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A cohomology for foliated manifolds

JaMEs L. HeitscHY)

0. Introduction

In this note we construct a resolution of a sheaf @ naturally associated to a foliated
manifold M. If F'is a foliation on M, then @ is the sheaf over M of germs of non-
trivial infinitesimal transformations of F. A sheaf quite similar to ® was studied by
Kodaira and Spencer in their fundamental paper [7], which served as an inspiration
and guide for much of what appears here. Where possible we have pointed out the
similarities and differences of the two papers.

The cohomology groups H* (M ; @) have been studied by various authors and are
of great importance in the theory of deformations of foliations and their associated
characteristic classes. Besides [7], these cohomology groups occur in the work of
Gel’fand-Fuchs [5] and Kamber-Tondeur [6]. These groups are a special case of a
theory of Nijenhuis [14] and we note that this resolution has also been discovered by
Vaisman [16].

The resolution presented here is useful in the following construction. The details
will appear in [8]. An element of H'(M; @) is an infinitesimal deformation of the
foliation F. Denote the tangent bundle of the foliation by 7 and its normal bundle by
v. An arbitrary section of the bundle 7*® v is an infinitesimal deformation of the plane
field 7. The resolution of @ allows us to represent any ae H' (M; @) by a global
section of t*®v satisfying certain auxiliary conditions. In [3], Bott and Haefliger
construct a natural map, depending only on the foliation F, ftom the cohomology of
formal vector fields an R? (¢ is the codimension of F)relative to O, denoted H* (WO ,)
to the real cohomology of M, H*(M; R). In [8], we will show how to construct a
pairing

H'(M; @)x H*(W0,)—> H*(M; R),
naturally associated to the Bott-Haefliger construction. For each ae H! (M; @) the
induced map H*(WO,)—» H*(M; R) may be viewed as the derivative of the Bott-

Haefliger map in the direction of «. In this interpretation we are thinking of « as a
tangent vector to the point F in the space of foliations on M.

1) Partially supported by NSF Grant No. GP 34785X.
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In addition to the above, the resolution has the advantages of simplicity, a very
strong intuitive appeal, and computability. In particular, H' (M; @) can be used to
distinguish between the rational and irrational constant slope foliations of the two
torus.

The note is divided into four sections. In Section 1 we collect the relevant facts
about foliations, flat connections and I" vector fields. Section 2 contains the construc-
tion of the resolution. In Section 3 we compute H*(T?; @) for the constant slope
foliations of the 2 torus. Section 4 discusses the resolution restricted to a leaf.

Finally special thanks go to H. Blaine Lawson, Jr. for helpful conversations.

1. Foliations and I” vector fields

We will consider smooth foliations on real manifolds and complex foliations on
complex manifolds. In this section we treat these two cases separately. Most of the
material is well known. For specific information, the unfamiliar reader should consult
the references given or [10] for an excellent survey of foliations.

The real case. All objects are assumed to be smooth, that is C*. Let M be a real
connected manifold of dimension n, TM its tangent bundle and F a foliation of co-
dimension g on M. F is given by an open cover of M by coordinate charts {U,} with
local coordinates xi,..., x; satisfying

fajf;;=() on U,nUs for 1<js<n—g<i<n.

0x;

We call such an atlas an F atlas, and each U, is called an F chart. The tangent bundle
to F is denoted by 7 and Tlva is spanned by 9/0x3,..., 8/0x,_,. T is an involutive sub
bundle of TM.

The classical Frobenius theorem implies that through each point pe M there passes
a unique maximal connected differentiable sub-manifold N of dimension n—gq, such
that at each point ge N the tangent bundle of N at g, TN, is the subspace of TM,
tangent to the foliation, i.e. TN,=1, all ge N. Such a submanifold is called a leaf of
the foliation.

The quotient bundle 7M/z is denoted by v and is called the normal bundle of F.
If YeTM its equivalence class in v is given by <Y ).

If E is any vector bundle over M we denote the vector space of C*® sections of E
by C® (E). The space of C* functions on M is denoted by C*® (M ). A connection on
a vector bundle E is a rule V which assigns to each vector field Xe C® (TM) a linear
operator

Vy:C®(E)— C®(E)
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satisfying

(i) Vx(fro)=(Xf)o+fVxe oceC®(E),feC>(M)

(i) Vpx+yo=fVyo+Vyo feC>(M).
If V is a connection on E, the curvature K of V assigns to each pair of vector fields
X, Y the linear operator

K(X, Y):C®(E)— C®(E)
given by K(X, Y)=VyVy—V,Vy—Vix v

THEOREM 1.1. (Bott [2]). There is a connection V on v such that if XeC® (1)
and (Y )eC®(v) then

Vx (Y5 =<[X, Y.

Such a connection is called basic.

COROLLARY. If K is the curvature of a basic connection on v and X, Ye C* (1),
then K(X, Y)=0.

