Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 50 (1975)

Artikel: Ueber die minimale Dimension der assoziierten Primideale der
Komplettion eines lokalen Integritatsbereiches.

Autor: Brodmann, Markus

DOl: https://doi.org/10.5169/seals-38806

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-38806
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 50 (1975) 219-232 Birkhduser Verlag, Basel

Ueber die minimale Dimension der assoziierten Primideale der
Komplettion eines lokalen Integrititsbereiches

MARKUS BRODMANN

Einleitung

Ziel der vorliegenden Arbeit ist es, liber die Grosse 6* (R)=min {dim (R*/p*) | p*
€Ass(R*)} einige Aussagen zu machen, wo R ein lokaler Integrititsbereich mit dem
Maximalideal m und R* seine m-adische Komplettion ist. Dabei bedeute lokal oder
halblokal immer auch, dass der Ring noethersch ist. Setzen wir 4*(R)=dim(R)
—06*(R), so ist A*(R)=0 mit der Ungemischtheit von R identisch. (Zum Begriff der
Ungemischtheit s. [2, pg. 82, 125], [3])

Wir werden zeigen, dass 4* beim Uebergang von R zu einer R-Lokalitdt R’ nicht
zunimmt, und damit ein Resultat von Nagata verallgemeinern, wonach die Unge-
mischtheit bei einem solchen Uebergang erhalten bleibt.

Weiter wird auf die offene Frage, ob die Ungemischtheit bei Restklassenbildung
erhalten bleibt, eine Teilantwort gegeben. Es wird ndmlich gezeigt, dass es unter allen
Primidealen p vom Rang 1 héchstens endlich viele gibt, fiir welche 4* (R/p)> 4* (R).

Ueberdies wird der Begriff der Quasi-R-Folge eingefiihrt, eine Verallgemeinerung
der R-Folgen (s. [1, Pg. 95]) und 6*(R), analog zu depth (R), als Maximum der
Léngen aller Quasi-R-Folgen mit Elementen aus m charakterisiert.

Da die Quasi-R-Folgen Parametersysteme sind, zeigt sich hier die Mdglichkeit,
0* (R) ohne direkte Verwendung analytischer Eigenschaften zu bestimmen.

Von grundlegender Bedeutung fiir die Beweise der genannten Resultate sind die in
Abschnitt 2 eingefiihrten D-Operatoren. Ist nimlich & (R*) die Menge aller Prim-
ideale von R*, die zu einem durch einen Nichtnullteiler erzeugten Ideal von R* ge-
horen, so folgt aus der in (4.7) bewiesenen Endlichkeit von D(R*) sofort, dass in
S (R*) alle bis auf eventuell endlich viele Primideale eine Dimension >é* (R)—1
haben. (Insbesondere heisst das auch, dass es in der Komplettion eines lokalen, unge-
mischten Integritdtsbereiches und deshalb insbesondere auch in R selbst nur endlich
viele Primideale gibt, die als Eingebettete Primdivisoren eines durch ein re R— (0)
erzeugten Ideals auftreten.)

Aus der genannten Endlichkeit folgt nun mit der R-Flachheit von R* leicht, dass
es hochstens endlich viele zu Hauptidealen von R gehorige Primideale p gibt, fiir
welche 6* (R/p)< 6* (R)— 1. Daraus ergibt sich insbesondere, dass fiir hchstens end-
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lich viele p vom Rang 1 4* (R/p)> 4*(R). Die Endlichkeit von D (R*) bewirkt aber
auch insbesondere, dass wir im Quotientenkdrper von R eine endliche, ganze Erwei-
terung derart finden, dass in ihr alle zu Hauptidealen gehdrigen Primideale eine
Dimension > 6* (R)— 1 haben. Mit Hilfe solcher endlicher Erweiterungen werden nun
die Quasi-R-Folgen konstruiert. Insbesondere zeigen wir, dass es in jedem Ideal a der
Dimension d eine Quasi-R-Folge der Linge 6* (R)—d gibt. (5.4).

Mit diesem Ergebnis erhalten wir nun 4* (R)>4*(R,). Der Fall einer beliebigen
R-Lokalitdt wird schliesslich in Abschnitt 6 behandelt, ebenfalls unter Zuhilfenahme
der Endlichkeit von D (R*).

1. Die Grossen 6z (M) und 4, (M)

Mit R, R',... etc. seien immer kommutative Ringe mit Einselement 15, 1., ..., etc.
bezeichnet. Alle Moduln seien unitér. Ist M ein R-Modul, so stehe NT (M) fiir die
Menge aller Nullteiler von R beziiglich M, NNTy (M) fiir die Menge der Nichtnull-
teiler. Anstelle von NTg (R) resp. NNTR (R) schreiben wir kurz NT (R) resp. NNT (R).
Qg (M) stehe fiir den totalen Quotientenmodul Mynr, () Von M, Q(R) fiir Qg (R).
Ist RER’, so bezeichnen wir mit derg.(R) den ganzen Abschluss von R in R’. Fiir
dery (g (R) schreiben wir kurz der (R). Mit Rad (R) sei das Jacobsonradikal von R
gemeint. Ist R halblokal, so steht R* fiir die Rad (R)-adische Komplettion von R. Im
Uebrigen werden die Notationen von [1] verwendet.

(1.1) DEFINITION. Sei R noethersch und M ein endlicher R-Modul. Dann set-
zen wir 6x(M)=min{dim(R/p) | peAssg(M)}, dg(M)=dimg(M)—3x(M). Fiir
Or (R) schreiben wir  (R), fiir 4g (R) 4 (R). Ist R halblokal, so kiirzen wir weiter ab:
5xe (M @ R¥)=5(M), Age(M @5 R¥)=A%(M), §(R*)= 6% (R), 4(R*)=4*(R).

