Fixed-Point Sets of Group Actions on Finite
Acyclic Complexes.

Autor(en):  Oliver, Robert

Objekttyp:  Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 50 (1975)

PDF erstellt am: 29.04.2024

Persistenter Link: https://doi.org/10.5169/seals-38802

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.

Die auf der Plattform e-periodica vero6ffentlichten Dokumente stehen fir nicht-kommerzielle Zwecke in
Lehre und Forschung sowie fiir die private Nutzung frei zur Verfiigung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot kbnnen zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veroffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverstandnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewabhr fir Vollstandigkeit oder Richtigkeit. Es wird keine Haftung
Ubernommen fiir Schaden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch fur Inhalte Dritter, die tUber dieses Angebot
zuganglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zirich, Ramistrasse 101, 8092 Zirich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch


https://doi.org/10.5169/seals-38802

Comment. Math. Helvetici 50 (1975) 155-177 Birkhduser Verlag, Basel

Fixed-Point Sets of Group Actions on Finite Acyclic Complexes

ROBERT OLIVER )

This paper is an outgrowth of the author’s thesis [9], in which he attempted to
classify which compact Lie groups have smooth fixed-point free actions on disks (or
equivalently, simplicial fixed-point free actions on finite contractible complexes).
Here, the general problem is studied, by completely different methods, of classifying
which finite complexes can be fixed-point sets of simplicial actions of a given group on
finite contractible or Z ,-acyclic complexes.

P. A. Smith has shown [12] that an action of a p-group on a Z -acyclic complex
must have a Z -acyclic fixed point set. The converse was proven by Lowell Jones [8]:
Any finite Z-acyclic complex may be the fixed-point set of an action of Z, (and thus
of any p-group) on some finite contractible complex. Thus, in the case of p-group
actions on contractible or Z ,-acyclic complexes, the answer to these questions is
already known.

In the other cases of actions of finite groups, it is shown here that the Euler
characteristic is the only obstruction to a finite complex being a fixed-point set. More
specifically:

For any prime p, and any finite group G not of p-power order, there is an integer
m,(G) such that a finite complex K is the fixed-point set of an action of G on some
finite Z ,-acyclic complex if and only if x(K)=1 (modm,(G)). For any group G
not of prime power order, there is an integer ng such that a finite complex K is the
fixed-point set of an action of G on some finite contractible complex if and only if
x(K)=1 (modnyg).

The following notation for classes of finite groups is used for the calculation of
these constants. For p and g primes, let 42 be the class of finite groups G with normal
subgroups P<1 H<a G, such that P is of p-power order, G/H is of g-power order, and
HJP is cyclic. Let 4 ;, and ¢ be the classes of such G where H=G and |P|=1,
respectively. Let ¢,=J, 9%, 9=, 9%, ¥'=U, ¥,, etc. The following will be
proven:

The integer m, (G) is zero if and only if Ge %,. If G¢ %, then m,, (G) is a product of
distinct primes (or 1), and g | m,(G) if and only if Ge ¥},

The calculation of ng is less complete, but the following is shown:

1) This work was done while the author was supported by an NSF graduate fellowship.
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The integer ng is zero if and only if Ge 9. If G¢ ¢, then n,; is divisible by at most
the square of any prime, and g | ng if and only if Ge 94,

The question of the existence of fixed-point free actions on contractible manifolds
goes back to Smith. In the case of smooth actions on disks, the only previously known
example of a fixed-point free action was the action of A4 constructed by Floyd and
Richardson [3]. Greever [4] described certain restrictions which must occur for a
group to have a fixed-point free action on a contractible space where certain conditions
hold, which include the case of smooth actions on disks. The results described above
immediately yield:

A finite group G has a fixed-point free action on a finite Z -acyclic complex if and
only if G¢¥,. The group G has a fixed-point free action on a finite contractible
complex (and then on a disk, via regular neighborhoods) if and only if G¢ 4=, %,
In particular, a finite abelian group has a smooth fixed-point free action on a disk if
and only if it has three or more noncyclic Sylow subgroups.

The problem of constructing fixed-point free actions of connected positive-
dimensional groups is also briefly discussed, and an example of SO (3) acting on a disk
is constructed.

The above results have been described as applying to the category of simplicial
actions on finite simplicial complexes. In obtaining the results of Section 2-4, it
will be more convenient to work in a slightly broader category; that of cellular actions
of finite groups on finite CW-complexes. In this category, the action of any group
element is required to take the interior of any #-cell homeomorphically to the interior
of some other n-cell, and via the identity whenever a cell is mapped to itself. Note
that any simplicial action on a finite complex becomes a cellular action upon taking
the first barycentric subdivision. Conversely any CW-complex with a cellular action
can be made into a simplicial complex with simplicial action (of the same equivariant
homotopy type) by subdividing cells and taking simplicial approximations to the
attaching maps; if the fixed point set is already a simplicial complex then this can be
done without changing it (except for subdividing). Thus, in terms of the question of
which simplicial complexes can be fixed-point sets, these two categories are equivalent.
Furthermore, the category of smooth actions of finite groups on compact manifolds
is included in both of these categories (see, €.g., Illman [7]).

I would like to thank Wu-Chung Hsiang and William Browder for their many
helpful suggestions while I was working on my thesis and on this further work.

1. Restrictions on Fixed-Point Sets
In this section, the methods used by Greever in [4] will be extended to prove some

Euler characteristic conditions on the fixed-point sets of certain group actions. The
results obtained will be basically the same as those proven in Chapter III of the
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author’s thesis [9], but the proofs are simplified by restricting to the category of
cellular actions on finite CW-complexes, as described above.

Two of the standard theorems from the homological theory of Z -actions (p prime)
will be used (see, e.g., Bredon [1], Chapter III, § 7). If Z,, acts on the finite complex X,
one has the relation

2(X)+(p—1) x(X*")=p-x(X/Z,),

and from that, y (X*")=y(X) (modp). If X is Z -acyclic, then so is X,

If P is any group of p-power order, then P has a normal series O =Py<1P,<a1---<1R,
=P, such that P;/P;_,=~Z,. In general, for an action of G on X and some H<G,
there is an induced action of G/H on X*, with (X*)%/® = X, Thus, the above theo-
rems for Z,-actions carry over to any p-group P: if P acts on the finite complex X,
then x(X*)=y(X) (modp), and if X is Z,-acyclic, then so is X *.

The following lemma is a special case of a more general proposition proven in [9]:
if a cyclic group acts on a compact or finite dimensional space, such that the fixed-
point set of any subgroup has finitely generated Cech cohomology, then the Euler
characteristic of the fixed-point set of the whole group is equal to the Lefshetz
number of the action of a generator.

LEMMA 1. Assume Z, acts on the finite Q-acyclic complex X. Then y(X*)=1.

