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Fixed-Point Sets of Group Actions on Finite Acyclic Complexes

Robert Oliver1)

This paper is an outgrowth of the author's thesis [9], in which he attempted to
classify which compact Lie groups hâve smooth fixed-point free actions on disks (or
equivalently, simplicial fixed-point free actions on finite contractible complexes).
Hère, the gênerai problem is studied, by completely différent methods, of classifying
which finite complexes can be fixed-point sets of simplicial actions of a given group on
finite contractible or Zp-acyclic complexes.

P. A. Smith has shown [12] that an action of a /?-group on a Zp-acyclic complex
must hâve a Zp-acyclic fixed point set. The converse was proven by Lowell Jones [8] :

Any finite Zp-acyclic complex may be the fixed-point set of an action of Zp (and thus
of any /?-group) on some finite contractible complex. Thus, in the case of /?-group
actions on contractible or Zp-acyclic complexes, the answer to thèse questions is

already known.
In the other cases of actions of finite groups, it is shown hère that the Euler

characteristic is the only obstruction to a finite complex being a fixed-point set. More
specifically:

For any prime/?, and any finite group G not of/?-power order, there is an integer
mp(G) such that a finite complex K is the fixed-point set of an action of G on some
finite Zp-acyclic complex if and only if x(K)=\ (modmp(G)). For any group G

not of prime power order, there is an integer nG such that a finite complex K is the

fixed-point set of an action of G on some finite contractible complex if and only if

The following notation for classes of finite groups is used for the calculation of
thèse constants. For/? and q primes, let <$% be the class of finite groups G with normal
subgroups P^xH^xG, such that P is of /?-power order, G)H is of g-power order, and

HjP is cyclic. Let <&\ and ^\ be the classes of such G where H=G and |P| 1,

respectively. Let &p={Jq&qP>&q:=UpK ^ Up^ etc. The foliowing will be

proven:
The integer mp (G) is zéro ifand only if Ge <#\. If G$ ^p, then mp (G) is a product of

distinct primes (or 1), and q | mp(G) if and only if Ge&qp.

The calculation of nG is less complète, but the following is shown:

l) This work was done while the author was supportée by an NSF graduate fellowship.
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The integer nG is zéro if and only if G e^1. If G&&1, then nG is divisible by at most
the square of any prime, and q \ nG if and only if Ge &q.

The question of the existence of fixed-point free actions on contractible manifolds

goes back to Smith. In the case of smooth actions on disks, the only previously known
example of a fixed-point free action was the action of A5 constructed by Floyd and
Richardson [3]. Greever [4] described certain restrictions which must occur for a

group to hâve a fixed-point free action on a contractible space where certain conditions
hold, which include the case of smooth actions on disks. The results described above

immediately yield:
A finite group G has a fixed-point free action on a finite Zp-acyclic complex if and

only if G$yp. The group G has a fixed-point free action on a finite contractible
complex (and then on a disk, via regular neighborhoods) if and only if G$ & \JP &p.
In particular, a finite abelian group has a smooth fixed-point free action on a disk if
and only if it has three or more noncyclic Sylow subgroups.

The problem of constructing fixed-point free actions of connected positive-
dimensional groups is also briefly discussed, and an example of SO (3) acting on a disk
is constructed.

The above results hâve been described as applying to the category of simplicial
actions on finite simplicial complexes. In obtaining the results of Section 2-4, it
will be more convenient to work in a slightly broader category; that of cellular actions

of finite groups on finite CW-complexes. In this category, the action of any group
élément is required to take the interior of any w-cell homeomorphically to the interior
of some other ji-cell, and via the identity whenever a cell is mapped to itself. Note
that any simplicial action on a finite complex becomes a cellular action upon taking
the first barycentric subdivision. Conversely any CW-complex with a cellular action
can be made into a simplicial complex with simplicial action (of the same equivariant
homotopy type) by subdividing cells and taking simplicial approximations to the

attaching maps ; if the fixed point set is already a simplicial complex then this can be

done without changing it (except for subdividing). Thus, in terms of the question of
which simplicial complexes can be fixed-point sets, thèse two catégories are équivalent.
Furthermore, the category of smooth actions of finite groups on compact manifolds
is included in both of thèse catégories (see, e.g., Illman [7]).

I would like to thank Wu-Chung Hsiang and William Browder for their many
helpful suggestions while I was working on my thesis and on this further work.

1. Restrictions on Fixed-Point Sets

In this section, the methods used by Greever in [4] will be extended to prove some
Euler characteristic conditions on the fixed-point sets of certain group actions. The
results obtained will be basically the same as those proven in Chapter III of the
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author's thesis [9], but the proofs are simplifiée by restricting to the category of
cellular actions on finite CW-complexes, as described above.

Two of the standard theorems from the homological theory of Zp-actions (p prime)
will be used (see, e.g., Bredon [1], Chapter III, §7). If Zp acts on the finite complex X,
one has the relation

and from that, x(XZp) x(X) (mod;?). If X is Z^-acyclic, then so is XZp.

lîP is any group of/?-power order, then P has a normal séries O=/>0<iP1<3 • • <i Rk

=P, such that PJPi-i^Zp. In gênerai, for an action of G on I and some H^G,
there is an induced action of GjH on XH, with (XH)G/H XG. Thus, the above theorems

for Zp-actions carry over to any p-group P: if P acts on the finite complex X,
then x(Xp) x{X) (mod/?), and if Xis Zp-acyclic, then so is Xp.

The following lemma is a spécial case of a more gênerai proposition proven in [9] :

if a cyclic group acts on a compact or finite dimensional space, such that the fixed-

point set of any subgroup has finitely generated Cech cohomology, then the Euler
characteristic of the fixed-point set of the whole group is equal to the Lefshetz
number of the action of a generator.

LEMMA 1. Assume Zn acts on the finite Q-acyclic complex X. Then x(XZn)=l.
Proof. First assume that Zpk acts on any finite complex X. In this case, Zp acts

on X\Zpk-i with fixed-point set (X/Zpk-i)Zp XZpk9 and application of the Euler
characteristic formula gives the relation

Now assume that n m-pk, wherepjfm, and that the lemma has been proven for
m. Then, if Zn acts on the Q-acyclic space X, one has XZn (XZm)Zpk, and

Since Zw and Zpk hâve relatively prime order, one has XZmIZpk (XIZpk)Zm and

ZZm/Zpk-i (Z/Zpk-i)Zm. The existence of the transfer map shows that the orbit
space of any finite group action on a Q-acyclic space is Q-acyclic, and so by the

induction hypothesis, x ((X/Zpk)Zm)=x {{X\Zpk - * )Zm) 1. It follows that X (XZn) 1.

