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Comment. Math. Helvetici 50 (1975) 197-218 Birkhauser Verlag, Basel

A cohomology for foliated manifolds

James L. Heitsch1)

0. Introduction

In this note we construct a resolution of a sheaf G naturally associated to a foliated
manifold M. If F is a foliation on M, then G is the sheaf over M of germs of non-
trivial infinitésimal transformations of F. A sheaf quite similar to G was studied by
Kodaira and Spencer in their fundamental paper [7], which served as an inspiration
and guide for much of what appears hère. Where possible we hâve pointed out the
similarities and différences of the two papers.

The cohomology groups H* (M; G) hâve been studied by various authors and are
of great importance in the theory of déformations of foliations and their associated
characteristic classes. Besides [7], thèse cohomology groups occur in the work of
Gel'fand-Fuchs [5] and Kamber-Tondeur [6]. Thèse groups are a spécial case of a

theory of Nijenhuis [14] and we note that this resolution has also been discovered by
Vaisman [16].

The resolution presented hère is useful in the foliowing construction. The détails
will appear in [8]. An élément of H1 (M; G) is an infinitésimal déformation of the
foliation F. Dénote the tangent bundle of the foliation by t and its normal bundle by
v. An arbitrary section of the bundle t*® v is an infinitésimal déformation of the plane
field t. The resolution of G allows us to represent any aeHl(M; G) by a global
section of t*®v satisfying certain auxiliary conditions. In [3], Bott and Haefliger
construct a natural map, depending only on the foliation F, fiom the cohomology of
formai vector fields an Uq (q is the codimension ofF) relative to Oq, denoted H* WOq)
to the real cohomology of M9 H* (M; M). In [8], we will show how to construct a

pairing

H1(M;0)xH*(WOq)-+H*(M;R),

naturally associated to the Bott-Haefliger construction. For each aeH1 (M; G) the
induced map H*(WOq)->H*(M; R) may be viewed as the derivative of the Bott-
Haefliger map in the direction of a. In this interprétation we are thinking of a as a

tangent vector to the point F in the space of foliations on M.

Partially supported by NSF Grant No. GP 34785X.
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In addition to the above, the resolution has the advantages of simplicity, a very
strong intuitive appeal, and computability. In particular, Hi (M; S) can be used to
distinguish between the rational and irrational constant slope foliations of the two
torus.

The note is divided into four sections. In Section 1 we collect the relevant facts
about foliations, flat connections and F vector fields. Section 2 contains the construction

of the resolution. In Section 3 we compute H*(T2; S) for the constant slope
foliations of the 2 torus. Section 4 discusses the resolution restricted to a leaf.

Finally spécial thanks go to H. Blaine Lawson, Jr. for helpful conversations.

1. Foliations and F vector fields

We will consider smooth foliations on real manifolds and complex foliations on
complex manifolds. In this section we treat thèse two cases separately. Most of the

material is well known. For spécifie information, the unfamiliar reader should consult
the références given or [10] for an excellent survey of foliations.

The real case. Ail objects are assumed to be smooth, that is C00. Let M be a real
connected manifold of dimension n, TM its tangent bundle and F a foliation of co-
dimension q on M. Fis given by an open cover of M by coordinate charts {Ua} with
local coordinates x\,..., xan satisfying

dx"t
—£ 0 on Uar\Up for

We call such an atlas an Fatlas, and each Ua is called an F chart. The tangent bundle

to F is denoted by % and t^ is spanned by d/dxal9..., djdxctn-q. % is an involutive sub

bundle of TM.
The classical Frobenius theorem implies that through each pointée M there passes

a unique maximal connected differentiable sub-manifold N of dimension n — q, such

that at each point qeN the tangent bundle of N at q9 TNq is the subspace of TMq
tangent to the foliation, i.e. TNq=tq ail qeN. Such a submanifold is called a leaf of
the foliation.

The quotient bundle TMjx is denoted by v and is called the normal bundle of F.

