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Konforme Verheftung von Gebieten mit
beschrinkter Randdrehung

ALFRED HUBER (Ziirich)

Das Problem, wann eine vorgegebene Verheftungsvorschrift fiir die Rinder zweier
ebener Jordanbereiche im Sinne von A. Pfluger [9] zuldssig ist, d.h. wann sie eine
Verheftung der beiden konformen Strukturen zur Folge hat, ist wohl heute noch als
ungeldst zu betrachten. Immerhin ist man im Rahmen der Theorie der quasikon-
formen Abbildungen — im Anschluss an eine Entdeckung von Ahlfors und Beurling
[3] tiber das Randverhalten — zu einem niitzlichen hinreichenden Kriterium gelangt
(O. Lehto und K. I Virtanen [4], A. Pfluger [9]).

In der vorliegenden Arbeit betrachten wir einen Fall von isometrischer Verheftung:
Zwei von rektifizierbaren Jordankurven berandete Bereiche sollen derart miteinander
verheftet werden, dass zugeordnete Randbogen stets dieselbe Liange aufweisen. Wir
beschrianken uns auf eine Teilklasse der rektifizierbaren Kurven, nimlich die Kurven
von beschrinkter Drehung (V. Paatero[7, 8]). Durch Anwendung eines Darstellungs-
satzes von Paatero und des oben erwidhnten hinreichenden Kriteriums erhalten wir
folgendes Resultat:

SATZ. Lings Bogen, welche keine Nullwinkel enthalten, ist die isometrische Ver-
heftung von Kurven beschrinkter Drehung zuldssig.

Dieses Ergebnis steht in enger Beziehung zum Alexandrowschen Verheftungssatz
fiir zweidimensionale Mannigfaltigkeiten beschrinkter Kriimmung [1, 2]. Einerseits
wird es durch diesen und Resultate von 1. G. Reschetnjak [10] impliziert. (Es ist also
bereits bewiesen, und zwar sogar ohne Annahme iiber die Abwesenheit von Null-
winkeln, allerdings — vom funktionentheoretischen Standpunkt aus gesehen — auf
kolossalem Umweg). Anderseits aber bildet der obige Satz eine der Grundlagen fiir
einen funktionentheoretischen Zugang zum Alexandrowschen Verheftungssatz. (Die
interessanten Probleme eines solchen Zugangs sind von H. Leutwiler [6] eingehend
diskutiert worden.)

Beweis des Satzes. Sei 2 ein beschrinktes, einfach zusammenhingendes Gebiet
in der komplexen Ebene, dessen Rand I' von beschrinkter Drehung ist (Definition
siche V. Paatero [7, p.6]). Sei f eine konforme Abbildung des Einheitskreises
{¢ | 1¢I<1} auf Q. Nach Paatero [7, p. 45] existiert eine Funktion y, definiert und
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von beschrdnkter Schwankung auf [0, 27], derart dass

1 J )
g () = = 5 [ ogle® ~ 01 a0 @) (1)

Wir ibertragen diese Darstellung vom Einheitskreis auf die obere Halbebene
{z | Im>0}. Die Funktion

z— i
. o
z4i

g=foh, wobei h(z)=

bildet diese Halbebene konform auf Q ab. Dabei ist

log|g’ ()| = log

I3 Z-—i .
f (z—-_i—_;)] +log2 —2log|z +i. (2)

Es bezeichne p' die durch A~! auf die reelle Achse verpflanzte Funktion ¥, p'(¢)
=y [h(¢)]. Wir nehmen an, dass f(1)=g(o0) innerer Punkt eines geradlinigen
Randstiicks ist. (Diese Annahme ist fiir das Folgende ohne Belang, da die zu be-
weisende Zulédssigkeit einer Verheftung eine lokale Eigenschaft ist). Dann besitzt das
durch u’ erzeugte Mass kompakten Tréger, und es ist

+ 0
f du' (t)=2=.
Aus (1) und (2) erhdlt man nach kurzer Rechnung die Darstellung
+ + o0

1 —t
log|g' (z)|=—log2—- | log IZ’*L duy' ()= f log|z—t| du(?)+const., (3)
n J1+1 .

i« 0]

wobei

7]
p=—=.
7
Kurven von beschriankter Drehung sind rektifizierbar (V. Paatero [8, p. 6]). Es
bezeichne y denjenigen Teilbogen von I', welchem bei der Abbildung f ~* das zwischen
e'® und e (a<p) liegende Kreisbogenstiick entspricht. Nach bekannten Resultaten
iiber das Randverhalten bei konformer Abbildung (F. Riesz [11], W. Seidel [12])
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besitzt y die Linge

B

L=f () do, (4)

- 4

wobel

@ (e®)=lim|f" (re'®)|.

r—1

(Dieser Limes existiert fiir fast alle @, da die Randkurve I rektifizierbar ist). Durch
Anwendung des Lebesgueschen Konvergenzsatzes erhdlt man in unserm speziellen
Fall

2n

<p(ei9)=exp{—lj log|e™ — €| dy (9)}-

(i

Aus (4) folgt damit

B

2r
L=J‘6Xp£—; f log|e®— €| dy (9)} de .
\
]

a

Die Verpflanzung auf die Halbebene ergibt

b + o0

L=Cfexp{f log|&—n| du(n)} dc . (5)

Dabei ist [a, b] das dem Bogen y bei der Abbildung g~' entsprechende Intervall auf
der reellen Achse.

