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Poincaré Duality and Groups of Type (FP)

F. THOMAS FARRELL

0. Introduction

This paper continues our study of the groups H"(I', kI') begun in [3]. (Here I' is a
group and k is an arbitrary field.) There we generally restricted ourselves to the case
n=2; here we allow n to be arbitrary, but usually require I" to satisfy rather strong
finiteness conditions.

In particular our main result (Theorem 1) applies only to groups of type (FP) over
k. (See section 1 for the definition of this term.) It states that if the first non-vanishing
H™(T', kI') contains a non-zero finite-dimensional (over k) sub-kI-module, then
H"(T, kI') has dimension 1 and the remaining H'(I", kI') vanish.

As a consequence we obtain the following extension of some results from [3].

THEOREM 2. If I is a finitely presented, torsion-free group, then any sub-kI'-
module of H*(I', kI') has dimension 0, 1, or 0.

Our second application shows that I' satisfies Poincaré duality under weaker
assumptions than were previously known. Namely Theorem 3 states the following. 1f
I is a finitely presented group of type (FP) and the first non-vanishing H"(I', ZI') is
finitely generated (as an abelian group), then I' is a Poincaré duality group.

This paper is an extension of some observations of A. Borel and J-P. Serre. They
had obtained, previous to my work, the following facts about groups I of type (FP)
such that H'(I", kI')=0 for all i=n:

(a) dimH™(I', kI')=0, 1, or 0;

(b) if H"(I', kT') has a proper kI'-subspace of finite codimension, then H"(I", kI")
has no non-zero finite-dimensional kI'-subspace.

They had also obtained results in the case where k is replaced by Z.

I wish to thank Professor Serre for communicating their results to me and for
encouraging me in my own work.

1. Preliminaries

Notation. Throughout this paper k denotes an arbitrary field and I" a group. Let V'
and W be two k-vector spaces, then the collection of linear transformations from V'to
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W is denoted by Hom (V, W), and V® W expresses the tensor product of V with W
over k. If V and W are kI'-modules, then Hom (¥, W) and V'® W are also kI'-modules
where the I'-structures are defined by the equations

(vf) (x)=2(y"'x), and y (x®y)=yxQyy

for all yerI', feHom(V, W), xeV and ye W. If V is a kI'-module (or k-vector space),
then the dimension of V, abbreviated dim V, refers to the dimension of the underlying
k-vector space.

LEMMA 1. If V and W are two kI'-modules with W free and 0 <dim V < o0, then
Hom (V, W) is free. In fact, Hom (V, W) is kI -isomorphic to the direct sum of s-copies
of W where s=dimV.

Proof. Our argument is modeled after that of Proposition 1 on page 149 of [8].
Since W is free, it contains a k-subspace X such that W can be expressed as the
following direct sum.

w=> y-X.
yel
Because dim Vis finite, Hom (¥, W) is the direct sum of the k-subspaces Hom (¥, y- X);
but Hom(V, y-X)=Hom(y ™!V, y-X)=y-Hom(V, X). Hence if Y denotes Hom
(V, X) given the trivial I'-structure, then Hom (¥, W) is kI'-isomorphic to kI'®Y.
If we also give X the trivial I'-structure, then Y is isomorphic to s-copies of X. There-
fore Hom (¥, W) is kI'-isomorphic to s-copies of k<I'® X. But this completes our proof
since W is kI'-isomorphic to kI'® X.

LEMMA 2. If V and W are two kI'-modules, then
Ext,r (V, W)= H(I', Hom (V, W))

for all n=0.

Proof. This lemma is well-known. (Compare [7], page 272, exercises 4-6.) Hence
we only sketch its proof.

Denote the functors A H"(I', Hom (A, W)) by E"(A). (Here A is a kI'-module
and n>0.) Then the E" satisfy the axiomatic description ([7], Theorem 10.1) of the
functors A+ Exty (4, W).

The only axiom which is difficult to verify is that

E"(F)=0 for n>0 and all free modules F.

To do this one proves first, by an argument similar to that in the proof of Lemma 1,
that Hom (F, W) is co-induced over k: that is, kI'-isomorphic to Hom (kI", X) for
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some k-vector space X with trivial I'-structure. Then one shows that H"(I', 4)=0
when 4 is co-induced over k and n>0. (Compare [8], Proposition 1, page 120.)

We next recall some well-known facts about dual modules. The dual of a kI'-
module M is the kI'-module M*=Hom, (M, kI'). If P is a finitely generated, projec-
tive, right kI'-module and A4 is a left kI'-module, then P* is finitely generated and
projective, and

P®rA and Homy,(P* A)

are naturally isomorphic.