If YeTM its équivalence class in v is given by <7>.
If E is any vector bundle over M we dénote the vector space of C00 sections of E

by C00 (E). The space of C00 functions on M is denoted by C00 (M). A connection on
a vector bundle E is a rule V which assigns to each vector field ZeC°° (TM) a linear

operator
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satisfying
(i) V*(/-(7) (X/)<r+/VJf<7 treC«(E),feC*>(M)
00 V/x+ra=/Vx(T+Vyff /eC°°(M).

If V is a connection on E, the curvature K of V assigns to each pair of vector fields
X, Y the linear operator

Y):C™(E)-+Cœ(E)

given by K(X, Y) V*Vy- VyVx- V[X,y].

THEOREM 1.1. (Bott [2]). 77*<?ré> w « connection V on v such that i

Such a connection is called

COROLLARY. //*#& the curvature of a basic connection on v and X, YeCco(x\
thenK(X, F)=0.

This corollary foliows directly from the Jacobi identity for the Lie bracket of vector
fields and the fact that if X, YeC^{x\ [X, 7]eC°°(T). The corollary is the basis of
the Bott vanishing theorem [2] for the rational characteristic classes of the normal
bundle of a real smooth foliation.

Let {Ua} be an F atlas.

DEFINITION 1.2. AT vector field on M is an élément <r>eC°° (v) such that if

then

ÔY?
—~ =0 for l^j^n
OXj

Note that the space of F vector fields is the set of projectable vector fields, modulo
vector fields tangent to F. We dénote by <9K the sheaf of germs of local F vector fields.

A F vector field is characterized by the fact that if çt, te(-~e,s)^M is the local
l-parameter family of diffeomorphisms generated by F, then for each te(-e9 e) <pt

maps leaves ofF onto leaves of F. This can be seen most easily by noting that on each

Ua we hâve a projection na onto R* given by the coordinates x^q+l9..., x%. If N is

a leaf of t then na maps each component of Nn Ua to a distinct point of IR€. A normal
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vector field Y is a F vector field provided that for each Ua9 n% (Y\VJ is a well defined

vector field on Rq.

The complex case. Let M be a connected complex analytic manifold of complex
dimension h, TCM=TM®TM the standard splitting of the complexified tangent bun-
dle of M. T*CM=T*M©f*M the splitting of the complexified cotangent bundle. TM
is the holomorphic tangent bundle of M. TM is the antiholomorphic tangent bundle of
M. An élément of C00 (T*M) is a one form of type (1, 0). An élément of C00 (f*M)
is a one form of type (0, 1). Dénote by CCO(M) the space of C00 complex functions

on M.
A complex analytic foliation F on M of complex codimension q is given by an

open cover of M by coordinate charts {t/a} with local holomorphic coordinate functions

z\,..., z" such that

ôz°l
~-g 0 on Uar\Ug l<:j^n-q<l^n.
dzj

As above we call {Ua} an F atlas and the Ua F charts. The tangent bundle of F is

denoted by t and t\Ua is spanned by ô/ôzl,..., d/dz*-.q. t is an involutive holomorphic
subbundle of TM and the complex Frobenius theorem gives the existence of maximal

intégral complex submanifolds of complex dimension n — q through each point of M.
The quotient bundle TMjx is again denoted by v. If FeC00 {TM) its équivalence class

in v is given by <F>.
As v is a holomorphic bundle over M there is the ô operator <5:C°°(v)->

-? C00 (T*® v). d is a local operator and if

veC"(v\Um)9 a= t
j=n-q+l

then

Thus if creC00 (v^J, is holomorphic if and only if ôa 0.

A connection of type (1, 0) on a holomorphic vector bundle E over M is a rule V

which assigns to each lreC00(7'cM) a linear operator

satisfying
(0 V

(ii) V

(iii) If AreC00(fM)then
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The curvature of V îs denoted by K and for X, YeC°°(TLM) K(X, F) VxVy-

THEOREM 1.3. (Bott [1]). There is a connection V on v of type (1, 0) such that if
<F>eC°°(v) andXeC™(t) then VX(Y> <[X, 7]>.

Such a connection is called basic.

