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Complète Homogeneous Riemannian Manifolds

of Négative Sectional Curvature

Su-Shing Chen

1. Introduction

The classical uniformization theorem for Riemann surfaces says that, except few

cases, every Riemann surface has the unit dise as its universal covering manifold. A
natural question is to détermine universal covering manifolds of complète Riemannian
manifolds of négative sectional curvature. This is équivalent to classification of ail
simply connected complète Riemannian manifolds of négative sectional curvature.
Hère, we shall give a classification theorem of ail complète homogeneous (necessarily
simply connected) Riemannian manifolds with sectional curvature K<Zc<0, that is

either the isometry group I(M) of such a manifold M has a common fixed point in
the boundary M(oo) of M or M is a noncompact symmetric space of rank one. It
might be amusing to compare this theorem with the Riemann mapping theorem. This
theorem also indicated that there may be other complète homogeneous Riemannian
manifolds with négative curvature than the noncompact symmetric spaces. Consider
now a simply connected, complète Riemannian manifold of négative sectional
curvature. We can détermine complète totally géodésie orbits of its isometry group.
The second resuit is a classification theorem of connected Lie subgroups of the
connected isometry group I0{M) of a noncompact symmetric space M of rank one.
This has been done in [5] and [6]. Hère, we give a unified argument. As a

conséquence, if G is a subgroup of/0(M) of a noncompact symmetric space M of rank
one such that there is no point in M and no proper totally géodésie submanifold in M
invariant under G, then G is either discrète or dense in I0(M). This theorem suggests

an approach of construction of non-arithmetic discrète subgroups.
Let M be an w-dimensional, simply connected, complète Riemannian manifold

with sectional curvature K^O. There is a natural compactification i?=Mu M(oo) of
M given by Eberlein and O'Neill [10]. M is homeomorphic to the closed unit bail in
R" and M(oo) is homeomorphic to S""1. For convenience, an n-dimensional, simply
connected, complète Riemannian manifold M with sectional curvature K£0 will be

called a Lobatchewsky manifold if any two distinct points in M(oo) can be joined
by a unique géodésie in M. This condition is actually Axioms I and II used by Eberlein

in [7] for géodésie flows. This condition holds for the following cases: (1) The
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sectional curvature KSc<0; (2) The géodésie flow of the compact quotient manifold
MjF by a properly discontinuous group F of isometries of M is Anosov.

Section 2 states préliminaires of Lobatchewsky manifolds. Proofs and détails can
be found in [7], [9] and [10]. Basic facts of limit sets including a classification
theorem of limit sets are given in Section 3. The foliowing main lemma of this paper is

also given there. If I{M) acts effectively on a simply connected, complète Riemannian
manifold with sectional curvature K^c<0 and if the totally géodésie hull <L(G)>
of the limit set L (G) of a subgroup G is M, then either G has a common fixed point
in M(oo) or G is semisimple. Section 4 gives proofs of our results.

Our next project is to investigate the gênerai case ofnonpositive sectional curvature.
This work will appear elsewhere.

2. Lobatchewsky Manifolds

For any Riemannian manifold M we dénote the Riemannian structure by < >,

the Riemannian metric by d. We dénote by I{M) and I0(M) respectively the full
isometry group of M and its identity component. If v and w are two unit tangent
vectors at a point peM, the angle 0 < (v, w) is the unique number 0^0^n such

that {v, w> cos#. If M is complète and v is a unit tangent vector, let yv:R-+M be

the géodésie such that y'v(0) v. Ali geodesics are assumed to have unit speed and to
be defined on the entire real line.

From now on, let M dénote a complète, simply connected Riemannian manifold
with sectional curvature K^O. Ifp±q in M, let ypq be the unique géodésie such that

ypq(0)=p and ypq(t) q, where t d(p, q). The angle £p(m, n) subtended at p by
points m, n of M distinct from/? is £ (ypm(0)9 y'pn(0)). Any three noncollinear points
of M détermine a géodésie triangle and the law of cosines says that c2 ^ a2 + b2 — 2ab

cos0 where a, b, c are the sides of the triangle and 9 is the angle opposite c.

