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Poincaré Duality and Groups of Type (FP)

F. Thomas Farrell

0. Introduction

This paper continues our study of the groups Hn(F, kF) begun in [3]. (Hère F is a

group and k is an arbitrary field.) There we generally restricted ourselves to the case

n — 2\ hère we allow n to be arbitrary, but usually require F to satisfy rather strong
finiteness conditions.

In particular our main resuit (Theorem 1) applies only to groups of type (FP) over
k. (See section 1 for the définition of this term.) It states that if the first non-vanishing
Hn(F, kF) contains a non-zero finite-dimensional (over k) sub-&r-module, then

Hn(F, kF) has dimension 1 and the remaining Hl{Fy kF) vanish.
As a conséquence we obtain the following extension of some results from [3].

THEOREM 2. If F is a finitely presented, torsion-free group, then any sub-kF-
module of' H2(F> kF) has dimension 0, 1, or oo.

Our second application shows that F satisfies Poincaré duality under weaker

assumptions than were previously known. Namely Theorem 3 states the following. If
F is a finitely presented group of type (FP) and the first non-vanishing Hn(F, ZF) is

finitely generated (as an abelian group), then F is a Poincaré duality group.
This paper is an extension of some observations of A. Borel and J-P. Serre. They

had obtained, previous to my work, the following facts about groups F of type (FP)
such that H%F, kF) 0 for ail i^n:

(a) dim#"(r, kF)=09 1, or oo;
(b) if Hn(F, kF) has a proper fcr-subspace of finite codimension, then Hn(F, kF)

has no non-zero finite-dimensional fcr-subspace.

They had also obtained results in the case where k is replaced by Z.
I wish to thank Professor Serre for communicating their results to me and for

encouraging me in my own work.

1. Préliminaires

Notation. Throughout this paper k dénotes an arbitrary field and F a group. Let V
and JFbe two &-vector spaces, then the collection of linear transformations from Fto
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W is denoted by Hom (F, W), and V® W expresses the tensor product of Fwith W
over k. If F and JFare &F-modules, then Hom (F, W) and V® W are also W-modules
where the F-structures are defîned by the équations

(r/) (x) yf(y~1x), and y(x®y) yx®yy

for ail y e F,/eHom (F, JF), xe V and je JF. If F is a &F-module (or &-vector space),
then the dimension of F, abbreviated dim F, refers to the dimension of the underlying
&-vector space.

LEMMA 1. If V and W are two kF-modules with Wfree and 0<dimF<oo, then

Hom (F, W) isfree. Infact, Hom(F, W) is kF-isomorphic to the direct sum ofs-copies
of W where s=dim F.

Proof Our argument is modeled after that of Proposition 1 on page 149 of [8].
Since W is free, it contains a &-subspace X such that W can be expressed as the

following direct sum.

W=Y, y-X.
yeT

Because dim Fis fini te, Hom F, W) is the direct sum of the fc-subspaces Hom F, y • X) ;

but Hom(F, yX) Hom(y-1'V, rX)=yHom(V, X). Hence if Y dénotes Hom
(F, X) given the trivial T-structure, then Hom (F, W) is A:r-isomorphic to kF® Y,

If we also give X the trivial T-structure, then Y is isomorphic to s-copies of X. There-
fore Hom (F, W) is &jT-isomorphic to ^-copies ofkF®X. But this complètes our proof
since JFis &r-isomorphic to kF®X.

LEMMA 2. If V and W are two kF-modules, then

Ext£r(F, W)^Hn(F, Hom (F, W))

foralln^O.
Proof This lemma is well-known. (Compare [7], page 272, exercises 4-6.) Hence

we only sketch its proof.
Dénote the functors At-*Hn(F9 Hom(^, W)) by En(A). (Hère A is a &F-module

and n^O.) Then the En satisfy the axiomatic description ([7], Theorem 10.1) of the

functors At-+Extnkr(A, W).
The only axiom which is difficult to verify is that

£n(F) 0 for n>0 and ail free modules F.

To do this one proves first, by an argument similar to that in the proof of Lemma 1,

that Hom (F, W) is co-induced over k : that is, ^F-isomorphic to Hom (kF, X) for



Poincaré Duality and Groups of Type (FP) 189

some £>vector space X with trivial F-structure. Then one shows that Hn(F, A) 0
when A is co-induced over k and «>0. (Compare [8], Proposition 1, page 120.)