Proof. First assume that Z . acts on any finite complex X. In this case, Z, acts
on X/Z,-: with fixed-point set (X/Z,,k-l)z"=X Z»* and application of the Euler
characteristic formula gives the relation

¥ (X%) "“}Jéi [0 % (X/Z)— 1 (X[ Zyr)]

Now assume that n=m-p*, where p ¥ m, and that the lemma has been proven for
k
m. Then, if Z, acts on the Q-acyclic space X, one has X %"= (X*")*#", and

X (X*)= ;_-1_7 [P x (X*Z ) — x (X[ Z pe-1)] -

Since Z,, and Z,. have relatively prime order, one has X Zm|Z o= (X|Z )*" and

X%|Z e s =(X|Zp-1)?". The existence of the transfer map shows that the orbit

space of any finite group action on a Q-acyclic space is Q-acyclic, and so by the in-

duction hypothesis, y (X/Z,<)*")=x (X/Zx-1)*")=1.1t follows that x (X*")=1. [
Now the desired restrictions on fixed-point sets follow quickly:

PROPOSITION 1. Assume G acts on the finite Z,-acyclic complex X. If Ge %},
then x(X¢)=1. If Ge %%, then y(X¢)=1 (modgq).
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Proof. If Ge.‘ﬁ},, then G has a normal subgroup P of p-power order, such that
G/P is cyclic. Then X7 is Z -acyclic, thus Q-acyclic, and y(X%)=x((X?)¥*)=1 by
Lemma 1. If Ge%], then G has a normal subgroup Heg}, of g-power index. It
follows that y(X®)=1, and x(X9)=x((X¥)¥")=1 (modq). O

PROPOSITION 2. Assume G acts on the finite contractible complex X. If Ge 4*,
then x(X®)=1; if Ge %Y, then y(X¢)=1 (modgq).

Proof. If Ge%", then Ge%, for some prime p, and Proposition 1 applies. If
Ge %1, then Ge ¥} for some p, and again Proposition 1 applies. [

In the case of actions of Z,-acyclic complexes, it turns out that Proposition 1 gives
the only restrictions on the fixed-point set when G is not of p-power order.

2. Resolving Functions

In this section, a bookkeeping method will be introduced for studying actions of a
group on acyclic spaces terms of the Euler characteristics of the fixed point sets of
subgroups. The following lemma will motivate the definitions. For a finite group G,
& (G) will denote the set of subgroups of G.

LEMMA 2. Assume G acts on the finite complex X ; then there is a unique function
©:%(G)— Z such that

x(XH)=1+K};HfP(K) (1)

Jor all HS G. Furthermore, if # < % (G) is any non-empty subset with the maximality
condition: He ¥ and H= K< G imply Ke ¥, then

(U X)=1+ % o(H). @

In particular, ¢ (H)=y(X", Uxsn X*) for HG.
#
Moreover, ¢ is constant on conjugacy classes of subgroups, and [N(H):H] | ¢ (H)
for any H=G.
Proof. Choose an ordering for & (G)={H,, H;, ..., H} such that H,;< H; implies
i=j. Then

o(H)=x(X™)— ¥ o(H)-1

H;=>H
I

for all H, is a necessary and sufficient condition for (1) to hold, and can be applied
successively for i=0, 1,..., s to define ¢ uniquely.
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Now let 5# be any non-empty set of subgroups with the maximality condition,
and assume (2) holds for all appropriate proper subsets of 3. Let H,e# be minimal
in #. Let # =#—{H,}, #,={K:H,c KSG}.

If #,=#, then
(U X)=y(X")=1+ Y o(H)=1+ Y o(H).
He ¥ H>Hg He ol

Otherwise, (2) holds for the sets 5, #,, and 5#; N 3#, by assumption,
(U xH=(U 1Ny ¥,

HeXlinKH, He ;)
and so
(U XD=¢(U XN+2(U XH-2( U x7)
He ¥ He He 2 HeXi1nH2
=1+ Y o(H)+ Y oH)—- Y o(H)
He He HeX 1nH2
=1+ Y o¢(H).
Hes

Then, for H < G,

X (X", U X)=x(X)-1(U X*)

K=>H
#

=2 ¢(K)— ), o(K)=¢(H).

K2H KoH
£

The action of an element aeG takes the pair (X, (x-y X*) homeomorphically
#
to the pair (X*¥*™", Uxoana-1 X*), and so ¢ (H)=¢(aHa™'). The group N(H)/H
#

acts semi-freely on X /| Jx-y X with one fixed point, and so
#

@ (H)=x(X", KUH X")=x(X"/KUH X*)—1=0 (mod|N(H)/H|). O
# #

Now define a modp resolving function for G to be any function ¢: & (G)— Z such
that:

1) ¢ is constant on conjugacy classes of subgroups.

2) [N(H):H] | ¢(H) for all HSG.

3) For any H=G such that He %}, Y xou ¢ (K)=0.
Define an integral resolving function for G to be a function ¢: ¥ (G)— Z which is a
mod p resolving function for all primes p; this amounts to replacing condition (3) by

the condition: Y x5 ¢ (K)=0 for all He%".
If G acts on any finite complex X, and ¢ is defined as in Lemma 2, then conditions

(1) and (2) have been shown to hold for ¢. If in addition X is Z,-acyclic, then Prop-
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osition 1 shows that ¢ is a modp resolving function for G. If X is Z-acyclic, then by
Proposition 2, ¢ is an integral resolving function for G.

The sets of all modp or integral resolving functions of G form groups under point-
wise addition, and so one may define m,(G) and m(G) as the unique non-negative
integers such that

m,(G)-Z={p (G): ¢ is a mod p resolving function for G}
m(G)-Z={¢ (G): ¢ is an integral resolving function for G} .

Thus, if F is the fixed-point set of an action of G on a finite Z,-acyclic complex, then
x(F)=1 (modm,(G)). If F is the fixed-point set of an action on a finite Z-acyclic
complex, then y(F)=1 (modm(G)).

It will be shown that for G not of p-power order, a finite complex F is the fixed
point set of an action of G on some finite Z -acyclic complex if and only if y (F)=1
(modm,(G)). The result for action on contractible complexes will be similar, but not
as complete. The basic idea will be to use the function ¢ as a pattern for building up a
space X with G-action, such that y (X®)=1+) x> ¢ (K) for all H=G. Two lemmas
will first be needed.

LEMMA 3. Assume that P is a p-group acting on the n-dimensional (n—1)-
connected complex X. If X" is Z -acyclic and of dimension less than n for all 0# HSP,
then H,(X) is a projective Z [ P ]-module.

Proof. The set {X#:0£H<P} is a set of Z,-acyclic subcomplexes of X closed
under intersections. It follows from the Meyer-Vietoris sequence (and inducting) that
2=Uosnep X¥ is Z,acyclic. Thus, H,(X)=H,(X/X) and H,(X/X) consists of
torsion prime to p for i <n. P acts semi-freely on X/X with one fixed point.