This corollary follows directly from the Jacobi identity for the Lie bracket of vector
fields and the fact that if X, YeC*® (z), [X, Y]eC> (7). The corollary is the basis of
the Bott vanishing theorem [2] for the rational characteristic classes of the normal
bundle of a real smooth foliation.

Let {U,} be an F atlas.

DEFINITION 1.2. AT vector field on M is an element {¥»eC* (v) such that if

n 0
¥ig = Y? —
lU“ i=21 6x°,f
then
oYy ‘ . )
—=0 for 1<j<n—g<i<n.
axj

Note that the space of I" vector fields is the set of projectable vector fields, modulo
vector fields tangent to F. We denote by O the sheaf of germs of local I' vector fields.

A T vector field is characterized by the fact that if ¢,, te(—¢, £) =R is the local
l-parameter family of diffeomorphisms generated by Y, then for each te(—¢, &) ¢,
maps leaves of F onto leaves of F. This can be seen most easily by noting that on each
U, we have a projection n* onto R? given by the coordinates x;_,44,..., x5. If N is
a leaf of t then n* maps each component of N1 U, to a distinct point of R% A normal
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vector field Y is a I' vector field provided that for each U,, ny (Y le) is a well defined
vector field on R

The complex case. Let M be a connected complex analytic manifold of complex
dimension n, TcM =TM @ TM the standard splitting of the complexified tangent bun-
dle of M. TeM=T*M@®T*M the splitting of the complexified cotangent bundle. TM
is the holomorphic tangent bundle of M. TM is the antiholomorphic tangent bundle of
M. An element of C®(T*M) is a one form of type (1, 0). An element of C® (T*M)
is a one form of type (0, 1). Denote by C* (M) the space of C* complex functions
on M.

A complex analytic foliation F on M of complex codimension ¢ is given by an
open cover of M by coordinate charts {U,} with local holomorphic coordinate func-
tions z7,..., z, such that

0z

5;§==0 on []ar\l]ﬁ liéjsén-'q<<i5§n-

.

As above we call {U,} an F atlas and the U, F charts. The tangent bundle of F is
denoted by 7 and t IUu is spanned by 0/0z1, ..., 0/0z,_,. T is an involutive holomorphic
subbundle of TM and the complex Frobenius theorem gives the existence of maximal
integral complex submanifolds of complex dimension n—q through each point of M.
The quotient bundle TM |z is again denoted by v. If YeC® (TM) its equivalence class
in v is given by (Y ).

As v is a holomorphic bundle over M there is the J operator d:C*(v)—
- C®(T*®v). d is a local operator and if

ceC(v]y), o= Y f;<3l0Z)

j=n—q+1
then

n

do= )  0f;®<0/0z5).
j=n—q+1
Thus if 6eC*® (v|y,), is holomorphic if and only if do=0.
A connection of type (1, 0) on a holomorphic vector bundle E over M is a rule V
which assigns to each Xe C®(T¢M) a linear operator

Vy:C®(E)—>C®(E)

satisfying
(i) Vx(fo)=(Xf) o+fVao  aeC=(E), feC= (M)
(i) Vyx+yo=fVx0+Vyo feC>(M)
(iii) If XeC*(TM) then

Vxo=(do) (X).
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The curvature of V is denoted by K and for X, YeC®(TcM) K(X, Y)=V4Vy—
—'Vyvx"‘V[x’Y].

THEOREM 1.3. (Bott [1]). There is a connection V on v of type (1, 0) such that if
(Y>eC™(v) and XeC® (1) then V(¥ y={[X, Y]).
Such a connection is called basic.

COROLLARY 1.4. If K is the curvature of a basic connection on v then K(X, Y)=0
for X, YeC® (t@®TM).

This implies the Bott vanishing theorem [1] for the rational characteristic classes
of the normal bundle of a complex foliation.

Let {U,} be an F atlas for the complex foliation on M.

DEFINITION 1.5. AT vector field on M is a vector field (Y e C* (v) such that if

" 0
Y|.=2 =7 k=n—gq+l,
IU, a+i;¢ i 52",-' n q+

where Z,eC* (t®TM ), then the Y% are holomorphic and

oy X .
—,=0 for 1< j<n—g<ign.
0z}

The space of complex I' vector fields is the set of C® vector fields on M which are
projectable with holomorphic projection, modulo C® vector fields tangent to F. If
{Y) is a T vector field then the associated real part of Y preserves the foliation in the
sense that the local difftfomorphism it generates maps leaves onto leaves. We denote
by @ the sheaf of germs of local I" vector fields.