(1.2) LEMMA. Ist R noethersch und sind M und N endliche R-Moduln, so gilt:

a) 0<dg(M)<dimg(M).

b) dx(M)>0<>kein peAssg (M) ist ein Maximalideal.

c) Ist R halblokal, so ist égx(M )>0 sogar mit Rad (R) " NNTR (M )#0 gleichbe-
deutend.

d) aeRad(R)"NNTg(M)=>6x(M[aM)<dgr(M).

e) NNTR(M)SNNTR(N)=3x(M)<g(N).

f) Ist a= R ein Ideal mit dim(R/a)<dg(M ), so gilt anNNTg (M )#0.

Beweis. a) und b) sind trivial. c), €) und f) folgen sofort aus NTg(M)=

=|J Assg(M). d) folgt daraus, dass jeder echte minimale Primdivisor p von
aR+q(qeAssg(M)) zu Assy(M/aM ) gehort ([1, pg. 99]).
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(1.3) LEMMA. Ist R noethersch und R’ eine endliche, ganze Erweiterung von R,
so gilt:

2) 6, (R)=6(R'), 4x(R)=4(R).

b) 6(R)=46(R'), 4(R)<A4(R).

c) Ist R’ torsionfrei iiber R, so gilt in b) Gleichheit.

d) Ist R ein halblokaler Integrititsbereich und R’ torsionsfrei iiber R, so folgt
*(R)=06*(R’), 4* (R)=4*(R').

Beweis. a) Wegen RcR’ gilt NTx(R')=RnNNT(R’), also |J Assg(R')=
={J {p'nR | p’eAss(R’)}, und daraus folgt mit dem Going-up-Theorem fiir ganze
Erweiterungen sofort die Behauptung.

b) folgt mit (1.2) e) aus NNTg(R")=NNT (R), c) weil im Falle der Torsionfrei-
heit in dieser Inklusion das Gleichheitszeichen steht.

d) folgt aus der Tatsache, dass R'* eine endliche, ganze, torsionsfreie Erweiterung
von R* ist (s. [2, (17.11), (17.8), (18.3)]).

(1.4) LEMMA. Ist R halblokal, so gilt:

a) 6*(R)=min{6*(R,,)}, 4* (R)>max {4*(R,,)}, wo m die Maximalideale von R
durchliuft.

b) 6*(R)=min {6*(R/p)}, wo p Ass(R) durchliuft.

Beweis. a) ergibt sich sofort aus R*=[] Ry, (s. [2, pg. 56]).

b) folgt aus (R/p)*=R*/pR* (s. [2, (17.9)]) und weil, wegen der R-Flachheit von
R*, gilt Ass(R*)=1{ Assg«(R*/pR*).

2. D-Operatoren

(2.1) DEFINITION. Ist M ein R-Modul, S=NNT, (M) multiplikativ abge-
schlossen und J eine multiplikativ abgeschlossene Menge von Idealen aus R, so setzen
wir:

D?z,s(M)=aLeJ3 (M )y

Fiir DY ynrx o) (M) schreiben wir DR (M), fiir D}, s(R) D3 (R), und D3 (R) bezeich-
nen wir mit D3(R).

(2.2) LEMMA. a) D} s(M) ist ein R-Untermodul von Ms.

b) Ist R’ eine R-Algebra, so ist DR s(R’) eine R-Unteralgebra von Rs.

c) I, 5SS’ =D} s(M)<DR, s (M).

d) Ist D3 s(M)/M ein endlicher R-Modul, so gibt es ein ae 3 mit a=anng (DR, s
x (M)/M).



222 MARKUS BRODMANN

e) Sind alle aey endlich erzeugt, so gilt D} s(D3. s(M))=Dg s(M).

Beweis. a)-c) sind aus der Definition sofort klar.

d) Sei D=D3 s(M)=M+d,R+---+d,R, a,€S, dia,eM (i=1,...,5), und sei
a=[] a;. Dann gilt aeJ und aD= M.

e) Sei deD3 s(D), aely, dac=D, a=Y"_; a;R. Dann gibt es Ideale ay,..., a,eJ
derart, dass da;a; < M, und es folgt daqa, ... a,< M. Weil J multiplikativ abgeschlossen
ist, folgt daraus die Behauptung.

Ist 3={a< R Ideal | dim (R/a)<n}, so schreiben wir D5 (M) fir D} s(H). Da-
bei sei dimg ((0))= —1 gesetzt.

(2.3) LEMMA. Sei R noethersch, M ein endlicher R-Modul, S<NNTg (M ) multi-
plikativ abgeschlossen, n>0 und D= Dy s(M). Dann gilt:

a) M=D<sfiir alle ae S gilt g (M/aM )>=n.

b) D endlicher R-Modul = fiir alle a€ S gilt g (D/aD)>n.

c) Ist D’ ein endlicher R-Modul mit M = D' = My, und gilt fiir alle ae S 6x (D'[/aD")
>n, so folgt D= D’.

Beweis. a) ,,=>‘ Sei aeS, peAssg(M/aM) und me M —aM mit pm<aM. Dann
folgt (m/a)e(M:p)y,. Wire dim(R/p)<n, so wiirde daraus folgen (m/a)eD=M.