Since for any surjection f:M—T of Z[P]-modules, where M is free and T
consists of torsion prime to p, the kernel is projective, one may add free orbits of cells
to X/X, killing all homology in dimensions below », and ending up with the n-
dimensional (n—1)-connected complex Y, with a semi-free P-action with one fixed
point, and with H,(Y)=H,(X)®N, N a projective Z [ P]-module. The sequence

0-H,(Y)»C,(Y,Y")> -5 Co(Y, Y)>0

is exact (where Cy (Y, Y7)is the cellular chain complex), all but the first group is free,
and so H,(Y) is stably free. Thus, H,(X) is projective. [

LEMMA 4. If X is an n-dimensional (n—1)-connected finite complex with an
action of some cyclic group Z.,,, such that y(X®)=1 for all 0 HSZ,,, then H,(X; A)
is a free A[Z,)-module for A=Z,(p ¥ m) or A=Q.
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Proof. For any finite complex Y, one may define an Euler characteristic for ¥ with
values in the group R,(Z,,) of virtual representations:

12.(0= % (D [H,(Y: = 3 (=1 [C(Y, A)]eR, ()

(where Cy(Y; A) is again the cellular chain complex).

Let ¢:%(Z,)—Z be defined by ¢ (0)=x(X)—1, ¢(H)=0 for all subgroups
H+#0. Then ¢ satisfies the conaition y(X#)=1+3 -4 ¢(K) for all HSZ,, and so
by Lemma 2, y(X¥, UK?" X%)=0 for all OyéHc; G. In other words, for any proper

subgroup H, the numbers of even and odd dimensional cells in orbits of type G/H are

the same.
It follows that y, (X, Ux-n X¥)=0 for all 0#HcZ,, and so

1z, ( U X")=yg, (X*)=[4].

0+HSZm

Then
(= 1) [Ho (X5 A)] =2z, (X)~[A]=xz,,( U X")—[4]=0(mod[4[Z,]]).

O*HESZ
Since A[Z,] is semi-simple, it follows that H,(X; A) is free. [
Now, actions on Z,-acyclic complexes can be constructed from modp resolving

functions.

THEOREM 1. Let G be a finite group not of p-power order, and ¢ a mod p resolving
function for G. Then for any finite complex F with y(F)=1+ ¢ (G), F is the fixed-point
set of an action of G on some finite Z,-acyclic complex.

Proof. The goal is to embed F as the fixed-point set of a G-space X, such that
x(X®)=1+Ykon @ (K) for all HSG, and such that X" is Z -acyclic whenever H is
of p-power order. This has been done for X¢; assume the complex X, has been
constructed, with G-action, such that the above properties hold for all H 2 H,, for
some fixed H,=G.

Cells must now be added in orbits of type G/H,, until the fixed-point set of H,
meets the conditions described above. This amounts to adding cells to X &° in orbits
of type N(H,)/H,; when these are extended equivariantly to the full orbits of type
G/H,, the remaining cells will be added to the fixed-point sets of other subgroups con-
jugate to H,. Thus, the fixed point sets of these conjugate subgroups will be built up
at the same time to meet the desired conditions.

From the above assumptions on X,, one has x(X§)=1+Yxsy ¢ (K) for all
H 2 H,; thus, using Lemma 2,

1(Xo?)=x (U X€)=1+HZ @(H)=1+ Y ¢(H) (mod|N (H,)/H,l).

H>Hg D Ho HcHo
# #
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If H, is not of p-power order, orbits of cells of type N (H,)/H, may now be added to
X{&° to produce a complex with the desired Euler characteristic.

If H, is of p-power order, add orbits of cells of type N (H,)/H, to X§° to produce a
space Y which is n-dimensional and (n—1)-connected for some n larger than the
dimension of X% for any H 2 H,. The fixed-point set of any non-zero p-group P in
N(H,)/H, undfr the action on Y is Z -acyclic, since P=P,/H, for some p-group
PocG, and YP=X%°. Lemma 3 applies: H,(Y) is projective as a Z[P]-module,
where P is a p-Sylow subgroup of N (H,)/H,. It follows that H,(Y; Z,) is a projective
Z,[ P]-module, and thus (from Rim [10], Proposition 4.8 and Corollary 2.4) a
projective Z,[ N (H,)/H,]-module.

Let K=K/H,< N(H,)/H, be any non-zero cyclic subgroup. Then Ke %}, and it
follows from the definition of a modp resolving function that

((YR)=2(X5=1+ ¥ o(H)=1.

H=K

Thus, by Lemma 4, H,(Y;Z,) is a free Z,[K]-module for all cyclic subgroups
R <= N(H,)/H, of order prime to p. Since

1(Y)=x(X6°)=1+ Y @(H)=1 (mod|N(Ho)/H,l),

H=2Hp

the dimension of H,(Y; Z,) as a Z,-vector space must be a multiple of |[N(H,)/H,|.
Let M be the free Z,[N(H,)/H,]-module of the same dimension.

Both M and H,(Y; Z,) are projective. They are isomorphic upon restricting the
action to any cyclic subgroup of order prime to p, thus have the same Brauer character,
and so are isomorphic as Z,[N(H,)/H,]-modules (see, e.g., [11], §14, 16 and 18).
Thus, H,(Y; Z,) is free, and so orbits of (n+ 1)-cells of type N(H,)/H, may be added
to Y to make it Z -acyclic. [

COROLLARY. For a fixed finite group G not of p-power order, a finite complex F
is the fixed-point set of an action of G on some finite Z,-acyclic complex if and only if
x(F)=1 (modm,(G)). O

In the case of actions on contractible complexes, things are less simple. Define
a G-resolution of a complex F to be a finite complex X with a cellular G-action such
that F=X©, X is n-dimensional, (n— 1)-connected (for some n>2), and H,(X) is a
projective Z [ G]-module.

THEOREM 2. Assume G is not of prime power order, and acts on the finite complex
Y with fixed-point set F, such that y(F)=1 (modm(G)). Then Y can be embedded
equivariantly into a G-resolution X of F.
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Proof. Let ¢ be an integral resolving function for G with ¢ (G)=x(F)—1. By the
techniques used in proving Theorem 1, ¥ may be built up, without changing the fixed
point set, to produce a G-complex X,, such that y(X§)=1+Yk-p @(K) for all
0#H< G, and such that X5 is Z ,-acyclic for any H#0 of p-power order, for any
prime p.

Now add free G-orbits of cells to X, to produce an n-dimensional, (n— 1 )-connected
space X, where n>2 and n>dim(X") for any 0# H=G. By Lemma 3, H,(X) is a
projective Z [ P ]-module for any Sylow-subgroup P<G. It follows (Rim [10], Prop-
osition 4.9) that H,(X) is a projective Z[G]-module. [J

The problem remains to determine when a G-resolution may be modified to
produce a contractible complex with the same fixed-point set. For convenience, let
2 (G) be the set of finite complexes F with y (F)=1 (modm(G)): the finite complexes
which have G-resolutions. For any n-dimensional G-resolution X of F, set yg (F, X)
=(—1)"[H,(X)]e K, (Z[G]), an obstruction lying in the projective class group. If
6 (F, X)=0, then H,(X) is stably free, and n- and (n+ 1)-dimensional cells may be
added to produce a contractible complex with fixed-point set F.