In [7], Kodaira and Spencer consider sheaves also called sheaves of I" vector fields.
Their sheaves are analogous to ours but they are not identical. If U, is an F chart for
a real or complex foliation, a Kodaira-Spencer I' vector field is a smooth or holo-
morphic vector field Y such that if

" 0
Y a Yza
IU i:zl aw‘f
then
oY/
~=0 for I<j<n—g<i<n.
ow’

J

For a real foliation w=x3 and for a complex foliation w}=zj. We denote the sheaf of
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germs of local Kodaira-Spencer I" vector fields by @R for a real foliation and (:)C for
a complex foliation. For a real, (respectively complex), foliation denote by O, (&),
the sheaf of germs of local smooth, (holomorphic) sections of the tangent bundle to
the foliation. Note that @ is a fine sheaf. The various sheaves are related by the exact
sequences.

0 Bg— Og— Oxg—0
0 Bc— Bg— O —0.
The sheaves O, @C contain all the information about vector fields tangent to the

foliation, which is extraneous to the question of deformations. We have the long exact
sequences of cohomology groups

"’"‘*Hk(M; @R)"*HkH(MQ @R)"*HHI(M; @R)_’
Hk+1(M; @IR)_)

"""Hk(M; @c)_’HHl(H§ @a:)_’HkH(M; @c)"’
Hk+1(M; @C)"‘")“‘.

Note that @ is the sheaf of germs of holomorphic sections of the holomorphic
bundle T over M. On M there is the d complex of ©

0-C*(1)»C*(T*M®1)—> -
- C®(A"T*M®71)-0.

By the Dolbeault isomorphism [4] the k-th homology group of this complex is
H*(M; B¢). The complex is elliptic and thus for compact M, H*(M; &) is finite
dimensional for all k. From [7], p. 87 we have that for compact M, H*(M; @C) is
finite dimensional for all k. These two facts and the long exact cohomology sequence
above prove the following.

PROPOSITION 1.6. If F is a complex analytic foliation on a compact complex
analytic manifold M, then H* (M ; ©) is finite dimensional for all k.

2. Resolutions of the sheaves

We will treat the real and complex cases together. In the real case F is a C* foli-
ation of codimension g on an n dimensional C® manifold M. The tangent bundle to F
is now denoted by £ and its dual bundle by &*. The bundle TM/7 is still called v. In
the complex case F is a complex analytic foliation of complex codimension ¢ on a
complex analytic manifold M of complex dimension . If 7 is the tangent bundle to the
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foliation denote the bundle t@®TM by ¢ and 1*@T*M by *. As above the bundle
TM| is called v. A basic connection for a real or complex foliation is denoted by V.
Consider the following complex

C=(1) % C*((A'E)®v) S C= (A*E*)®v) > .
Where if

ceC®((A*¢*)®v) and X,,..., X,eC®(¢)
we define

(do) (Xoso0r Xi)= Y (=1) Vy0(Xos-.er Xir oo Xi)

0<is<k

+ Y (UMY e([X6 X1 Xoseoos Kis ooty Xjy ooy X0

0<i<j<k

The * over X; or X; means that entry is deleted.

LEMMA 2.1. dod=0.

Proof. 1t is not difficult to see that d is a local operator. Thus we need only show
that on any open set U of M that d - d|, =0.

Real case. Let U be an F chart. Since 6e C® ((A*t*)®v), we may write

: 0
oly=) o5dx — ),
IU 2.0 J®<axi>
where the sum runs over all i, J with n—q<i<n, J=(Jy, ..., ji) | <Jy <ja <+ <Ji

<n—q, dx;=dx;, A ... ndx;, and each o} is a C*® function on U,
Let d’ be the operator on functions on U defined by

"-‘f‘*'dxj'.
X ;

n—q 6
dlf‘: Z b
. ji=1 !

A simple compulation using the definition of V shows

. R . 0
do lu=d(0' |U)=Z dIO'_l,/\ dx,®<5;>

and we have d*=0.
Complex case. As ¢ is in C* (A*(t*@T*M )®v) we have

. 0
g IU=Z 0'3,1‘ dZJ/\dZ-L®<5;> .
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The sum is taken over all J, L, i where

J=(jrsendy)  1<j1<ja<-+-<j,<n—gq
L=(,..., 1) 1<, <lL<---<l;gn, r+s=k
dzy=dz; A ...Adz;,

dip=dz, A ...ANdZ;, i=n—q+1,...,n

and o5 ; is a C® complex function on U.
Define

Again a simple computation shows that

do |y=d(c |y)=Y (8’0} L+dc} ) dz; A d2L®<;—> .
Since 8'2=d%=0"d+ dd’ =0 we have d>=0.

For a real foliation we denote the homology of this complex by Fg(z; v); for a
complex foliation by F&(t; v).

Comments 1. Inthe terminology of Gel'fand-Fuchs [5], F(t; v)is the cohomology
of the Lie algebra of vector fields tangent to the foliation with coefficients in the normal
bundle, with the representation being given by the connection, where we consider
only cochains of order zero (i.e. C*® linear).