,»<="‘ Sei aeS, meM, (m/a)eD. Dann gibt es ein Ideal a mit dim(R/a)<n und
a(mla)= M, also amcaM. Wire (m/a)¢ M, also m¢aM, so wire auch a=NTy
x (M/aM ), und nach (1.2) ) wiirde folgen n>dim (R/a)= g (M/aM).

b) Nach (2.2) e) ist DP’s(D)=D, und die Behauptung folgt aus a).

c¢) Nach a) ist D’s(D’)=D’ und somit D< DY’s(D')=D".

(2.4) DEFINITION. Sei R noethersch und M ein endlicher R-Modul. Sei
S<=NNTg (M). Dann setzen wir PR (M )= {peSpec(R) | Ise Smit peAssy (M/sM)
und dim (R/p)<n}. Ist S=NNTg (M), so schreiben wir P (M) fiir PLs(M). Fiir

®s(R) schreiben wir P’ (R). Im Fall S=NNT(R) schreiben wir dafiir kurz
B (R).

(2.5) LEMMA. Ist R noethersch, M ein endlicher R-Modul und SSNNTg(M)
multiplikativ abgeschlossen, so gilt:

D5 (M) ist ein endlicher R-Modul= BL’s(M ) ist endlich.

Beweis. Sei P;={pe PPs(M) | dim(R/p)=i}. Dann folgt PLs(M)=3=1 Bs,
und es geniigt, die Endlichkeit der {; nachzuweisen.

Nach (2.2)c) ist D" (M)sDPs(M), also ein endlicher R-Modul. Sei
a=anng (D§ Y (M)/M). Nach (2.2) d) ist dim (R/a) <i. Ist nun pe P, so gibt es ein
se S derart, dass peAssg (M/sM ), und mit einem geeigneten me M gilt p=(sM:m)g,
also p=(M:(m/s))g. Daraus folgt (m/s) RS(M:p)y,SD%’s” (M), und somit
p=anng((m/s) RIM)=2a. Wegen dim(R/p)=i folgt daraus, dass p ein minimaler
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Primdivisor von a ist. Weil R noethersch ist, besitzt a aber nur endlich viele Prim-
divisoren, und ‘; ist endlich.

Wir wollen nun speziell den Fall S=NNTg(M) ins Auge fassen, d.h. uns dem
Operator DY’ zuwenden.

(2.6) LEMMA. Ist R noethersch, M ein endlicher R-Modulund 65 (M )>0, so folgt
aus der Tatsache, dass DY’ (M) ein endlicher R-Modul ist, dass n< &g (M).

Beweis. Wegen M= D=DQ (M)= Qxr(M) ist 5g(M)=3x(D), und wir kdnnen
0.B.d.A. annehmen M =D, also, nach (2.2) a), dass dz (M/aM )>n fiir alle acNNTy
x (M). Sei nun peAssg (M) und dim (R/p)= 3 (M ) und m ein p umfassendes Maxi-
malideal von R. Nach (1.2) b) finden wir dann ein aem n NNTg (M) und, wegen
aR+pcm, ist, nach [1, pg. 99], jeder minimale Primdivisor g von aR+p in
Assg (M/aM). Somit wird ég (M )=dim (R/p)>dim (R/q)= ég (M/aM).

Ueber das Verhalten von D™ bei Ringwechsel wollen wir die folgenden Ergebnisse
festhalten.

(27) LEMMA. a) Dg'/)annR(M) (M)=Dg') (M)

b) Sei R’ eine ganze Erweiterung von R, M' ein R'-Modul und n so gewdhlt, dass
fiir jedes Ideal a< R mit dim(R/a)<n gilt NNTx(M')na#0. Dann gilt DY (M")=
=DQ)(M").

c) Sei R noethersch, R’ eine endliche, ganze Erweiterung von R, M' ein endlicher
R'-Modul und n< &g (M"). Dann ist DY (M')=Dg) (M").

Beweis. a) folgt sofort aus Qg (M )= Og/anng (M) und (M:a+anng (M ))g. o)
= (M:a)QR (M)*

b) Wegen RS R’ ist NNTg(M')=NNTg. (M')N R, also Qr (M')S Qr-(M"). We-
gen der Ganzheit von R’ iiber R folgt weiter dim (R/a)=dim (R’/aR’) fiir jedes Ideal a
von R, und wir erhalten D (M) DY)(M’). Sei nun m’e M’, s'eNNTg.(M") der-
art, dass (m’/s')e D) (M’). Dann gibt es ein Ideal a’c R’ mit dim(R'/a’)<n und
a’(m'[s')sM’, also (a’ N R) (m’[s')= M. Wieder wegen der Ganzheit von R’ iiber R
ist dim(R’/a’)=dim(R/a’"R)<n, und nach Voraussetzung finden wir ein
ae(a’ " R)nNNTg(M’). Daraus folgt nun a(m’/s')=m"eM’, also (m'[s')=(m"|a)
eDP (M").

c) folgt aus b) sofort mit (1.2) f).

Im Falle R=M wollen wir angeben:

(2.8) LEMMA. Sei R noethersch und §(R)>0. Dann ist D™ (R) genau dann ein
endlicher R-Modul, wenn es in Q (R) eine endliche, ganze Erweiterung R’ von R gibt mit
d(R’|a’R")=n fiir alle a'eNNT (R’).

Beweis. ,,=*. Ist D™ (R)= R’ endlich, so ist nach (2.6) und (1.3) a) n<dg(R")=
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=J(R’), und nach (2.7) ¢) und (2.2) e) folgt R'=DY’ (R')=D(R’). Die Behaup-
tung ergibt sich daraus mit (2.3) a).