COROLLARY 1 4. IfKis the curvature ofa basic connection on v then K(X, Y) 0

for X, YeC™(x®TM)
This implies the Bott vanishmg theorem [1] for the rational charactenstic classes

of the normal bundle of a complex foliation.
Let {Ua} be an F atlas for the complex foliation on M

DEFINITION 1.5. A F vectorfield on M is a vector field < Y > e C00 (v) such that if

where ZaeC°°(T©fM), then the Y\ are holomorphic and

d Y?
0 for l^j^n-q<i^n

ÔZj

The space of complex F vector rields is the set of C00 vector fields on M which are
projectable with holomorphic projection, modulo C00 vector fields tangent to F. If
<F> is a F vector field then the associated real part of Y préserves the foliation in the
sensé that the local diffeomorphism ît générâtes maps leaves onto leaves. We dénote

by <9C the sheaf of germs of local F vector fields.

In [7], Kodaira and Spencer consider sheaves also called sheaves of F vector fields.
Their sheaves are analogous to ours but they are not identical. If Ua is an Fchart for
a real or complex foliation, a Kodaira-Spencer F vector field is a smooth or
holomorphic vector field Y such that if

then

dY?
—-=0 for
OWj

For a real foliation w* .x" and for a complex foliation vt>" zj. We dénote the sheaf of
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germs of local Kodaira-Spencer F vector fields by <9K for a real foliation and 0C for
a complex foliation. For a real, (respectively complex), foliation dénote by 0U, (ë>c)>

the sheaf of germs of local smooth, (holomorphic) sections of the tangent bundle to
the foliation. Note that 0m is a fine sheaf. The various sheaves are related by the exact
séquences.

The sheaves Ôm 0C contain ail the information about vector fields tangent to the
foliation, which is extraneous to the question of déformations. We hâve the long exact

séquences of cohomology groups

•^Hk(M; 0m)-+Hk+i(M; 0m)-+Hk+1(M; êR)->

Hk+i(M;Ou)->..

.->Hk(M; 0c)-+Hk+1(H; 0c)-+Hk+1(M; êc)->

Note that 0C is the sheaf of germs of holomorphic sections of the holomorphic
bundle t over M. On M there is the ô complex of t

0-» C00 (t)-> C00 (T*M® t)-> -

By the Dolbeault isomorphism [4] the k-th homology group of this complex is

Hk(M; 0C). The complex is elliptic and thus for compact M, Hk(M; 0C) is finite
dimensional for ail k. From [7], p. 87 we hâve that for compact M, Hk(M; 0C) is

finite dimensional for ail k. Thèse two facts and the long exact cohomology séquence
above prove the following.

PROPOSITION 1.6. If F is a complex analytic foliation on a compact complex
analytic manifold M, then Hk(M; 0C) is finite dimensional for ail k.

2. Resolutions of the sheaves

We will treat the real and complex cases together. In the real case F is a C00

foliation of codimension q on an n dimensional C00 manifold M. The tangent bundle to F
is now denoted by Ç and its dual bundle by £*. The bundle TM\x is still called v. In
the complex case F is a complex analytic foliation of complex codimension q on &

complex analytic manifold M of complex dimension n. If t is the tangent bundle to the
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foliation dénote the bundle x®TM by £ and t*©f*M by £*. As above the bundle
TM\x is called v. A basic connection for a real or complex foliation is denoted by V.

Consider the following complex

Where if

ffeC°°((ylkÉ*)®v) and Zo,...,

we define

(da)(X09...,Xk)= £ (-lyV

The A over Xt or X,- means that entry is deleted.

LEMMA2.1. dod=Q.
Proof. It is not difficult to see that à is a local operator. Thus we need only show

that on any open set U of M that d- ^1^=0.
Real case. Let U be an Fchart. Since creC00 ((/1*t*)®v), we may write

—
axi/

where the sum runs over ail /, J with n-q<i^n, /=(7i,...,A)
^n — q, dxj dxji a ...Adxjk and each a^ is a C00 function on U.

Let J' be the operator on functions on U defined by

A simple compulation using the définition of V shows

and we hâve J2 0.

Complex case. As a is in CQO{Ak{x*@T*M)®v) we hâve
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The sum is taken over ail «/, L, i where

dzJ dzJlA AdzJr

dzL dzhA ...Adzlgi i=n-q+l,...,n
and GlJ} L is a C °° complex function on £/.