2. These cohomology groups also appear in the work of Kamber-Tondeur [6].
The complex in the notation of [6] is Iy (Q) and Fg(t; v)=H* (I'yI(Q)).

In general the groups Fp (t; v) are not finitely generated as the complex is not
elliptic. However, under suitable restrictions on the foliation one can conclude that
certain of the Fix(t; v) are finitely generated. See [11]. We shall show that F&(t; v)=
=H*(H; ©¢) and thus if M is compact, F&(t; v) is finite dimensional for all k.

4. The groups Fg(t; v) are modules over the ring Q of smooth functions on M
which are constant on the leaves of F.

Conjecture 2.2. The groups Fg(7; v) are countably generated as modules over Qj.
Counter examples can be easily constructed to show that Fs(7; v) need not be finitely
generated over .

5. In both the real and complex case the kernel of the map

d:C®(v)» C® (A E*)®v)

is the set of I' vector fields on M.
For a real, (respectively complex), foliation, let @, (&%), be the sheaf of germs of
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local C* sections of the bundle (4*¢*)®v. We then have maps
d:op— o, didk - oLt!

induced by d: C® ((A*E*)@V) - C® ((A*+1E*)@v). Let
i:Ogr—> Py and i:@;— P2

be the injection maps.

THEOREM 2.3. The complexes

i d d d -
0- @R—l-)@u% —)Q)&——)-n——-)@ﬁ% k0

i d d d -
0——»@0-5)¢g—>¢01:—>---—>@é" k50

are fine torsionless resolutions of @y and O respectively.

Proof. Bach of the sheaves @, ®X is obviously fine and torsionless. The fact that
d*=0 follows from the corresponding statement for the complexes C*® ((A*E*)@v).
Comment 5 gives that the complexes are exact at &% and 2. To complete the proof
we have

LEMMA 2.4. If pe Pk, (respectively ®%) satisfies dp =0, then there is an element
cedy !, (PL1) with do = .

Proof. Real case. ¢ is the germ at pe M of a local C* section, also denoted ¢, of
(A*t*)®v. Let U be an F chart with coordinate functions xy, ..., x, which map U onto
R". Assume pe U and o is defined on U. Thus we may set

, 0
=Y o' d i,
P=) s x’®<axi>

where the sumis overall J=(j,,..., ji), 1 <jy <j, < <jy<n—gandi=n—gq+1,..., n.
Each ¢ is a C*® function on U and we may assume without loss of generality that
¢’ =0 for i <n. We may view ¢ as a family of k forms on R"~? indexed by R?. Here we
are identifying U with R"=R""?x R?. More specifically if x,_,44,..., X, are coordi-
nates of a point in R? and x;, ..., x,_, are coordinates of a point in R"™9, the k form
@ (Xy—gs15-++5 X,) at the point (xy,..., X, ,) is

; OF (X4, .05 X,) dxy.

The fact that dp =0 implies that for each (X, y4+1,---» X,)ERT (@ (X g 15--+» X,))=0
where d is the usual exterior derivative. See the proof of Lemma 2.1. Applying the clas-
sical Poincaré Lemma (see for example Warner [13], p. 155) to each ¢ (x,,_ ;4, ..., X,,)
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we have the existence of a k—1 form o (x,_ 44, ..., X,) on R"™ % satisfying do (x,— ;415
ooy Xp) = @ (Xy—gi1s-es X,). The 0(x,-41q,..., X,) can be chosen so as to depend dif-
ferentiably, i.e. C®, on x,_,44,..., X,. Let o be the local C*® section of (A* " 1t*)®@v
given by

0
0 (X15e0s X)) =[O0 (Xye g 15 +0s Xn) (%1, 005 x,,_q)]®<ax >

n

From the local definition of d it is trivial to show do = ¢. If we denote also by ¢ the
germ of ¢ at the point p, then ce &% ! and do= ¢.

Complex case. (Proof due to Kodaira-Spencer [7], p. 79). As above we may assume
o is a smooth local section of the bundle A"(r*@—)T*M )®v and that ¢ is defined on
an F chart U. We have that U has holomorphic coordinates z,..., z, and we may
assume that 0 =6Q®<0/0z,) with 6eC® (A*(v*@T*M)|y). Write 6= ;_, o, where
o, 1is an (r, k—r) form on U, and set

n—-q 5
Vo= Y ' dz,.

ji=1 Zj

Letting d6=Y¥_, 0’0, + do, and noting that do =d6®<d/0z,> we have that do=0
implies dg=0. Thus

d6o=0, 08'6y+do,=0, 08'0,+d0,=0,..., 0J06,_,+0dc,=0, 08c*=0.

By the Poincaré lemma for d and (0, k) forms there is a (0, k—1) form ¥ such that
0¥ ,=0,. Now

(5(0‘1—6"I’0)=60'1+5’5W0=(50'1 +a'0'0=0.