We next recall some well-known facts about dual modules. The dual of a kF-
module M is the &F-module M* Homfcr (M, kF). If P is a flnitely generated, projec-
tive, right &F-module and A is a left &F-module, then P* is flnitely generated and

projective, and

P®kr A and Homfcr(P*, A)

are naturally isomorphic.
Given a chain complex of &F-modules of flnite length K:Kn-^Kn-v-^ >K09

where each Kt is finitely generated and projective, we can form its dual cochain
complex K*\ K* -+ K* -» K*. Given, in addition, a fcF-module A, we can form
chain complexes

K®kr A\Kn®kr A-tK^^kr A ->•••-> K0®kr A,

and

Homfcr(K*, A): Homfcr (K*, A) -+ Uomkr(K*. t, A)->••.-? Homfcr(#0*5 A).

By the above remarks, #®fcr A and Homkr(K*, A) are isomorphic chain complexes.
Dénote the ï-th homology group of K®kr A by C, and the i-th cohomology group of
K* by C\

PROPOSITION 1. Under the above asSumptions, thère exists a spectralséquence with

^ A))

and converging to Cn-p+q.
Proof. Proposition 1 is a spécial case of the spectral universal coefficient theorem.

(See [4], page 100, Theorem 5.4.1.) In order to fit with Godement's notation, let

Li Kt-hM° A, and Ml 0 for ail /^0.

Then Theorem 5.4.1 of [4] posits the existence of a spectral séquence with E%q Ext%r

(Cn~\A) and converging to Hp+q(nomkr(L9 A)). But Lemma 2 states that Ext£r

(Cn-q,A)^Hp(F,Hom(Cn-q,A)). On the other hand Hp+q(Homkr(L, A)) and

Hn_p+q(Homkr(K*, A)) are identical, and by the remarks preceding the statement of
Proposition 1, J^^+^Hom^^*,^)) and Cn-p+q are isomorphic. Concatenating
this information complètes the proof of Proposition 1.

We say that F is a group oftype (n - FP) over k'xik with the trivial F-structure has

a resolution of finite length 0 -? Ps -> Ps_ x -+ > Po -*k-+ 0 by projective £F-modules
such that Pi is finitely generated for ail i^n. When « oowe say more simply that F
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is a group oftype (FP) over k. Moreover, if n= oo and k is replacée by Z in the above

définition, then we say that F is a group of type (FP).

COROLLARY 1. IfF is a group oftype (FP) over k and A is a kF-module, then

there exists a spectral séquence (whose dijferentials dr hâve bidegree (r, r— 1)) with

<0p«^Hp(F, Hom(Hq(F, kF\ A))

and converging to Hq-P(F, A).
Proof Consider a resolution of k O-+Kn-+Kn-.i-+ >Ko-+k-+0 by finitely

generated, projective modules Ki9 and let K dénote the chain complex Kn-+Kn-X
-> > Ko. Applying Proposition 1 to the complex K and the &F-module A, we obtain
a spectral séquence with E%q ^Hp(F,Uom(Hn~p(F, kF), A)) and converging to
Hn-.p+q(F, A). Then let êpq be Ep'n~q and we are done.

The next corollary partially recovers the "inverse duality" discovered by Bieri.
(See [1], Remark following Proposition 5.3.)

COROLLARY 2. Let F be a group oftype (FP) over k such that Hl{F, kF) 0

for ail i^n. If C dénotes Hn(F, kF), then

HS(F, A)ç*Hn-s(F, Hom(C, A))

for every integer s and every kF-module A.

Proof Under the above assumptions, the spectral séquence of Corollary 1 col-
lapses and yields that Hn_p(F, A) is isomorphic to HP(F, Hom(C, ^4)). The resuit now
follows by substituting n—s for/? in this isomorphism.

Remark, Prior to my work, Borel and Serre had observed (private communication)

that Bieri-Eckmann duality [2] could be recovered from a spectral séquence
(constructed under the same hypothèses as Corollary 1) with Epq ^HP(F, Hq(F, kF)
®A) and converging to Hq~p(F9 A). This spectral séquence is obtainable in a manner
analogous to the one from Proposition 1 by making use of the spectral Kûnneth
formula ([4], page 102, Theorem 5.5.1) together with the natural isomorphism between

P*®kr A and Homfcr(P, A) valid for any pair of left &r-modules, provided that P is

finitely generated and projective.

2. The Main Theorem

We now corne to the main resuit of this paper.