Now the desired restrictions on fixed-point sets follow quickly:

PROPOSITION 1. Assume G acts on the finite Zp-acyclic complex X. If Ge&lp,
then x(XG)= 1. IfGe9*p9 then x(XG)= 1 (mod?).
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Proof. If Ge@l, then G has a normal subgroup P of ^-power order, such that
GjP is cyclic. Then Xp is Z^-acvclic, thus Q-acyclic, and x(XG)=x((Xp)G/p)=l by
Lemma 1. If Ge&qp, then G has a normal subgroup He&l of ^-power index. It
follows that x(XH)= h and *(ArG)=x((Arlf)G/II)= 1 (mod?). D

PROPOSITION 2. Assume G acts on thefinite contractible complex X.IfGe^1,
then x(*G) l; ifGe&*9 then x(XG)=\ (moàq).

Proof. If Ge^1, then Ge^\ for some prime p, and Proposition 1 applies. If
Ge@q, then Ge^ for some;?, and again Proposition 1 applies.

In the case of actions of Zp-acyclic complexes, it turns out that Proposition 1 gives
the only restrictions on the fixed-point set when G is not of/7-power order.

2. Resolving Fractions

In this section, a bookkeeping method will be introduced for studying actions of a

group on acyclic spaces terms of the Euler characteristics of the fixed point sets of
subgroups. The following lemma will motivate the définitions. For a finite group G,

y (G) will dénote the set of subgroups of G.

LEMMA 2. Assume G acts on the finite complex X; then there is a unique function
that

cp(K) (1)

for ail H^G. Furthermore, ifJf^6^(G) is any non-empty subset with the maximality
condition: HeJf and H^K^G imply KeJtf, then

HejT
cp{H). (2)

In particular, (p{H)=x{Xa, (Jk=h XK) for H<=.G.

Moreover, <p is constant on conjugacy classes of subgroups, and [N(H):H] | q>(H)

for any H^G,
Proof. Choose an orderingfor <S?(G)= {Ho, Hl9...9 Hs} such that H^Hj implies

i>j. Then

for ail Ht is a necessary and sufficient condition for (1) to hold, and can be applied
successively for /=0,1,..., s to define q> uniquely.
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Now let Jf be any non-empty set of subgroups with the maximality condition,
and assume (2) holds for ail appropriate proper subsets of ^f. Let HoeJt be minimal
in Jf. Let ^=^--{#0}, ^2 {K:H0^K^G}.

Ifjf2 .iP, then

Z(U XH)=X(XH°) l+ £ p(ff) l + £ ç>(H).
fle/ tf=>ff0 HeJT

Otherwise, (2) holds for the sets Jt?l9 Jf2, and Jf1nJf2 by assumption,

U xH)=( u xH)O( U **),

and so

*( U xH)=x( U *")+*( U ^fl)-z( U x")

HeJ?

Then, for Hcz G,

x(xH, u xK)

K=>H

The action of an élément aeG takes the pair (XH, [Jk^h Xk) homeomorphically

to the pair (XaHa~\ \JK^aHa-i XK), and so cp(H) (p{aHa-1). The group N(H)JH
acts semi-freely on XH/{JKl3H XK with one fixed point, and so

x(XH, U XK) X(XHI\J XK)-ltz0(mod\N(H)IH\). Q

Now define a mod^ resolving function for G to be any function <p: Sf(G)-+ Z such

that:
1) cp is constant on conjugacy classes of subgroups.

2) [#(#):#] | ç>(#) for ail /fçG.
3) For any H^G such that ffe^, ^k2h ç>(^)=0.

Define an intégral resolving function for C to be a function (p:&(G)->Z which is a

mod/> resolving function for ail primes p; this amounts to replacing condition (3) by
the condition: £K2ff <p(K)=0 for ail He9x.

If G acts on any finite complex X, and <p is defined as in Lemma 2, then conditions

(1) and (2) hâve been shown to hold for ç. If in addition JHs Zp-acyclic, then Prop-
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osition 1 shows that <p is a modp resolving function for G. If X is Z-acyclic, then by
Proposition 2, q> is an intégral resolving function for G.

The sets of ail modp or intégral resolving functions of G form groups under point-
wise addition, and so one may define mp(G) and m (G) as the unique non-negative
integers such that

mp{G)*Z={(p(G):q> is a modp resolving function for G}

m(G)-Z—{(p(G):q> is an intégral resolving function for G}.

Thus, if F is the fixed-point set of an action of G on a finite Zp-acyclic complex, then

%(F)=l (modmp(G)). If F is the fixed-point set of an action on a finite Z-acyclic
complex, then x(^)=l (modm(G)).

It will be shown that for G not of p-powcx order, a finite complex F is the fixed

point set of an action of G on some finite Zp-acyclic complex if and only if x(F)— 1

(modmp(G)). The resuit for action on contractible complexes will be similar, but not
as complète. The basic idea will be to use the function cp as a pattern for building up a

space X with G-action, such that x(XH) 1 +Xk=h q>(K) for ail H^G. Two lemmas

will first be needed.

LEMMA 3. Assume that P is a p-group acting on the n-dimensional (n — 1)-
connected complex X. IfXH is Zp-acyclic and ofdimension less than nfor allO^Hç^P,
then Hn(X) is aprojective Z»\_P]-module.

Proof. The set {XH:0^H^P} is a set of Zp-acyclic subcomplexes of X closed

under intersections. It follows from the Meyer-Vietoris séquence (and inducting) that

£=Uo#hc:p^h is Z-acyclic. Thus, Hn(X) Hn(XlX) and H^XlX) consists of
torsion prime top for i<n.P acts semi-freely on Xj% with one fixed point.

Since for any surjection f:M-+T of Z [P]-modules, where M is free and T
consists of torsion prime to p, the kernel is projective, one may add free orbits of cells

to Xl%y killing ail homology in dimensions below «, and ending up with the n-
dimensional (»— l)-connected complex F, with a semi-free P-action with one fixed

point, and with Hn(Y)=Hn(X)®N, Na projective Z [P]-module. The séquence

0->Hn(Y)->Cn(Y, r*)-+-..^Co(r9 Yp)-+0

is exact (where C* (Y, Yp) is the cellular chain complex), ail but the first group is free,

and so Hn(Y) is stably free. Thus, Hn(X) is projective.