3. The Obstruction y;

The constructions in Section 2 now make it possible to define an obstruction
6 (F) for Fe?(G), such that F is the fixed-point set of an action of G on a finite
contractible complex if and only if yg (F)=0. It will turn out that y; (F) depends only
on y(F). The following lemma will be used in the constructions throughout this
section.

LEMMA 5. Assume G acts on the 1-connected space X with fixed-point set F, and
assume that H;(X) is a projective Z[G]-module for all n>2. Then X can be embedded
in a G-resolution Y of F, such that

o(F, V)= 3, (~1) [H,(X)].

Proof. Let n=dimX, and let j be the smallest positive integer such that H;(X)#0.
If j=n, then X is a G-resolution, and we are done.

If j < n, then choose some surjection f: (Z [G])*— H;(X), and let M =Ker (f). Then
M is projective, and

[M]=—[H;(X)]e K, (Z[G])-

Adding k free orbits of (j+1)-cells to X realizing f produces a new space X, with
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homology
H,(X,)=0 for i<j
=H;, (X)®M for i=j+1

and so Y 7-, (=1) [H;(Xo)]=Y7-2 (—1) [H;(X)]. Repetition of this procedure
will eventually produce a G-resolution Y of F, with

¥ (D] D

Ye (F’ Y)

Now set
#(G)={ys(pt, X): X is a G-resolution of a point}.

The set #(G) is actually a subgroup of K, (Z[G]). If X; and X, are G-resolutions of
a point, then X; v X, (the one-point union at the fixed points) fulfills the hypotheses
of Lemma 5 and there is a G-resolution X of a point with y¢ (pt, X)=y,(pt, X;)+
+7y6(pt, X,). If X is any G-resolution of a point, them so is its reduced suspension
ZX, and y¢(pt, ZX)= —ys(pt, X).

PROPOSITION 3. For any Fe?(G), if X, and X, are two G-resolutions of F, then
ve (F, X1)—v6(F, X;)e#(G).

Proof. Let X be the union of X; and X, identified at F. By Theorem 2, there is an
embedding of X into a G-resolution Y of F; thus both X, and X, are embedded in Y.
Let n;,=dim(X;), m=dim(Y), and assume m=n;+2.

For i=1 or 2, the space Y/X; has reduced homology in only two dimensions:
H,(Y/X,)2H,(Y), and H, ,,(Y/X;)=H, (X;). Thus, by Lemma 5, there is a G-
resolution Y; of (Y/X,)¢=pt, with

6 (F, Y)—v6 (F, Xi)=y¢ (pt, Y,)e# (G).

It follows that y; (F, X;)—v¢(F, X,)e%#(G). O

Now, for Fe#(G), define y(F) to be the image in K, (Z[G])/%(G) of ys(F, X)
for any G-resolution X of F. If F is the fixed-point set of an action of G on a finite
contractible complex X, then X is a G-resolution of F, and so Fe#(G) and y¢ (F)=0.
The converse is proven in the following proposition:

PROPOSITION 4. If Fe?(G) and y;(F)=0, then G has an action on some finite
contractible complex with fixed-point set F.

Proof. Choose a G-resolution X of F. If X#0, then let Y be a G-resolution of a
point, such that yg(pt, Y)= —7¢(F, X). Let Xv Y be the space obtained by identi-
fying the fixed-point of Y with any point of F< X. Then (Xv Y)¢=F, and by Lemma
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5, there is a G-resolution X of F with
6 (F, X)=y¢ (F, X)+7y5(pt, Y)=0.

It follows that the top dimensional homology of X is stably free, and so free orbits of
cells may be added to produce a contractible complex.

If 0e#(G), then m(G)=1, and so m,(G)=1 for all primes p. It follows from the
corollary to Theorem 1 that G has a fixed-point free action on a finite Z ,-acyclic
complex for every prime p. A contractible complex with a fixed-point free action may
now be obtained by taking a finite join of these spaces. (Thus, y(@)=0 whenever
0eZ(G)). O

The following proposition relates the obstruction y; (F) for different complexes.

PROPOSITION 5. Let F,, F,€?(G) be non-empty finite complexes. Then:
1) y6(Fy)=yc(F,) if Fy and F, are homotopically equivalent.
2) F,v F,e2?(G) for any choice of base points, and

Y6 (F1V Fy)=7y¢ (F1)+76 (F2).

3) If f:F,—F, is any (skeletal preserving) map with mapping cone C., then
C,eZ(G) and

Y6 (Cf)=)’c (F2)—7¢ (F1).

4) ZFe?(G) and yg(ZF)= —v5(F})

5) If 0 2(G), then so is S°, and y5(S°)=—75(0) (=0).

Proof. To prove (1), let f: F; — F, be a homotopy equivalence, and X, a G-resolu-
tion of F,. Let X denote the n-skeleton of X;, and set Y"1 =F,. Starting with the
homotopy equivalence

fEV=f:FuX{ VoY

inductively construct spaces Y™ and homotopy equivalences f ®:F; UX{) — Y®:
for every n-cell in X, — F, with attaching map «:S" ™! - F; U X{"~ ", attach an n-cell
to Y™~ via the map f @~ Voa. Now, for n=dim(X;), Y™ will be a G-resolution of
F,, and yg (Fy, Y™)=y¢(Fy, X1).

In (2), let X;2F; be G-resolutions. Then X; v X, has an action of G with fixed-
point set F, v F,, and by Lemma 5 can be embedded in a G-resolution X of F; v F,
with y5 (Fy v Fp, X) =76 (F1, X1)+76 (F2, X3)-

In (3), let Z, be the mapping cylinder of f:FiSZ, and Z;/Fi=C,. Let X be a
n-dimensional G-resolution of F; and set X to be the union of X and Z 1> joined at Fj.
Let Y be an m-dimensional G-resolution of Z, containing X, for m>n+2. Then Y/X
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has a G-action with fixed-point set C, and its reduced homology is zero except in two
dimensions: H, (Y/X)=H,(Y) and H,,,(Y/X)=H,(X). By Lemma 5, Y may be
embedded in a G-resolution ¥ of C,, with

)’G(Cfa Y)'_‘(“‘l)m [Hm(Y)]""(“l)"H [Hn(X)]=)’G(Zf’ Y)—y¢ (Fp, X).

Thus, 76(Cr)=v6(Z;) =76 (F1) =76 (F2)—v¢ (Fy) (by (1)).

If X is a G-resolution of Fy, then 2X is a G-resolution of ZF,, and y;(2F;, ZX)=
= —y5(Fy, X). If e 2 (G) and X is a G-resolution of @, then the unreduced suspension
XX is a G-resolution of S°, with y5(S% ZX)=—y:0(, X). O

Now, the basic property of the obstruction can be proven:

THEOREM 3. If G is not of prime power order, and Fy, F,€?(G), then y(F;)=
= (F,) implies y; (F1)=76(F2).