Given a chain complex of kI'-modules of finite length K:K,—» K,_, = - > K,
where each K; is finitely generated and projective, we can form its dual cochain
complex K*: Ky — K{ — - - K. Given, in addition, a kI'-module A4, we can form
chain complexes

KQur A:K,®yr A—> K, ®yr A~ = KyQyr A4,
and
Hom,(K*, A): Hom, (K:z A)—- Homkl'(Kn*—l, A)> > HomkF(K:s A).

By the above remarks, K®,r 4 and Hom,(K*, 4) are isomorphic chain complexes.
Denote the i-th homology group of K®,r 4 by C; and the i-th cohomology group of
K* by C'.

PROPOSITION 1. Under the above assumptions, there exists a spectral sequence with

EF~H?(I', Hom (C"~ %, 4))

and converging to C,_ . ..
Proof. Proposition 1 is a special case of the spectral universal coefficient theorem.
(See [4], page 100, Theorem 5.4.1.) In order to fit with Godement’s notation, let
L,=K)_,, M°=A, and M'=0 forall ixO0.

n—i»

Then Theorem 5.4.1 of [4] posits the existence of a spectral sequence with E3?=Ext}
(C""19, A) and converging to H?*%(Hom, (L, 4)). But Lemma 2 states that Extf}.
(C"9, A)= H?(I', Hom (C" "9, A)). On the other hand H”*%(Hom,(L, A)) and
H,_,.(Hom, (K*, A4)) are identical, and by the remarks preceding the statement of
Proposition 1, H,_,,(Hom,(K*, 4)) and C,_,,, are isomorphic. Concatenating
this information completes the proof of Proposition 1.

We say that I' is a group of type (n— FP) over k if k with the trivial I'-structure has
a resolution of finite length 0 > P, — P,_, — -+« = P, = k — 0 by projective kI-modules

such that P, is finitely generated for all i<n. When n= o0 we say more simply that I'
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is a group of type (FP) over k. Moreover, if n= 00 and k is replaced by Z in the above
definition, then we say that I' is a group of type (FP).

COROLLARY 1. If I is a group of type (FP) over k and A is a kI'-module, then
there exists a spectral sequence (Whose differentials d, have bidegree (r, r— 1)) with

&Y~ H?(I', Hom (HUT, kT'), A))

and converging to H,_,(I', A).

Proof. Consider a resolution of kK 0-K,—» K, ;—--—> K,—>k—0 by finitely
generated, projective modules K;, and let K denote the chain complex K,— K, _,
— -+ = K,. Applying Proposition 1 to the complex K and the kI'-module 4, we obtain
a spectral sequence with E}? ~H?(I', Hom(H" ®(T’, kI'), A)) and converging to
H,_,+,I, A). Then let &% be E*"~? and we are done.

The next corollary partially recovers the ‘““‘inverse duality’’ discovered by Bieri.
(See [1], Remark following Proposition 5.3.)

COROLLARY 2. Let T be a group of type (FP) over k such that H(I', kI')=0
for all i#n. If C denotes H"(I', kI"), then

H/(I', A)~H""%(I', Hom(C, 4))

for every integer s and every kI'-module A.

Proof. Under the above assumptions, the spectral sequence of Corollary 1 col-
lapses and yields that H,_ (I, A) is isomorphic to H?(I", Hom (C, A)). The result now
follows by substituting n—s for p in this isomorphism.

Remark. Prior to my work, Borel and Serre had observed (private communica-
tion) that Bieri-Eckmann duality [2] could be recovered from a spectral sequence
(constructed under the same hypotheses as Corollary 1) with E, ~H(I', HT, kT’
®A) and converging to H4~?(I', A). This spectral sequence is obtainable in a manner
analogous to the one from Proposition 1 by making use of the spectral Kiinneth
formula ([4], page 102, Theorem 5.5.1) together with the natural isomorphism between
P*®,r A and Hom, (P, 4) valid for any pair of left kI'-modules, provided that P is
finitely generated and projective.

2. The Main Theorem
We now come to the main result of this paper.
THEOREM 1. Suppose that H'(I', kI')=0 for all i <n and that H"(T', kI') contains

a non-zero finite-dimensional sub-kI'-module. If I is of type (n—FP) over k, then we
conclude the following:
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(a) I is of type (FP) over k;

(b) H(T, kI')=0 for all i*n;

(¢) dimH™(I', kI)=1.