THEOREM 1. Suppose that H %F, kF) Ofor ail i< n and that Hn(F, kF) contains

a non-zero finite-dimensional sub-kF-module. IfF is of type (« — FP) over k, then we

conclude the following:
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(a) F is oftype (FP) over k;
(b) HXr,kr) 0for ail i±?n;
(c) dimHH(r,kr)=l.
Proof. For n 0 this resuit is well-known. Hence we may assume that n>0.
Consider a projective resolution of k with minimal length m

where Kt is finitely generated for ail /<w. Clearly m^n9 and we intend to show that
m n. Let K be the chain complex Kn-^Kn_1-^ >KQ9 and A be a &F-module.
Applying Proposition 1 to this pair and noting that the resulting spectral séquence
collapses, we obtain an isomorphism between HP(F9 Hom(C", ^4)) and Cn_p for ail/?.
Recall that Cl is the /-th. cohomology group of K* and that Cf is the /-th homology
group of À*®^^. In particular, Ct and Ht(r9 A) are isomorphic for ail /<«;
consequently,

(ï) Hm(F9Hom(Cn9A)) 0 if w>/i, and

(ii) Hn(F9 Hom(CM, A))*H0(r, A).
By the hypothèses of Theorem 1, Hn(F, kF) contains a sub-fcr-module Fsuch that

0<dimF<oo. Since Hn(F,kF) is a sub-A;F-module of Cn, we see that V is also a
sub-&r-module of C". Applying the functor Hom A) to the short exact séquence
0-* V-+ Cn-+CnjV-+0, we obtain a new short exact séquence of /rF-modules

Now, applying the functor H*(F, to this séquence, we obtain the exact séquence

Hm(F, Hom(C"\ A))-+Hm(F, Hom(F, A))-+Hm+i(F, Hom(C7K, A)).

Since k has a projective resolution of length m, Hm+x (r, Hom (C"/ F, ^4)) must vanish,
and hence the above séquence dégénérâtes into the following epimorphism:

(iii) Hm(F, Hom (C, ^)) -> Hm(F, Hom (F, ^)) -> 0.

Suppose that m>n. (We intend to show that this assumption leads to a contradiction.)

Then, by (i) and (iii), Hm(F, Hom (F, A))=0 for every ÂrF-module A. This fact,
in conjunction with Lemma 1, yields that Hm(F, W) 0 for every free (hence, also

every projective) module W. In particular Hm(F, Km) vanishes, which implies that
dm:Km-+Km-1 is a split-/:r-monomorphism. Therefore Km_x\dmKm is projective (and
finitely generated if m— 1 =n)9 and

is a projective resolution of A: with length m-1 whose first n+ 1-terms (starting with
#0) are finitely generated. But this is a contradiction. Hence m=n9 which proves
assertions (a) and (b) of Theorem 1.
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Since H0(F, kF)=k we obtain, using (ii) and (iii), the following inequality:
(iv) dimHn(r,Hom(V9 kr))^l. But Lemma 1 states that Hom(F, kF) is the

direct sum of ^-copies of kT where ^=dimF. This fact, together with the inequality
(iv), implies that dim Hn(F, kF) 1, which complètes the proof of Theorem 1.

One says that F is a group oftype (VFP) over k if F contains a subgroup of finite
index of type (FP) over k.

ADDENDUM. If we replace in the hypothèses of Theorem 1 (n-FP) by (VFP),
then conclusions (b) and (c) remain true.

Proof This is a conséquence of the following well-known fact: IfF' is a subgroup

offinite index in F, then H\r, kF) and Hl{F', kF') are isomorphic kF'-modules for ail
integers i.

3. Applications

Our first application of Theorem 1 is to extend some results from [3].

THEOREM 2. If F is a finitely presented, torsion-free group, then any sub-kF-
module of H2 (F, kF) has dimension 0, 1, or oo.

The proof of Theorem 2 dépends on the following elementary lemma.

LEMMA 3. Let Ibe a subfield ofk, and A a IF-module. If A®t k contains a sub~

kF-module V such that

0<dimk F<oo,

then A contains a sub-lF-module W such that

dimk F<dimj W<zo.

Proof Regarding k as a vector space over /, letf:k-+l be a non-zero linear func-
tional. Then define a /F-homomorphism g:A®lk-*A by composing ià®f:A®l
k-*A®tl with the natural isomorphism from A®tl Xo A. Let W=g(V), then one

easily checks that Wsatisfies the conclusion of Lemma 3.

Proofof Theorem 2. Because of Theorem 5.1 of [3], it suffices to consider the case

where k has characteristic 0. Since F is finitely presented, H2(F, kF) and H2(F, QF)
®Q k are isomorphic fcT-modules. (Hère Q dénotes the rational numbers.) Let Fbe a

sub-fcr-module of H2(F9kF) such that 0<dimfcF<oo. By Lemma 3, H2(F,QF)
contains a sub-QF-module W such that dimkF<dimQPF<oo; hence to prove
Theorem 2, we need only show that dimQ W= 1.
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But because of Theorem 5 3 of [3], we may assume that fis a group of type
(2-FP) over Q Since H°(F, QF) 0, Theorem 1 implies Theorem 2 provided we can
show that H1 (F, QF) vamshes