Proof. 1t suffices to prove that y; (F)=0 for all F with x(F)=1. Then, whenever
x (Fy)=x(F,), if neither is empty one may take any map f:F; - F,; x(C;)=1 and so
Y6 (F2)—7v6(F1)=76(C,)=0. If either is empty, then y(ZF,)=y(ZF,)=2 (setting
20=S5°%), and

Y6 (F1)= "?G(ZF1)= "VG(ZFz):YG(Fz)-

By Theorem 2, any complex of Euler characteristic 1 is in #(G); in particular
S1vS%is. Let f:S'v S%—S'v S? be the map which takes S — S! via the identity,
and takes S° to the base point. Then C, has the homotopy type of S* v §°, and so

?G(SIVSO)=?G(Cf)=7’G(SI v 8°)—y6(S'v§°)=0.

Suspending, one gets yg(S"v S""!)=0 for all n>1.

Let F be any wedge of spheres with y (F)=1:Fis a wedge of equal numbers of odd
and even dimensional spheres. Then, one may choose integers n; (i=1,...,s) and
m; (i=1,...,t) (n;,, m;>1) such that

S t
Fv< \V (s"*vs"*“l))= vV (S™vS™TY),

and so y¢(F)=0.

Now, for n>1, assume that y; (F)=0 for all finite complexes F of dimension less
than n with y (F)=1. Let F,, be an n-dimensional complex, with F; the (n— 1)-skeleton.
Let F, be the space obtained by taking the wedge product of F, with enough 0- or 1-
spheres so that y(£,)=1. Then yg(F,)=0: for n>2, this follows by the induction
hypothesis, and for n=1, F, is a wedge of spheres.
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Let f: F; — F,, be the map which is the inclusion upon restriction to Fi, and which
collapses the rest of F; to a point. Then C, has the homotopy type of a wedge of
spheres, x(C,)=1, and so

Y6 (FO):)’G (Fo)‘?G (ﬁl)':yG (Cf)=0.
Thus, y; (F)=0 for all finite complexes F of Euler characteristic. 1. []

COROLLARY. If G is not of prime power order, then there is an integer ng such
that a finite complex F is the fixed-point set of an action of G on a finite contractible
complex if and only if y(F)=1 (modng). [

Clearly m(G) | ng. The following proposition puts some upper limit on ng.

PROPOSITION 6. For G not of prime power order, ng | m(G)>. In particular,
ng=0 if and only if m(G)=0, and ng=1 if and only if m(G)=1.

Proof. Let F be a finite complex with y(F)=1+m(G). Let X be an n-dimensional
G-resolution of F. Since H, (X ) is projective, it follows from [2] (corollary to Theorem
78.3) That H,(X;Z,)=H,(X)®Z, is a free Z,[G]-module for any prime p.
In particular, (n+ 1)-cells may be added to X to give a Z,-acyclic complex X;, upon
which G acts with fixed-point set F. Let {p,, ..., p,} be the finite set of primes for which
torsion occurs in X.

Setting k=p; ... p,, one has H,(X; Z,)=®,; H,(X; Z,,), a free Z,[G]-module.
Now, free orbits of cells may be added to X to produce the Z,-acyclic complex X,
with X¥=F. Thus, G acts on the contractible complex X, *X, with fixed-point set
FxF, y(FxF)=1-m(G)? and so ng | m(G)*>. O

4. Computation of m,(G) and m(G)

In this section, the invariants m,(G) and m(G) will be computed. Again, the fol-
lowing notation will be used for classes of finite groups. ¢ }, is the collection of groups
G with normal subgroups P<aG, such that P is of p-power order and G/P is cyclic.
%1 denotes the collection of finite groups G with normal subgroups He % ,‘, of g-power
index. Furthermore, set ,=\J, 9%, 9=, 9% 9' =, ¥;, and ¥=J, ,. Note
that from the definitions, m,(G)=0 if Ge%, and m(G)=0 if Ge¥".

LEMMA 6. Assume H< G, a subgroup with index n. If H acts on X with fixed-point
set F, then G has an action on X" with fixed-point set F’', the image of F under the diag-
onal map A:X - X".

Proof. Let G/H be the finite set of right cosets; choose some splitting map
t:G/H— G with ¢(He)=e. Define p:G— H by p(g)=g-t(Hg)™". The function p is
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continuous, and

p(h)=nh for heH
p(hg)=h-p(g) for heH,geG.

The space X" can be described as X%/H: the space of functions from G/H - X.
Define the action 7:G x X 9/H — X ¢/H py

n(g, &) (Ha)=p (a)™" p(ag)-¢ (Hag)

n is well-defined, since p (ha)™! p(hag)=(h'p(a))~* (h-p(ag)). It is an action of G,
since

(81, n (82, &) (Ha)=p(a)~" p(ag,) 7 (g2 &) (Hag,)
=p(a)~' p(ag,) p(ag,) ™" p(ag.8,) ¢ (Hagg,)
=7(8182 ) (Ha)

The action is continuous; since for fixed g, the action on each coordinate is the action
of some he H (with the coordinates permuted).

Clearly, every point of F'=A(F) is fixed by n. For any (e X", fixed by =: for any
aeG, he H,

¢{(Ha)=n(a"" ha, ) (Ha)=p(a)™" p(ha) £ (Ha)=[p(a)™"' hp(a)] ¢ (Ha)

so ¢(Ha)eF for all HaeG/H. Then ¢é(He)=n(a, £) (He)=¢(Ha) for all aeG, and
teF'. O

COROLLARY. If HSG, then m,(G) | m,(H) for all p, and ng | ny.

Proof. Assume H acts simplicially on some finite simplicial complex X, and set
n=[G: H]. The action of H on X induces an action of the wreath product X, | H on
X", which is simplicial under suitable choice of a simplicial structure for X", and the
action of G constructed in Lemma 6 is actually a subaction of this, and thus simplicial.

For any prime p, it follows from the discussion in the introduction, together with
Theorem 1, that A has a simplicial action on some finite Z-acyclic complex X with
x(X")=1+m,(H). Then G has a simplicial action on the finite Z,-acyclic complex
X", with (X")¢=X", and so m,(G) | m,(H). Similarly, H has a simplicial action on
some finite contractible complex Y, with x (Y?)=1+ny, G has a simplicial action on
Y" with x((Y")®)=1+ng, and so ng | ny. O

LEMMA 7. Assume G has subgroups Hy<sH,<a1---<1H,=G, where H<sH,, of
index q for all i, and Hye %,. Then Ge %%,
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Proof. Let P<a H be the p-Sylow subgroup of H,; H,/P is cyclic. One may assume
gt |Ho/P].

If p#q, then P is the only p-Sylow subgroup in H,, thus invariant under any auto-
morphism of H,, and so P<tH,. Then P is the only p-Sylow subgroup of H,, so
P<1H,, and continuing this procedure one gets P<1G. The same process shows that
any Sylow subgroup of H,/P is normal in G/P; thus Hy/P<aG/P, Hy<aG, and so
Ge¥%;.