Seien nun Q, und Q, einfach zusammenhdngende, beschrinkte Gebiete von
beschriankter Randdrehung mit (gleich langen) Randern I'; und I',, welche isometrisch
verheftet werden sollen. Zur Beurteilung der Zuldssigkeit der Verheftung fiihren wir
das Problem auf die Verheftung von Halbebenen zuriick: Sei g; eine konforme
Abbildung der obern Halbebene auf Q,, und sei g, eine konforme Abbildung der
untern Halbebene auf Q,; diese Abbildungen konnen stetig auf die Gebietsrander
ausgedehnt werden. Dabei seien g;(0) und g,(0) Punkte, welche bei der Verheftung
miteinander identifiziert werden. Da die Zuldssigkeit einer Verheftung eine lokale
Eigenschaft ist, diirfen wir ohne Verlust an Allgemeinheit annehmen, dass g;(c0) und
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g,(00) innere Punkte eines geradlinigen Randstiickes sind. Wir definieren

a(x):= Léange des Bogens g,([0, x]),
B(x):= Léange des Bogens g,([0, x]).

Die isometrische Verheftungsvorschrift fiir I'; und I', induziert auf der reellen Achse
die Verheftung x— B~ ![a(x)]. Zum Beweis von Satz 1 ist nun noch nachzuweisen,
dass die Funktion B-! o« auf jedem endlichen Intervall quasisymmetrisch ist. (Fiir die
hier verwendeten Begriffe und Resultate siehe Lehto und Virtanen [5], insbesondere
p. 91/92). Hiefiir geniigt es zu verifizieren, dass o (und somit auch f auf jedem
endlichen Intervall quasisymmetrisch ist.

BEHAUPTUNG. Es gibt positive Zahlen M und ¢, mit der Eigenschaft, dass

1 a(x+t)—a(x)
Mgoc(x)—a(x—t)éM &

fiir alle reellen x und alle ¢(0, ¢,).
Beweis. Da

X + o
oc(x)=Cfexp{f log|&—n du(n)} dé,

0 -0

ist (6) aequivalent mit

x+t + oo

T exp{ ] log|&—nldu(n)} at

M

X

AN

| %R

IIA

- M. (7)
exp{ | logl¢—nl du(n)} d¢

Das Mass u besitzt folgende Eigenschaften:

(a) pn hat kompakten Triger,

(b) p(R)=-2,

(c) FiralleneRist u* ({n})<lund u~({n})<1, wobei u=p* —pu~ die Jordansche
Zerlegung des Masses u bezeichnet. (Diese Eigenschaft ist eine Folge des Ausschlusses
von Nullwinkeln).

Sei nun ¢, eine positive Zahl mit folgender Eigenschaft: Es gibt eine Zahl A< 1 so,
dass

p*(I)SA und p~(1)£4

fiir jedes abgeschlossene Intervall 7, dessen Linge 4 ¢, nicht iibersteigt.
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Seien nun xeR und 7€ (0, ¢,) vorgegeben. Wir fiihren folgende Bezeichnungen ein:

Po=u"([x—2¢t, x+2¢]),
p1=u"((— o0, x—21)),
po=pn"((x+2¢, +0)),
go=p" ([x—2t, x+2¢]),
g1=p"((— o0, x—21)),
q,=u"((x+2t, +0)).

Abschdtzung des Zdhlers im mittleren Term von Ungleichung (7) nach oben: Fiir

¢e[x, x+t]und ne(— oo, x—2t) gilt
lx—nl=|¢—nl=|x+1—n].

Fir £e[x, x+¢] und ne(x+2¢, +o0) gilt
|x+t—n|=|E—nl=[x—nl.

Daraus schliessen wir, dass fiir £e[x, x+1 ]

+ o0
floglé—nldu(n)§11—12+13—14+polog(3t)— f log|&—nl du™ (1),
-0 [x—2t, x+2t] (8)
wobei
I,= J log|x+t—nl du™ (n),
(—o0,x—21)
P p—
I,= log|x—nl du™ (n),
(= o0, x—2t)
I;= log|x—nl du* (n),
(x+2.;,+oo)
P
I,= ] log|x+t—nl du™ ().