Geodesics a and P in M are asymptotic if there exists a number c>0 such that
d(<x(t), P(t))^cfoT ail /^0. The asymptote relation is an équivalence relation on the

set of ail geodesics in M; the équivalence classes are called asymptote classes. If
a:(— oo, oo)-»Misa géodésie, let a(oo) be the asymptote class of a and let a( — oo)

be the asymptote class of the reverse curve f-»a( — t). A point at infinity for M is an

asymptote class of geodesics of M. Let M (oo) be (the boundary of M) the set of
points at infinity for M and let M=M\j M (oo). IfpeM and xeM(ao) are given there
is a unique géodésie ypx such that ypx(O)=p and ypx(co) x. IfpeM is distinct from
points a, b in M then the angle subtended at p by a and b is <p(a, b)= £ (ypa(0),

7p6(0)). Let i; be a unit tangent vector in Mp9 the tangent space at p to M. Let
0<e<7i and r>0 be given. The cône C(v, s) of vertex/?, axis v and angle e is the set

of {beM | £p(y,,(oo), b)<e} and the truncated cône of vertex p, axis v, angle e and

radius r is the set T(v9 e, r) C{v, e)- {qeM \ d(p9 q)^r). The cône topology k of
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Eberlein and O'Neill [7], [10] for M is defined by one of the following équivalent
conditions: (1) The topology k of M extends the topology of M and M is a dense

open subset of M; (2) For each xeM(oo) the set of cônes containing x is a local basis

for k at x; (3) For each xeM(oo) and each/?eM the set of truncated cônes with the

vertex/? that contain x is a local basis for k at x.
The cône topology makes M homeomorphic to the closed unit bail in Rn and

A/(oo) homeomorphic to the sphère S"'1. If a:(—oo, oo)-»M is a géodésie, then
the natural asymptotic extension a: [ — oo, oo] -» M is continuous. If (j> is an isometry
of M and xeM(co), define </>(x) (</>oa) (oo) where a is any géodésie representing x.
Since isometries préserve asymptotes, </> is well defined and becomes a homeomorphism
of M. Thus the isometry group I(M) of M extends to a group of homeomorphisms of
M. If x and y are distinct points in M(oo), a géodésie a is said to join jctoj>ifa(— oo)

=x and cc(co)=y.

DEFINITION 2.1. A Lobatchewsky manifold Misa complète, simply connected
Riemannian manifold with sectional curvature K<^0 satisfying the condition that any
two distinct points in M(oo) can be joined by a unique géodésie.

The condition in the above définition is originally given in [7] as Axioms I and II.
Isometries of M can be classified by their fixed points. Explicit forms of them can

be determined up to conjugacy for rank one symmetric spaces ([5], [6] and [11]).
Every isometry <£ has at least one fixed point in M, since M is a cell. (j) is elliptic if it
has a fixed point in M. If <j> is not elliptic, then 0 has at most two fixed points in M(oo)
If0 has fixed points x^y in M(oo), then $ translates the géodésie joining x to y and <j>

is called axial. If <£ has one fixed point in M(oo), then <j) is called parabolic.

3. Omit Sets and the Main Lemma

DEFINITION 3.1. Let G be a subgroup of the isometry group I{M) of a

Lobatchewsky manifold M. The limit set L{G) of G is defined to be the intersection with
M (oo) of the closure of any orbit of G in M. That is L(G) M(oo)n {g(p)\geG}
where p is an arbitrary point in M.

The limit set is independent of p. In fact, if /?#/?' in M and if {gn} is a séquence
in G, then limgn(p)=:\imgn(p'), because gn are isometries. L(G) is a closed subset of
M(oo) which is invariant under G. If G is the closure of G, then L(G)=L(G). The

subgroups of/(M) are divided into four classes, according as L(G) is empty, contains

exactly one point, contains exactly two points or contains more than two points.

