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Complete Homogeneous Riemannian Manifolds
of Negative Sectional Curvature

Su-SHING CHEN

1. Introduction

The classical uniformization theorem for Riemann surfaces says that, except few
cases, every Riemann surface has the unit disc as its universal covering manifold. A
natural question is to determine universal covering manifolds of complete Riemannian
manifolds of negative sectional curvature. This is equivalent to classification of all
simply connected complete Riemannian manifolds of negative sectional curvature.
Here, we shall give a classification theorem of all complete homogeneous (necessarily
simply connected) Riemannian manifolds with sectional curvature K<c<0, that is
either the isometry group 7(M) of such a manifold M has a common fixed point in
the boundary M (o) of M or M is a noncompact symmetric space of rank one. It
might be amusing to compare this theorem with the Riemann mapping theorem. This
theorem also indicated that there may be other complete homogeneous Riemannian
manifolds with negative curvature than the noncompact symmetric spaces. Consider
now a simply connected, complete Riemannian manifold of negative sectional
curvature. We can determine complete totally geodesic orbits of its isometry group.
The second result is a classification theorem of connected Lie subgroups of the
connected isometry group /(M) of a noncompact symmetric space M of rank one.
This has been done in [5] and [6]. Here, we give a unified argument. As a conse-
quence, if G is a subgroup of I, (M) of a noncompact symmetric space M of rank
one such that there is no point in M and no proper totally geodesic submanifold in M
invariant under G, then G is either discrete or dense in 7, (A ). This theorem suggests
an approach of construction of non-arithmetic discrete subgroups.

Let M be an n-dimensional, simply connected, complete Riemannian manifold
with sectional curvature K<0. There is a natural compactification /=M U M () of
M given by Eberlein and O’Neill [10]. M is homeomorphic to the closed unit ball in
R" and M (o) is homeomorphic to $”~*. For convenience, an n-dimensional, simply
connected, complete Riemannian manifold M with sectional curvature K<0 will be
“called a Lobatchewsky manifold if any two distinct points in M (o) can be joined
by a unique geodesic in M. This condition is actually Axioms I and II used by Eber-
lein in [7] for geodesic flows. This condition holds for the following cases: (1) The
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sectional curvature K< ¢<0; (2) The geodesic flow of the compact quotient manifold
M|T by a properly discontinuous group I' of isometries of M is Anosov.

Section 2 states preliminaries of Lobatchewsky manifolds. Proofs and details can
be found in [7], [9] and [10]. Basic facts of limit sets including a classification
theorem of limit sets are given in Section 3. The following main lemma of this paper is
also given there. If (M) acts effectively on a simply connected, complete Riemannian
manifold with sectional curvature K<c<0 and if the totally geodesic hull {L(G))
of the limit set L(G) of a subgroup G is M, then either G has a common fixed point
in M (o0) or G is semisimple. Section 4 gives proofs of our results.

Our next project is to investigate the general case of nonpositive sectional curvature.
This work will appear elsewhere.

2. Lobatchewsky Manifolds

For any Riemannian manifold M we denote the Riemannian structure by ¢, ),
the Riemannian metric by d. We denote by I(M) and I, (M) respectively the full
isometry group of M and its identity component. If v and w are two unit tangent
vectors at a point pe M, the angle 6= x (v, w) is the unique number 0<0<n such
that {v, w)=cos#f. If M is complete and v is a unit tangent vector, let y,:R— M be
the geodesic such that y,(0)=v. All geodesics are assumed to have unit speed and to
be defined on the entire real line.

From now on, let M denote a complete, simply connected Riemannian manifold
with sectional curvature K<0. If p#g¢ in M, let y,, be the unique geodesic such that
7,(0)=p and y,,(¢)=g, where t=d(p, q). The angle ¥ ,(m, n) subtended at p by
points m, n of M distinct from p is X (y,m(0), ¥p»(0)). Any three noncollinear points
of M determine a geodesic triangle and the law of cosines says that ¢ =a®+b*—2ab
cosf where a, b, ¢ are the sides of the triangle and 6 is the angle opposite c.