By the Poincaré lemma for d and (1, k—1) forms there is a (1, k—2) form ¥, such
that 6, =0"¥y+ d¥,. Now

0(6,—0'V,)=00,+0"0¥,=00,+0"0,=0.
In this way we obtain ¥,,..., ¥,_, such that
6,=0'¥,+0¥,,..., 04_1=0'V;_,+0¥,_;.
Let n=0,—0'¥;_, a (k,0) form. dn=0d0,+0'0¥,_, =00, +0'04-; =0, so 7 is holo-

morphic. Also d'n=0'd,=0. By extending the Poincaré lemma for holomorphic k
forms as was done for real forms we have that there is a holomorphic k—1 form ¥,
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such that 0'¥,=n. Let ¥=(}r-o ¥,)®/0z,>. Then d¥ =o. Taking germs to get
this same equation in d: #"! — &% we are done.

THEOREM 2.5. If Fis a real foliation on a smooth manifold M then
Fga(t; v)=H*(M; Og).

If F is a complex analytic foliation on a complex analytic manifold M then
Fi(t; v)=H*(M; 0¢).

Proof. By definition H*(M; Og) is given as follows. (See [13]). For each k we
may form C® (®g) and we have induced maps d: C® (d%) - C = (dk™1).
Then

king. o . Ker{d:C® (@) > C”(d5')}
B (M Or) = e @ O™ (@5 1) 5 C* (@5}

But C* (&5)=C®((4**)®v) and the d’s are identical. Equality follows. The proof
in the complex case is the same.

Theorem 2.5 permits us to represent any element of H*(M; Og) or H*(M; ©¢)
by a global section o of the bundle (A4*¢*)®v, satisfying do=0. This is of special
significance in the case k=1 for it allows us to give an intuitively pleasing interpreta-
tion of H!'(M; Og) or H' (M; ©¢) as infinitesimal deformations of the foliation.

By a deformation of a plane field T on M we will mean a family 7, of plane fields
on M depending differentiably on seR such that 7,=1. By a deformation of a foli-
ation 7 on M we will mean a deformation 7, of the plane field 7 such that each 7, is a
foliation. For a real foliation 7, each 7, is required to be a smooth foliation and if 7 is
a complex foliation we assume each 7 is a complex foliation.

Assume now that 7 is a real, (respectively complex), foliation on a 1eal, (complex)
manifold M. Let 7, be a deformation of the plane field . We obtain a section of
E*®v as follows. For each s we have the quotient bundle TM/7,. The reader is re-
minded that in the complex case TM is the holomorphic tangent bundle of M. Choose
a Riemannian or Hermitian metric on TM, as M is real or complex. The metric gives
a splitting TH=t,®v,. In both cases v, is canonically isomorphic to TM/t, and we
make this identification in what follows. The splittings give natural projection opera-
tors

1
ng:ITM—-1t,, n:TM-v,.

In the complex case we can extend 7, and ny to TM by defining them to be identically
zero on this bundle.
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LEMMA 2.6.

(i) ‘ sy d
— 1. loT nw.ol —mM. |l=— 1.
os °) ° " \os °) os °

0 o |
i) — 7,4 — nt=0.
(ii) py T+ Py T,

0
(iii) If X e, then % i, (X)ev,.
s

Proof. (i) and (ii) follow from the equations m,om,=n, and 7,4+ 7, =identity.
(iii) follows directly from (i).

DEFINITION 2.7. The infinitesimal deformation ¢ associated to 7, is the ele-
ment of C® (é*®v) given by

()= {200 o]

for Xeé.
Recall that for real manifolds £ =t and for complex manifolds ¢ =t@®TM.

LEMMA 2.8. The linear map o:&— TM|t is independent of the choice of metric
on M. If T is a complex analytic foliation then o is holomorphic. Thus if U is an F chart
we may write

i o
& |U= 2 fi dzj®<5;i>

1<j<n—q<i<n

with the f} holomorphic functions on U.

Proof. Let U be an F chart, and choose vector fields e, (s), .. . (s), differenti-
able in s on U, which span 7, for each s. We have n,(X)=) 72 f f ; (X s) e;(s). The
functions f; (X, s) are determined by X, s and the metric. Also note that

X= g 7,(X, 0) ¢, (0).
2R () o= T, 2 (X,0) 0+ £(X,0) 5 0)

As e;(0)et we have

i {2 mOOeof=(T. 0.0 52(0))
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and the right hand side is independent of the metric. If 7 is a complex foliation we may
assume that the e; (s) are holomorphic vector fields and e;(0)=9/0z;. It follows easily
that

is holomorphic and so ¢ is holomorphic.
DEFINITION 2.9. For each seR and each pair of tangent vectors X, Y to M, let
As(X9 Y)=n;l- [TCSX, 7'ch])'

Ay is called the integrability tensor of the deformation 7,. Note that if M is complex
X, Y are elements of TM@®TM.