THEOREM 3.1. If A is a closed subset of Af(oo) which contains more than one

point and A is invariant under G, then Ao>L(G).

Proof Let zeL(G) and zl9 z2eA. There is a séquence {gn}czG so that \imgn(p)
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=2 for anypeM. At least one of the séquences {gn (zt)}9 {gn (z2)} has z as a limit point.
If this is false, then there is a subsequence {gnk} so that limgnk(z1)=x1 and \imgnk(z2)

=x2, where xt #z and x2^z. Let A be the géodésie with end points zi9 z2 and let/? be a

point on A. There are neighborhoods Ul of ^ and J72 of x2 so that z$0t and z$V2.
For large fc, gflk(z1)e(71 and gnk(z2)eU29 while gnk(p) is a point on the géodésie
gWk(A). If the séquence {gnk(p)} converges to a point of M(oo), this point must be

in £?! or 02. This contradiction implies that the closed invariant set A=>L(G).
The following lemma ([7]) will be used to prove the following two theorems

which hâve already been given in [7] and [10] for discrète subgroups. We refer to

[7] and [10] for the similar proofs.

LEMMA 3.1. (Eberlein [7]) Let {pn} be a séquence in a Lobatchewsky manifold
M convergent to a point xeM (co). If Wis any neighborhoodofx in M then j:Pn(M— W)
-*0 as «~>oo.

THEOREM 3.2. Let G be a subgroup of the isometry group I{M) ofa Lobatchewsky
manifold M. Then one of the following holds:

(1) L(G) is empty,
(2) L(G) contains one point,
(3) L(G) contains two points,
(4) L(G) is an infinité, perfect and nowhere dense subset of M(oo),
(5) L(G)-Af(oo).

THEOREM 3.3. Let zeL(G) and let Gz contain more than one point. Then Gz

=L{G).
We now investigate various cases of limit sets of subgroups.

THEOREM 3.4. If L{G) <t>, then G has a common fixedpoint in M.
Proof G is a closed Lie subgroup of I(M) and L(G)=L(G) (j). For any peM9

the orbit Gp is closed bounded set so that Gp is compact. Let K= {geG | g (p)=p}.
K is a closed subgroup of the isotropy subgroup I(M)P at p. So K is compact. The
factor space GjK is homeomorphic to Gpy so G/K is compact. G is a fibre space with
compact base space GjK and compact fibre K. Therefore G is compact. By the well
known theorem of Cartan, G has a common fixed point in M.

The following theorem is obvious.

THEOREM 3.5. If L{G) contains one point, then G has a common fixed point in

M(oo) and G consists ofparabolic éléments and axial éléments leaving that point fixed.
Remark. G is a subgroup of the homeomorphism group of Rn leaving the infinity

oo fixed.
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THEOREM 3.6. If L(G) contains two points then G modulo a normal subgroup
(isomorphic io a subgroup of 0{n-\)) is a subgroup of the \-parameter group of axial
éléments with thèse two given points as fixedpoints.1)

Proof. G leaves the géodésie X joining the two points in L(G) invariant. The
kernel of the restriction map from G into I(X) is isomorphic to a subgroup of0(n-1).

DEFINITION 3.2. The totally géodésie hull (A} of a cubset A in M(oo) is the
intersection of ail totally géodésie submanifolds in M whose boundaries contain A.

DEFINITION 3.3. A set TV in M is called totally convex ([3]) if N contains

every géodésie segment of M whose end points are in N. The totally convex hull {^4}

of a subset A in M (oo) is the smallest totally convex set in M whose closure contains A.
From now on, we shall assume that M is a simply connected complète Riemannian

manifold with

PROPOSITION 3.1. If A contains more than two points, then any isometry </> of
I(M) which leaves A pointwise fixed', also leaves {A} pointwise fixed.