Proof. For n=0 this result is well-known. Hence we may assume that n>0.
Consider a projective resolution of k£ with minimal length m

OﬁKm&Km_lq”“‘)Koﬁk""O,

where K is finitely generated for all i<n. Clearly m>n, and we intend to show that
m=n. Let K be the chain complex K,—» K,_;—---—>K,, and 4 be a kI'-module.
Applying Proposition 1 to this pair and noting that the resulting spectral sequence
collapses, we obtain an isomorphism between H?(I', Hom (C", 4)) and C,_, for all p.
Recall that C' is the i-th cohomology group of K* and that C; is the i-th homology
group of K®,, A. In particular, C; and H(I', A) are isomorphic for all i<n;
consequently,

(i) H™(I', Hom(C", A))=0 if m>n, and

(i) H*(I', Hom(C", A))~H,(I', A).

By the hypotheses of Theorem 1, H*(I', kI') contains a sub-kI'-module ¥ such that
0<dim ¥V <oo. Since H*(I', kI') is a sub-kI-module of C", we see that V is also a
sub-kI'-module of C". Applying the functor Hom( , A4) to the short exact sequence
0- V- C"> C"V-0, we obtain a new short exact sequence of kI'-modules

0— Hom (C"/V, A)—»Hom(C", A)—»Hom (V, A)—0.
Now, applying the functor H*(I', ) to this sequence, we obtain the exact sequence
H™(T', Hom(C", 4))— H™(I', Hom (¥, A))—> H™*!(I', Hom (C"[V, A)).

Since k has a projective resolution of length m, H™*'(I', Hom (C"/V, A)) must vanish,
and hence the above sequence degenerates into the following epimorphism:

(i) H™(I', Hom(C", 4))—» H™(I', Hom(V, 4))— 0.

Suppose that m>n. (We intend to show that this assumption leads to a contradic-
tion.) Then, by (i) and (iii), H™(I', Hom (¥, 4))=0 for every kI'-module 4. This fact,
in conjunction with Lemma 1, yields that H™(I', W)=0 for every free (hence, also
every projective) module W. In particular H™(I', K,,) vanishes, which implies that
d,: K, — K,_, is a split-k[-monomorphism. Therefore K,,_,/d,K, is projective (and
finitely generated if m—1=n), and

O—)Km—-lldem—)Km—Z'—* —)KO'—)k-’O

is a projective resolution of k£ with length m—1 whose first n+ 1-terms (starting with
K,) are finitely generated. But this is a contradiction. Hence m=n, which proves
assertions (a) and (b) of Theorem 1.
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Since Hy(I', kI')=k we obtain, using (ii) and (iii), the following inequality:

(iv) dimH™(I", Hom (V, kI'))<1. But Lemma 1 states that Hom(V, kI') is the
direct sum of s-copies of kI' where s=dim V. This fact, together with the inequality
(iv), implies that dim H*(I", kI')=1, which completes the proof of Theorem 1.

One says that I' is a group of type (VFP) over k if I' contains a subgroup of finite
index of type (FP) over k.

ADDENDUM. If we replace in the hypotheses of Theorem 1 (n—FP) by (VFP),
then conclusions (b) and (c) remain true.

Proof. This is a consequence of the following well-known fact: If I’ is a subgroup
of finite index in I, then H(T', kI') and H'(I"', kI"") are isomorphic kI"'-modules for all
integers I.

3. Applications
Our first application of Theorem 1 is to extend some results from [3].

THEOREM 2. If I is a finitely presented, torsion-free group, then any sub-kI-
module of H*(I', kI") has dimension 0, 1, or .
The proof of Theorem 2 depends on the following elementary lemma.

LEMMA 3. Let |l be a subfield of k, and A a Il-module. If AR, k contains a sub-
kI'-module V such that

0<dim, V<o,
then A contains a sub-Il'-module W such that
dim, V<dim; W<oo.

Proof. Regarding k as a vector space over /, let f:k — [ be a non-zero linear func-
tional. Then define a /I'-homomorphism g:A®; k— A by composing 1d® f:A®,
k - A®, I with the natural isomorphism from A®,/to 4. Let W=g(V), then one
easily checks that W satisfies the conclusion of Lemma 3.

Proof of Theorem 2. Because of Theorem 5.1 of [3], it suffices to consider the case
where k has characteristic 0. Since I' is finitely presented, H*(I", kI') and H*(I", QI')
®q k are isomorphic kI'-modules. (Here Q denotes the rational numbers.) Let V be a
sub-kI-module of H?(I', kI') such that 0<dim, ¥'<oo. By Lemma 3, H*(I', QI)
contains a sub-QI'-module W such that dim, V'<dimo W <co; hence to prove
Theorem 2, we need only show that dimg W=1.
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But because of Theorem 5.3 of [3], we may assume that I" is a group of type
(2—FP) over Q. Since H°(I', QI')=0, Theorem 1 implies Theorem 2 provided we can
show that H'(I', QI') vanishes.