PROPOSITION 2.10.
(i) A is a v, valued exterior 2 form on M.
(ii) 4 is involutive if and only if A,=0.
(iii) If o is the infinitesimal deformation associated to t, and X, Ye & then

Jo (X, )= 2 (4,(X, ¥) |-o.

Proof. The proofs of (i) and (ii) are trivial and are omitted.
(iii) Real case.If X, Ye ¢=1 then Vyo (Y)=n5 [X, 6(Y)] where V is a basic con-
nection on v. We have

do (X, Y)=Vyo (Y)—Vya (X)—0o([X, Y])
=75 ([X, 0 (Y)]) -7 ([, o (X)]) -0 ([X, Y])

R Y
~5 {2 n (0 YD b}

Since 7 is involutive,

no [X, n5Z])=m5 [X, o Z +moZ])
=ng[X,Z]) forall ZeTM.
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By (iii) of Lemma 2.6, (9/ds) n,([X, Y])|s=0 is in v and by (ii) of the same lemma

22 (1 YD) emo=— o 7 (1K, ¥) e

so we have
L [0 X,Y ok Y
— 7o 35 s ([X, Y]) Is=o = s mo (X, Y1) ls=o-

Finally, since X, Yet, ngX=X, n, Y=7Y.
Thus

do %, V)={xt (| Zm 0wy )4t [, S )
s
+56§ s ([nX, “sY])} |s=o=§; A, (X, Y) |s=o

Complex case. As {=1@®TM we have three cases to consider, (a) X, Yer, (b)
X, YeTM, and (c) Xert, YeTM.

(a) If X, Yet the proof in the real case works.

(b) If X, YeTM, A,(X, Y)=0, and as n,(X)=n,(Y)=0 for all s we have
o(X)=0(Y)=0([X, Y])=0 so do (X, Y)=0.

(c) For Xet and YeTM, again A,(X, Y)=0. Now as ¢(¥Y)=0

do (X, Y)=Vxo(Y)-Vyo(X)—a([X, Y])
=—d(o(X)) (Y)—-o([X, Y]).

Since o is the infinitesimal deformation associated to a family of holomorphic plane
fields do=0. Thus if U is an F chart we may write

with each f; a holomorphic function on U.
Let
n a n a
X ]U=i§1 X"EZ and Y |U=l§:1 Y,E;_;
then

—0e@)(M=-F ﬁi%};ff ’7®<;;7>
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and
10X 0
~e (@ D=3 71 e ()
SO

ds (X, Y)=0.

COROLLARY 2.11. Let t, be a deformation of a real (respectively complex ana-
Iytic) foliation © on a real (complex analytic) manifold M. Let o be the associated

infinitesimal deformation then do=0, and o represents an element of H' (M ; Og),
(H'(M; @c)).

PROPOSITION 2.12. Let F be a foliation on a manifold M and let Y be a complete
vector field on M with A={Y »eC®(v). Let ¢, be the one parameter family of dif-
feomorphisms generated by Y and let F,= @ F be the associated deformation of F. Then
d) is the infinitesimal deformation associated to the actual deformation F.,.

Proof. By Definition 2.7 we have that the infinitesimal deformation associated
to F, is for Xert

o(X)=7 {2 100 bmof = (£ 1) o)

Let U be an F chart on which F is defined by one forms w,, ..., ®,. The forms oo,
define F,. Let X, (s),..., X, (s) be vector fields dual to @7 w, ..., 5w, and normal to
7,. Then for Xet

®(0)=X= 3, ¢¥0,(X) X, ).

Since w;(X)=0 we have

200 o== 3 01 000 o) 5,00
- ¥ (X, YD X,0).
Thus
a(X)=<% (00 |10 ) = O, YD=d ()

In view of Proposition 2.12 we may interpret H' (M ; @) as infinitesimal deforma-
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tions of the foliation modulo trivial infinitesimal deformations, i.e., those given by
vector fields.

3. Example of the two torus

The material in this section is related to [15]. Let 72=R/Z? be the standard flat
two torus. Denote by 1, the foliation of 72 given by all straight lines of slope o and
let @, be the corresponding sheaf of germs of I" vector fields.

THEOREM 3.1. If a is rational then

(i) H°(M; ©,)=C>(S!)

(i) H'(M; ©,)=C>(S").
Each element of H! (M; ©,) can be realized as the associated infinitesimal deforma-
tion of a differentiable family of foliations.

The last statement of the theorem follows from the fact that any non-zero vector
field is a 1 dimensional foliation. The rest of the theorem follows from the more
general.