To do this we assume îts opposite, îe Hl(F, QF)^0, and show that this

assumption leads to a contradiction As a conséquence of Lemma 3 5 of [10]
and section 5 1 of [9], F has mfiniteiy many ends Hence by the Main Theorem
of [9], fis a non-trivial free product of subgroups Ft and F2, both of which are

finitely presented by a resuit of Stallmgs ([11], Lemma 1 3) By the "Mayer-Vietons"
séquence ([6] or [10], Theorem 2 3), H2(F, QF) is QF-isomorphic to the direct sum
of #2(F15 Qr) and H2(F2, QF) Therefore one of thèse modules, say H2(FU QF) to
be spécifie, contains a non-zero finite-dimensional sub-QF-module But this is

impossible, since

H2(FU QF)^H2(FU QA)®^ QF

as Qr-modules This complètes the proof of Theorem 2

One says that F is virtually torsion-free if F contains a torsion-free subgroup of
finite index Then the following extension of Theorem 2 is easily proven

ADDENDUM If F is finitely presented and virtually torsion-free, then any sub-

kF-module of H2(F, kF) has dimension 0, 1, or oo

Our second application is the following resuit

THEOREM 3 Suppose that F is a finitely presented group of type (FP), and let n
be the smallest integer such that Hn(F, ZF)\0 If Hn(F9 ZF) is a finitely generated
abehan group, then F is an n-dimensional Poincaré duahty group

Remark Such an integer n exists, since for groups of type (FP) Hl(F, ZF) cannot
vanish for ail i

Proof Since F is a group of type (FP), ît is also of type (FP) over k Furthermore

Hl(F, kF) is &-isomorphic to the direct sum of H1 {F, ZF)®k and Tor(#I+1(F, ZF),
k), and Hl(F, ZF)®k is embedded as a sub-ArF-module of Hl(F, kF) via this îso-

morphism (Hère, and for the rest of this paper, ® and Tor are over Z
Suppose Hn(F, ZF) has/?-torsion for some prime/? Then by the above discussion,

we hâve the following facts

(a)#'(F, ZpF) 0 for ail K/f-1,
(b) Hn(F, ZpF)^0, and

(c) 0<dimZpiFI~1(F, ZpF)<oo
(Hère Zp dénotes the field with /7-elements But thèse facts contradict Theorem 1

Thus Hn(F, ZF) is a free abehan group of rank s where 0<5-< oo

Therefore H\F, kF) 0 for ail /<«, and Hn(F, kF) contams a sub-&F-module of
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dimension s. Now by a second application of Theorem 1, we hâve dim Hn(F, kF)=l
and H\r9 kF) 0 for ail i\n. Consequently we hâve s= 1 and both H\F, ZF)®k
and Tor(//I(r, ZF), A:) vanish for ail i^n. By setting k equal to Q and Zp respectively,
we see that Hl(r, Zr) 0 for ail i^n. And since s= 1, #M(r, Zr) is infinité cyclic.
Hence F satisfies the conditions of [5] to be an «-dimensional Poincaré duality group.

ADDENDUM. The conclusion ofTheorem 3 remains true when the hypothesis

"Hn{F, ZF) is afinitely generated abelian group"

is replacée by thefollowing two assumptions:
(a) H"(F, Zr) contains a non-zéro finitely generated (as an abelian group) sub-F-

module, and

(b) Hn(F, ZF) is afree abelian group.
Proof. Let A be a non-zero sub-r-module of Hn(F9 ZF) such that A is finitely

generated as an abelian group. By assumption (b), A®Q is a non-zero finite-dimen-
sional sub-QF-module of Hn(F, ZF)®Q. But H\F9 Zr)®Q and Hl(F, QF) are
isomorphic QF-modules for ail i^O. Therefore Theorem 1 implies âimQHn(F9 ZF)
® Q 1. This fact, together with (b), yields that Hn(F, ZF) is infinité cyclic. Now apply
Theorem 3 to complète the proof.

4. Appendix

We mention a conséquence of Theorem 2.

COROLLARY 3. If F is finitely presented and virtually torsion-free, then any
sub-F-module ofH2(F9 ZF) is either

(a) zéro,
(b) an infinité cyclic abelian group\ or
(c) not finitely generated as an abelian group.

(This resuit extends Corollary 5.2 of [3].)
Proof Corollary 3.7 of [10] implies that H2(F, ZF) is a torsion-free abelian

group. Thus it suffices to show that dimQ,4<g)Q l when A is a non-zero finitely
generated (as an abelian group) sub-F-module ofH2(F, ZF). But this follows from the
addendum to Theorem 2 where we specify k to be Q.

Note added in proof: 1) There are analogues to our results in the theory of homol-

ogy manifolds, namely in the work of P. E. Conner and E. E. Floyd (Michigan
Math. J. 6 (1959), 33-43).

2) K. Brown has recently found an élégant new proof for Theorem 1 which avoids
the use of spectral séquences.
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