To do this we assume its opposite, i.e. H'(I', QI')>0, and show that this
assumption leads to a contradiction. As a consequence of Lemma 3.5 of [10]
and section 5.1 of [9], I' has infinitely many ends. Hence by the Main Theorem
of [9], I' is a non-trivial free product of subgroups I'; and I',; both of which are
finitely presented by a result of Stallings ([11], Lemma 1.3). By the ‘“Mayer-Vietoris”
sequence ([6] or [10], Theorem 2.3), H*(I', QI) is QI'-isomorphic to the direct sum
of H*(I',, QI') and H*(T',, QT). Therefore one of these modules, say H*(I';, QI') to
be specific, contains a non-zero finite-dimensional sub-QI'-module. But this is
impossible, since

H*(Iy, QI)~H*(I'y, QI'))®qr, QI

as QI'-modules. This completes the proof of Theorem 2.
One says that I' is virtually torsion-free if I' contains a torsion-free subgroup of
finite index. Then the following extension of Theorem 2 is easily proven.

ADDENDUM. If I is finitely presented and virtually torsion-free, then any sub-
kI-module of H*(T', k') has dimension 0, 1, or co.
Our second application is the following result.

THEOREM 3. Suppose that I is a finitely presented group of type (FP), and let n
be the smallest integer such that H"(I', ZI')=O0. If H"(I', ZI') is a finitely generated
abelian group, then I is an n-dimensional Poincaré duality group.

Remark. Such an integer 7 exists, since for groups of type (FP) H(I', ZI') cannot
vanish for all i.

Proof. Since I is a group of type (FP), it is also of type (FP) over k. Furthermore
H(I', kT') is k-isomorphic to the direct sum of H'(I', ZI')®k and Tor (H'*'(I', ZT),
k), and H(I', Z[®k is embedded as a sub-kI'-module of H'(I', kI') via this iso-
morphism. (Here, and for the rest of this paper, ® and Tor are over Z.)

Suppose H"(I', ZI') has p-torsion for some prime p. Then by the above discussion,
we have the following facts:

(@H (I, Z,I)=0 for all i<n—1;

(b) H'(I', Z,I')*<0; and

(c) 0<dimg H"" (I, Z,I')< 0.

(Here Z, denotes the field with p-elements.) But these facts contradict Theorem 1.
Thus H"(I', ZT') is a free abelian group of rank s where 0 <s<oo.
Therefore H(I', kI')=0 for all i<n; and H"(I', kI') contains a sub-kI'-module of
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dimension s. Now by a second application of Theorem 1, we have dim H"(I', kI')=1
and H'(I', kI')=0 for all i3:n. Consequently we have s=1 and both H(I', ZI')®k
and Tor (H'(I', ZT'), k) vanish for all i>cn. By setting k equal to Q and Z, respectively,
we see that H'(I', ZI')=0 for all i>n. And since s=1, H"(I', ZTI') is infinite cyclic.
Hence I satisfies the conditions of [5] to be an n-dimensional Poincaré duality group.

ADDENDUM. The conclusion of Theorem 3 remains true when the hypothesis
“H"(I', ZI') is a finitely generated abelian group”

is replaced by the following two assumptions:

(a) H*(I', ZI') contains a non-zero finitely generated (as an abelian group) sub-I'-
module, and

(b) H"(I', ZT) is a free abelian group.

Proof. Let A be a non-zero sub-I'-module of H*(I', ZI') such that A is finitely
generated as an abelian group. By assumption (b), A®Q is a non-zero finite-dimen-
sional sub-QI'-module of H"(I', ZI''®Q. But H(I, ZIN®Q and H(I, QI) are
isomorphic QI'-modules for all i>0. Therefore Theorem 1 implies dimo H"(I", ZI')
®Q=1. This fact, together with (b), yields that H"(I', ZI') is infinite cyclic. Now apply
Theorem 3 to complete the proof.

4. Appendix
We mention a consequence of Theorem 2.

COROLLARY 3. If I is finitely presented and virtually torsion-free, then any
sub-I'-module of H*(T', ZT) is either

(a) zero,

(b) an infinite cyclic abelian group, or

(c) not finitely generated as an abelian group.

(This result extends Corollary 5.2 of [3].)

Proof. Corollary 3.7 of [10] implies that H*(I', ZI') is a torsion-free abelian
group. Thus it suffices to show that dimgA®Q=1 when 4 is a non-zero finitely
generated (as an abelian group) sub-I'-module of H*(I', ZI'). But this follows from the
addendum to Theorem 2 where we specify k to be Q.

Note added in proof: 1) There are analogues to our results in the theory of homol-
ogy manifolds, namely in the work of P. E. Conner and E. E. Floyd (Michigan

Math. J. 6 (1959), 33-43).
2) K. Brown has recently found an elegant new proof for Theorem 1 which avoids

the use of spectral sequences.
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