique f: X; — X; de la fibration p.

Nous voulons décrire une construction d’une telle monodromie géométrique, ne
dépendant que du plongement de X, dans X et de P. Nous nous sommes largement
inspirés du travail de Clemens [4].



238 NORBERT A’CAMPO

Les constructions vont donner un diagramme commutatif

N F>N "P>S1

e

Xo—— X,

et un flot §,, AcR, sur la variété N. Ce diagramme dépend canoniquement du plonge-
ment X, ¢ X et de P, mais seulement la construction de g, et de nP fait intervenir P.
Les propriétés principales sont

1) N et N sont des variétés différentiables & coins homéomorphes a

N;={xeX||P(x)|=6}, 0<6<I,
donc au bord d’un voisinage régulier de X, dans X.

2) nP et nPoF sont des fibrations équivalentes a la fibration P restreinte au-
dessus de dD.

3) go=Idg, et nPofog,=(Amod2n)+nPoF, AeR;

donc §&,, induit un difffomorphisme de F= (nP-F)"'(1). L’homéomorphisme
f=g,, ] F est la monodromie géométrique cherchée.

Construction de X , et de r. Soient Cy, ..., C, les composantes lisses de X,. Soient
Y I'union disjointe des composantes C;, et r': Y — X, la surjection canonique. Pour
un point xeX,, xeC; N ... nC;_et x¢C;, j#io,..., I, la pré-image (r')7!(x) est
formée de k+1 points x;,,..., x; de Y. On convertit r’ en une équivalence d’homo-
topie en ajoutant pour tout xeX, a Y un k-simplexe 4,=[x,,..., x; |. L’espace
ainsi obtenu 2 partir de Y est I’espace X, et I’application r prolonge r’ en posant
r(4,)=x. Donc la restriction de r au-dessus de {xeX, |# (r')™" (x)=k+1} est une
application fibrée de fibre type le k-simplexe standard 4*. La figure aide 2 voir ce qui
se passe en basse dimension.

Construction de N, N, ¢ et §. Pour j=1,...,n soit n;=2Z;— X I'éclatement réel
orienté de centre C;. Donc au dessus de xeC; sont les directions normales réelles
orientées & C; en x et 7; est un difféomorphisme hors de C;. Donc Z; est une variété
différentiable 3 bord et son bord 0Z;=n;'(C;) est diffomorphe au bord d’un
voisinage tubulaire de C; dans X. Soit n: Z — X le produit fibré des n; au-dessus de X.
Alors Z est une variété différentiable a coins et n est un difféomorphisme hors de X,
Le bord 0Z=n"1(X,)=N est une variété différentiable 3 coins. La restriction de
n a 0Z est I'application ¢: N— X,,. La variété N est homéomorphe au bord de tout
voisinage régulier de X, dans X et g est une rétraction.
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La variété N s’obtient par produit fibré de o et r au-dessus de X,

N 5N

~

Xo— X,

et g est la projection induit par .

Construction de nP: Soit ny:D— D ’éclatement réel orienté de D de centre 0.

Ona D=[0,1]x S' et n,(r, 0)=r0OeD. Donc les coordonnées (r, 8) sur D, re[0, 1]
et e S!, deviennent les coordonnées polaires de D via 7p,.

L’application P induit par restriction

P:X—X,—D-{0},

et donne aussi une application n; ' Po7, qui est encore notée

P:Z—N-D—-ny'(0)

et qui se prolonge par continuité en une application

P.Z-D.