LEMMA 4. If X is an n-dimensional (n—\)-connected finite complex with an

action of some cyclic group Zm, such that %(XH) l for a// 0#7f^Zm, then Hn(X; A)
is a free A [Zm~]-module for A Zp(pJ^m) or A Q.
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Proof. For any finite complex F, one may define an Euler characteristic for Y with
values in the group RA(Zm) of virtual représentations:

i=0 i=0

(where Q(F; A) is again the cellular chain complex).
Let (p:<¥(Zm)->Z be defined by <p(0) /(I)-l, q>(H) 0 for ail subgroups

H^O. Then cp satisfies the condition x{XH)= 1 + £K=>H <p(K) for ail H^Zmi and so

by Lemma 2, #(^H, Uk=h Xk) 0 for ail 0^/fcG. In other words, for any proper
subgroup H, the numbers of even and odd dimensional cells in orbits of type G\H are
the same.

ït follows that xZrn{XH, Uk=>h Xk) 0 foi ail 0#/7cZm, and so

xzj U

Then

Since A [Zm] is semi-simple, it follows that Hn(X; A) is free.

Now, actions on Zp-acyclic complexes can be constructed from modp resolving
functions.

THEOREM 1. Let G be afinite group not ofp-power order, and q> a mod/? resolving
functionfor G. Then for any finite complex F with %{F)= 1 +cp(G), F is the fixed-point
set of an action of G on some finite Zp-acyclic complex.

Proof. The goal is to embed F as the fixed-point set of a (7-space X, such that
x(Xh)=\+Y,k^h <p(K) for a11 H^G, and such that XH is Zp-acyclic whenever H is

of/7-power order. This has been done for XG; assume the complex Xo has been

constructed, with G-action, such that the above properties hold for ail Ho>H0, for
some fixed Ho ç G.

Cells must now be added in orbits of type GjHQ, until the fixed-point set of Ho
meets the conditions described above. This amounts to adding cells to X"° in orbits
of type N{HQ)jHQ\ when thèse are extended equivariantly to the full orbits of type
G/H09 the remaining cells will be added to the fixed-point sets of other subgroups con-
jugate to Ho. Thus, the fixed point sets of thèse conjugate subgroups will be built up
at the same time to meet the desired conditions.

From the above assumptions on Xo, one has xC^H1+£*=># <p(K) for ail

o ; thus, using Lemma 2,

cp(H) (mod\N(H0)IH0\).
H=fl0
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If Ho is not ofp-power order, orbits of cells of type N(H0)/H0 may now be added to
Xq° to produce a complex with the desired Euler characteristic.

If Ho is ofp-power order, add orbits of cells of type N(H0)IH0 to Xq° to produce a

space Y which is «-dimensional and («— l)-connected for some n larger than the
dimension of X% for any H^>H0. The fixed-point set of any non-zero /?-group / in

N(H0)/H0 under the action on Y is Zp-acyclic, since P=P0/H0 for some p-group
P0^Gy and YP XP)°. Lemma 3 applies: Hn(Y) is projective as a Z [P]-module,
where P is a/?-Sylow subgroup of N(H0)/H0. It follows that Hn(Y; Zp) is a projective
Zp[P]-module, and thus (from Rim [10], Proposition 4.8 and Corollary 2.4) a

projective Zp [iV(i70)///0]-module.
Let R KIH0^N(H0)IH0 be any non-zero cyclic subgroup. Then Ke<$\, and it

follows from the définition of a modp resolving function that

Thus, by Lemma 4, Hn(Y;Zp) is a free Zp[£]-module for ail cyclic subgroups
&^N(H0)/H0 of order prime top. Since

the dimension of Hn(Y; Zp) as a Zp-vector space must be a multiple of \N(H0)/H0\.
Let M be the free Zp [J/Vr(^0)/^o]-rnodule of the same dimension.

Both M and Hn(Y; Zp) are projective. They are isomorphic upon restricting the
action to any cyclic subgroup of order prime top, thus hâve the same Brauer character,
and so are isomorphic as Z^i^/fo^Z/oJ-modules (see, e.g., [11], §§14, 16 and 18).

Thus, Hn(Y; Zp) is free, and so orbits of (« +1 )-cells of type N(H0)/H0 may be added

to Y to make it Z^-acvclic.

COROLLARY. For afixedfinite group G not of p-power order, afinite complex F
is the fixed-point set of an action of G on some finite Zp-acyclic complex if and only if
x(F)=l (modmp(G));

In the case of actions on contractible complexes, things are less simple. Define

a (7-resolution of a complex F to be a finite complex X with a cellular G-action such

that F=XG, Zis n-dimensional, (/i—l)-connected (for some «5*2), and Hn(X) is a

projective Z [G]-module.

THEOREM 2. Assume G is not ofprimepower order, andacts on thefinite complex
Y with fixed-point set F, such that x(^)~l (modm(G)). Then Y can be embedded

equivariantly into a G-resolution X of F.
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Proof Let cp be an intégral resolvmg fonction for G with <p(G)~x(F)-\ By the

techniques used m proving Theorem 1, F may be built up, without changmg the fixed

point set, to produce a G-complex Zo, such that j((l^)=l+^3H(p(^) for ail
0#//çG, and such that X" îs Zp-acychc for any //#0 of p-power order, for any
prime p

Now add free G-orbits ofcells to Xo to produce an «-dimensional, (n -1 )-connected

space X, where n^2 and n>dim(XH) for any 0#//çG By Lemma 3, Hn{X) îs a

projective Z[Pj-module for any Sylow-subgroup P^G It follows (Rim [10],
Proposition 4 9) that Hn(X) îs a projective Z [G]-module

The problem remains to détermine when a G-resolution may be modified to
produce a contractible complex with the same fîxed-point set For convemence, let
0* (G) be the set of finite complexes F with x (F) — 1 (modm (G)) the flnite complexes
which hâve G-resolutions For any «-dimensional G-resolution X of F, set yG(F9 X)

— 1)" [Hn(X)~\eK0(2j[G])> an obstruction lying in the projective class group If
yG(F, X) 0, then Hn(X) îs stably free, and n- and (n +1 )-dimensional cells may be

added to produce a contractible complex with fixed-point set F

3. The Obstruction yG

The constructions m Section 2 now make it possible to define an obstruction

yG(F) for Fe^(G), such that F îs the fixed-point set of an action of G on a finite
contractible complex if and only if yG (F) 0 It will turn out that yG (F) dépends only
on %{F) The following lemma will be used in the constructions throughout this

section

LEMMA 5. Assume G acts on the l-connected space X with fixed-point set F, and

assume that Ht (X) is a projective Z \G~\-module for alln^-2 Then X can be embedded

in a G-resolution Y of F, such that

Proof Let « dimZ, and lety be the smallest positive integer such that

lfj=n, then X is sl G-resolution, and we are done

Ifj<n, then choose some surjection/ (Z [(?])* -? Hj (X), and let M= Ker (/) Then

M is projective, and

Adding k free orbits of (y+l)-cells to X realizing / produces a new space Xo with
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homology

fft(X0)=0 for

HJ+1(X)®M for /=y
Ht(X) for i>j+l

and so £?=2 (-1)1 [#*(*<>)] £?= 2 (-1)' [#iP0]. Répétition of this procédure
will eventually produce a G-resolution F of F, with

Now set

J> (G) {yG (/?f, X): X is a G-resolution of a point}.