Define

Again a simple computation shows that

Since d'2 ô2 d'd + âd'=0 we have </2=0.

For a real foliation we dénote the homology of this complex by Fr(t; v); for a

complex foliation by F*(t; v).
Comments 1. In the terminology ofGel'fand-Fuchs [5], F^ (t ; v) is the cohomology

of the Lie algebra of vector fields tangent to the foliation with coefficients in the normal
bundle, with the représentation being given by the connection, where we consider

only cochains of order zéro (i.e. C00 linear).
2. Thèse cohomology groups also appear in the work of Kamber-Tondeur [6].

The complex in the notation of [6] is /L(Q) and Fl(x; v) H*(rMIL(Q)).
In gênerai the groups jFr(t; v) are not finitely generated as the complex is not

elliptic. However, under suitable restrictions on the foliation one can conclude that
certain of the F^(x; v) are finitely generated. See [11], We shall show that f£(t; v)

Hk(H; <9C) and thus if M is compact, Fc(t; v) is finite dimensional for ail k.
4. The groups F^(t; v) are modules over the ring QF of smooth functions on M

which are constant on the leaves of F.

Conjecture 2.2. The groups F^(t; v) are countably generated as modules over Qt.
Counter examples can be easily constructed to show that F^ (t ; v) need not be finitely
generated over QF.

5. In both the real and complex case the kernel of the map

is the set of F vector fields on M.
For a real, (respectively complex), foliation, let #r, (#c)> ^e the sheaf of germs of
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local C00 sections of the bundle (AkÇ*)®v. We then hâve maps

d:K^<\ d:4>kc-+<Pkc+1

inducedbyc/:C0O((/lkê*)®v)->C0O((ylfe+1^*)®v). Let

i:&R-*$n and i:0c-+$°c

be the injection maps.

THEOREM 2.3. The complexes

0 -> <9C -4 $1 -i 4>i -i ••• -i <f>£"~* ~> 0

are fine torsionless resolutions of 0U and 0C respectively.
Proof. Each of the sheaves 4>^, #£ *s obviously fine and torsionless. The fact that

â2 0 follows from the corresponding statement for the complexes C°°((ylfc^*)(g)v).
Comment 5 gives that the complexes are exact at &^ and #£. To complète the proof
we hâve

LEMMA 2.4. If (pe<P®, (respectively <P^) satisfies d(p 0, then there is an élément
ae<Pku~\ («Êc"1) with da=cp.

Proof. Real case, cp is the germ at peM of a local C00 section, also denoted <p, of
(Akx*)(g)v. Let t/beanFchart withcoordinatefunctionsxl9..., xn whichmap t/onto
W1. Assume peU and a is defined on U. Thus we may set

wherethesumisoverallJr=(ylî...,yfc), l^
Each cpj is a C00 function on £/ and we may assume without loss of generality that
cpj =0 for /<«. We may view ç as a family of A: forms on R""* indexed by R*. Hère we
are identifying U with Rw= Un~q x R*. More specifically if xn-q+u..., xn are coordi-
nates of a point in R* and x^..., xn-q are coordinates of a point in Mn~~q> the fc form
<p(xn-q+l9...9 xn) at the point (x1?..., xn_J is

The fact that J<p=O implies that for each (xn..q+u..., xn)eMq d((p(xn^q+1>..., xn)) 0
where d is the usual exterior derivative. See the proof ofLemma 2.1. Applying the clas-
sical Poincaré Lemma (see for example Warner [13], p. 155) to each q> (xn^q+u..., xn)
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we have the existence of a k-1 form <r(xn_q+1,..., xn)onMn~q satisfying dcr(xn-q+l,
xn) (p(xn-q+1,..., xn). The cr(xn-q+l9...9 xn) can be chosen so as to dépend dif-

ferentiably, i.e. C00, on xn-q+l,..., xn. Let g be the local C00 section of (Ak~ix*)®v
given by

g(xu..., xb) [(t(xb-4+1, xB) (*!,..., *„

From the local définition of J it is trivial to show cla=(p. If we dénote also by g the

germ of a at the point p, then ce #£"1 and âa=(p.
Complex case. (Proof due to Kodaira-Spencer [7], p. 79). As above we may assume

g is a smooth local section of the bundle Ak(x*®T*M)®v and that g is defined on
an F chart U. We have that U has holomorphic coordinates zl9...9 zn and we may
assume that G d®(djôzny with ô:eC00(/Lfc(T*©f*M)\V). Write ô: ^=0 ^r where