Geodesics « and B in M are asymptotic if there exists a number ¢>0 such that
d(x(t), B(¢))=c for all t 0. The asymptote relation is an equivalence relation on the
set of all geodesics in M; the equivalence classes are called asymptote classes. If
a:(—00, 00)— M is a geodesic, let a(c0) be the asymptote class of « and let a(—o0)
be the asymptote class of the reverse curve t—a(—¢). A point at infinity for M is an
asymptote class of geodesics of M. Let M (o) be (the boundary of M) the set of
points at infinity for M and let M=M U M (). If pe M and xe M (o0) are given there
is a unique geodesic y,, such that y,,(0)=p and y,,(0)=x. If pe M is distinct from
points a, b in M then the angle subtended at p by a and b is ¥,(@, )= ¥ (¥5.(0),
755(0)). Let v be a unit tangent vector in M, the tangent space at p to M. Let
0O<e<m and r>0 be given. The cone C (v, ¢) of vertex p, axis v and angle ¢ is the set
of {beM | x,(y,(0), b)<e} and the truncated cone of vertex p, axis v, angle ¢ and
radius r is the set T'(v, &, r)=C(v, ¢)— {ge M | d(p, g)<r}. The cone topology k of
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Eberlein and O’Neill [7], [10] for M is defined by one of the following equivalent
conditions: (1) The topology k of M extends the topology of M and M is a dense
open subset of M; (2) For each xe M (o0) the set of cones containing x is a local basis
for k at x; (3) For each xe M (o) and each pe M the set of truncated cones with the
vertex p that contain x is a local basis for k at x.

The cone topology makes M homeomorphic to the closed unit ball in R* and
M (o0) homeomorphic to the sphere S"!. If a:(— o0, 00)— M is a geodesic, then
the natural asymptotic extension o: [ — 00, 0] — M is continuous. If ¢ is an isometry
of M and xe M (), define ¢ (x)=(poa) (c0) where a is any geodesic representing x.
Since isometries preserve asymptotes, ¢ is well defined and becomes a homeomorphism
of M. Thus the isometry group I (M) of M extends to a group of homeomorphisms of
M. If x and y are distinct points in M (c0), a geodesic « is said to join x to y if a(—o0)
=x and a(c0)=y.

DEFINITION 2.1. A Lobatchewsky manifold M is a complete, simply connected
Riemannian manifold with sectional curvature K<0 satisfying the condition that any
two distinct points in M (c0) can be joined by a unique geodesic.

The condition in the above definition is originally given in [7] as Axioms I and II.

Isometries of M can be classified by their fixed points. Explicit forms of them can
be determined up to conjugacy for rank one symmetric spaces ([5], [6] and [11]).
Every isometry ¢ has at least one fixed point in M, since M is a cell. ¢ is elliptic if it
has a fixed point in M. If ¢ is not elliptic, then ¢ has at most two fixed points in M (o)
If ¢ has fixed points x#y in M (o), then ¢ translates the geodesic joining x to y and ¢
is called axial. If ¢ has one fixed point in M (o0), then ¢ is called parabolic.

3. Limit Sets and the Main Lemma

DEFINITION 3.1. Let G be a subgroup of the isometry group /(M) of a Lobat-
chewsky manifold M. The limit set L(G) of G is defined to be the intersection with
M (o) of the closure of any orbit of G in M. That is L(G)=M (c0)n {g(p) | g€G}
where p is an arbitrary point in M.

The limit set is independent of p. In fact, if p#p’ in M and if {g,} is a sequence
in G, then limg, (p)=limg,(p’), because g, are isometries. L(G) is a closed subset of
M (o) which is invariant under G. If G is the closure of G, then L(G)=L(G). The
subgroups of I(M ) are divided into four classes, according as L (G) is empty, contains
exactly one point, contains exactly two points or contains more than two points.