The set J*(G) is actually a subgroup of K0(Z [G]). If J^ and X2 are G-resolutions of
a point, then Xx vX2 (the one-point union at the fixed points) fulfills the hypothèses
of Lemma 5 and there is a G-resolution lofa point with yG(pt, X) yG(pt, Xx) +
+yG(pt, X2). If X is any G-resolution of a point, them so is its reduced suspension

IX, and yG(pt, IX) -yG(pt, X).

PROPOSITION 3. For any Fe0>(G), ifXt and X2 are two G-resolutions of F, then

Proof. Let X be the union of Xt and X2 identified at F. By Theorem 2, there is an
embedding of X into a G-resolution Y of F; thus both Xt and X2 are embedded in Y.

Let ni dim(Xi), m dim(Y), and assume /w^#f + 2.

For i=l or 2, the space Y\Xt has reduced homology in only two dimensions:

Hm(YIXt)2ÉHm(Y), and ^ + 1(F/Zi)^if/Ji(Arï). Thus, by Lemma 5, there is a G-

resolution Ff of (YjXi)G=pti with

It follows that yG(F, JT^-yeCF, Z2)e^(G). D
Now, for Fe0>(G), define yG(F) to be the image in £o(Z [C7])/^(G) of yG(F, X)

for any G-resolution Jf of F. If F is the fixed-point set of an action of G on a finite
contractible complex X9 then Zis a G-resolution of F, and so FeéP(G) and yG(F)=0.
The converse is proven in the following proposition:

PROPOSITION 4. IfFe0>(G) and yG(F) O, then G has an action on some finite
contractible complex with fixed-point set F.

Proof, Choose a G-resolution X of F. If X^0, then let F be a G-resolution of a

point, such that yG(pt, F)= —yG(F9 X). Let Xv Y be the space obtained by identi-
fying the fixed-point of F with any point of F^X. Then (Xv Y)G=F, and by Lemma
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5, there is a G-resolution £ of F with

It follows that the top dimensional homology of J? is stably free, and so free orbits of
cells may be added to produce a contractible complex.

If 0e^(G), then m(G) 1, and so mp(G)=l for ail primes p. It follows from the

corollary to Theorem 1 that G has a fixed-point free action on a finite Zp-acyclic
complex for every prime/?. A contractible complex with a fixed-point free action may
now be obtained by taking a finite join of thèse spaces. (Thus, yG(0) O whenever

0e^(G)).
The following proposition relates the obstruction yG(F) for différent complexes.

PROPOSITION 5. Let Fu F2e0*(G) be non-empty finite complexes. Then:

1) yG(F1) yG(F2) if Ft and F2 are homotopically équivalent.

2) Fl v F2 e£P(G) for any choice of base points, and

3) If f:Fl-*F2 is any (skelétal preserving) map with mapping cône Cf, then

Cfe&(G) and

4) IF1
5) IfQeP(G), then so is S0, andyG(S°)= -yG(0) 0).

Proof To prove (1), letf:Fl~>F2 be a homotopy équivalence, and Xt a. G-resolu-

tion ofF±. Let X^ dénote the rc-skeleton of Xl9 and set Yi~1) F2. Starting with the

homotopy équivalence

inductively construct spaces Y(n) and homotopy equivalences /(n) :F1uXi")-+ Y(n):

for every «-cell in Xi-F1 with attaching map a:Sn~1-+FluX(f~1), attach an«-cell
to y*"-1) via the map/^'^oa. Now, for n dim(X1), Y(n) will be a G-resolution of
F29 and yG(F2, Y™) yG(Fl9 Xx).

In (2), let X&Ft be G-resolutions. Then XivX2 has an action of G with fixed-

point set F±vF2, and by Lemma 5 can be embedded in a G-resolution X of Ft v F2

with yG{F1 vF29 X) yG(F» Xi) + yG(F29 X2).

In (3), let Zf be the mapping cylinder off:Ft^Zf and ZfjFx^Cf. Let JT be a

n-dimensional G-resolution ofF± and set ^ to be the union of Zand Zf9 joined at Ft.
Let Fbe an m-dimensional G-resolution of Zf containing X9 for m ^n + 2. Then YjX
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has a G-action with fixed-point set Cf, and its reduced homology is zéro except in two
dimensions: Hm(Y/X) Hm(Y) and Hn+1(Y/X) Hn(X). By Lemma 5, Y may be

embedded in a G-resolution t of Cf9 with

yG(Cf, f) (-l)w E^(n] + (-l)n+1 [Hn(X)] yG(Zf, Y)~yG(FuX).

Thus, VG(C/) ?G(Z/)-?G(F1) yG(F2)-yG(^i) (by (1)).
If Zis a G-resolution of Fl9 then IX is a G-resolution of IFU and yG(IF1?

~yG(Fl9 X). If 0e^(G) and Xis a G-resolutionof 0, thenthe unreduced suspension

IX is a G-resolution of S0, with yG(S°, ZX)= -yG0(, X). Q
Now, the basic property of the obstruction can be proven :

THEOREM 3. If G is not ofprime power order, and Fu F2e0>(G), then x(Fi)

Proof It suffices to prove that yG(F)=0 for ail F with x(F)=l. Then, whenever
%(F2), if neither is empty one may take any map f:Fx -+F2\ x(Cf)= 1 and so

7g(^2)-7g(^i) )'g(C/)=0. If either is empty, then x{IF1) x{IF2) 2 (setting
10=5°), and

By Theorem 2, any complex of Euler characteristic 1 is in é?(G); in particular
S1 v S0 is. Let/:S1 vS°-+SlvS° be the map which takes S1 -> S1 via the identity,
and takes S0 to the base point. Then Cf has the homotopy type of S1 v S0, and so

Suspending, one gets yG(Sn v Sn~1) 0 for ail n^ 1.