Gr is an (r, Â: — r) form on U, and set

Letting âd Ys=o drGr + ÔGr and noting that dG âd®(dldzny we have that
implies *fe 0. Thus

By the Poincaré lemma for ô and (0, &) forms there is a (0, k— 1) form ÎFq suc^
(5^0 cr0. Now

By the Poincaré lemma for ô and (1, k— 1) forms theie is a (1, A:—2) form ff^ such

In this way we obtain Y2>-> ^k-i such that

Letti=Gk-d'Wk-.l a (â:, 0)form. ôrj Jo-fe+^^ï/fc_1 d(jfe+aVfc_1=0, so rç is

holomorphic. Also d'ti d'Gk=Q. By extending the Poincaré lemma for holomorphic k
forms as was done for real forms we have that there is a holomorphic k—\ form Wk
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such that dtlFk f]. Let ¥ =(%=<) ¥/r)®<d/dzn>. Then dW a. Taking germs to get
this same équation in d: <Phc~* -* <Phc we are donc

THEOREM 2.5. If F is a real foliation on a smooth manifold M then

If F is a complex analytic foliation on a complex analytic manifold M then

Proof By définition Hh{M\ 0R) is given as follows. (See [13]). For each k we

may form C°° (<Pku) and we hâve induced maps d: C°° (^) -> C00 (4>^+1).

Then

' image {d:C™(<PKu X)->C

But C00 (<Pk^) Cco ((AkT*)®v) and the d's are identical. Equality follows. The proof
in the complex case is the same.

Theorem 2.5 permits us to represent any élément of Hk(M; &u) or Hk(M; <9C)

by a global section a of the bundle (AkÇ*)®v, satisfying ^cr O. This is of spécial
significance in the case k= 1 for it allows us to give an intuitively pleasing interprétation

of H1 (M; @u) or H1 (M; <9C) as infinitésimal déformations of the foliation.
By a déformation of a plane field t on M we will mean a family rs of plane fields

on M depending differentiably on seU such that to t. By a déformation of a
foliation t on M we will mean a déformation t5 of the plane field t such that each t^ is a
foliation. For a real foliation t, each ts is required to be a smooth foliation and if t is

a complex foliation we assume each ts is a complex foliation.
Assume now that t is a real, (respectively complex), foliation on a real, (complex)

manifold M. Let rs be a déformation of the plane field t. We obtain a section of
<^*®v as follows. For each s we hâve the quotient bundle TM/ts. The reader is re-
minded that in the complex case TM is the holomorphic tangent bundle of M. Choose

a Riemannian or Hermitian metric on TM, as M is real or complex. The metric gives

a splitting TH=ts®vs. In both cases vs is canonically isomorphic to TMjxs and we
make this identification in what follows. The splittings give natural projection opera-
tors

Tt * T^A^T —-? T TT * T nÂ ¦—? V

In the complex case we can extend ns and nj; to TM by defining them to be identically
zéro on this bundle.
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LEMMA 2 6.

0)
\ÔS

(il) ~ 7TS + —7C^ 0
ds ds

(ni) If Xexs then — tt5(X)6vs
os

Proof. (î) and (n) follow from the équations ns°ns ns and ns + n^

(ni) follows directly from (î)

DEFINITION 2 7. The infinitésimal déformation a associated to ts is the
élément of C00 ({*® v) given by

a\X 7in < —

Recall that for real manifolds f — x and for complex manifolds ^ x®TM

LEMMA 2.8. The hnear map a { -*• TMjx is independent of the choice of metnc
on M. If x is a complex analytic foliation then a is holomorphic Thus if U is an F chart

we may wnte

(T\u
i

with the fj holomorphic functions on U.