,,<=* Ist umgekehrt 6(R’/a’R’)>n fir alle a’'eNNT(R’), so ist D™ (R')=R’
((2.3) a)). Andrerseits ist nach (1.3) ¢) 6 (R)= 36 (R")>0, und nach (2.6) folgt 5 (R) > n.
Daraus folgt nun mit (2.7) c) D™ (R)= DY’ (R')=D™(R')=R'.

Als nichstes wollen wir zeigen, dass D" ® =1 (R*) ein endlicher R*-Modul ist,
falls R ein lokaler Integritdtsbereich ist. Zuvor werden wir jedoch noch einige Begriffe
bereitstellen.

3. Charakterische Moduln

(3.1) DEFINITION. Einen R-Modul M nennen wir charakterisch iiber R, wenn
fiir alle Maximalideale m von R gilt y (R/m) 1geanng (M) U NNTg (M ). (Dabei sei
x (k) die Charakteristik des Korpers k.) Ist R iiber sich selbst charakterisch, so nennen
wir R charakterisch.

(3.2) LEMMA. Sei M ein charakterischer R-Modul. Dann gilt:

a) Ist N ein R-Modul mit anng (M )< anng (N) und NNT, (M )= NNTg(N), so ist
auch N iiber R charakterisch.

b) M ist charakterisch iiber R/anng (M ).

c) Ist R’ eine R-flache R-Algebra, so ist M @y R’ iiber R’ charakterisch.

d) Ist aeNNTg(M) und acNNTg (M/[x(R/m) M) fiir alle Maximalideale m von
R, so ist M|aM iiber R charakterisch.

Beweis. a) und b) sind trivial.

¢) Sei m’ ein Maximalideal von R’, p=yx(R'/m’). Ist p=0, so ist nichts zu zeigen.
Ist p#0, so widhlen wir ein Maximalideal m von R mit m'n R<m. Dann gilt
plg.em’, also plgem, und es folgt p=y(R/m). Daraus ergibt sich plzeanng (M)
UNNTg (M), also, wegen der R-Flachheit von R’, plg.€anng. (M ®x R')UNNTg.
x (M ®zR').

d) Ist a Einheit, so ist M/aM = (0), und wir sind fertig. Andernfalls wihlen wir ein
Maximalideal m von R. Ist s=y(R/m) 1zeanng (M), sind wir fertig. Ist dies nicht der
Fall, so gilt se NNTg(M). Dann folgt aus aeNNTx(M/sM) aber, dass se NNT
x (M/aM).

Ueber charakterische Ringe sei noch angefiihrt

(3.3) LEMMA. a) Jeder Integritdtsbereich ist charakterisch.

b) Ist RE R’ und gilt fiir all Ideale a# R von R aR'# R’ und ist weiter R’ charak-
terisch, so ist es auch R.

c) Ist R charakterisch und R’ eine torsionsfreie R-Algebra, so ist R’ charakterisch.
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d) Ist (R, m) lokal, komplett und charakterisch, so gibt es in R einen lokalen,
kompletten und reguliren Ring S, iiber dem R endlich und ganz ist.

Beweis. a) ist trivial.

b) Sei m ein Maximalideal von R und m’ eines von R’ mit mR’=m’. Dann ist
m=m’'NR, also y(R'/m")=x(R/m), und es folgt y (R/m) 1,e(0) UNNT (R).

c¢) beweist sich dhnlich wie (3.2) c).

d) Nach dem Struktursatz von Cohen gibt es in R einen kompletten, lokalen Ring I
mit dem Maximalideal y (R/m) I derart, dass R=1[[x,..., x,]], wo x4, ..., x, m erzeu-
gen. Da y (R/m) 1x=ae(0) UNNT (R), finden wir ein vollstindiges Parametersystem
Vi»---» ¥4 VON R derart, dass a=y;, falls a#0. Dann ist S=1[[y,,..., ¥4]] ein lokaler,
kompletter Ring mit dem Maximalideal n=) y;S. Weil y,, ..., y, ein vollstindiges
Parametersystem bilden, ist offenbar R/nR ein endlicher S-Modul. Nach [2, (30.6)]
ist dann auch R ein endlicher S-Modul, und somit endlich und ganz iiber S. Daraus
folgt insbesondere dim (S)=dim(R)=d. Also ist S reguldr.

Bemerkung. Der Beweis von (3.3) d) ist eine fast wortliche Verallgemeinerung des
Beweises von [2, (31.6)].

4. D-Endlichkeit

Wir interessieren uns nun dafiir, wann D%’ (M ) fiir méglichst viele # ein endlicher
R-Modul ist. Nach (2.6) ist dies fiir 55 (M )>0 genau dann der Fall, wenn Dgr* ™D
x (M) endlich ist. Deshalb definieren wir:

(4.1) DEFINITION. Sei R noethersch, M ein endlicher R-Modul. Ist 65 (M )>0
50 setzen wir Dg (M )=D*™ ™Y (M). Fiir Dg (R) schreiben wir D(R). Wir nennen
M D-endlich iiber R, falls 5z (M )=0, oder falls 65 (M )>0 und Dg (M) ein endlicher
R-Modul ist. Ist R iiber sich selbst D-endlich, so nennen wir R kurz D-endlich.