Let F be any wedge of sphères with x (F) 1 : F is a wedge of equal numbers of odd
and even dimensional sphères. Then, one may choose integers n{ {i—\,...,s) and

mt (/=!,..., /) (ni9 m{^\) such that

Fv( V (SnivSni~i))= V

andsoyG(F)=0.
Now, for n^ 1, assume that yG(ir)=0 for ail finite complexes F of dimension less

than n with x (i7) 1. Let Fo be an n-dimensional complex, with F± the (n — 1 )-skeleton.
Let jpt be the space obtained by taking the wedge product of Ft with enough 0- or 1-

spheres so that %(/\)=l. Then yG(F!)=0: for n^2, this follows by the induction
hypothesis, and for n 1, Fx is a wedge of sphères.
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Let/: Ft -> Fo be the map which is the inclusion upon restriction to Fl9 and which
collapses the rest of Ê1 to a point. Then Cf has the homotopy type of a wedge of
sphères, x(Cf) l, and so

Thus, 7g(^)=0 f°r a^ finite complexes F of Euler characteristic. 1.

COROLLARY. /f G is not of prime power order, then there is an integer nG such

that afinite complex F is the fixed-point set of an action of G on a finite contractible
complex if and only if x (F) 1 (mod«G).

Oearly m(G) | nG. The following proposition puts some upper limit on nG.

PROPOSITION 6. For G not of prime power order, nG | m(G)2. In particular,
nG=0 if and only if m (G) 0, and nG — \ if and only if m(G)=\.

Froof Let Fbe a finite complex with #(F) 1 +m(G). Let X be an «-dimensional
G-resolution of F. Since Hn (X) is projective, it follows from [2] (corollary to Theorem

78.3) That Hn(X;Zp) Hn(X)®Zp is a free Zp[G]-module for any prime p.
In particular, («+ l)-cells may be added to X to give a Z2-acyclic complex Xu upon
which G acts with fixed-point set F. Let {pl9..., ps} be the finite set of primes for which
torsion occurs in X.

Setting k-=pt...psi one has Hn(X; Zfc) ®i Hn(X; Zp<), a free Zk [G]-module.
Now, free orbits of cells may be added to X to produce the Zfc-acyclic complex X2,
with X% F. Thus, G acts on the contractible complex Xt*X2 with fixed-point set

F*F, x(F*F) l -m(G)2, and so nG \ m(G)2.

4. Computation of mp(G) and m (G)

In this section, the invariants mp(G) and m (G) will be computed. Again, the

following notation will be used for classes of finite groups. <9\ is the collection of groups
G with normal subgroups PoG, such that P is of /7-power order and G/P is cyclic.

#J dénotes the collection of finite groups G with normal subgroups He^\ of #-power
index. Furthermore, set ^p= \Jq <$% &q {JP K & UP ^ and âf \JP <$p. Note
that from the définitions, mp(G)=0 if Ge^ and m(G)=0 if Ge^1.

LEMMA 6. Assume H^ G, a subgroup with index n. IfH acts on X with fixed-point
set F, then G has an action on Xn with fixed-point set F', the image of F under the diagonal

map A:X-+Xn.
Proof Let G/H be the finite set of right cosets; choose some splitting map

t:G/H->G with t(He) e. Define p:G-+H by p(g)=g't(Hg)'K The function p is
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continuous, and

p(h)=h for heH

p(hg)=h-p(g) for heH,geG.

The space Xn can be described as XG/H: the space of functions from G/H-+X.
Define the action n : G x XG/H -> XG/H by

n (g, 0 (Ha) =p {aY'p (ag)• {(/feg)

7r is well-defined, since/7(/za)~1^(/zûfg) (A*^(ûf))~1 (h-p(ag)). It is an action of G,
since

=/?(a)'1 p(agt)-p(agl)~1 p (agig2) £ (Hagtg2)

The action is continuous ; since for fixed g, the action on each coordinate is the action
of some heH (with the coordinates permuted).

Clearly, every point of F' A (F) is fixed by n. For any ÇeXn9 fixed by n: for any
aeG9heH,

^(Ha)=n(a-iha90(^)=p(a)-lp(ha)U^)=lp(a)-1'h'p(a)]^^

so Ç(Ha)eF for ail HaeG/H. Then Ç(He) n(a, Ç) (He) Ç(Ha) for ail aeGy and

D

COROLLARY. IfH^G, then mp{G) | mp(H)for allp, and nG \ nH.

Proof. Assume H acts simplicially on some finite simplicial complex X, and set

n [G : if], The action of H on X induces an action of the wreath product In J H on
X*, which is simplicial under suitable choice of a simplicial structure for Xn, and the
action of G constructed in Lemma 6 is actually a subaction of this, and thus simplicial.

For any prime p, it follows from the discussion in the introduction, together with
Theorem 1, that H has a simplicial action on some finite Zp-acyclic complex X with
x(XH)= 1 +mp(H). Then G has a simplicial action on the finite Zp-acyclic complex
Xn9 with (Xn)G XH, and so wp(G) | mp(H). Similarly, H has a simplicial action on
some finite contractible complex Y, with x(YH)=l +nHi G has a simplicial action on
Ym with x((F")G)= 1 +nH9 and so »0 | nB. D

LEMMA 7. Assume G has subgroups HQ^H^*^^Hn Gt where H(<aHi+l of
index qfor ail i, and HQe^r Then Ge&qp.
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Proof. Let P<j Ho be the />-Sylow subgroup of Ho ; Ho/P is cyclic. One may assume

q, then P is the only /7-Sylow subgroup in //0, thus invariant under any auto-
morphism of Ho, and so P^H^ Then P is the only /?-Sylow subgroup of /fls so

P^H2, and continuing this procédure one gets P^G. The same process shows that

any Sylow subgroup of Ho/P is normal in G/P; thus H0IP^G/P9 H0<aG, and so

;
Now assume/? #. If H0/P^Zm9 then (|P|,m)=l implies, since //0 is solvable,

that there is a subgroup Zm^H0 (see [5], p. 99). The group Zm acts on the set of
/7-Sylow subgroups of G by conjugation; since G permutes them transitively so does

Zm. Let P be the intersection of the /7-Sylow subgroups of G; /oG, and P^P since

P is invariant under the action of Zm.

Let n:G-+GIP be the projection; set #, 7r(//,). Then ffo^Zm(pJCm) and

Hi<iHl+1of index 1 or/?. Now //OoG//, by the procédure described above (anormal
Sylow subgroup is invariant under any automorphism), and so Ge&pp=&qp.