Now assume p=gq. If Hy/P=Z,, then (|P|, m)=1 implies, since H, is solvable,
that there is a subgroup Z, < H, (see [5], p. 99). The group Z, acts on the set of
p-Sylow subgroups of G by conjugation; since G permutes them transitively so does
Z.. Let P be the intersection of the p-Sylow subgroups of G; P<1G, and P< P since
P is invariant under the action of Z,,.

Let n:G— G/P be the projection; set H,=n(H;). Then Hy=Z,(p,m) and
H,<A,., of index 1 or p. Now H,<1G/P, by the procedure described above (a normal
Sylow subgroup is invariant under any automorphism), and so Ge¥95=91. 0O

The calculations of m,(G) and m(G) will be based on the following technical
lemma:

LEMMA 8. For any group G, let kg be the product of the distinct primes q such that
G has a normal subgroup of index q. Let ¢:% (G)— Z be the function defined uniquely
by the conditions:

¢(G)=ks, 3 ¢(K)=0 for H<G.

K2H

Then [N(H):H] | ¢ (H) for all HSG.
Proof. Assume that this has been proven for all groups of smaller order. For
03 H=G, assume that [N(K):K] | ¢ (K) for all K2 H.

If H< G, then setting ¢ (K/H)=¢ (K) for all K= H defines a function ¢: ¥ (G/H)
—Z with the properties: ¢ (G/H)=kg, and ) ;-x $(L)=0 for all Kfi G/H. Since
ke | kg, it follows from the induction hypothesis that |G/H]| | ¢ (HIH)=0 (H).

Now assume N(H)#G. For all L such that HSLSN(H), set & ={K2H:
KAN(H)=L), partitioning {K:K2H}. Then Y xc sy oy @ (K)=Y k2w @ ¢ (K)=0;
by inducting downward one gets Y 4.y, @(K)=0 for all L. In particular,
ZKeyH (P(K)=0-

Partition %, into the orbits of the action of N(H). For Ke ¥y, K+ H, let Fy be
the orbit of K under this action; |Fx|=|N(H)|/IN(H)nN(K)|. Since N(H)nK=H,
the map (N(H)n N(K))/H— N(K)/K is one-to-one, so

[N (H): H]=|Fl-IN (H)~ N (K)|/IH| | IFxl-[N (K): K] | L,,-ZFK o (L).
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Thus,

[N(H):H]IK?; ¢ (K), andso [N(H):H]|e(H).

It has now been shown that [N(H):H] | ¢ (H) for all 0 H=G, and it remains to
show that |G| | @ (0). If 2 is any conjugacy class of non-zero subgroups, and He %,
then |5#|=[G:N(H)] and

G| [G:N (H)]-1H] -0 (H)= 5. IKIo(K).

It follows that |G| | Y o:nee |H| @ (H).
Thus, it will now suffice to show that |G| | ¥ ¢ |H| @ (H). This may be rewritten

Y Hlro(H)=3) ) oH)=) » ¢(H)

HEG HEG aeH aeG H2<{(a)

=k (number of generators of G).

If G is not cyclic, it follows that Y ,cq |H| ¢ (H)=0, and we are done. If G=Z,,
where n=pi'... p;* is the primary decomposition, then k;=p;, ... p, and

Y, Hl-9(H)=n"(p;—1)... (p,—1)
HEG
which again is a multiple of n=|G|. O
Now the numbers m,(G) and m(G) may be calculated immediately.

THEOREM 4. Assume G¢9,. Then m,(G) is a product of distinct primes, and
q | m,(G) if and only if Ge %3 (so m,(G)=1 if and only if G¢%,).

Proof. Since G ¢ fﬁ},, the function ¢ defined for G in Lemma 8 is a modp resolving
function for G, and m,(G) l k¢ which is a product of distinct primes. Furthermore, if
g | m,(G), then ¢ | kg and G has a normal subgroup H, of index q. If H,¢%,, then
g |m,(G) | m,(H,) and so H, has H,<i H, of index . This procedure can be repeated
until one reaches a subgroup H,,e?f,. Thus, by Lemma 7, Ge %}.

If Ge¥l, then the fixed-point set F of any action of G on a finite Z,-acyclic

complex has y(F)=1 (modq) (Propositionl) and so ¢ | m,(G). O

THEOREM 5. Assume G¢%'. Then m(G) is a product of distinct primes, and
q | m(G) if and only if Ge 9% (so m(G)=1 if and only if G¢ %).

Proof. Since G¢ %!, the function ¢ defined for G in Lemma 8 is an integral resolving
function for G, and m(G) | k¢, a product of distinct primes. If ¢ | m(G), then q | kg,
and G has a normal subgroup H, of index ¢g. Then g | m(G) ] ng l ny,, so by Proposition
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6, q | m(H,), and either H;e%" or H, has a normal subgroup H, of index g. This
gives a sequence H,<xH, _,<1---<a1 H;<a G of subgroups, each normal of index ¢ in the
following one, and such that H,e%'. H,e %, for some prime p, and so Ge¥9,= %" by
Lemma 7.

If Ge %, then Ge ¥} for some p, and so ¢ | m,(G) | m(G). O

COROLLARY. For G not of prime power order, ng=0 if and only if Ge 9. If
G¢ Y, then ng is divisible by at most the square of any prime, and q | ng if and only if
Ge%4. In particular, ng=1 if and only if G¢ %.

Proof. This follows directly from Theorem 5 and Proposition 6. []

There is one more case where ng; can easily be computed. Consistent with the nota-
tion used previously, ¢, will denote the set of finite groups which have a normal cyclic
subgroup of prime power index.

PROPOSITION 7. Assume G¢%9,. Then ng=m(G).

Proof. If p is any prime not dividing the order of G, then G¢ ¥, implies that
G¢%,. It follows that m,(G)=1, and so there exists a finite Z -acyclic complex X,
upon which G acts with two fixed points.

Let Y be an n-dimensional G-resolution of a discrete set of (1+m(G)) points.
The group H,(Y) is a projective Z[G]-module, and so H,(Y; Z,)=H,(Y)®Z,
is a free Z,[G]-module for any prime g ([2], Corollary to Theorem 78.3). If gy, ..., ¢,
are the distinct primes dividing |G|, and k=g¢; ... q,, then it follows that

t
H,(Y; Zk)='(—_91 H,(Y;Z,)

is a free Z,[G]-module. Thus, free orbits of (n+1)-cells may be added to Y to
produce the Z,-acyclic space ¥, upon which G acts with (1+m(G)) fixed points.

The space ¥ has torsion with respect to a finite number of primes py, ..., p,, none
of which divide the order of G. Now, taking the smash product ¥ A (Aj-; X,,), one
gets a finite contractible complex upon which G acts with (1+m(G)) fixed points.
Thus, no=m(G). O

The only remaining groups G for which n; has not been calculated are those
groups in %, not in ¢*. In these cases, m(G) turns out to be prime, and so there are
only two possible values which ng could take, depending on whether y¢ is ever non-
zero. The smallest example of such a group is D, the dihedral group of order 12.