(4.2) LEMMA. Sei R noethersch und M ein endlicher R-Modul. Dann gilt:

a) NSM, NNTx(N)=NNTg(M) und M D-endlich=>N D-endlich.

b) 0x(M)<1=M D-endlich iiber R.

c) M D-endlich iiber R=>M D-endlich iiber R/anng (M ).

d) Ist R’ eine endliche, ganze Erweiterung von R, so folgt: R’ D-endlich iiber R=> R’
D-endlich iiber sich selbst.

e) Ist 5(R)>0, so ist R genau dann D-endlich, wenn es in Q (R) eine endliche, ganze
Erweiterung R’ von R gibt, fiir welche 5(R'/a’R')> 6 (R")—1, fiir alle a’eNNT (R’).

f) Ist R'<Q(R) eine endliche, ganze Erweiterung von R, so ist R' genau dann
D-endlich, wenn R es ist.

g) Ist R halblokal und M ® R* D-endlich, so ist D&MD (MY ein endlicher
R-Modul.
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Beweis. a) folgt aus dz(M)=56x(N), b) aus DY’ (M )= M, und

c) ergibt sich aus (2.7) a).

d) Nach (1.3) a) ist dg(R")=0(R’). Nach (2.7) c¢) folgt das Gewiinschte.

e) ist klar aus (2.8).

f) ,,=. Nach (1.3) ist §(R)=0(R')=0g(R’), und aus (4.2) b) und e) folgt
aus der D-Endlichkeit von R’ jene von R. ,,<=*“. Ist §(R)<1, so folgt die D-
Endlichkeit von R’ mit (4.2) b). Ist 6(R)>0, so ist D(R)=J (R:a)q ) €in end-
licher R-Modul, wo a die Ideale von R mit dim(R/a)<d(R)—1 durchlduft. Andrer-
seits finden wir ein se NNT (R) mit sR’ = R, und es folgt sDg(R")=s\J(R":0)g (r)=
= s(R":a)gw=U (R":a)g xS U (R:a)g (&), und es ist Dg (R")=D(R’) ein end-
licher R-Modul.

g) Sei J={ac R Ideal | dim(R/a)<6*(M)—1}. Unter Beachtung von dim (R/a)
=dim (R*/aR*) folgt dann D=DF*M" (M) Use5 (M@ R*:aR*)g. 1 ®x k%)
< D(R*), und DR¥ ist ein endlicher R*-Untermodul von Qy (M ®x R*). Somit gibt
es ein SeNNTg (M) mit sD= (M ®g R*)n Qr (M )= M, wobei die Gleichheit aus der
Treuflachheit von R* iiber R folgt.

(4.3) LEMMA. Sind R,,..., R, noethersch und D-endlich, so ist es auch Ry x -+
X R,.

Beweis. Sofort aus (R, x---x R,)=mind (R;) und der(R, x --- x R,)=der(R,)
X «+- x der (R,) mit (4.2) a) und d).

(4.4) LEMMA. Sei R noethersch und M ein endlicher R-Modul. Sei N ein Unter-
modul von M mit NNTg(M)SNNTg(M|N) und seien N und M|N D-endlich iiber R.
Dann ist M D-endlich.

Beweis. Sei S=NNTg(M). Nach (4.2) a) konnen wir annehmen g (M )>0. Nach
(1.2) e) folgt nun, dass dx(N), ogr(M/N)=>0x(M)>0, und daraus sehen wir, dass
Dg(N)=DEr™M~D(N)und Dg(M/N)=DZr™™~D endliche R-Moduln sind. Nach
(2.2) c) sind dann erst recht DR~V (N) und DZX™ ™Y (M/N) endliche R-Mo-
duln. Wir finden also Elemente s, teS derart, dass s(N:a)y SN, t(M/N:a)a/mys
< M|N, also t(M:a)y S M+ N fiir alle Ideale ac R mit dim (R/a)<dg(M)—1. Ist
nun xe€Dg(M), so finden wir ein Ideal a mit dim(R/a)<dxr(M)—1 derart, dass
xe(M:a)y,, und es folgt tx=m+ (n/u) mit geeigneten me M, ne N und ueS. Weiter
gilt a(m/u)=a(tx—m)catx+amsMnNs. Wegen SSNNT,(M/N) ist aber
M~ Ng=N. So folgt schliesslich stx=sm+s(nfu)e M, und wir sehen dass st Dy (M)
cM.

(4.5) Ist R noethersch, M ein endlicher R-Modul und R|a D-endlich fiir alle
Ideale a von R mit anng(M)<a und NNTg(M)<=NNTg(R/a), so ist M iiber R
D-endlich.
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Beweis. Sei wieder S=NNTg (M ). Wir beweisen den Satz durch Induktion nach
der minimalen Ldnge 4 (M) aller R-Erzeugendensysteme von M. Ist A(M)=1, so ist
die Behauptung wegen M~ R/ann (R) richtig.

Sei also der Satz richtig fiir alle R-Moduln N mit #(N)<n und sei M=N+mR,
N=Yi_; Rm,. Ist a ein Ideal von R mit anng (N)<a und NNT, (N )< NNTg(R/a),
so folgt anng (M)<=a und NNTg (M )<= NNT, (R/a); nach Voraussetzung ist also R/a
D-endlich. Nach Induktionsvoraussetzung ist somit N D-endlich iiber R.

Sei nun a=anng(M/N). Nun finden wir bekanntlich ein seS derart, dass
NNTg (R/(a:5)g)SS. Setzen wir M =N+smR, so folgt anng (M/N)=(N:smR)g=
= (a:s)g=b=2anng (M), und nach Voraussetzung ist R/b, also auch M/N, D-endlich
iiber R. Nach (4.4) ist dann M iiber R D-endlich. Wegen NNTg (sM )=NNT, (M),
sM < M folgt daraus mit (4.2) a) die Behauptung.

(4.6) KOROLLAR. Ist R ein D-endlicher, noetherscher Integritdtsbereich, so ist
jeder endliche, torsionfreie R-Modul iiber R D-endlich. Insbesondere ist jeder endliche,
torsionsfreie Modul iiber einem lokalen, reguliren Ring D-endlich.