THEOREM 3.1. If A is a closed subset of M (o) which contains more than one
point and A is invariant under G, then A>L(G).
Proof. Let ze L(G) and zy, z,€ A. There is a sequence {g,} =G so that limg,(p)
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=z for any pe M. At least one of the sequences {g,(z,)}, {g,(z,)} has z as a limit point.
If this is false, then there is a subsequence {g,,} so that limg, (z;)=x; and limg,_(z,)
=X,, where x; #z and x, #z. Let 4 be the geodesic with end points z;, z, and let p be a
point on A. There are neighborhoods U, of x; and U, of x, so that z¢ U, and z¢ U,.
For large k, g, (z;)eU; and g, (z,)eU,, while g, (p) is a point on the geodesic
&n(A). If the sequence {g,, (p)} converges to a point of M (c0), this point must be
in U, or U,. This contradiction implies that the closed invariant set 4> L(G).

The following lemma ([7]) will be used to prove the following two theorems
which have already been given in [7] and [10] for discrete subgroups. We refer to
[7] and [10] for the similar proofs.

LEMMA 3.1. (Eberlein [7]) Let {p,} be a sequence in a Lobatchewsky manifold
M convergent to a point xe M (o). If W is any neighborhood of x in M then ¥ , (M — W)
—0 as n— .

THEOREM 3.2. Let G be a subgroup of the isometry group I1(M ) of a Lobatchewsky
manifold M. Then one of the following holds:

(1) L(G) is empty,

(2) L(G) contains one point,

(3) L(G) contains two points,

(4) L(G) is an infinite, perfect and nowhere dense subset of M (o),

(5) L(G)=M(0).

THEOREM 3.3. Let zeL(G) and let Gz contain more than one point. Then Gz =
=L(G).
We now investigate various cases of limit sets of subgroups.

THEOREM 3.4. If L(G)=¢, then G has a common fixed point in M.

Proof. G is a closed Lie subgroup of I(M) and L(G)=L(G)=¢. For any peM,
the orbit Gp is closed bounded set so that Gp is compact. Let K= {geG | g(p)=p}.
K is a closed subgroup of the isotropy subgroup I(M), at p. So K is compact. The
factor space G/K is homeomorphic to Gp, so G/K is compact. G is a fibre space with
compact base space G/K and compact fibre K. Therefore G is compact. By the well
known theorem of Cartan, G has a common fixed point in M.

The following theorem is obvious.

THEOREM 3.5. If L(G) contains one point, then G has a common fixed point in
M () and G consists of parabolic elements and axial elements leaving that point fixed.

Remark. G is a subgroup of the homeomorphism group of R" leaving the infinity
oo fixed.
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THEOREM 3.6. If L(G) contains two points then G modulo a normal subgroup
(isomorphic to a subgroup of O(n—1)) is a subgroup of the 1-parameter group of axial
elements with these two given points as fixed points.1)

Proof. G leaves the geodesic A joining the two points in L(G) invariant. The
kernel of the restriction map from G into I(4) is isomorphic to a subgroup of 0(n—1).

DEFINITION 3.2. The totally geodesic hull {4) of a cubset A in M () is the
intersection of all totally geodesic submanifolds in M whose boundaries contain A.

DEFINITION 3.3. A set N in M is called totally convex ([3]) if N contains
every geodesic segment of M whose end points are in N. The totally convex hull {4}
of a subset A4 in M (o0) is the smallest totally convex set in M whose closure contains A.

From now on, we shall assume that M is a simply connected complete Riemannian
manifold with K< e¢<0.

PROPOSITION 3.1. If A contains more than two points, then any isometry ¢ of
I(M) which leaves A pointwise fixed, also leaves (A} pointwise fixed.