Proof. We consider the totally convex hull {A} of A. The set of tangents to {A} at

pointp of {A} is a convex cône in Mp (see [3], p. 7). Ifwe complète ail géodésie segments

in {A} and dénote by N the totally convex hull of the union of those complète geodesics,

then the set of tangents to NaXp is a subspace Np of Mr Then Ar=ExpArp and N is a

totally géodésie submanifold of M. By définition, N=(A}. If A contains more than

two points, then any isometry (f> of I(M which leaves A pointwise fixed, also leaves

every géodésie joining any two points in A pointwise fixed (by the law of cosines). <f>

leaves <^4> pointwise fixed.
Since L(G) is invariant under G, (L(G)} is also invariant under G. In gênerai,

<L(/(M))> may not be the whole M. However if M is homogeneous, L(I(M))
M(oo) and <L(/(M))> M. The following lemma is the main idea of this paper.

DEFINITION 3.4. The centralizer Z(G, H) is the set {h | heH,gh hg for ail

geG}.

LEMMA 3.2. Let M be a simply connected complète Riemannian manifold with

K£c<0 such that I(M) acts effectively on M. Suppose that G is a subgroup ofI(M)
and <L (G)> M.IfL (G) contains more than twopoints, then the centralizer Z (G, I(M
is trivial. If, in addition, G does not hâve a common fixed point in M(oo), then G is

semisimple.

l) The factored out normal subgroup of G contains elliptic éléments which leave the géodésie X

pointwise fixed but may rotate other in M.
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Proof. Suppose that c is an élément of the centralizer and zoeL(G). There is a

séquence {gn} <= G, so that limgn (p)=z0 for any p e M. Then z0 limgn (p) lim cgwc"1

(p) limcgn(p) c(z0). Thus every point in L(G) is a fixed point of c. Proposition
3.1 implies that every point in M=<L(G)> is fixed by c. Since I(M) acts on M effec-

tively, c=l.
Now suppose that His a commutative, normal subgroup of G. If L{H) <j>, then

/f has a common fixed pointéeM. Suppose that zoeL(G\ {gk} is a séquence in G, so

that limgfc (/?) z0 and /? e H. The point gfc (/7) is fixed under gkhgk~x. Since the mapping
h-+gkhgk *

maps H onto itself, gk (p) is a common fixed point of H. It follows that z0
is a common fixed point of H. Thus the éléments of H leave every point of L (G) and

<L(G)> fixed. It follows that H= {!}.
lîL{H)*<f>, we shall show that L(H) L(G). Suppose that zoeL(H), {hk}czH,

limhk(p)=z0 and geG. Then \imghkg~1 (p) \imghk(p)=g(z0). Thus L(H) is
invariant under G. If L (//) consists of exactly one point, then this point is invariant
under G, contradicting the hypothesis. Therefore L(H) is a closed subset of M(oo),
which contains more than one point and L(H) is invariant under G. Theorem 3.1

implies that L{H)=>L{G). Since HcG9 L(H) L(G). Thus <L(^)> <L(G)> M.
The centralizer Z(H, I{M)) is trivial. Since His commutative it is a subgroup of this

centralizer, and H {1}.

4. Complète Homogeneous Riemannian Manifolds With K^c<0

In the sequel, we shall always assume that the isometry group /(M) acts effectively

on the homogeneous manifold M.

LEMMA 4.1. (Mostow [17]) Let & be a real noncompact semisimple Lie algebra
and @ be a noncompact semisimple subalgebra. Let ^=Jf®^ be a Cartan décomposition

of&. Then there is a Cartan décomposition 5fc®!Pfor & withX"c/ and&lc&'.

THEOREM 4.1. Let M be a complète homogeneous Riemannian manifold with

K£c<0. Then

(1) Either I(M) has a common fixed point in M(oo) or I(M) is a noncompact
semisimple Lie group of rank one and M is a noncompact symmetric space of rank one.