5. Fixed-Point Free Actions

So far, all of the results have described fixed-point sets possible for simplicial
actions on finite acyclic complexes. In the case of fixed-point free actions, however,
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there is a fairly simple procedure for constructing smooth actions on compact mani-
folds from the simplicial actions. This is actually possible for positive-dimensional
compact Lie groups as well as finite groups, by means of the concept of equivariant
CW-complexes (see [7]).

DEFINITION. Let G be a compact Lie group. A zero-dimensional G-equivariant
CW-complex is a disjoint union of homogeneous spaces G/H;. An n-dimensional
G-equivariant CW-complex is a space X, obtained from an (n—1)-dimensional G-
equivariant CW-complex by attaching spaces G/H; x D} (where G acts trivially on D}),
via equivariant maps ¢;:G/H; xS} ' > Y.

When G is a finite group, a G-equivariant CW-complex is the same as a CW-com-
plex with a cellular action (as defined in the introduction). Note that for any compact
Lie group G, any finite G-equivariant CW-complex has finitely generated homology
(because (G/H x D", G/Hx S"™!) does). It has been proven by Illman [7] that any
smooth manifold with a smooth G-action has the structure of an equivariant CW-
complex; if the manifold is compact, it will be a finite complex. The following theorem
will make it possible to go in the other direction, from finite complexes to smooth,
compact manifolds.

THEOREM 6. Let K be a finite G-equivariant CW-complex. Then there is a smooth,
compact manifold M with a smooth G-action, and an equivariant embedding i: K-> M
into its interior, such that n,(i) and H,(i; Z) are isomorphisms. Furthermore, M
can be chosen such that the isotropy subgroup of any point in M is contained in the
isotropy subgroup of some point of K, and such that M © is a regular neighborhood of K°.

Thus, if K is simply connected, M will have the same homotopy type, and if the
action on K is fixed-point free, the same will be true of the action on M.

The equivariant tubular neighborhood theorem (see, e.g. Bredon [1, p. 306])
shows that the boundary of any smooth G-manifold M has an invariant neighborhood
equivariantly diffeomorphic to M x [0, 1) (with the fixed action on [0, 1)). Thus, the
corners which occur when taking the product of two manifolds, a disk bundle over a
manifold, or a manifold with a handle attached, all can be smoothed equivariantly.

The following lemma will be needed to prove the theorem:

LEMMA 9. Given smooth manifolds M" and N*?, where M is compact andp >2n+3,
and a continuous function fo:M — N, there is a homotopy F: M x I — N of f,, such that
fi is a smooth embedding for all i>0.

Proof. Define F: M x (0, 1] N, by F(m, t)=f,(m). Define the positive function
0:Mx(0,1]—>R by 6(m, t)=t¢. Fix a metric on N.

Dim(N)>2-dim(M x (0, 1])+1, so F can be d-approximated by a smooth one-
to-one immersion F': H x (0, 1]— N. Set f,(m)=F’(m, t), then f, is a smooth embed-
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ding (¢>0) since M is compact. Set F=f, U F': Hx [0, 1]— N. Then F is continuous
and is the required homotopy. [

Theorem 6 will be proven by induction, starting with the subcomplex XK°u K¢,
where K° is the union of the cells (G/H x D°). The theorem is true for this subcomplex:
embed K¢ in some regular neighborhood, and leave alone the components of K not in
KS. Theorem 6 now follows from the following lemma:

LEMMA 10. Assume K is a finite G-equivariant CW complex, with sub-complex L,
where K=L \ ), (G/Hx D") for some equivariant f:G/Hx S""* - L, some HcG.

Assume M is a compact manifold with smooth G action, with the embedding i: L— M,
fulfilling the conclusion of the theorem. Then the theorem holds for K.

Proof. Let j:S""'— G/Hx S"! be the inclusion map j(x)=(eH, x). One may
assume dim M >2n+1 (if not replace M, by My x D*2M,). Apply Lemma 1 to
the map ifj:S"~! - M{, obtaining the map

a:S" ! xI—int M

where o, =ifj and «, is a smooth embedding for #>0.

Choose D a disk with a linear action of G, such that some xedD has isotropy sub-
group H. Set M, =M, x D, let i,: My, —> M, be the embedding of the zero section, and
define 8:G/Hx S" ' xI— M, by

G(gH, x,t)=(g-a(x, 1), t-gx).

Then (& | G/Hx S"™' x0)=i,if, and the restriction of & to G/HxS" 'x (0, 1] is
embedded in M; — M, with G/H x S"~! x | the inverse image of dM,, and smoothly
embedded. Denote that embedding by f:G/Hx S" ! = oM,.

Let i;: M, — W be a smooth, equivariant embedding of M, in a linear represen-
tation of G; let M, be an equivariant tubular neighborhood of M, in W. This induces
a smooth embedding ' =i,f:G/H x S"~* = 0M,, which restricts to f/j: S" ™1 - 0M,.

As H-bundles:

WxS' =1y | S*" 1=7(S" VY)@ORXS" '@t (G/H)xS"!
D vom, (G/Hx S"™1) IS"“

Set V=R"@®1,,(G/H) (an H-representation where R" has the trivial action); then
WxS" 1=VxS" 1@ vy, (G/Hx S" 1)

Let ¥ be a real G-representation whose restriction to H contains V" as a direct
summand: P=V@V, as H-representations. Set M;=D(V)x M; i,: M, M, the
embedding x — (0, x).

sn-1.
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As an H-bundle over S" !,

Vou, (GIHx S"1)

sn—l=vaM2 (G/HX Sn—l) Isn—l@(V@ Vl)
x S" = (W@V,)x S""1,

and so vy, (G/HxS" ) (G x g(W®V,))xS" 1. Let D(W@V,) be the disk
representation associated to W@V, and attach (G x ; D(W@®V,))x D" via this
isomorphism to dM 5 to get the smooth G-manifold M ,. The embeddings

G/HxD"— (G x D(W@V,))xD" (zero section)
H

i, &:GIHX 8" 1 x - M,

iZiIiOi: L"') M3

define an embedding of Kinto M ,. By the Van Kampen and Meyer Vietoris theorems,
this embedding still induces an isomorphism of fundamental groups and integral
homology.

The manifold M, is a vector bundle over M, and therefore any isotropy subgroup
of M, is contained in one of M. The handle (G x ; D(W@V,))x D" is a bundle over
G/H x D", and so any of its isotropy subgroups is contained in a conjugate of H.

Since G# H, (M,)° is a disk bundle over (M,)®, which was assumed to be a
regular neighborhood of LS=KY, so (M,)° is a regular neighborhood of K¢. [J

COROLLARY. Assume K a contractible finite G-equivariant CW complex. Then G
has a smooth action on a disk, any of whose isotropy subgroups is contained in an isotropy
subgroup of K.