Proof. Let U be an F chart, and choose vector fields ex (s), en_q(s), differenti-
able m s on U, which span xs for each s. We hâve ns(X) Yjj ffj(^ s) ej(s) The
functions fj(X, s) are determmed by X, s and the metnc Also note that

As £,(())et we hâve
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and the right hand side is independent of the metric. If t is a complex foliation we may
assume that the ej(s) are holomorphic vector fields and ej(O) d/dZj. It follows easily
that

is holomorphic and so a is holomorphic.

DEFINITION 2.9. For each seU and each pair of tangent vectors X, Yto M, let

As is called the integrability tensor of the déformation xs. Note that if M is complex
X, Y are éléments of TM®TM.

PROPOSITION 2.10.

(i) As is a vs valued exterior 2 form on M.
(ii) ts is involutive if and only if As=0.
(iii) If a is the infinitésimal déformation associâted to ts and X, Ye Ç then

âa{X,Y)=Ô-{As{X,Y))\s=0.
es

Proof. The proofs of (i) and (ii) are trivial and are omitted.

(iii) Real case. If X, YeÇ T then Vxa(Y) nt [X, <r(7)] where V is a basic
connection on v. We hâve

âa{X, Y)

h *-Y l°=

Since t is involutive,

«i[JT,Z]) for ail
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By (iii) of Lemma 2.6, (d/ds) ns([X9 y])|s=0 is in v and by (ii) of the same lemma

js ns{[X, Y]) |s=0= ~ nï([X9 Y]) |jm0

so we hâve

Finally, since X, Fer, n0X=X, n0Y= Y.

Thus

Y) U (jjU (X), n^J

\
S=O ^AS(X, Y) |s

Complex case. As Ç t(BTM we hâve three cases to consider, (a) X, Yex, (b)
X, YeTM9 and (c) Xei, YeTM.

(a) If X, Yex the proof in the real case works.
(b) If X, YeTM, AS(X, Y)=0, and as ns(X) ns(Y) 0 for ail s we have

o(X) a(Y) a([X, y]) 0 so âa{X, Y) 0.

(c) For Xex and FefM, again ^S(Z, F)=0. Now as

F])

Since ex is the infinitésimal déformation associated to a family of holomorphic plane
fields <5cr=0. Thus if U is an F chart we may write

with each/j a holomorphic function on U.

Let

x l y1 x and y l y y

then

1,1,1
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and

so

COROLLARY 2.11. Le* ts be a déformation of a real (respectively complex ana-
lytic) foliation x on a real (complex analytic) manifold M. Let a be the associated

infinitésimal déformation then da 0, and o represents an élément of H1 (M; (9R),

(HL(M;ec)).

PROPOSITION 2.12. Let F be a foliation on a manifold M and let Ybea complète
vector field on M with A <F>eC°°(v). Let cps be the one parameter family of dif-
feomorphisms generated by Y and let Fs <p*F be the associated déformation of F. Then
âk is the infinitésimal déformation associated to the actual déformation Fs.

Proof By Définition 2.7 we hâve that the infinitésimal déformation associated

to i% is for Xe x

G\sL) — 7tr\ \ —

Let U be an F chart on which F is defined by one forms œl9..., œr The forms <p*a>f

define Fs. Let Xx (s),..., Xq(s) be vector fields dual to (p*œu...9 q>ïa)q and normal to

ts. Then for Xex

Since col(Ar)=0 we have

Thus

In view of Proposition 2.12 we may interpret H1 (M; 0) as infinitésimal déforma-
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tions of the foliation modulo trivial infinitésimal déformations, i.e., those given by
vector fields.

3. Example of the two torus

The material in this section is related to [15]. Let T2 U/12 be the standard flat
two torus. Dénote by ta the foliation of T2 given by ail straight lines of slope a and

let 0a be the corresponding sheaf of germs of F vector fields.

THEOREM 3.1. If a is rational then

(ii) H1(M;0a)^Cco(S1).
Each élément of H1 (M; &a) can be realized as the associated infinitésimal déformation

of a differentiable family of foliations.
The last statement of the theorem follows from the fact that any non-zero vector

field is a 1 dimensional foliation. The rest of the theorem follows from the more
gênerai.