Nous notons nP la restriction de P 3 N. Donc

nP:N-ny'(0)~ S
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Construction de §,: Soit cr(X,) le lieu des croisements de X,. Au-dessus de
X—cr(X,) la projection ¢ est un S*-fibré principal. On peut définir un flot g, sur
e (er(X—X,)) par

A
2, (x, 0)-——()6, 0+ nz)
o (x, O)eg ! (Xo—cr(Xy)), xeXo—cr(X,), Oeg ™! (x)~S* et ou m, désigne la
multiplicité de ’équation P=0 en x.
Le flot g, ne posséde pas un prolongement a N tout entier. En effet soit xe X ,;
on suppose que xeC°n... N C* et que x¢C;, si j=io,..., i; la fibre @71 (x) est le
produit d’espaces homogenes sous S*

0™ (x)=m, (x)x - xm " (x)

et si 'on veut prolonger par continuité 3 ¢~'(x) la restriction de g, & ¢~ *

x (C;,—cr(X,)), I=0, 1,..., k on doit poser

X

A
gfll)(x; HOa“‘a Bk)=<x; 00""’ 91+~_‘"”’ ek)

i

ou m;, désigne la multiplicité de C;, c’est-a-dire, la multiplicit¢ de I’équation P=0
aux points de C; —cr(X,). Donc on voit que g #g¢" si I#/'. Cette difficulté nous
oblige a considérer N.

Par 7 le flot g, se transporte sur (r §)~!(X,—cr(X,)) car 7 est un homéomor-
phisme au-dessus de ¢~ (X,—cr(X,)). Ce flot doit étre prolongé a N tout entier.

La formule suivante fait 'affaire: «pour xeX,, aed,=[x;,..., x;, ]=X,; pour

(a; 0;,, ..., 0, )@ (a), on pose
/Ia,- iai
g~l(a; 0)=<a; 9i0+"““9,..., H,‘k"'_‘”"f)
mio i

ou a;,, ..., a; désignent les coordonnées barycentriques de a dans 4, ».
Le flot g, sur N est le flot cherché. Il satisfait a

008;=0, nPoFog;=(Amod2rn)+nP-F.

Les formules montrent que iP=nPo7: N — S! est une submersion, donc une fibration
de N sur S* et que §,, réalise la monodromie géométrique de la fibration #P. Soit
(AiP) *(1)=F la fibre. On pose f=§,, | F:F—F, c’est la monodromie géométrique
cherchée.
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2) LEMME: P:Z — D est une fibration localement triviale.

Preuve. Etant donné que I’application P est propre, il suffit de vérifier que P est
localement sur Z une projection d’aprés un théoréme de L. Siebenmann [17]: tout
zeZ admet un voisinage ¥ pour lequel il existe un diagramme commutatif d’applica-
tions continues

vV homéomorphisme’ 13 (V) % A

PV [ projection

!
(V) P (V)

Ceci est vrai pour zeZ— N, car P | Z— N est une submersion. Pour ze N on utilise
I’expression explicite de P dans des coordonnées convenables: soit g (z)e X, tel que
e(z)eX; n...nX, et que o(z)¢X;sij=i,,..., i; soient (xy,..., x,) des coordonnées
locales de X au point g (z) telles que P s’écrive

P(x)=xP... x%.

Prés de ze N on a les coordonnées

(xj),1<]<n et j?éiO""’ik’ ijC,
(rip 0;), O<I<K, (r;), 0;)e[0, 1] x S,

L’expression de P dans ces coordonnées est

P(2)=(rp, ..., r¥, oy 0; + -+ a;, 0, )eD.

ik’

On vérifie directement que P est localement une projection au point ze N.
Rappelons que nP=P | N et que p=P|Z—N. Donc le lemme prouve que les
fibrations nP et p sont isomorphes.

L’application 7: N — N est telle que pour tout xeN la pré-image (7)~!(x)c N
est un simplexe de dimension inférieure a la dimension de la fibre de #nP. Ceci entraine
que AiP=nP-F est encore une fibration et qu’elle est isomorphe a la fibration nP.

De ce qui précéde il résulte que la monodromie f, construite ci-desus, est un bon
modele de monodromie pour la fibration p: X — X, — D — {0}.

3) Pour un point aeX , aed, = [x;,, ..., x; ] on définit sa multiplicité par

m (a)= a;,;Mi, +eeet a;m;,
La fonction m est continue. Observons que

m(a)=min[m;,...,m, |>1.
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On pose
Fisyy={zeF|m(8(2))>1}, Fupeyy=F—Fgsy.