Proof. We consider the totally convex hull {4} of A. The set of tangents to {4} at
point p of {4} isaconvex conein M, (see [3], p. 7). If we complete all geodesic segments
in {4} and denote by N the totally convex hull of the union of those complete geodesics,
then the set of tangents to N at p is a subspace N, of M,. Then N=ExpN,and N is a
totally geodesic submanifold of M. By definition, N={A4). If 4 contains more than
two points, then any isometry ¢ of I(M ) which leaves A4 pointwise fixed, also leaves
every geodesic joining any two points in 4 pointwise fixed (by the law of cosines). ¢
leaves (A) pointwise fixed.

Since L(G) is invariant under G, (L(G)) is also invariant under G. In general,
(L(I(M))> may not be the whole M. However if M is homogeneous, L(I(M))
=M (o) and (L(I(M)))=M. The following lemma is the main idea of this paper.

DEFINITION 3.4. The centralizer Z(G, H) is the set {h ] he H, gh=hg for all
geG}.

LEMMA 3.2. Let M be a simply connected complete Riemannian manifold with
K= ¢<0 such that I(M) acts effectively on M. Suppose that G is a subgroup of 1(M)
and {L(G))» = M. If L(G) contains more than two points, then the centralizer Z(G, I(M))
is trivial. If, in addition, G does not have a common fixed point in M (o), then G is
semisimple.

1) The factored out normal subgroup of G contains elliptic elements which leave the geodesic 4
pointwise fixed but may rotate other in M.
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Proof. Suppose that c is an element of the centralizer and z,eL(G). There is a
sequence {g,} =G, so that limg,(p)=z, for any pe M. Then z,=limg, (p)=limcg,c*
(p)=limcg,(p)=c(zo). Thus every point in L(G) is a fixed point of ¢. Proposition
3.1 implies that every point in M =<L(G)) is fixed by c. Since I(M) acts on M effec-
tively, c=1.

Now suppose that H is a commutative, normal subgroup of G. If L(H)=¢, then
H has a common fixed point pe M. Suppose that zoe L(G), {g;} is a sequence in G, so
that limg, (p) =z, and he H. The point g, (p) is fixed under g,hg; *. Since the mapping
h-sg.hgy ' maps H onto itself, g, (p) is a common fixed point of H. It follows that z,
is a common fixed point of H. Thus the elements of H leave every point of L(G) and
{L(G)) fixed. It follows that H={1}.

If L(H)# ¢, we shall show that L(H)=L(G). Suppose that zoe L(H), {h}<H,
limh,(p)=z, and geG. Then limghg ! (p)=limgh,(p)=g(z,). Thus L(H) is in-
variant under G. If L (H) consists of exactly one point, then this point is invariant
under G, contradicting the hypothesis. Therefore L(H) is a closed subset of M (o),
which contains more than one point and L(H) is invariant under G. Theorem 3.1
implies that L(H)> L(G). Since Hc G, L(H)=L(G). Thus {L(H)>=<{(L(G)>=M.
The centralizer Z (H, I(M)) is trivial. Since H is commutative it is a subgroup of this
centralizer, and H={1}.

4. Complete Homogeneous Riemannian Manifolds With K<c¢<0

In the sequel, we shall always assume that the isometry group I(M) acts effectively
on the homogeneous manifold M.

LEMMA 4.1. (Mostow [17]) Let @ be a real noncompact semisimple Lie algebra
and 9 be a noncompact semisimple subalgebra. Let ¥ =X"@® % be a Cartan decompo-
sition of %. Then there is a Cartan decomposition A DP for G with' < H and P< P,

THEOREM 4.1. Let M be a complete homogeneous Riemannian manifold with
K=<¢<0. Then

(1) Either I(M) has a common fixed point in M () or I(M) is a noncompact
semisimple Lie group of rank one and M is a noncompact symmetric space of rank one.