THEOREM 3.2. Let Mbea smooth manifold. Thefoliation ofMxS1 whose leaves

are [p] xSx,peM, satisfies

(i) H0(MxS1;e)^C00(rM).
(ii) H^MxS1; &)*C°°(TM).
Proof. Let n : M x S1 -> M be the projection onto the first factor. The normal bun-

dle v of the foliation is canonically isomorphic with the pull-back bundle n* (TM), and

we make this identification. If XeC°° (TM) the induced vector field in v is denoted
nlX. We are interested in the complex

0-> C00 (v)-i C00 (t*®v)->0.

Proof of (i). Let U be a coordinate chart on M with coordinates xl9...9xn. On

n~1(U)=UxSl we hâve coordinates xl5...,*„, 9. If (TeC°°(v) then

and

Thus^|u=Oifandonlyif5/i/a0=Oforall/.Sowehave<7=7tIZfoisomeAreCoo(rM).
Conversely if a=nlXfor XeC™(TM) then d<y=*0.
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Proof of (n). We define an operator

f •C00(t*®v)->C00(TM)

If ctgC00 (t*®v), we can wnte

for some fimte set {XjcC00(TM), and/^C00(A/x S1).
We set

If/is a C00 function on Mx S1 then Jsi/7 dO îs a C00 function on M. Note also that J

îs a homomorphism from C°°(t*®v) to 0e0 (TM). Setting crx (l/27r) nlX for
A'eC00 (TM) we hâve that J îs onto

LEMMA 3.3. ker J ^(C°° (v)).
Proof. If <7eC°°(v) wnte

As

we hâve Jc?a O.

Now suppose aeC°°(T*®v) satisfies J cr O. Write

We construct an élément yinC00 (v) such that iy a.

Let (/?, 0 be a point ofMxS1. Define y(p, t)eviPtt) by

J
1
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The intégral is taken from leS1 to teS1 in the positive direction, y is well defined as

J

and y is obviously a C00 section of v. It is immédiate from the définitions that ày=-c.
Theorem 3.1 now follows as each constant rational slope foliation of T2 gives a

splitting of T2 as S1 x S1 with the leaves of the foliation given by {p} xSKC00 (TS1)

DEFINITION 3.4. An irrational real number a is not a Liouville number provided
there is a positive integer p and £>0 such that

m

for n and m sufficiently large.

THEOREM 3.5. If a is an irrational real number then

If a is not a Liouville number then

Each élément of H1 {T2 ; ©a) can be realized as the associated infinitésimal déformation
of a differentialfamily offoliations.

Proof. Let < > be the flat Riemannian structure which T2 inherets from IR2. Let
Xu X2 be vector fields on T2 with (Xi9 Xj} ô) and Xx tangent to the foliation. Each

(reC°°(v) may be written as/-<X2> where/eC°°(r2). Since [Xu X2~]=0 we hâve

âa(Xl)=(Xl •/) <Ar2>. Thus da 0 is équivalent to Xtf=0 and so/must be constant
on the leaves of the foliation. As each of the leaves is dense on T2 fis a constant func-
tion. This proves the first statement.

Each élément <tgC°°(t*®v) may be represented as a=fX*<^^X2} where

/eC°°(T2) and Xf (Xj)=ô). Thus

Let xt and x2 be the natural coordinates on T2 inhereted from M2. If/eC00 (T2)
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the Founer expansion of f is

Define J :C°°(t*®v)-»[R by J <7=/OjO, where <r=fXÎ®(X2>. J is an epimorphism.
To finish the proof we hâve

LEMMA 3 6. (See [9]) If a is not a Lwuville number

ker f <?(C°°(v))

Proof. Suppose yeC°°(v), y=g <X2> Then if Xi=a d/dx^b djdx2, ajb a

Using the Founer expansion of g we see that iff=(Xlg) then/0>0 0.

Suppose now that feC™(T2) satisfies /0,0 0. We must find geC°°(r2) with
a dg/dx1 +b ôg/dx2=f Suppose we had such a g and that îts Fourier expansion was

given by

Then for each m, n^O, 0 we must hâve

g^^lniima + nb)-* /w>n (3.7)

If for some positive mteger p and some e > 0

|a-«/m|>fi(|m| + |«|)"p

then the gmn given by (3.7) are the Fourier coefficients of a C00 function g on T2.