Le résultat suivant a été obtenu indépendamment par D. Sullivan [Tokyo 1973].

PROPOSITION. f | Fu>1y n’a pas de points fixes et | Fn-1y=1d.
Preuve. f=g,. | F et g,, est une translation dans I’espace homogéne ¢! (a) pour
tout aeX,. Si m(a)=1 cette translation est I'identité et si m(a)>1 elle n’a pas de

points fixes.
Pour une singularit¢ d’hypersurface complexe 0Oe HcC"*!, H={zeC"*!|
P(z)=0}, équipée d’une résolution

ﬂ:(X, Xo)—‘) (Cn+l, H)

on dispose de

a) la fibration de Milnor de H au point 0, notons Fj sa fibre et Fo=F, U K ou K
est la frontiere du point singulier 0 dans H,

b) la fibration 7i(Pon): N— S avec la fibre F qui se projette par § | F=gy sur
Xo. Posons Fisyy, 0= {2€F >y, | morogp(z)=0}.

THEOREME 5. Les variétés ouvertes F m>13,0 et Fg sont homéomorphes par un
homéomorphisme qui conjuge la restriction f | Fin>1y, 0 @ une monodromie géométrique
[:Fy— Fy de la fibration de Milnor de H au point 0. Cette monodromie géométrique f a
les propriétés suivantes:

i) f n’a pas de points fixes,')
ii) f se prolonge par continuité en un homéomorphisme f de Fy. Si la singularité
de H en 0 est isolée f est I'identité sur 0 (Fy)=Fy— F,,

iii) f est une application distale, donc son entropie est nulle [11].

4) Rappels (Clemens [4], SGA7(1) et SGA7(2) [6]): Le faisceau ¥ des cycles
évanescents sur X, est le faisceau de Leray de la rétraction

QF:F _f_) X~0 —"") Xo
Donc pour un ouvert Uc X, il vaut

¥ (U)=H (¢r ' (U), C).

1) Par induction sur la dimension et sans utiliser la résolution des singularités, L& Diing Trang
démontre que la monodromie géométrique d’un point singulier peut étre choisie sans point fixe.
Sa méthode utilise la monodromie relative par rapport a une section hyperplane générique. Son
travail apparaitra dans le Journal des Mathématiques de I’Université de Tokyo.
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La suite spectrale dont le terme E; est
B} 4= H (Xo, )

aboutit sur E%?=HP"4(F, C). L’action de f induit une action de monodromie T
sur le faisceau ¥’ par

T(U)=(f]ez"(U)):H (ez" (U), C)~>H (¢5 ' (U), C)
et les actions 75 ? sur les termes E%' ? aboutissent sur
To = f " H"*4(F, C)>H"*(F, C).
Lorsque I’on désire étudier une hypersurface complexe a I’aide d’une résolution locale
n: (X, Xo— (C"*1, H)

au point Oe H, on doit restreindre la suite spectrale au-dessus de S=n""1(0)< X,.
La suite spectrale, amorcée par ES %= HP(S, ¥%), aboutit sur H?*4(F,, C) ol F,
est la fibre de Milnor de H au point 0.

§3. Démonstration du théoréme 1

Soit n: (X, Xo)— (C**', H) une résolution locale de la singularité 0e H de H.
Donc n(X,)=H, n:X—X,—C""'—H est un isomorphisme et au voisinage de
S=n"1(0) le diviseur X, de X est & croisements normaux. Soit S le lieu cr (X,) N S.
Pour I’action de T sur la fibre ¥;, seS, du faisceau ¥, les nombres de Lefschetz de
ses itérées sont

A(TH, )= (—1)?Trace(T* ¥?)
q=20

et sont donnés pour keN, k> 1, par

0, si se8,,
A(T*, ¥))=10, si seS, et mfk, (1)
m, si seS, et m|k.

En effet, la fibre ¥, du systéme de faisceaux ¥ en s s’identifie & la cohomologie de
la fibre de la fibration de Milnor de X, en s, et cette identification est compatible
avec I’action de la monodromie. Donc les formules (1) résulteront de I'étude géomé-
trique des singularités d’hypersurfaces a croisements normaux. (Voir §2 et [1], §2.)