The calculations of mp(G) and m (G) will be based on the following technical

lemma:

LEMMA 8. For any group G, let kG be theproduct ofthe distinct primes q such that

G has a normal subgroup of index q. Let <p : S? (G) -> Z be the function defined uniquely

by the conditions:

kG, X cp(K) 0 for

Then [N(H)\H~] \ (p(H)for ail H^G.
Proof Assume that this has been proven for ail groups of smaller order. For

O^HçiG, assume that [N(K):K] | <p(K) for ail K^H.
If H^z G, then setting 0 {KjH) cp (K) for ail K=> H defines a function 0 : S? (G/H)

->Z with the properties: $(G/H) kG9 and Xl=k<^(^) 0 for ail K^G/H. Since

ko/H | kG, it follows from the induction hypothesis that \GjH\ \ 0{HjH
Now assume N{H)^G. For ail L such that H^L^N(H), set

KnN(H) L}, partitioning {K:K=>H}. Then IKe^(H) <p(K)=It
by inducting downward one gets YjKb^l <K^Q=0 ^or a^ ^- In particular,

Partition ^H into the orbits ofthe action of N(H). For KeSfH, K*H9 let FK be

the orbit of tfunder this action; \FK\ \N(H)\/\N(H)nN(K)\. Since N(H)nK=H,
the map (N(H)nN(K))IH-*N(K)/Kis one-to-one, so
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Thus,

[iV (if): H] | £ cp (K), and so [N (H): H] \<p (H).

It has now been shown that [iV(if):/T| | (p(H) for ail O^H^G, and it remains to
show that \G\ | <jp(O). If 3f is any conjugacy class of non-zero subgroups, and HeJf,
then \MT\ [G :N(H)2 and

\G\ | [G:N(H)]-\H\'(p(H) £ \K\-cp(K).

It follows that \G\ | Xo#hsg 1^1 ^(^)-
Thus, it will now suffice to show that \G\ | Y^h^g \H\'<P (H). This may be rewritten

£ \H\-(p(H)= ]T £ (p(H)= J] J] ^(^)
HSG HSGaeH a6Gfl2(a>

/:G- (number of generators of G).

If G is not cyclic, it follows that Xhsg |^|*9(^) 0, and we are done. If G Zn,
where n =p\l... p*a is the primary décomposition, then kG =pi... ps and

which again is a multiple of « |G|. D
Now the numbers mp(G) and m (G) may be calculated immediately.

THEOREM 4. Assume G$<3\. Then mp(G) is a product of distinct primes, and

q | mp(G) if and only if Ge&p (so mp{G)=\ if and only if G$&p).
Proof, Since G£^, the function q> defined for G in Lemma 8 is a raoàp resolving

function for G, and mp(G) | kG which is a product of distinct primes. Furthermore, if
q | mp(G)9 then q | kG and G has a normal subgroup Hx of index q. If i/^^*, then
<7 j mp(G) | mp(Ht) and so ^ has H2^Ht of index q. This procédure can be repeated
until one reaches a subgroup Hne^\. Thus, by Lemma 7, Ge@qp.

If Ge^J, then the fixed-point set F of any action of G on a finite Zp-acyclic
complex has x(F) l (mod#) (Proposition1) and so q | mp(G).

THEOREM 5. Assume GfÉ^1. Then m(G) is a product of distinct primes, and

q | m (G) (f am/ only ifGe&q (so m (G) 1 */ a«</ only if G$ <$).

Proof. Since G §§ ^, the function <p defined for G in Lemma 8 is an intégral resolving
function for G, and m (G) | kG, a product of distinct primes. If q | m (G), then q | A:G,

and G has a normal subgroup ift of index q. Then ^ | m (G) | nG | nHt, so by Proposition
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6, q | m{Hx), and either H^^1 or Hx has a normal subgroup H2 of index q. This
gives a séquence H^^^^-^H^G of subgroups, each normal of index q in the

following one, and such that Hne^1. Hne^lp for some prime/?, and so GeSPJs^ by
Lemma 7.

If Ge^*, then Ge^« for some/?, and so q | mp(G) \ m (G). D

COROLLARY. For G not of prime power order, nG=0 if and only if Ge&K If
1, then nG is divisible by at most the square of any prime, and q\nGif and only if
q. In particular, nG=\ if and only if G$<$.

Proof. This follows directly from Theorem 5 and Proposition 6.

There is one more case where nG can easily be computed. Consistent with the notation

used previously, ^ will dénote the set of fînite groups which hâve a normal cyclic
subgroup of prime power index.

PROPOSITION 7. Assume G^v Then nG m(G).
Proof. If/? is any prime not dividing the order of G, then G$&1 implies that

p. It follows that mp(G)=l, and so there exists a finite Zp-acyclic complex Xp

upon which G acts with two fixed points.
Let Y be an n-dimensional G-resolution of a discrète set of (l-hm(Cr)) points.

The group Hn(Y) is a projective Z[G]-module, and so Hn(Y; Zq) Hn{Y)®Zq
is a free Z9 [G]-module for any prime q ([2], Corollary to Theorem 78.3). If qu..., qt

are the distinct primes dividing |G|, and k ql... qt9 then it follows that

Hn(Y;Zk)=®Hn(Y;Zqi)

is a free Zfc [G]-module. Thus, free orbits of («+l)-cells may be added to Y to
produce the Zfc-acyclic space f, upon which G acts with (l+m(G)) fixed points.

The space f has torsion with respect to a finite number of primes pl9...9pa9 none
of which divide the order of G. Now, taking the smash product fa Aï-i XPl), one

gets a finite contractible complex upon which G acts with (l-hm(G)) fixed points.
Thus, nG m (G).

The only remaining groups G for which nG has not been calculated are those

groups in ^ not in &1. In thèse cases, m (G) turns out to be prime, and so there are

only two possible values which nG could take, depending on whether yG is ever non-
zero. The smallest example of such a group is D6, the dihedral group of order 12.

5. Fixed-Point Free Actions

So far, ail of the results hâve described fixed-point sets possible for simplicial
actions on finite acyclic complexes. In the case of fixed-point free actions, however,
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there is a fairly simple procédure for constructing smooth actions on compact mani-
folds from the simplicial actions. This is actually possible for positive-dimensional
compact Lie groups as well as finite groups, by means of the concept of equivariant
CW-complexes (see [7]).

DEFINITION. Let G be a compact Lie group. A zero-dimensional G-equivariant
CW-complex is a disjoint union of homogeneous spaces G///f. An w-dimensional

G-equivariant CW-complex is a space X, obtained from an (n — l)-dimensional G-

equivariant CW-complex by attaching spaces G/Ht x D" (where G acts trivially on Dnt),

via equivariant maps <pf: G///f x S"~* -> Y.