(x+2t, + o)
Aus (8) folgt
x+t + o

| exp{ [ rogte—ni du(n)} ¢

— o0
x+t

§CXP{I1"‘12 +I3""I4}'(3t)po’ f Cxp{" f loglé—'ﬂ dﬂ_ (”)} dé'

x [x~2¢t, x+2t]
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Zur Abschitzung des letzten Integrals nehmen wir zunidchst an, auf [x—2¢, x+2¢]
bestehe das Mass u~ aus einer einzigen Punktmasse g,. Das in Frage stehende
Integral nimmt in diesem Falle dann seinen grossten Wert an, wenn sich die Masse ¢,
im Punkt x+ (#/2) befindet:

x+t

J exp{— J log|&—n| du™ (n)} dé
x [x—2¢, x+2t]
x+t t/2

t 2
gj exp{—qolog é—(x+i)}}dé=2js_"°ds§1 r-/—l-t‘_q".
0

Besteht das Mass u~ auf [x—2f, x+2¢] aus endlich vielen Punktmassen, ndmlich
a1go N 7y, Ayqo IN 7y, ..., Ao in A, (0 +oty+ - +0a, =1, alle a;>0), so fiihrt uns eine
Anwendung der Hélderschen Ungleichung auf den eben behandelten Spezialfall zurtick :

x+t

f exp{— j log [ —nl du'(n)} d¢
X [x—2t, x+ 2t]
x+t x+t

m m . )
=j (H |§""j|“am> dé< 11 <J‘ |E—n;i % dé) < Toqlte
= i=1 1—4

X

Durch Verschmieren der Punktmassen ergibt sich die Giiltigkeit derselben Abschit-
zung fiir ein beliebiges Mass p~. Damit ist gezeigt, dass

x+t + oo
6
J CXP{J log |¢—nl du(ﬂ)} ds”_S_eXp{Il--12+13——14}-_1 ;t-tl"‘PO"qo. ©)

Abschditzung des Nenners im mittleren Glied von Ungleichung (7) nach unten: Durch
Anwendung der Schwarzschen Ungleichung erhalten wir

P

(] )

x—t

=(} exp{% Tloglé—nl du(n)} exp{—% +f)loglé—-nl dp (’7)} dé)z

+ o0 X + o

§} exp{f log|&—nl du(n)} d&-f eXp{—- f log|&—n| du(n)} d¢.

x—t - 0 b el 3
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Unser Ziel ist eine Abschédtzung des zweitletzten Integrals nach unten. Zu diesem
Zweck suchen wir zunéchst eine obere Schranke fiir das letzte Integral. Dies geschieht
nach der beim Beweis von (9) beniitzten Methode. Wir stiitzen uns dabei auf folgende
Ungleichungen:

Fiir £e[x—1¢, x] und ne(— o0, x—2¢) gilt

|x—t—nl=|E—nlS|x—nl.

Fir ¢e[x—¢, x] und ne(x+2¢, + ) gilt

|x—n|2|E—nl=|x—1-7|.

Daraus schliessen wir, dass fiir £e[x—1t, x]

+ 00

- f log|é—nldu(n)=K,—K;+K,—Kj;

e )

+4o log (31)— f log[&—nl du* (n), (10)
[x—2¢t, x+ 2t]
wobei
Ki= [ logls—nldw (=l Ki- [ toglx=t=ntau” (o),
(—oo,x—21) (— o0, x—2t)

K,= f loglx—t—nldu (1), Ks= f log|x—nl du* (n)=1I,.

(x+2t, +o0) (x+2t, + ®)

Indem wir das rechte Integral in (10) nach derselben Methode abschétzen wie das
rechte Integral in (8), erhalten wir

x + o
J em{—f log |[&—n] du(n)} d‘féeXP{Kz—Kx‘*'K‘r‘Ka}'lflthowo-
x—t — @

Daraus folgt
x + o0

1 — - Vl:._% 1+ po—4qo

JGXP{J oglé—nldﬂ(ﬂ)}dézem{& Ky + K=Ky} ==t - (11)
x—t — o

Beweis der rechten Hilfte von Ungleichung (7): Aus (9) und (11) erhalten wir fiir
das mittlere Glied von Ungleichung (7) die obere Schranke

36

eXP{(Il—Kl)—(I4-K4)}'m- (12)
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Dabei ist

x+t—11’

I,—K = J' log ndu+(f1)§pllog3- (13)

(—o,x~21)

(Die obere Grenze des Integranden ist log3).
Analog gilt

x+t—n| _
I,—K,= log —————jdﬂ (n)=—q, log3. (14)

X—t—n
(x+2t, + 0)

(Die untere Grenze des Integranden ist —log3). Da p, +p,<u*(R)+u" (R)=|ul,
schliessen wir aus (12), (13) und (14), dass die rechte Hélfte von Ungleichung (7)
giiltig ist, falls wir

setzen. Mit derselben Zahl M gilt auch die linke Hdlfte von Ungleichung (7). Der
Beweis verlduft ganz analog.
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