Beweis. Wegen NT (M )=(0) ist nach (4.5) die D-Endlichkeit von R fiir jene von
M hinreichend. Ist R reguldr und lokal, so gilt bekanntlich § (R/aR)=6(R)—1=
=dim (R)—1 fiir alle ae R—(0), und nach (2.2) a) ist R D-endlich.

(4.7) SATZ. Ist (R, m)lokal und komplett, und ist M ein endlicher, charakterischer
R-Modul, so ist M iiber R D-endlich.

Beweis. 0.B.d.A. kénnen wir annehmen Jz (M)>0. Sei a ein Ideal von R mit
anng (M )<a und NNTR (M )<NNTg(R/a). Nach (4.5) haben wir die D-endlichkeit
von R/a nachzuweisen. Da R/a nach (3.2) charakterisch ist, heisst das, dass wir M=R
annehmen diirfen. Nach (3.3) d) finden wir einen lokalen, reguliren, kompletten Ring
S, iiber dem R eine endliche, ganze Erweiterung ist. Nach (4.2) d) geniigt es demnach,
die D-Endlichkeit von R iiber S nachzuweisen. Dies soll durch vollstindige Induktion
nach 4 (R) geschehen.

Ist 4(R)=0, so ist fiir alle peAss(R) dim(R/p)=dim (R)=dim(S), und weil R
ganz und S ein Integrititsbereich ist, folgt pn S=(0). Somit ist NTs(R)=SNT(R)
=Sn | Ass(R)=(0), also R iiber S torsionfrei, mithin nach (4.6) D-endlich.

Sei nun 4 (R)>0. Nach (4.5) haben wir zu zeigen, dass §=S/b D-endlich ist fiir
jedes Ideal b von S mit NNTs(R)<= NNT(S). Ist b=(0), also §=5, so folgt dies aus
(4.6). Sei also b#(0). Dann folgt dim(S)<dim(S). Wegen NNTs(R)=NNT(S)
folgt mit (1.3) aber auch §(§5)=055(S5)>0s(R)=0(R), und wir erhalten 4(S)=
=dim(§)-6(5)<dim(S)— 5 (R)=dim(R)— 6 (R)=4(R). Sei nun n das Maximal-
ideal von S. Dann gilt n=Snm, also y(R/m)=yx(S/n). Daraus entnimmt man
x(S/m) 1g=x(R/m) 156(0) U NNTs(S), also dass § charakterisch ist. Nach Induk-
tionsvoraussetzung folgt nun die D-Endlichkeit von S.
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(4.8) KOROLLAR. Sei R lokal und M ein endlicher, charakterischer R-Modul.
Dann sind PR~ D (M @ R*) und PR~V (M) endlich.

Beweis. Sofort aus (3.2) c) (4.7), (2.5) und (4.2) g).

Nun wollen wir das Bewiesene auf lokale Integrititsbereiche anwenden. Dazu set-
zen wir R (R)={peSpec(R) | 4*(R/p)>4*(R)}, S (R)={peSpec(R) | JaeNNT(R)
x mit peAssg (R/aR)}, wo R ein halblokaler Ring ist.

(4.9) KOROLLAR. Sei R ein lokaler Integritiitsbereich. Dann gibt es nur endlich
viele peS (R) mit 6* (R[p)<0*(R)—1. Insbesondere ist also ] (R)NS(R) endlich,
und es gibt in K (R) nur endlich viele p vom Rang 1. Ist 6* (R)>0, so gibt es in Q (R)
eine endliche ganze Erweiterung R’ von R, fiir welche §(R'[a’R')>6*(R')—1 fir
alle a’e R'—(0).

Beweis. Man wende (4.8) an, unter Beachtung von Assg.(R*/aR*)=|_) Assgs
X (R*/pR*) (peAssg(R/aR)) und R*/aR*=(R/aR)*.

5. Quasi-M-Folgen

(5.1) DEFINITION. Sei M ein R-Modul und x4, ..., x,€R. (x4, ..., x,) heisse eine
Quasi-M-Folge (beziiglich R) genau dann wenn:

1) x,eNNTR(M).

2) Falls r>1 ein R-Untermodul N von Qg (M) derart existiert, dass M < N, mit
einem geeigneten se NNTy (M) gilt sN < M, und weiter (x,, ..., x,) eine Quasi-N/x, N-
Folge ist.

Insbesondere ist zu beachten, dass man im Fall, wo R noethersch und M endlich
ist iiber R, einfach verlangen kann, dass HE NS Qg (M) und N endlich erzeugt ist.

Setzt man in (5.1) N= M, so erhilt man den Begriff der M-Folge (s. [1, pg. 99 fI.]).
Insbesondere gilt also:

(5.2) LEMMA. Jede M-Folge ist auch Quasi-M-Folge.

(5.3) LEMMA. Sei M ein R-Modul und x1, ..., x, eine Quasi-M-Folge beziiglich R.
Dann gilt:

a) Ist R eine flache R-Algebra und %, das kanonische Bildvon x;in R, so ist %;, ..., %,
eine Quasi-M ® p R-Folge beziiglich R.

b) Ist R noethersch und M endlich erzeugt iiber R, und liegen weiter alle x; in Rad (R),
so folgt r<dog(M).

c) Ist R iiberdies halblokal, so folgt sogar r<J5x(M).

d) Ist R insbesondere lokal, so folgt depthy (M )< 5% (M).