Setting y=g-<Ar1> we hâve ây a and the theorem.

Note: If a is a Liouville number we hâve Image d<=.ker J but one can show that
equality does not hold. See [9].

4. The complex restricted to a leaf

Let L be a leaf of a real foliation t on a smooth manifold M. Let vL be the normal
bundle of t restricted to L. Note that m gênerai C°° (v) \L± C°° (v |L), as an élément of
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C00 (v)|L must extend to a neighborhood of L in M while an élément of C00 (v|L) need

not.
Consider the complex

where dis defined as in Section 2. Again â2 0 and we dénote the resultingcohomology
groups by H*(L; vL).

A basic connection on v induces a canonical connection on vL given by the normal
projection of the Lie bracket. The Jacobi identity implies that this connection is fiât.
We also note that the linear holonomy of the foliation is the holonomy of the canonical

connection on vL, ([12] p. 91.).
The following theorem is well-known.

THEOREM 4.1. H* (L; vL) is isomorphic to #* (L; Mq), the de Rham cohomology

oj L with coefficients in theflat bundle vL.

Proof. The groups Hk(L; Rq) are the de Rham cohomology groups of L with
coefficients in Rq twisted over the holonomy of the flat connection. As such they are
the homology groups of the complex {Ani(L)(L; Uq); d}. This is the de Rham

complex of Rq valued forms on the simply connected covering space L of L which

satisfy

(o*a>)(Yl9...9 Ffc) //(er-1)(o)(71,.. Yk)).

Hère a is an élément of the fundamental group of L, tcj (L), and acts on L by deck

transformations, co is an Uq valued k form on Land Yl9...9 YkeC°°(TL). The map
h:nl(L)'^GL(q; R) is the holonomy représentation of the connection.

Let q:L-+L be the natural map. The complex {Cco(AkT*L®vL); â) over L
induces a complex {C00 (AkT*L® vL); 3] over L. vL is the pull back by q of vL. Let ^ be

the pull back to vL of the cannonical connection V on vL. Define 3 as d was using V

in place of V. Since V is a flat connection on a bundle over a simply connected mani-

fold, that bundle is trivial and has global flat framings.

LEMMA 4.2. The complex {C°° (AkT*L®vL); 3} is isomorphic to the complex
{C00 (AkT*L® Uq); d®\} the de Rham complex of Rq valued forms on L

Proof. Let Xu...9 Xq be a global flat frame field for vL. For ail YeTL, VyZ7=0.
Let û)eC°°(i4*r*I®vL) and write œ=^=1 œfèXj where each œJeC<o(AhT*L).
Define

6: C00 (AkT*L® vL) -> C00 (AkT*L® Rq)
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by 0(œ)—(œu œq) 0 îs a linear isomorphism If Yl9 Yk+ieCcc(TL) then

q rfc+1
dco(Y Y Y* I Y* (— l)I + 1V(a>(F y )X)

y l Li=l

Thus 0°â doQ and the lemma îs established

To complète the proof of the theorem we observe that g* maps C00 (AkT*L® vL)

onto the subset of éléments œ of C00 (/1*T*L® vL) such that if

j i

and we dénote by c£ the IR€ valued form (coj, co^) then

&*à)(Yl9 ,Yk) h(c-'){œ{Yu ,Yk) (4 3)

for each aen1 (L) To see this we need three facts We dénote by q* the two maps

Q* vL->>vL and q* TL-+TL

induced by q
1 For each X3 as in Lemma 4 2, xeLand aent (L),

î e ^H:((Ari)<r(x)) îs the parallel transport of q*((Xj)x) around a loop in L based at
g (x) which represents <j

2 For each feC00 (ylkr*L(g) vL) we hâve

3. If ^*ÎF=Xi=i ^j®^/» Wlth ^eC00^^*!), then the ¥j(Yi9 F^) are the

coordmates of We (x) (q* Yu q* Yk) with respect to the basis
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Equation 4.3 follows easily from the rule for change of basis from linear algebra. Thus
0o£* gives the desired isomorphism from the complex {C00(AkT*L®vL); â) to the

complex {Ani(L)(L9n«);d}.
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