La suite spectrale dont le terme E; est E}?=HP"(S, ¥?) aboutit sur H (Fp, C),
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la cohomologie de la fibre de la fibration de Milnor de H en 0 et les actions de T
sur les termes E, aboutissent sur f *, la monodromie de H en 0, voir §2, no. 4.
Soit N un voisinage régulier fermé de S, dans S. Posons

0uN=S,noN, §,=S,—(N—0N).

Donc x(S,)=x(S,) et x(6,,N)=0 car 3, N est une variété orientable, sans bord,
compacte et de dimension impaire. En utilisant la suite de Mayer-Vietoris en cohomo-
logie associée a la décomposition

S=Nu(U §,)
on obtient

A(TY E5)= Y (—1)"""Trace[T*; H?(S, ¥)]

= Y (—1)P"*Trace[T*; H? (N, ¥9)] (1)
— Y (=1)"**Trace[T*; H" (| 0,,N, ¥9)] (2)
+ Y (=1)""Trace[T*; H? (U S,, ¥9)]. (3)

Le premier terme (1) est nul, en vue de I'isomorphisme H? (N, ¥?)—>H?(S,, V)
induit par Iinclusion et de A (7%, ¥;)=0, seS,.
Le second terme (2) est nul car il vaut
Y Y (=1)"""Trace[T*; H?(8,,N, ¥9)]= Y. x(0.N) A(T*, ¥;,)=0
mz21 p,g20 m=1
ol s, est un point de d,,N, m>1, puisque la restriction de ¥" a 9,,N est localement

constante.
Le troisi¢tme terme (3) vaut

Y. my(Sn),

mlk

car pour seS,, on a

> (=1)P*?Trace[T*; H?(S,, ¥9)]=x(S,) A(T", ¥;)

P, q20

0, si mtk,
" mx(Sw), si m|k,

puisque la restriction de ¥  a S, est localement constante. Donc le théoréme 1



La fonction zéta d’une monodromie 245

découle de

Y. my(S,)=A(T" E3})=A(T", E3})=---

m|k
=A(T" EL)=A(f").
et de

1(Fo)=A(f")= ‘Omx(Sm)= >, mx(Sm)-
m m21
Remarque. Soit HcC"™! une hypersurface, weH. Soit m, la multiplicité de H
en w. Alors on a

A(fmo)szX(Smo)3
mo<Min {m>1 | (S,)#0}=Min{a>1] A(f*)%0}.

Dans le cas n=1, on peut interpréter cette formule par: aprés éclatement de weC?
on obtient que 2— x(S,,,)="7 est le nombre t de tangentes & H en w comptées sans
multiplicités. Donc la formule

A(f™)=mo(2—7) (1)

relie la monodromie, la multiplicité, et le nombre de tangentes & H en w. Il résulte
de (1) que la multiplicité est un invariant topologique pour les singularités de courbes
planes irréductibles car dans ce cas T=1. Donc dans le cas de courbes planes non
irréductibles la multiplicité est aussi un invariant topologique, car on peut raisonner
branche par branche. Ainsi on a retrouvé un résultat de Zariski, qui est un début
de réponse a sa question [16]: la multiplicité d’une singularité isolée d’hypersurface
est-elle un invariant topologique?
Il serait possible d’espérer que la monodromie rationnelle

f+H"(Fy, C)— H"(F,, C)

détermine la multiplicité m, ou le type topologique: les exemples de Marie-Claire
Grima [5] enlévent un tel espoir. En effet les hypersurfaces

H, = {(x4—y") (x* — y*) =0} = C?
H,= {(xzz__y7)(x33_y28)___0} = C?

sont en 0 de multiplicités différentes et de types topologiques différents, mais les
monodromies rationnelles sont équivalentes.
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§4. Deux exemples plus compliqués

Le polynéme
P(xpyees Xp)= (%10 o ox,) 2 423" 2 4o x20 12

définit par {P=0} une hypersurface H<=C" qui présente au point 0 une singularité
isolée. B. Malgrange [8] a démontré que la monodromie 4 de H au point 0 n’est pas
quasi-unipotente d’échelon n— 1. Cela signifie que

(W' —=1d)""'#0 pourtout i>1.