(2) Let Gbea Lie subgroup of I0(M) such that M=<L(G)>. Suppose that L (G)
contains more than two points and G does not hâve a commonfixedpoint in M(oo). Then

either G is discrète or G=I0(M).
Proof. Let G be a Lie subgroup of I0(M) satisfying the assumptions in (2).

Suppose that G is not discrète, and let Go be the identity component of G. Go is a
nontrivial normal subgroup of G. As in the proof of Lemma 3.2, L(G0)=L(G).
Furthermore, Go has no common fixed point in the closure <L(G)>. For if z is such
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a point and geG, then g(z) is also a common fixed point of Go. But the orbit Gz is
dense in L(G) so every point of L(G) and <L(G)> is fixed under Go. Thus Go {1}.
Lemma 3.2 implies that Go is semisimple with trivial centralizer. We can apply the
above fact to Io (M), since M= <L(/0 (Af ))>. If 70 (M) does not hâve a common fixed
point, then I0(M) is semisimple with trivial centralizer. Hence M is symmetric. Since

noncompact symmetric spaces with rank greater than one do not satisfy the condition
that any two boundary points can be joined by a unique géodésie (see [9]). M must
be a noncompact symmetric space of rank one. Let & be the Lie algebra of lo(M)
and let &=jf®&> be the corresponding Cartan décomposition. Then the axial
éléments of I0(M) are given by expZ, where Xe0>. We now go back to the given

group G. The existence of such a subgroup G implies that I(M) does not hâve a

common fixed point in M(oo) and M is a symmetric space. Since Go is semisimple,
G0 I0(M) otherwise <L(G)> <L(G0)> would be a proper totally géodésie sub-

manifold of M by Lemma 4.1. Consequently either G is discrète or G I0(M).

THEOREM 4.2. ([5], [6]) Let M be a noncompact symmetric space of rank one.

Let G be a connectée Lie subgroup ofl0 (M). Then one of thefollowing holds:

(1) G has a common fixed point in M,
(2) G has a common fixed point in M(co),
(3) G modulo a normal subgroup (isomorphic to a subgroup ofO(n—l)9n dimM)

is the l-parameter group of axial éléments,

(4) G modulo a normal subgroup (isomorphic to a subgroup ofO(n — m),n dim M,
m dim(L(G)}) is the connected isometry group 70«L(G)>) of the totally géodésie

submanifold (L(G)} which is a noncompact symmetric space of rank one,

(5) GisI0(M).
Proof If G has a common fixed point in M, then we hâve (1) or (2). If L(G)

contains two points, then the géodésie <L(G)> is invariant under G. The restriction

homomorphism from G into /0«L(G)>) has kernel K which is a subgroup leaving
<L (G)> pointwise fixed and is isomorphic to a subgroup of O (n — 1 Since the image

of G in Io «L (G)» is a connected Lie subgroup, it must be the l-parameter group of
axial éléments. IfL(G) contains more than two points but <L(G)> aM, then <L(G)>
is invariant under G. The restriction homomorphism from G into J0«L(G)>) has

kernel K which is a subgroup leaving <L(G)> pointwise fixed and is isomorphic to a

subgroup of O(n-m) (m dim<L(G)>). We can apply Theorem 4.1. to get (4). If
(L(G)} M, then Theorem 4.1. again gives (5).

THEOREM 4.3. Let M be a noncompact symmetric space of rank one and G be a

subgroup ofl0 (M). If there is no point in M and no proper totally géodésie submanifold
in M invariant under G, then G is discrète or dense in Io (M).

Proof. G is a closed subgroup and L(G) L (G). If (G)o is trivial, then G is discrète.
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If ((j)0 is not trivial, then it is a connectée! Lie subgroup. Thus this theorem follows
from Theorem 4.2.

COROLLARY. Let Mbea noncompact symmetric space ofrank one. Let there be

no point in M and no proper totally géodésie submanifold in M invariant under G. If
there is an open subset U ofl0 (M) such that Un G <f>t then G is discrète,
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