THEOREM 3.2. Let M be a smooth manifold. The foliation of M x S* whose leaves

are {p} x S, pe M, satisfies
(i) H(MxS'; ©)=C> (TM).

(i) H*(Mx S'; @)=C*(TM).

Proof. Let n: M x S — M be the projection onto the first factor. The normal bun-
dle v of the foliation is canonically isomorphic with the pull-back bundle n* (TM ), and
we make this identification. If XeC* (TM) the induced vector field in v is denoted
n'X. We are interested in the complex

0->C® ()4 C®(*®v)-0.

Proof of (i). Let U be a coordinate chart on M with coordinates x,..., x,. On
n~1(U)=UxS* we have coordinates xi,..., x,, 0. If 66 C*® (v) then

n 0
= 3 ey N> 0 -
o lu i; fi(xy X )éx-

and
" of;, 0

do [ (2/00)=Vorao o= 3. 55" 5

Thus cfaIU =0if and onlyif 8f;,/00=0for alli. So we have o =n'X fo1 some Xe C® (TM ).
Conversely if a=n'X for Xe C* (TM) then do =0.
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Proof of (ii). We define an operator
f . C* (T*@v) > C° (TM).

If 6e C* (1*®vV), we can write

c=Y f,d0Qn'X,
j

for some finite set {X;} = C®(TM), and f;eC* (M x S").
We set

fa=§ <_s[fjd0>Xj.

213

If fis a C* function on M x S* then [s f; d6 is a C* function on M. Note also that |
is a homomorphism from C®(t*®v) to C*(TM). Setting ox=(1/2n) n'X for

XeC*®(TM) we have that | is onto.

LEMMA 3.3. ker [=d(C*(v)).
Proof. If 6eC* (v) write

0'=Z fjn’Xj.
J
As

, of;
da:Za—Jgd(;@n’Xj

J

we have | do=0.
Now suppose e C*® (t*@v) satisfies | 0=0. Write

o=y f; d0®7'X,.
J

We construct an element y in C* (v) such that dy=o.
Let (p, t) be a point of M x S*. Define y(p, t)€v,n bY

7 (P, t)=2,-: U fi(p, 0) de] ("X )ip.n -
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The integral is taken from 1S to teS? in the positive direction. y is well defined as
; [ff;(p, ) de] n!Xj=0
st

and y is obviously a C® section of v. It is immediate from the definitions that dy=o.

Theorem 3.1 now follows as each constant rational slope foliation of T2 gives a
splitting of 7% as S x S with the leaves of the foliation given by {p} x S*. C*(TS?)
>~ C>(SY).

DEFINITION 3.4. An irrational real number « is not a Liouville number provided
there is a positive integer p and ¢>0 such that

>e(Im|+|n|)""

n
o — —
m

for n and m sufficiently large.
THEOREM 3.5. If a is an irrational real number then
H°(T?*; 0,)=R.

If o is not a Liouville number then
HY(T?*; 0,)=R.

Each element of H* (T?; ©,) can be realized as the associated infinitesimal deformation
of a differential family of foliations.

Proof. Let {, ) be the flat Riemannian structure which 72 inherets from R2. Let
X1, X, be vector fields on 72 with (X}, X;>= 6,': and X, tangent to the foliation. Each
oeC®(v) may be written as f-{X,) where feC*® (T?). Since [X;, X,]=0 we have
do (X,)=(X,f) {X,). Thus do =0 is equivalent to X; f=0 and so f must be constant
on the leaves of the foliation. As each of the leaves is dense on T2 f is a constant func-
tion. This proves the first statement.

Each element oceC®(t*®v) may be represented as o=fX{®<X,> where
feC®(T?) and X7 (X;)=0}. Thus

C*(t*®v)xC*(T?).

Let x, and x, be the natural coordinates on 72 inhereted from RZ. If feC*® (T?)
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the Fourier expansion of f is
(X1, X3)= fon, n €Xp {27i (mx; +nx,)} .

Define | :C* (7*®v)— R by [ 6=f, o, Where s=fX{ ®(X,). | is an epimorphism.
To finish the proof we have

LEMMA 3.6. (See [9]) If « is not a Liouville number

ker f ~d(Cc> ().

Proof. Suppose yeC*®(v), y=g <{X,). Then if X, =a d/dx;+b 8/0x,, a/b=u«

dy=\a it XI®X,).
0x 0x,
=(X,-g) X1®<X).

Using the Fourier expansion of g we see that if f= (X, g) then f; (=0.