(2) Let G be a Lie subgroup of I,(M) such that M={L(G)). Suppose that L(G)
contains more than two points and G does not have a common fixed point in M (). Then
either G is discrete or G=1,(M).

Proof. Let G be a Lie subgroup of I,(M) satisfying the assumptions in (2).
Suppose that G is not discrete, and let G, be the identity component of G. G, is a
nontrivial normal subgroup of G. As in the proof of Lemma 3.2, L(G,)=L(G).
Furthermore, G, has no common fixed point in the closure {L(G)). For if z is such
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a point and geG, then g(z) is also a common fixed point of G,. But the orbit Gz is
dense in L(G) so every point of L(G) and {L(G)) is fixed under G,. Thus G, = {1}.
Lemma 3.2 implies that G, is semisimple with trivial centralizer. We can apply the
above fact to I (M), since M ={L(I,(M))). If I, (M) does not have a common fixed
point, then 7, (M) is semisimple with trivial centralizer. Hence M is symmetric. Since
noncompact symmetric spaces with rank greater than one do not satisfy the condition
that any two boundary points can be joined by a unique geodesic (see [9]). M must
be a noncompact symmetrlc space of rank one. Let & be the Lie algebra of I, (M)
and let ¥=4 @D be the corresponding Cartan decomposition. Then the axial
elements of I,(M ) are given by exp X, where X €. We now go back to the given
group G. The existence of such a subgroup G implies that /(M) does not have a
common fixed point in M (o0) and M is a symmetric space. Since G, is semisimple,
Go=1I,(M) otherwise {L(G)>=<{L(G,)) would be a proper totally geodesic sub-
manifold of M by Lemma 4.1. Consequently either G is discrete or G=1,(M).

THEOREM 4.2. ([5], [6]) Let M be a noncompact symmetric space of rank one.
Let G be a connected Lie subgroup of I,(M). Then one of the following holds:

(1) G has a common fixed point in M,

(2) G has a common fixed point in M (0),

(3) G modulo a normal subgroup (isomorphic to a subgroup of O(n—1), n=dimM)
is the 1-parameter group of axial elements,

(4) G modulo a normal subgroup (isomorphic to a subgroup of O(n—m), n=dim M,
m=dim{L(G))) is the connected isometry group I,({L(G))) of the totally geodesic
submanifold {L(G)) which is a noncompact symmetric space of rank one,

(5) Gis I,(M).

Proof. If G has a common fixed point in M, then we have (1) or (2). If L(G)
contains two points, then the geodesic {L(G)) is invariant under G. The restriction
homomorphism from G into 1,({L(G))) has kernel K which is a subgroup leaving
(L(G)) pointwise fixed and is isomorphic to a subgroup of O (rn—1). Since the image
of Gin I, ({L(G))) is a connected Lie subgroup, it must be the 1-parameter group of
axial elements. If L(G) contains more than two points but (L(G)) =M, then {L(G))
is invariant under G. The restriction homomorphism from G into I,({L(G))>) has
kernel K which is a subgroup leaving {L(G)) pointwise fixed and is isomorphic to a
subgroup of O (n—m) (m=dim{L(G)>). We can apply Theorem 4.1. to get (4). If
{L(G))=M, then Theorem 4.1. again gives (5).

THEOREM 4.3. Let M be a noncompact symmetric space of rank one and G be a
subgroup of I,(M). If there is no point in M and no proper totally geodesic submanifold
in M invariant under G, then G is discrete or dense in I, (M).

Proof. Gis a closed subgroup and L(G)=L(G). If (G), is trivial, then G is discrete.
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If (G), is not trivial, then it is a connected Lie subgroup. Thus this theorem follows
from Theorem 4.2.

COROLLARY. Let M be a noncompact symmetric space of rank one. Let there be
no point in M and no proper totally geodesic submanifold in M invariant under G. If
there is an open subset U of I(M ) such that UnG=¢, then G is discrete.
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