When G is a finite group, a G-equivariant CW-complex is the same as a CW-complex

with a cellular action (as defined in the introduction). Note that for any compact
Lie group G, any finite G-equivariant CW-complex has finitely generated homology
(because (G/HxDn, G/i/xS"1"1) does). It has been proven by Illman [7] that any
smooth manifold with a smooth G-action has the structure of an equivariant CW-
complex; if the manifold is compact, it will be a finite complex. The following theorem
will make it possible to go in the other direction, from finite complexes to smooth,
compact manifolds.

THEOREM 6. Let Kbe afinite G-equivariant CW-complex. Then there is a smooth,

compact manifold M with a smooth G-action, and an equivariant embedding i:K-*M
into its interior, such that nî(i) and H#(i;Z) are isomorphisms. Furthermore, M
can be chosen such that the isotropy subgroup of any point in M is contained in the

isotropy subgroup ofsome point ofK, and such that MG is a regular neighborhood of KG.

Thus, if K is simply connected, M will hâve the same homotopy type, and if the
action on K is fixed-point free, the same will be true of the action on M.

The equivariant tubular neighborhood theorem (see, e.g. Bredon [1, p. 306])
shows that the boundary of any smooth G-manifold M has an invariant neighborhood
equivariantly diffeomorphic to dMx [0, 1) (with the fixed action on [0, 1)). Thus, the

corners which occur when taking the product of two manifolds, a disk bundle over a

manifold, or a manifold with a handle attached, ail can be smoothed equivariantly.
The following lemma will be needed to prove the theorem:

LEMMA 9. Given smooth manifolds M n andNp, where M is compact andp ^ 2n 4- 3,
and a continuous function f0 :M-+N, there is a homotopy F:Mx /-> N off0, such that

fi is a smooth embedding for ail i>0.
Proof Define F:Mx(0, 1] -+N9 by F(m, t)—fo(m). Define the positive function

Ô:Mx (0, Ï]->R by ô(m, t) t. Fix a metric on N.

Dim(iV)^2-dim(Mx(0, 1])+1, so F can be (5-approximated by a smooth one-
to-one immersion F':Hx (0, 1] -+N. Set/r(m) F'(m, t)9 then/t is a smooth embed-
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ding (f>0) since Mis compact. Set F=fouF':Hx [0, l]->N. Then Fis continuous
and is the required homotopy.

Theorem 6 will be proven by induction, starting with the subcomplex K° u KG,
where K° is the union of the cells (G/Hx D°). The theorem is true for this subcomplex:
embed KG in some regular neighborhood, and leave alone the components of ^Tnot in
KG. Theorem 6 now follows from the following lemma:

LEMMA 10. Assume K is afinite G-equivariant CW complex, with sub-complex L,
where K=L{Jf (G/Hx Dn) for some equivariant f:G/HxSn~l -+L, some HcG.
Assume Mo is a compact manifold with smooth G action, with the embedding i:L-+ Mo
fulfilling the conclusion of the theorem. Then the theorem holds for K.

Proof. Let y.S"'1-+GjHxSn~1 be the inclusion map j(x) (eH, x). One may
assume dimM^^2«+l (if not replace Mo by MoxDk^Mo). Apply Lemma 1 to
the map ifj\Sn~x -> M<f, obtaining the map

where xo ifj and at is a smooth embedding for t>0.
Choose D a disk with a linear action of G, such that some xeôD has isotropy sub-

group H. Set M1=M0 x D, let i0 : Mo -> Mx be the embedding of the zéro section, and

Sf'|-1xJ->M1 by

Ôt(gH9 x, t) (g-*(x, t\ t-gx).

Then (& \ GjHxSn~l x0) ioif and the restriction of A to G/#x,S'l~1x(0, 1] is

embedded in A^ — Mo, with G/Hx S"1"1 x 1 the inverse image of ôMl9 and smoothly
embedded. Dénote that embedding by fi:G/Hx Sn~l -? dMt.

Let i1:M1-^ W be a smooth, equivariant embedding of Mx in a linear représentation

of G; let M2 be an equivariant tubular neighborhood of Mt in W. This induces

a smooth embedding pf i^:G/Hx Sn~x -? ôM2, which restricts to p'jiS""1 -» ôM2.
As //-bundles :

Set V=Rn®xeH(G/H) (an //-représentation where Rrt has the trivial action); then
\

Let F be a real G-representation whose restriction to H contains F as a direct
summand: f=V@V1 as /^-représentations. Set M3=D(V)xM; i2:M2-+M3 the

embedding jc-> (0, x).
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As an #-bundle over Srt~\

and so vdM3(G/HxS"-1)^(G x^^eF^xS""1. Let D(JFeKi) be the disk
représentation associated to W®VU and attach (G xHD(W®Vl))xDn via this
isomorphism to ôM3 to get the smooth G-manifold M4. The embeddings

G/H xDn-*(G x D (W@ Vx)) x Dn (zéro section)
H

i2ilât:G/HxSn'îxI-^M3
i2iiioi:L-+ M3

define an embedding of ^Tinto MA. By the Van Kampen and Meyer Vietoris theorems,
this embedding still induces an isomorphism of fundamental groups and intégral
homology.

The manifold M3 is a vector bundle over Mo, and therefore any isotropy subgroup
of M3 is contained in one of Mo. The handle (G x HD{W® Vt)) x Dn is a bundle over
G/HxDn, and so any of its isotropy subgroups is contained in a conjugate of H.

Since Gi£H9 (M4)G is a disk bundle over (M0)G, which was assumed to be a

regular neighborhood of LG KG, so (M4)G is a regular neighborhood of KG.

COROLLARY. Assume Ka contractiblefinite G-equivariant CW complex. Then G

has a smooth action on a disk, any ofwhose isotropy subgroups is contained in an isotropy
subgroup of K.

Proof. By the theorem, G has a smooth action on some compact contractible manifold

Af0, where ail isotropy subgroups of Mo are contained in isotropy subgroups of
K. Embed Mo smoothly in some linear représentation of G; let Mt be the disk bundle
of an equivariant tubular neighborhood of Mo. By a theorem of Whitehead [13, p.
298], Mx is a disk if Mo was embedded with sufficiently high codimension. Isotropy
subgroups of Mx are contained inside those of Mo.

Now, Theorem 6 and its corollary may be combined with the results of Section 2,

3, and 4 to classify finite groups having smooth fixed-point free actions on compact
acyclic manifolds.