Beweis. a) Wegen der Flachheit von R ist £, NNTz(M ®p R). Sei nun N und s
wie in (5.1) gewihlt. Dann folgt aus der Flachheit von R, dass M ®z REN®p R
Qs (M®z R), s(N®r R)= M ®; R, 56 NNTx(M @ R). Nach Induktion kénnen
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wir schliesslich annehmen, es sei (%,, ..., £,) eine Quasi-(N/x,) ®z R-, also eine Quasi-
(N®g R/%;N®y R)-Folge.

b) Fiir r=1 folgt die Behauptung sofort mit (1.2). Sei/also r>1 und N wie oben
gewdhlt. Nach Induktionist dann 6 (N/x;N)>r—1,und nach (1.2) d)folgt 6z (N )>r,
waraus mit (1.2) e) das Gewiinschte folgt.

c) Nach (5.3) a) ist x,,..., x, eine Quasi-M ® R*-Folge beziiglich R*, und die
Behauptung folgt mit (5.3) b).

d) folgt sofort aus (5.2) und (5.3) c).

(5.3) ¢) besagt, dass dx (M) im Fall, wo (R, m) lokal ist, mindestens gleich dem
Maximum der Langen aller Quasi-M-Folgen aus m ist. Als nichstes wollen wir zeigen,
dass sogar die Gleichheit gilt, falls M iiber R charakterisch ist. Wir zeigen sogar noch
mehr, ndmlich:

(5.4) SATZ. Sei (R, m) lokal, M ein endlicher, charakterischer R-Modul mit
Ox (M) = und sei a ein Ideal von R mit dim(R/a)=d. Dann finden wir x,,..., X5_s€a
derart, dass (x,,..., X5_4) eine Quasi-M-Folge bilden.

Beweis. (Induktion nach 6 —d),,6 —d=0": trivial. ,,0 —d=1*. Wegen d< g (M)
finden wir nach (1.2) f) ein x,ean NNTg (M).

,,0—d>1% Nach (4.7), (4.2)g) und (3.2)a) ist D=D% V(M) ein endlicher,
charakterischer R-Modul. Weiter ist M®z R*<D®z R*<Qr.(M), also, nach
(1.2)e), 6x(D)=36. Sei S=NNTx(M)(=NNTg(D)). Dann ist, nach (4.8)a),
P={p*"R|p*e Pia.s’ (D ®x R*)} endlich. Weiter gehort, wegen der R-Flachheit
von R*, jedes pe’P zu einem Assgz(D/aD), wo aeS geeignet gewdhlt ist. Somit ist
Q=P U Assg(D)u Assg (D/x(R/m) D) endlich, und nach (2.2) ist fiir alle peRQ
dim(R/p)>4&—1. Deshalb finden wir ein x,ea—_J Q. Wegen x, ¢{J P folgt dann
mit (1.2) d) 6%(D/x,D)=56—1. Wegen x,¢|J Assg(D/x(R/m) D) ist D/x;D nach
(3.2)d) charakterisch iiber R. Somit finden wir nach Induktionsvoraussetzung
X3,..., X5_ €0, die eine Quasi-D/x, D-Folge bilden, und wir sehen, dass (xy,..., x5_,)
eine Quasi-M-Folge ist.

(5.5) KOROLLAR. Ist (R, m) lokal und M ein endlicher, charakterischer R-Mo-
dul, so ist 5* (M) gleich dem Maximum der Lingen aller Quasi-M-Folgen mit Elemen-
ten aus m.

Beweis. Sofort aus (5.3) ¢) und (5.4) mit m=a.

(5.6) KOROLLAR. Ist (R, m) lokal, M ein endlicher, charakterischer R-Modul
und peSpec(R), so gilt 5y, (M,)> 6x (M )—dim (R/p).

Beweis. Nach (5.4) finden Wir x,, ..., X5+, (M)—dim (R/p) € P> di€ eine Quasi-M-Folge
bilden beziiglich R. Nach (5.3) a) sind die kanonischen Bilder dieser x; eine Quasi-M-
Folge beziiglich R,, und mit (5.3) c) folgt die Behauptung.
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(5.7) KOROLLAR. Ist R ein lokaler Integrititsbereich und peSpec(R), so gilt
4*(R,)<4* (R).

6. Lokalitiiten

Wir wollen zum Schluss das Resultat (5.7) auf den Fall verallgemeinern, wo an-
stelle von R, irgendeine R-Lokalitdt R’ steht. D.h. es soll angenommen werden
R'=R,, wo R[ay,..., a,]=R ein Integritdtsbereich ist und wo $ zu Spec(R) gehort.
In dieser Situation wollen wir zeigen, dass 4* (R')< 4* (R). Durch Induktion nach n
und unter Anwendung von (5.7) sieht man leicht, dass man sich auf den Fall be-
schridnken kann, wo R=R[a] und $ ein Maximalideal von R ist, das iiber dem Maxi-
malideal m von R liegt.

Ist a transzendent iiber R, so finden wir ein monisches Polynom fe R[a] derart,
dass p=mR[a]+fR[a]. Dann ist R/fR eine endliche, ganze, treic Erweiterung von
R, und nach (1.3) d) ist 6* (R/fR)= 6* (R). Andrerseits ist R’/fR’ eine Lokalisierung
von R/fR nach einem Maximalideal, und nach (1.4) a) folgt 6* (R'/fR’)> 6* (R). Mit
(1.2) d) ergibt sich nun 6*(R’)> 6* (R)+ 1, woraus, wegen dim (R")=dim (R)+ 1, das
Gewiinschte folgt.