Suppose now that feC®(T?) satisfies f, ,=0. We must find geC*(T?) with
a 0g/|ox, +b dg/0x,=f. Suppose we had such a g and that its Fourier expansion was
given by

€= &m, n»Xp {2ni(mx; +nx,)}.
Then for each m, n#0, 0 we must have

G, w=2mi(ma+nb)"1f, .. (3.7)
If for some positive integer p and some ¢>0

lc—n/m|>¢e(m|+|n|)"*F

then the g, , given by (3.7) are the Fourier coefficients of a C*® function g on T2,

Setting y=g-<{X,> we have dy=o and the theorem.
Note: If a is a Liouville number we have Image d<ker | but one can show that

equality does not hold. See [9].
4. The complex restricted to a leaf

Let L be a leaf of a real foliation = on a smooth manifold M. Let v, be the normal
bundle of 7 restricted to L. Note that in general C® (v)|,#C* (v|_), as an element of
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C® (v)|, must extend to a neighborhood of L in M while an element of C* (v|;) need
not.

Consider the complex
C®(v) S C®(A'T*LRv,) S C® (A2 T*L®v)S -,

where d is defined as in Section 2. Again d2 =0 and we denote the resulting cohomology
groups by H*(L; vy,).

A basic connection on v induces a canonical connection on v, given by the normal
projection of the Lie bracket. The Jacobi identity implies that this connection is flat.
We also note that the linear holonomy of the foliation is the holonomy of the canon-
ical connection on v, ([12] p. 91.).

The following theorem is well-known.

THEOREM 4.1. H*(L; v,) is isomorphic to H* (L; R?), the de Rham cohomology
of L with coefficients in the flat bundle v;.

Proof. The groups H*(L; R?) are the de Rham cohomology groups of L with
coefficients in R? twisted over the holonomy of the flat connection. As such they are
the homology groups of the complex {4, ,(L;R%);d}. This is the de Rham
complex of R? valued forms on the simply connected covering space L of L which
satisfy

(@*®) (Ys,..s Y)=h(c™Y) (@ (Yys..., Y2)).

Here o is an element of the fundamental group of L, n, (L), and acts on L by deck
transformations. w is an R? valued k form on Land Yj,..., Y,eC®(TL). The map
h:m, (L) GL(g; R) is the holonomy representation of the connection.

Let ¢: L— L be the natural map. The complex {C® (A*T*L®v,); d} over L in-
duces a complex {C® (A*T*L®7,); d} over L. ¥, is the pull back by ¢ of v,. Let V be
the pull back to ¥, of the cannonical connection V on v;. Define d as d was using V
in place of V. Since V is a flat connection on a bundle over a simply connected mani-
fold, that bundle is trivial and has global flat framings.

LEMMA 4.2. The complex {C®(A*T*L®?%,); d} is isomorphic to the complex
{C®(A*T*L®RY); d®1} the de Rham complex of R? valued forms on L.

Proof. Let Xi,..., X, be a global flat frame field for #,. For all YeTL, V,X;=0.
Let weC*® (A*T*L®7,) and write o=Y%_, 0;®X; where each w;eC*(A*T*L).
Define

0:C®(A*T*LRV,)— C* (A*T*LO®RY)
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by 0(w)=(w,,..., w,). 0 is a linear isomorphism. If Y,,..., Y,,,eC*®(TL) then

k+1

- q
3o (Yo Yert)= Y, [Z (=1 Wy (@ (Vs evs Ty Yor 1) X))
2

+ ) Z (_1)i+le([Yia Yl], Yla“-, ?i’-'-’ f;‘ls-“a Yk+l)Xj]

q k+1 )
Z [Z( 1)l+ Y(w (Yl""’ Yk+1)
_]= =
v 0 (Y X Y T e ykﬂ)] X

q
= 2 (0, ®X;) (Yo Yirn)-

Thus fod=d- 0 and the lemma is established.
To complete the proof of the theorem we observe that ¢* maps C® (A*T*L®v,)
onto the subset of elements w of C® (A*T*L®7,) such that if

q
W=}, 0;®X;
Jj=1

and we denote by @ the R? valued form (w;, ..., ,) then
(c*0) (Yy,..., Y)=h(c ™)) (@(Y,,..., ¥)) (4.3)
for each oen, (L). To see this we need three facts. We denote by ¢* the two maps
0x:¥,—>v, and g, :TL->TL

induced by g.
1. For each X; as in Lemma 4.2, xeLand gen, (L),

2x ((X1)s ) =" (0) (2% (X)),

i.e. 0x((X;)g () is the parallel transport of g, ((X;).) around a loop in L based at
¢ (x) which represents o
2. For each YeC*® (A*T*L®v,) we have

o*o*W =(goo)*¥ =0*V.

3. If o*P =YY, ¥,®X], with ¥ ;e C*(A*T*L), then the ¥,;(Y,,..., ¥,) are the
coordinates of ¥, ) (0xY},..., 0xY}) With respect to the basis

0+ ((X;)x) of (Vi)o-
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Equation 4.3 follows easily from the rule for change of basis from linear algebra. Thus
6o o* gives the desired isomorphism from the complex {C® (A*T*L®v,);d} to the
complex {4,, ¢,(L, R?); d}.
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