THEOREM 7. A finite group G has a smooth fixed-point free action on some compact

Zjp-acyclic manifold if and only if G$@p. G has a smooth fixed-point free action

on a disk if and only if G^. In particular, any non-solvable group has a smooth fixed-
point free action on a disk, and an abelian group has such an action if and only if it has

three or more non-cyclic Sylow subgroups.
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Proof. By the corollary to Theorem 1, G has a fixed-point free action on a finite
Zp-acyclic complex if and only if mp(G)=l; this occurs if and only if G$@p by
Theorem 4. By the corollary to Theorem 3, G has a fixed-point free action on a finite
contractible complex if and only if nG= 1 ; if and only if G^ (by the corollary to
Theorem 5).

Thus, the smallest abelian group with a smooth fixed-point free action on a disk
is Z30©Z30, of order 900. The next theorem will show that the smallest solvable

groups with such action hâve order 72: two such groups are S4©Z3 and A4®S3.
It thus follows that the smallest group with a smooth fixed-point free action on a disk
is A 5 of order 60 (the one compact group previously known [3] to hâve such an action).

The following notation will be used to simplify the proof of Theorem 8. A finite
group will be said to be of type (Fu..., Fn} if there is a normal séries

such that Fi^Hi/Hi_l for ail i. Under this notation, Ge&qp if and only if G is of type
</>, Zn9 Q} for some /?-group P and some #-group Q. Note that any solvable group
is of type (Z^,..., Z*"> for some séquence of elementary abelian groups.

THEOREM S. If G is a finite solvable group of order less than 72, then

Proof. Any group of order paq or pqr, for primes p, q, r, is in some &p by examina-
tion of its composition séries. This leaves the cases |G| 36 or 60.

If |G|=36, G has a normal séries ail of whose components are elementary p-
groups; the only possibilities which do not immediately show Ge@2 °r ^3 are
<Z3, Z2, Z3, Z2>, <Z2, Z3, Z2, Z3>, <Z2, Z\9 Z2> and <Z3, Zf, Z3>. Since the
only extension of Z2 by Z3 is Z6, the first case reduces to <Z3, Z6, Z2>, or Ge^3,
and the second case to <Z6, Z6>, which has the same form as the first case. Similarly,
the third case reduces to <Z2 ® Z3, Z2> or Ge @3. In the fourth case, either G is of type
<Z3, Z2©Z3> (and Ge&3) or G is of type <Z3, A4}. Since A4 has no subgroup of
index 2, Z3 must be in the center of G. Thus, G is also of the form <Z3©Z|, Z3>,
and Ge&2.

If \g\ 60, there are eight possibilities for the components of a normal séries which
do not immediately show Ge^2, #3, ^5. Four of them, <Z2, Z3, Z5, Z2>, <Z2,
Z5, Z3s Z2>, <Z3, Z2, Z5, Z2> and <Z5, Z2, Z3, Z2> imply Ge^2, 9l9 &3i 95, respec-
tively, since Z15 is the only group of type <Z3, Z5> or <Z5, Z3>, etc. If G is of type
<Z2, Z3, Z2, Z5> or <Z2, Z5, Z2, Z3>, then it is of type <Z2, Z3, Z10> or <Z2, Z5,
Z6>, cases which were considered above (Ge^2). A group of type <Z3, Z2, Z5> is in
^3, since Z2©Z5 is the only group of type <Z2, Z5>. If Gis of type <Z5, Zi Z3>, then

G/Z5^Z2©Z3 (so Ge^5), or G/Z5^A4. In this last case G is a semi-direct product;
theonly homomorphism^4->Aut(Z5)^Z4is the trivial one, soG^Z5©v44e^2.
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In answering the question of which positive-dimensional compact Lie groups hâve

smooth fixed-point free action on disks, the corollary to Theorem 6 shows that it
suffices to construct finite contractible equivariant CW complexes with no fixed points.
When the group is nonabelian and connected, the following proposition further
simplifies the problem.

PROPOSITION 8. Assume the compact Lie group G is non-abelian and connected.

Ifthere is a fixed-point free finite G-equivariant CW complex X which is Z2-acyclic,
then G has a smooth fixed-point free action on a disk.

Proof. By a theorem of Hsiang and Hsiang [6, p. 366], G has an irreducible
représentation on R2k+1 for some k^ 1. This induces a smooth fixed-point free action of G

on the space RP2k.

As mentioned above, Illman [7] shows that a smooth action on a compact mani-
fold has the structure of an equivariant CW complex. Thus, X*RP3k has the structure
of a (G x G)-equivariant CW complex, with no isotopy subgroup containing the

diagonal. Since Zis Z2-acyclic and RP2k is Zp-acyclic for ail odd primes/?, X*RP2k
is contractible. The corollary to Theorem 6 applies: G x G has a smooth action on a

disk with no isotopy subgroup containing the diagonal, which thus restricts to a

smooth fixed-point free action of G.

Finally, the following is given as an example that such actions do occur:

COROLLARY. 50(3) has a smooth fixed-point free action on a disk.

Proof. By Proposition 8, it will suffice to construct a finite Z2-acyclic S0(3)-
equivariant CW complex X without fixed-points. Let S4^SO(3) be the subgroup of
matrices with a single non-zero entiy in each row and column. Let O(2)çzSO(3) be

the subgroup of matrices with a (±1) in the upper left-hand corner, and set

D4 s4 n O (2). Let X be the complex constructed by attaching (SO (3)/Z>4) x / to the

disjoint union (SO(3)1S4)u(SO(3)/0(2)) via the projections induced by inclusions

of subgroups.
The Meyer-Vietoris séquence in reduced homology takes the form:

- Ën (SO (3)/D4) -> Ën (SO (3)/S4)®Én (SO (3)10 (2))

To prove that X is Z2-acyclic, it will suffice to show that the kernel and cokernel of
the map

Ën (SO (3)/2>4) -> Rn (SO (3)/S4)®ffn (SO (3)/0 (2)) (1)

consist of odd torsion for ail n. Except in dimensions 1 and 3, ail of thèse groups are
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zéro Since SO(3)/O(2)^P3 îs the two-dimensional, and

îs a three fold cover of orientable three-manifolds, (1) îs a monomorphism Z-+Z
with cokernel Z3 in dimension 3

When n= 1, n1 (SO(3)/D4) îs the generahzed quatermomc group of order 16, with
abehanization Z2 The space 5(O(3)/5'4 has fundamental group the binary octahe-
dral subgroup of S3, with abehanization Z2 Thus, (1) takes the form

and a straightforward computation shows it to be an isomorphism
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