Sei nun a iiber algebraisch. Dann geniigt es zu zeigen, dass 6* (R")>6*(R). Ist a
zunichst ganz iiber R, so folgt dies sofort aus (1.3) d) und (1.4) a). Ist a nicht ganz, so
ist es klar, dass wir ein se R— (0) derart finden, dass sa iiber R ganz ist. Nach dem oben
Bemerkten gilt dann 6*(R")>6*(R), wo R"=R[sa]l,, p=R[as]np. Weil aber
ae Q (R") heisst das, dass wir annehmen kdnnen, es sei ae Q (R). Wir beweisen nun das
Gewlinschte durch Induktion nach 6*(R’). Fiir 6*(R')=0 folgt 6*(R)=0 aus der
Tatsache, dass dann m = (0). Sei also §*(R')>0. Dann ist, nach dem soeben Bemerk-
ten, 6* (R)>0, und nach (4.9) finden wir in Q (R) eine endliche, ganze Erweiterung D
von R mit é(D/dD)z 6*(D)—1, fiir alle de D—(0). Mit (1.3) d) und (1.4) a) sieht
man nun leicht, dass man anstelle von R irgendeine Lokalisierung von D nach einem
Maximalideal wihlen kann. D.h. wir kOnnen schliesslich annehmen, es gelte
0 (R/sR)>=6*(R)—1 fir alle se R—(0). Sei nun X eine Unbestimmte. Dann kdnnen
wir schreiben R = R[X]/q, wo geSpec (R[X]) minimaler Primdivisor eines geeigneten
Polynoms fe R[ X]— (0) ist. Weiter finden wir ein Maximalideal n von R[X] derart,
dass n/g=9 und nn R=m.

Ist nun 6*(R)>1, so ist, nach unserer Annahme iiber R, die Tiefe depth (R) von
R>1, also folgt depth(R[X],)>2. Daraus folgt depth(R[X],/fR[X].)>1, und
nach (5.2)d) und (1.4) b) ist 6*(R’)> 1. Insbesondere ist damit der Fall 6*(R")=1
behandelt. Sei also 6*(R’)> 1. Dann finden wir eine endliche, ganze Erweiterung R”
von R in Q(R) derart, dass § (R"/a"R")>6* (R")—1 fiir alle a"e R"—(0). Sei m’ das
Maximalideal von R’ und S=R’'—m’. Dann finden wir ein ue R—(0) derart, dass
R R[1/u] und R"< R[1/u]s, also R" [1/u]= R[1/u]s. Nun betrachten wir die Menge
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P"={p"eS(R") | u¢p”, 6*(R"/p")<5*(R")}. Diese Menge ist offenbar unendlich,
denn ist r"eRad (R") " NNTy. (R"/uR") beliebig gewihlt, so folgt, wegen 6* (R"/r"R")
< 6*(R"), mit (1.4) b) sofort,dassein p” e Assg. (R"/r"R") zu P” gehort. Sei nun p”eP”;
dannist p=p" N R#(0), Ibep — (0)und nach [2, (12.6)]ist p”"€ Assg- (R"/bR"). Wegen
u¢p” und SN p” =0 folgt schliesslich, dass p"R"[1/u] = Ass(R[1/u]s/bR[1/u]s). Dar-
aus folgt, dass p=p"R"[1/u] n Re Assg (R/bR), mithin, dass peS (R). Da nun nach
(4.9) die Menge der peS(R) mit 6*(R/p)< *(R)—1 endlich ist, folgt aus der Un-
endlichkeit von B” leicht, dass es in B” ein p” derart gibt, dass 6* (R/p)=*(R)—1,
wo p=p” N R gesetzt ist. Setzen wir schliesslich p’=p” N R, so folgt nach Induktions-
voraussetzung, dass * (R/p)<6* (R’[p’). So erhalten wir schliesslich mit (1.3) d) dass
5*(R)—1<6*(R/p)<o*(R'[p')=6*(R"[p")<*(R")—1=0*(R")—1, und daraus
folgt das Gewiinschte.
Somit ist gezeigt:

(6.1) SATZ. Ist R ein lokaler Integritdtsbereich und R’ eine R-Lokalitit, so ist
A*(R')< 4*(R).
Insbesondere folgt nun auch:

(6.2) KOROLLAR. Sei R halblokal, acQ(R), R=R[d], 1y, ..., i, endlich viele
Maximalideale von R derart, dass fit;n R ein Maximalideal von R ist fiir i=1,..., n,
und sei S=R—\) ;. Dann gilt 5* (R5)> 6*(R).

Beweis. Nach (1.4) ist sofort klar, dass wir uns auf den Fall beschrinken kdnnen,
wo (R, m) lokal und n=1 ist. Sei fi;=m, Rgz=R’. Nach (1.4) finden wir ein
p’eAss(R’) derart, dass 8* (R")=6* (R'/p"). Es gibt somit ein pe Ass(R) mitp’=HR’,
H<m. Setzen wir p N R=p so folgt, wegen ae @ (R), und weil nun deshalb insbeson-
dere auch peAss(R), dass R/p eine einfache Erweiterung von R/p in Q (R/p) ist, und
dass r/p N R/p=m/p. Nach dem zu (6.1) Bewiesenen ist somit 6* (R/p)<d*(R'[p’).
Da, nach (1.4), 5*(R)<*(R/p), sind wir fertig.

Bemerkung: Die vorliegende Arbeit enthilt die wichtigsten Resultate der Disserta-
tion des Verfassers, welche in den Jahren 1972-73 unter der Anleitung von Herrn Prof.
Habicht in Basel entstanden ist, dem an dieser Stelle fiir seine Unterstiitzung gedankt sei.

Die Resultate (4.8) und (4.9) wurden im Fall 4*(R)=0, M=R, mit anderen
Methoden auch von L. J. Ratliff jr. gefunden. (s.[4])
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