Donc les exemples de Malgrange prouvent que le théoréme de la monodromie donne
dans le cas des singularités isolées la meilleure borne possible pour I’échelon de
quasi-unipotence. Cela est prouvé dans [2] pour les hypersurfaces dans C2.

Nous allons calculer le polyndme caractéristique de la monodromie au point 0 de

H={(xyz)*+x®+y%+28=0}cC>.

Soit mo:X,— C3 I’éclatement de centre 0 C3. La transformée stricte sous n, de H
rencontre n~ ! (0)~P? en trois droites L,, L, et L; en position générale. Soient
7, Xy — X, Iéclatement de centre L,, m,: X, —»X,; I’éclatement de centre la trans-
formée stricte sous m; de L,, et enfin n3:X;— X, I’éclatement de centre la trans-
formée stricte sous n; om, de L;. Alors mgom; om,om; est une résolution locale de H
en0.0Ona S, =0,si m+#6, 8; Sg=(P?—3 droites en position générale), donc % (S,)=0;
S est plus compliqué, la projection

TMyoTMyoTy | SB:SS-)ULE'=L

admet génériquement la fibre (P! —3 pts), sauf pour 24 points non doubles de L la
fibre est (P! —2pts) et pour les 3 points doubles de L la fibre est (P! —1 pt)u (P* -3
pts). Donc la caractéristique d’Euler-Poincaré de la fibre est génériquement —1, et
elle est 0 aux 27 points non génériques. Donc y(Sg)=—27. —1=27, car —27=y
(L—1es 27 points non génériques) et — 1=y (fibre générique). D’od

A()=(—-1)"1(t®-1)?", p=215.
La singularité isolée non quasi-homogéne au point 0 de
H={x’+x%*z+y*z+y*+2*=0}=C’

a été étudiée par Siersma [13].
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Ici nous calculons le polyndme caractéristique de la monodromie de H au point 0.
Soit my: X, —C? ’éclatement de centre 0eC. La transformée stricte de H rencontre
mo ' (0)=~P? en une courbe unicursale & un point double ordinaire C. Soit aeC ce
point double, qui dans les coordonnées homogénes [x,y,z] sur ng'(0) s’écrit
a=10, 0, 1]. On peut trouver en a des coordonnées locales (u, v, 1) de X, de sorte
que localement en a I’on ait

no 1 (0)={43=0}, C={A*uv=0}, 7' (H)={A*(A+uv)=0}.

Aux points seny 1 (0), s#a, le diviseur g ' (H) de X, est & croisements normaux.
Soit 7,:X; — X, ’éclatement de centre C. Le centre C n’est pas lisse, donc on
éclate d’abord une branche de C localement au point a et de proche en proche, suivant
la courbe C on finit par éclater la transformée stricte de ’autre branche de C au
point a. La modification composée nyo7n; est une résolution locale de H au point 0.
On a S,=0, si m#3,4; S;=P?>—C, donc x(S;)=x(P?)—x(C)=2; la projection
Ty | S,:8,—C admet au dessus de seC, s#a, la fibre (P' —2 pts), et au dessus de a
la fibre (P'—1 pt)u (P! —2 pts); donc x(S,)=1. On trouve que le polyndme caracté-
ristique de la monodromie de H au point 0 est 4(¢)=(—1)"1(>—1)*(¢*-1).
Dans le déploiement de la singularité de H au point O se trouve le type topologique
de la singularité isolée homogene Oe{x*+y?+2z*=0}cC? dont le polyndéme
caractéristique de la monodromie est 4(¢)=(t—1)"*(:>*~1)*. Donc on voit que
par petite déformation de la singularité de H au point 0 on peut échanger dans le
polyndme caractéristique de la monodromie le facteur (t*—1) contre le facteur

(2 -1).
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