Proof. By the theorem, G has a smooth action on some compact contractible mani-
fold M, where all isotropy subgroups of M, are contained in isotropy subgroups of
K. Embed M, smoothly in some linear representation of G; let M, be the disk bundle
of an equivariant tubular neighborhood of M,. By a theorem of Whitehead [13, p.
298], M, is a disk if M, was embedded with sufficiently high codimension. Isotropy
subgroups of M, are contained inside those of M,. [

Now, Theorem 6 and its corollary may be combined with the results of Section 2,
3, and 4 to classify finite groups having smooth fixed-point free actions on compact
acyclic manifolds.

THEOREM 7. A finite group G has a smooth fixed-point free action on some com-
pact Z -acyclic manifold if and only if G¢%,. G has a smooth fixed-point free action
on a disk if and only if G¢%. In particular, any non-solvable group has a smooth fixed-
point free action on a disk, and an abelian group has such an action if and only if it has
three or more non-cyclic Sylow subgroups.
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Proof. By the corollary to Theorem 1, G has a fixed-point free action on a finite
Z-acyclic complex if and only if m,(G)=1; this occurs if and only if G¢¥, by
Theorem 4. By the corollary to Theorem 3, G has a fixed-point free action on a finite
contractible complex if and only if n;=1; if and only if G¢¥ (by the corollary to
Theorem 5). ]

Thus, the smallest abelian group with a smooth fixed-point free action on a disk
is Z30@®Z;g, of order 900. The next theorem will show that the smallest solvable
groups with such action have order 72: two such groups are S,@Z, and A,DS,;.
It thus follows that the smallest group with a smooth fixed-point free action on a disk
is A5 of order 60 (the one compact group previously known [3] to have such an action).

The following notation will be used to simplify the proof of Theorem 8. A finite
group will be said to be of type {Fy,..., F,) if there is a normal series

O=HycH,c---cH,=G(H;<G)

such that F;=H,/H;_, for all i. Under this notation, Ge % if and only if G is of type
(P, Z,, Q) for some p-group P and some g-group Q. Note that any solvable group
is of type <(Z,!, ..., Z}"» for some sequence of elementary abelian groups.

THEOREM 8. If G is a finite solvable group of order less than 72, then Ge 9.

Proof. Any group of order p°q or pgr, for primes p, g, r,is in some ¥, by examina-
tion of its composition series. This leaves the cases |G| =236 or 60.

If |G|=36, G has a normal series all of whose components are elementary p-
groups; the only possibilities which do not immediately show Ge¥, or ¥, are
(Zs, Ly, Ls, 1,>, {Zy, L3, Z,, 1>, {Z,, 23, Z,> and (Z,, Z2, Z,>. Since the
only extension of Z, by Z; is Z, the first case reduces to {Z,, Z¢, Z,), or Ge¥Y,,
and the second case to (Zg, Z¢ », Which has the same form as the first case. Similarly,
the third case reduces to (Z,®Z2, Z,) or Ge¥%;. In the fourth case, either G is of type
(Z,, 127, (and Ge%,) or G is of type {Z3, A,). Since A4 has no subgroup of
index 2, Z, must be in the center of G. Thus, G is also of the form (Z,®Z2, Z,),
and Ge¥%,.

If |G| = 60, there are eight possibilities for the components of a normal series which
do not immediately show Ge¥,, ¢, 9s. Four of them, {Z,, Z;, Zs, Z,), {Z,,
25,2,,727,5,{2+,2,,25,2,>and{Zs,Z,,Z;,Z,)implyGe¥,,9,, %, %5, respec-
tively, since Z, 5 is the only group of type {Z3, Zs) or {Zs, Z5), etc. If G is of type
{Zy,25,2,,2s)0rKZ,,Zs, Z,, Z5>, then it is of type {Z,, Z;, Z,,) or {Z,, Zs,
Z >, cases which were considered above (Ge¥%,). A group of type (Z,, Z§, Zs) is in
& ,, since Z2@Z is the only group of type (Z3, Zs). If Gis of type {Zs, Z2, Z.,>, then
G|Zs=Z2®Z, (so Ge¥s), or G/Zs=A,. In this last case G is a semi-direct product;
the only homomorphism 4, —» Aut(Zs)=~Z,isthetrivial one,so G=Z;DA,€¥9,. J
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In answering the question of which positive-dimensional compact Lie groups have
smooth fixed-point free action on disks, the corollary to Theorem 6 shows that it
suffices to construct finite contractible equivariant CW complexes with no fixed points.
When the group is nonabelian and connected, the following proposition further
simplifies the problem.

PROPOSITION 8. Assume the compact Lie group G is non-abelian and connected.
If there is a fixed-point free finite G-equivariant CW complex X which is Z,-acyclic,
then G has a smooth fixed-point free action on a disk.

Proof. By a theorem of Hsiang and Hsiang [6, p. 366], G has an irreducible repre-
sentation on R?**! for some k > 1. This induces a smooth fixed-point free action of G
on the space RP?*,

As mentioned above, Illman [7] shows that a smooth action on a compact mani-
fold has the structure of an equivariant CW complex. Thus, X * RP3* has the structure
of a (G x G)-equivariant CW complex, with no isotopy subgroup containing the
diagonal. Since X is Z,-acyclic and RP?* is Z -acyclic for all odd primes p, X * RP?*
is contractible. The corollary to Theorem 6 applies: G x G has a smooth action on a
disk with no isotopy subgroup containing the diagonal, which thus restricts to a
smooth fixed-point free action of G. []

Finally, the following is given as an example that such actions do occur:

COROLLARY. SO(3) has a smooth fixed-point free action on a disk.

Proof. By Proposition 8, it will suffice to construct a finite Z,-acyclic SO (3)-
equivariant CW complex X without fixed-points. Let S, =.SO(3) be the subgroup of
matrices with a single non-zero entry in each row and column. Let 0(2)=SO(3) be
the subgroup of matrices with a (+1) in the upper left-hand corner, and set
D,=S,n0(2). Let X be the complex constructed by attaching (SO (3)/D,) x I to the
disjoint union (SO (3)/S,) v (SO (3)/0(2)) via the projections induced by inclusions
of subgroups.

The Meyer-Vietoris sequence in reduced homology takes the form:

~ ,(S0 (3)/D4) - H, (S0 (3)/S,)® A, (S0 (3)/0 (2))
- H,(X)>HA,_,(SO(3)/D,y)~.

To prove that X is Z,-acyclic, it will suffice to show that the kernel and cokernel of
the map

A,(S0(3)/D,)~ A,(S0(3)/S.,)®H,(50(3)/0(2)) (1)

consist of odd torsion for all n. Except in dimensions 1 and 3, all of these groups are



Fixed-Point Sets of Group Actions 177
zero. Since SO (3)/0(2)xP? is the two-dimensional, and
SO (3)/D,— SO (3)/S.

is a three fold cover of orientable three-manifolds, (1) is a monomorphism Z - Z
with cokernel Z; in dimension 3.

When n=1, n, (SO (3)/D,) is the generalized quaternionic group of order 16, with
abelianization Z3. The space SO(3)/S, has fundamental group the binary octahe-
dral subgroup of S, with abelianization Z,. Thus, (1) takes the form

2;-7Z,+2,
and a straightforward computation shows it to be an isomorphism. []
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